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Abstract 
   

 

 

 Starting from an evident physical phenomenon, which states that in a three 

dimensional world, the distribution of the electric potential resulted from a 

charged conductor diminishes in a regular decaying rate to zero when the 

distance reaches infinity regardless of the shape of the conductor, this paper 

endeavors to generalize this case in an accurate mathematical way, and 

furthermore, some fascinating results of the same phenomenon in an higher or 

lower dimension are obtained along the way of my discovery.  

 To summarize the main point of this paper in a practical term other than the 

sophisticated and intangible mathematical terms, I could claim that for any 

charged conductor that is regular enough, the distribution of the electric 

potential far away from the conductor will not alter much when you transform 

the physical shape of the conductor, for instance, when you squeeze it or 

punch it. 

 The technique applied by this paper is purely calculus and with certain 

knowledge of partial differential equations, especially the Laplacian equations, 

I could arrive at the results mentioned above.  

 In order to clarify any potential misunderstandings of the significance and 

originality of this result, I hereby claim that all my work is based on the 

knowledge of analysis and partial differential equations that has been 

established long ago, what I did is simply to apply the method in an original 

way to explain a universal phenomenon, and therefore, some generalization of 

it. 
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Notice 
   

 

 Before the argument of this paper there are a few notice and assumptions 

we need to make in order to convert a physical phenomenon into a pure 

mathematical problem.  

 If we let u denote the electric potential, then laplacian u is the density of the 

charge.  

 In this system we will consider three things as self-evident: 

 First of all, there is no charge outside the conductor;  

 Second of all, the conductor is an equipotential body;  

 Third of all, the electric potential decays to zero at infinity. This will give rise 

to the Dirichlet problem in our main result.  
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1 Introduction

In this paper, we consider a bounded charged conductor Ω in Rn, where boundary, denoted

as ∂Ω, is assumed to be regular enough so that the Dirichlet problem is solvable in BR(0)\Ω;
for instance, it suffices to suppose that ∂Ω satisfies an exterior cone condition.

We will give an estimate on the electic potential outside Ω and the rate of decay, by

using the maximum principle of harmonic function; as a corollary, we will give a proof of

the uniqueness of distribution of the electric potential.

2 Preliminaries

Definition (2.1). The boundary of Ω is said to satisfy an exterior cone condition, if ∀ξ ∈
∂Ω, there exists a finite circular cone K, with vertex ξ satisfying K ∩ Ω = ξ.

Theorem (2.2). Dirichlet problem is solvable for any domain Ω satisfying an exterior cone

condition.

Theorem (2.3). Weak Maximum Principle: Let u ∈ C2(Ω) ∩ C0(Ω) with ∆u ≥ 0(≤ 0).

Then, provided Ω is bounded

sup
Ω

u = sup
∂Ω

u, (inf
Ω

u = inf
∂Ω

u)

1
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Theorem (2.4). Strong Maximum Principle: Let ∆u ≥ 0 (≤ 0) in Ω and suppose there

exists a point y ∈ Ω for which u(y) = supΩ u (infΩ u). Then u is constant.

Theorem (2.5). Let {un} be a monotone increasing sequence of harmonic functions in a

domain Ω and suppose that for some point y ∈ Ω, the sequence {un(y)} is bounded. Then

the sequence converges uniformly on any bounded subdomain Ω′ ⊂⊂ Ω to a harmonic

function.

3 Main Results

Theorem (3.1). Ω is a bounded domain whose closure contained in B1(0) ⊆ Rn (n ≥ 3).

∂Ω satisfies exterior cone condition; There exists a function u on Rn\Ω satisfying the

following:

u|∂Ω = 1 (3.2)

lim
|x|→∞

u(x) = 0 (3.3)

∆u = 0 in Rn\Ω (3.4)

Furthermore, the rate of decaying of u is comparable to |x|2−n; i.e. ∃ C1 and C2 such that

C1

|x|n−2
≤ u(x) ≤ C2

|x|n−2
as |x| → ∞.

Remark 1. One could view Ω as a charged conductor with electric potential equals to 1,

while there is no charge outside Ω. Then the electric potential decays in the same rate as

|x|2−n, no matter how the shape of Ω looks like, given a certain regularity.

4 The uniqueness

As a corollary of the main theorem, we immediately obtain the uniqueness of the solution

u.

Corollary 1. The function u satisfying conditions (3.2) ∼ (3.4) is unique.

2
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Proof: Existence is given by theorem (3.1).

Let v be any function that satisfies (3.2) ∼ (3.4); consider u − v; ∀y ∈ Rn\Ω and

∀ϵ > 0.

Since both u and v satisfy (3.3) ∃N > |y| such that on ∂BN(0), |u|+ |v| ≤ ϵ.

We know u− v = 0 on ∂Ω by (3.2).

Then on BN(0)\Ω, |u− v| ≤ ϵ.

By maximum and minimum principle, |u− v|
∣∣∣∣
(y)

≤ ϵ.

Since ϵ is arbitrary |u − v|
∣∣∣∣
(y)

= 0; Since y is arbitrary, u ≡ v in Rn\Ω; therefore u is

unique.

5 Proof of Theorem (3.1)

Proof: For each positive integer N, define uN to be the solution of
∆uN = 0, in BN(0)\Ω

uN = 1, on ∂Ω

uN = 0, on ∂BN(0)

By the exterior cone condition uN exists uniquely.

Notice by Strong Maximum Principle, for each k > 0, uk > 0 in Bk−1(0)\Ω, therefore
uk > uk−1 on ∂(Bk−1(0)\Ω).

By Maximum Principle again, uk > uk−1 in Bk−1(0)\Ω .

As a matter of fact, for any compact subset K in Rn\Ω, {uN} is monotone increasing

sequence in K.

By (2.5), we have {uN} converge to a harmonic function u uniformly on any compact

subset of Rn\Ω.
We define, for each integer N, vN to be the solution of

∆vN = 0, in BN(0)\B1(0)

vN = 1, on ∂B1(0)

vN = 0, on ∂BN(0)

3
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Indeed,

vN(x) =
Nn−2

Nn−2 − 1
· 1

|x|n−2
− 1

Nn−2 − 1
.

By Strong Maximum Principle , uN

∣∣∣∣
∂B1(0)

< 1 = vN

∣∣∣∣
∂B1(0)

.

Since uN

∣∣∣∣
∂BN (0)

= vN

∣∣∣∣
∂BN (0)

= 0, by Strong Maximum Principle , uN < vN in

BN(0)\B1(0).

Let ϵ0 = min u2(y) y ∈ ∂B1(0), by Strong Maximum Principle, ϵ0 > 0;

Consider ϵ0vN = λn, which solves:
∆λN = 0, in BN(0)\B1(0)

λN = 0, on ∂BN(0)

λN = ϵ0, on ∂B1(0)

By Maximum Principle, uN ≥ λN = ϵ0vN in BN(0)\B1(0).

To sum up, we obtain that

ϵ0N
n−2

Nn−2 − 1
· 1

|x|n−2
− ϵ0

Nn−2 − 1
= ϵ0vN ≤ uN

while uN < vN =
Nn−2

Nn−2 − 1
· 1

|x|n−2
− 1

Nn−2 − 1

Let N → ∞,
ϵ0

|x|n−2
≤ u ≤ 1

|x|n−2

especially u → 0 as |x| → ∞.

6 The 2-dimension case.

When n = 2, the result turns out to be quite the opposite; indeed, u doesn’t decay as

|x| → ∞; actually we have the following stronger result:

Theorem. Let Ω satisfy the conditions in (3.1). Let u be a positive harmonic function in

R2\Ω, then infx∈R2\Ω |u| > 0.

4
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Proof: Suppose not exist RN → +∞ and ϵN → 0, such that

inf
y∈∂BRN

(0)
u(y) = ϵN → 0.

Define vN to be the solution of

∆vN = 0, in BRN
\B1

vN

∣∣∣∣
∂B1

= inf∂B1 u = ϵ0 > 0

vN

∣∣∣∣
∂BRN

= inf∂BRN
u = ϵN

Solve this equation, we obtain

vN =
ϵN − ϵ1
logRN

log |x|+ ϵ0.

Then ∀BR(0), choose N large enough such that RN > R from N on. Since vN ≤ u on

∂(BR(0)\B1(0)) by maximum principle, vN ≤ u on BR\B1. Let N → ∞, we obtain

u ≥ ϵ0 on BR\B1.

Since this holds for all R, this contradicts our assumption that

inf
y∈Rn\Ω

|u(y)| = 0.
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