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Some New Littlewood-Type Inequalities

Abstract: In 1998, Cheng et al. [On a problem of Littlewood, Math Practice

Theory 28 (1998) 314–319] proved: Let p, q ≥ 1, r > 0, r(p − 1) ≤ 2(q − 1), α =

[(p− 1)(q + r) + p2 + 1] /(p+1), β = (2q+2r+ p− 1)/(p+1), δ = (q+ r− 1)/(p+ q+ r).

For any nonnegative sequence {an}Nn=1, we have for any n ≥ 1,

N∑

n=1

apn

n∑

i=1

aqiA
r
i ≤ 2δ

N∑

n=1

aαnA
β
n. (∗)

In 2015, Agarwal et al. [Dynamic Littlewood-type inequalities, Proc. Amer. Math.

Soc. 143 (2015) 667–677] and Saker et al. [Littlewood and Bennett Inequalities on Time

Scales, Mediterr. J. Math. 12 (3) (2015) 605–619] gave Littlewood’s inequality and related

results on time scales. In particular, they gave integral Littlewood’s inequality: Let t0 ∈ R,

p, q ≥ 1. Assume a : R → [0,∞) is continuous and define A(t) :=
∫ t

t0
a(s)ds, B̃(t) :=∫

∞

t
a1+p/q(s)ds, then

∫
∞

t0

ap(t)Aq(t)B̃q(t)dt ≤
(
2pq − q

p+ q

)q ∫ ∞

t0

a2p(t)A2q(t)dt. (∗∗)

But they did not prove that the constant
(

2pq−q
p+q

)q
in the above inequality is best possible.

In this paper, firstly, we introduce a new parameter and employ Hölder’s inequality

and integration by parts to extend (∗∗), and use strong skills to prove the best possible

constant. Secondly, by introducing the proper parameters, applying Jensen’s inequality

and Hölder’s inequality, we present an improved inequality of (∗) and a more general one.

Also, some new inequalities are obtained under the conditions of monotonically nonin-

creasing sequence. Thirdly, we give some analogues of Littlewood’s inequalities. Finally,

further discussions are given for future research.

Keywords: Littlewood’s inequality, Jensen’s inequality, Hölder’s inequality, best

possible constant.
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n. (∗)

2015 V, Agarwal   �(u Littlewood �Æ j��Proc. Amer. Math. Soc.

143 (2015) 667–677�: Saker   �g�a� Littlewood Æ j: Bennett Æ j��Mediterr. J. Math. 12 (3) (2015) 605–619�3�Ng�a� Littlewood �Æ j:�5Æ j. w�", tS3� Littlewood ?-Æ j: b t0 ∈ R, p, q ≥ 1. a : R → [0,∞)~MÆ9p, %� A(t) :=
∫ t

t0
a(s)ds, B̃(t) :=

∫
∞

t
a1+p/q(s)ds, "

∫
∞

t0

ap(t)Aq(t)B̃q(t)dt ≤
(
2pq − q

p+ q

)q ∫ ∞

t0

a2p(t)A2q(t)dt. (∗∗)�tSR�$TÆ j��p�) (
2pq−q
p+q

)q l*A�.
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Jensen Æ j: Hölder Æ j���Æ j (∗) �0E:�24�	�Æ j. |g,  pO�$,#zC�>H�����	�Æ j. ��, �S>3� Littlewood Æ j�Iqj. *<, ~E���F+4℄�vP.

Keywords: Littlewood Æ j, Jensen Æ j, Hölder Æ j, *A�p�).
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§1. Introduction

In 1967, Littlewood [1] presented several remarkable open problems concerning in-

equalities for infinite series which seem to be “very far from simple”. One of his problems

asks whether an absolute constant K exists such that the following inequalities hold for

any non-negative sequence {an} with An =
∑n

k=1 ak:

∞∑

n=1

anA
2
n

(
∞∑

k=n

a
3/2
k

)2

≤ K
∞∑

n=1

a2nA
4
n, (1)

∞∑

n=1

a3n

n∑

k=1

a2kAk ≤ K

N∑

n=1

a4nA
2
n. (2)

As it was pointed out by Littlewood, (1), (2) and related inequalities, have a close

connection to the theory of orthogonal series. The importance of (1) and (2) comes from

the fact that they appear to be new ”elementary inequalities”, and also that they may be

applied to obtain a result on orthogonal functions which is proved in [1]. The theory of

general orthogonal series originated at the turn of the century as a natural generalization,

based on Lebesgue integration, of the theory of trigonometric series.

An answer to Littlewood’s above question was published in 1987 by Bennett [2, 3]

who showed that (1) holds when K = 4 and (2) holds when K = 3/2. Actually, Bennett

proved the following much more general result:

∞∑

n=1

apnA
q
n

(
∞∑

m=n

a
1+ p

q
m

)r

≤
(
p(q + r)− q

p

)r ∞∑

n=1

(apnA
q
n)

1+ r
q , (3)

where p, q, r ≥ 1 and {an} are non-negative sequence. The special case p = 1, q = r = 2

leads to K = 4 of (1), p = 2, q = r = 1 leads to K = 3/2 of (2) by interchanging the order

of summation.

It remains an open problem to determine the best possible constants in (1) and (2).

In 1996, Alzer [4] improved (3) for a special case: Let a1, a2 · · · , aN be nonnegative real

numbers such that a1 ≤ a2 ≤ · · · ≤ aN . If p ≥ 1, q, r > 0 are real numbers such that

d = [p(q + r)− q] /p ≥ k, where k ≥ 1 is an integer, then

N∑

n=1

apnA
q
n

(
N∑

m=n

a
1+ p

q
m

)r

≤
k−1∏

i=0

(d− i)r/k
N∑

n=1

(apnA
q
n)

1+ r
q . (4)

In 1998, under additional conditions, Cheng et al. [5] discussed (3) with a best

constant: If {an}Nn=1 is a nondecresing sequence, p, q > 0, 0 ≤ r ≤ 1 and p(q + r) ≥ p+ q,

then

1
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2 Some New Littlewood-Type Inequalities

N∑

n=1

apnA
q
n

(
N∑

m=n

a
1+ p

q
m

)r

≤ 1 ·
N∑

n=1

(apnA
q
n)

1+ r
q , (5)

where the constant 1 is best possible. At the same time, (3) was partially improved by

them: Let p, q ≥ 1, r > 0, r(p− 1) ≤ 2(q − 1), α = [(p− 1)(q + r) + p2 + 1] /(p + 1), β =

(2q+2r+p−1)/(p+1), δ = (q+r−1)/(p+q+r). For any nonnegative sequence {an}Nn=1,

we have for any n ≥ 1,

N∑

n=1

apn

n∑

i=1

aqiA
r
i ≤ 2δ

N∑

n=1

aαnA
β
n. (6)

A special case p = 3, q = 2, r = 1 of the above inequality reduces to

N∑

n=1

a3n

n∑

i=1

a2iAi ≤ 3
√
2

N∑

n=1

a4nA
2
n, (7)

where 3
√
2 = 1.2599 . . . < 3/2.

In 2015, Agarwal et al.�[6] and Saker et al. [7] gave Littlewood’s inequality and

related results on time scales. In particular, they gave integral Littlewood’s inequali-

ty: Let t0 ∈ R, p, q ≥ 1. Assume a : R → [0,∞) is continuous and define A(t) :=∫ t

t0
a(s)ds, B̃(t) :=

∫
∞

t
a1+p/q(s)ds, then

∫
∞

t0

ap(t)Aq(t)B̃q(t)dt ≤
(
2pq − q

p+ q

)q ∫ ∞

t0

a2p(t)A2q(t)dt. (8)

But they did not prove that the constant
(

2pq−q
p+q

)q
in the above inequality is best possible.

For more information about related inequalities of Littlewood, we refer the reader to [8]–

[11].

In this paper, firstly, we introduce a new parameter and employ Hölder’s inequality

and integration by parts to extend (8), and use strong skills to prove the best possible

constant. Secondly, by introducing the proper parameters, applying Jensen’s inequality

and Hölder’s inequality, we present an improved inequality of (6) and a more general

one. Also, some new inequalities are obtained under the conditions of monotonically

nonincreasing sequence. Thirdly, we give some analogues of Littlewood’s inequalities.

Finally, further discussions are given for future research.
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§2. Basic Lemmas

Definition 1 (See [12]) A function f is convex on an interval [a, b] if for any two

points x1 and x2 in [a, b] and any λ where 0 < λ < 1,

f [λx1 + (1− λ)x2] ≤ λf(x1) + (1− λ)f(x2).

A function f is said to be concave on an interval [a, b] if the function −f is convex on

that interval.

Lemma 1 (Jensen’s inequality, see [12]) If λ1, · · · , λn are nonnegative real numbers

such that
∑n

i=1 λi = 1, and f is convex, then Jensen’s inequality can be stated as

f

(
n∑

i=1

λixi

)
≤

n∑

i=1

λif(xi)

for any x1, · · · , xn in the domain of f . If f is concave, then the inequality reverses,

giving

f

(
n∑

i=1

λixi

)
≥

n∑

i=1

λif(xi). (9)

Lemma 2 (Hölder’s inequality, see [12, 13]) Let 1
p
+ 1

q
= 1 with p > 1. Then Hölder’s

inequality for integrals states that

∫ b

a

|f(x)g(x)|dx ≤
(∫ b

a

|f(x)|pdx
)1/p(∫ b

a

|g(x)|qdx
)1/q

.

with equality when |g(x)| = c|f(x)|p−1. Similarly, Hölder’s inequality for sums states that

n∑

k=1

|akbk| ≤
(

n∑

k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

.

with equality when |bk| = c|ak|p−1. If 0 < p < 1, then the inequality reverses.

In what follows, for convenience, we set An =
∑n

k=1 ak.

Lemma 3. (See [14]) Let p < 0. For any non-negative sequence {an} with a1 > 0,

we have for any n ≥ 1,
∞∑

k=n

akA
p−1
k ≤

(
1− 1

p

)
Ap

n.

Lemma 4. Let p < 0. For any non-negative sequence {an} with an ≥ an+1 , we

have for any n ≥ 1,

∞∑

k=n

akA
p−1
k ≤

(
1

n
− 1

p

)
Ap

n. (10)

Proof. We start with the inequality xp − px + p − 1 ≥ 0. By setting x = Ak−1/Ak

for k ≥ 2, we obtain
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4 Some New Littlewood-Type Inequalities

Ap
k−1 − pAk−1A

p−1
k + (p− 1)Ap

k ≥ 0.

Replacing Ak−1 in the middle term of the left-hand side expression above by Ak − ak

and simplifying, we obtain

Ap
k−1 − Ap

k ≥ −pakA
p−1
k .

Upon summing, we obtain

∞∑

k=n+1

akA
p−1
k ≤ −1

p
Ap

n.

In view of ak ≥ ak+1, we have ak ≤ Ak

k
. Hence

∞∑

k=n

akA
p−1
k = anA

p−1
n +

∞∑

k=n+1

akA
p−1
k ≤

(
1

n
− 1

p

)
Ap

n.

The proof is complete. �

Remark 1. Since 1
n
≤ 1, we get Lemma 3 from Lemma 4 without the monotonicity

of {an}.
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§3. Integral Case

In this section, we extend (8) and get the best possible constant.

Theorem 1. If a(t) ≥ 0, p ≥ 1, q, r > 0, (pq+pr−q)/p > 1, A(t) :=
∫ t

t0
a(s)ds,Λ(t) :=∫

∞

t
a1+p/q(s)ds, then the following inequality holds:

∫
∞

t0

ap(t)Aq(t)Λr(t)dt ≤
(
pq + pr − q

p+ q

)r ∫ ∞

t0

(ap(t)Aq(t))1+
r
q dt, (11)

where the constant
(

pq+pr−q
p+q

)r
in the above inequality is best possible.

Proof. (i) The case p > 1.

The left-hand side of (11) may be rewritten as

L :=

∫
∞

t0

bp(t)Λr(t)dt,

where b(t) := a(t)Aq/p(t). Let x = p(p − 1)(q + r)/(pq + pr − q), u = (pq + pr −
q)/ [q(p− 1)] , w = (pq + pr − q)/(pr), (1/u) + (1/w) = 1. Noting u > 1, (p − x)w =

1, xu = p
(
1 + r

q

)
, applying Hölder’s inequality with indices u and w, we have

L =

∫
∞

t0

bx(t)
(
bp−x(t)Λr(t)

)
dt

≤
(∫

∞

t0

bp(1+
r
q )(t)dt

)1/u (∫ ∞

t0

b(t)Λrw(t)dt

)1/w

. (12)

Since

∫ t

t0

b(s)ds =

∫ t

t0

a(s)Aq/p(s)ds =

∫ t

t0

Aq/p(s)dA(s) =
p

p+ q
A1+ q

p (t),

integrating by parts gives

∫
∞

t0

b(t)Λrw(t)dt

=

∫
∞

t0

Λrw(t)d

(∫ t

t0

b(s)ds

)

=
p

p+ q

∫
∞

t0

Λrw(t)dA1+ q

p (t)

=
p

p+ q

(
A1+ q

p (t)Λrw(t)|∞t0 + rw

∫
∞

t0

A1+ q

p (t)Λrw−1(t)a1+
p

q (s)dt

)

=
prw

p+ q

∫
∞

t0

b1+
p

q (t)Λrw−1(t)dt.
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6 Some New Littlewood-Type Inequalities

Let y = p2(q + r)/ [q(pq + pr − q)] , α = (pq + pr− q)/p, β = (pq + pr− q)/(pq + pr− p−
q), (1/α)+(1/β) = 1. Noting α > 1, yα = p

(
1 + r

q

)
, (1+ p

q
−y)β = 1, α = rw = (rw−1)β,

applying Hölder’s inequality with indices α and β, we obtain

∫
∞

t0

b(t)Λrw(t)dt

=
prw

p + q

∫
∞

t0

b1+
p

q (t)Λrw−1(t)dt

=
prw

p + q

∫
∞

t0

by(t)
(
b1+

p

q
−y(t)Λrw−1(t)

)
dt

≤ prw

p + q

(∫
∞

t0

byα(t)dt

)1/α(∫ ∞

t0

b(1+
p

q
−y)β(t)Λ(rw−1)β(t)dt

)1/β

=
pq + pr − q

p+ q

(∫
∞

t0

bp(1+
r
q )(t)dt

)1/α(∫ ∞

t0

b(t)Λrw(t)dt

)1/β

.

Hence

∫
∞

t0

b(t)Λrw(t)dt ≤
(
pq + pr − q

p+ q

)α ∫ ∞

t0

bp(1+
r
q )(t)dt.

Substituting it into (12) yields

L ≤
(
pq + pr − q

p + q

)r ∫ ∞

t0

bp(1+
r
q )(t)dt.

Thus (11) holds.

Here we just see that the constant
(

pq+pr−q
p+q

)r
is best possible in the case of p =

2, q = r = 1. In other words, (11) reduces to
∫

∞

t0

a2(t)

(∫ t

t0

a(s)ds

)(∫
∞

t

a3(s)ds

)
dt

≤ 1 ·
∫

∞

t0

a4(t)

(∫ t

t0

a(s)ds

)2

dt. (13)

Taking a(t) = t−
1

2
−θ(θ > 0) and t0 = 1, elementary calculating gives

∫
∞

t0

a2(t)

(∫ t

t0

a(s)ds

)(∫
∞

t

a3(s)ds

)
dt

=

∫
∞

1

t2(−
1

2
−θ)

(∫ t

1

s−
1

2
−θds

)(∫
∞

t

s3(−
1

2
−θ)ds

)
dt

=
2

3θ(1 + 16θ + 60θ2)
,

∫
∞

t0

a4(t)

(∫ t

t0

a(s)ds

)2

dt =

∫
∞

1

t4(−
1

2
−θ)

(∫ t

1

s−
1

2
−θds

)2

dt
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=
2

3θ + 42θ2 + 120θ3
.

Since lim
θ→0+

2
3θ(1+16θ+60θ2)

/ 2
3θ+42θ2+120θ3

= lim
θ→0+

1+4θ
1+6θ

= 1, the constant 1 in (13) is best possi-

ble.

(ii) The case p = 1. Its proof is similar to that of (i) by applying Hölder’s inequality

only once, hence we omit the details. �

Remark 2. (11) degenerates into (8) when r = q. Therefore we generalize (8)

to (11) by introducing a new parameter r. Furthermore, we prove that the constant(
pq+pr−q

p+q

)r
in (11) is best possible.
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§4. Series Case

In this section, by introducing the proper parameters, applying Jensen’s inequality

and Hölder’s inequality, we present an improved inequality of (6) and a more general

one. Also, some new inequalities are obtained under the conditions of monotonically

nonincreasing sequence.

Theorem 2. Let p, q > 1, r > (q − 1)/(p − 1), α = p + q − 1, β = 1 + r, δ =

(q − 1)/(p+ q − 2). For any non-negative sequence {an}, we have for any n ≥ 1,

N∑

n=1

apn

n∑

i=1

aqiA
r
i ≤

(
pr − r

pr − r − q + 1

)δ N∑

n=1

aαnA
β
n. (14)

Proof. Set x = (p − 1)/(p + q − 2), y = r(p + q − 2)/(q − 1), z = −2 + p + q, λ =

(pr − q − r + 1)/(q − 1). It is obvious that 0 < δ < 1, αx+ δ = p, βx− λδ = 1, zδ + 1 =

q, yδ = r, x+ δ = 1, 1 + z = α, y − λ = β. Using Jensen’s inequality gives

N∑

n=1

apn

n∑

i=1

aqiA
r
i =

N∑

n=1

(
aαnA

β
n

)x
(
an
Aλ

n

)δ n∑

i=1

ai
An

(aziA
y
i )

δ

≤
N∑

n=1

(
aαnA

β
n

)x
(
an
Aλ

n

)δ n∑

i=1

(
a1+z
i Ay

i

An

)δ

=
N∑

n=1

(
aαnA

β
n

)x n∑

i=1

(
ana

1+z
i Ay

i

A1+λ
n

)δ

.

Applying Hölder’s inequality gives

N∑

n=1

(
aαnA

β
n

)x n∑

i=1

(
ana

1+z
i Ay

i

A1+λ
n

)δ

≤
(

N∑

n=1

aαnA
β
n

)x( N∑

n=1

an
A1+λ

n

n∑

i=1

a1+z
i Ay

i

)δ

. (15)

On the other hand, interchanging the order of summation, by Lemma 3, we get

N∑

n=1

an
A1+λ

n

n∑

i=1

a1+z
i Ay

i =

N∑

n=1

a1+z
n Ay

n

N∑

m=n

am
A1+λ

m

≤
(
1 +

1

λ

) N∑

n=1

a1+z
n Ay−λ

n

=
pr − r

pr − r − q + 1

N∑

n=1

aαnA
β
n.

Hence
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N∑

n=1

apn

n∑

i=1

aqiA
r
i ≤

(
pr − r

pr − r − q + 1

)δ N∑

n=1

aαnA
β
n.

The proof is complete. �

Remark 3. (i) In particular, setting p = 3, q = 2 and r = 1 in Theorem 2 gives

N∑

n=1

a3n

n∑

i=1

a2iAi ≤ 3
√
2

N∑

n=1

a4nA
2
n,

which is (7).

(ii) (14) and (6) have the same constant 2(q−1)/(p+q−2) when (pr−r)/(pr−r−q+1) = 2.

In fact, we get r = 2(q − 1)/(p − 1) from (pr − r)/(pr − r − q + 1) = 2, then the

constant of (14) is
(

pr−r
pr−r−q+1

)δ
= 2(q−1)/(p+q−2). At the same time, the constant of (6) is

2(q+r−1)/(p+q+r) = 2(q−1)/(p+q−2).

(iii) If p = 3, q = 2, r = 3/2, then the constant of (14) is
(

pr−r
pr−r−q+1

)δ
= 3
√
3/2 =

1.1447 . . ., the constant of (6) is 2(q+r−1)/(p+q+r) = 25/13 = 1.3055 . . . > 3
√

3/2. Hence, to

some extent, (14) is an improvement of (6).

Theorem 3. Let p, q > 1, r > (q − 1)/(p − 1), α = p + q − 1, β = 1 + r, δ =

(q − 1)/(p + q − 2). For any non-negative sequence {an} with a1 ≥ a2 ≥ a3 ≥ · · · , we
have for any n ≥ 1,

N∑

n=1

apn

n∑

i=1

aqiA
r
i ≤

(
N∑

n=1

aαnA
β
n

)1−δ [ N∑

n=1

(
1

n
+

q − 1

pr − q − r + 1

)
aαnA

β
n

]δ
. (16)

Proof. Set x = (p − 1)/(p + q − 2), y = r(p + q − 2)/(q − 1), z = p + q − 2, λ =

(pr−q−r1)/(q−1). It is obvious that αx+ δ = p, βx−λδ = 1, zδ+1 = q, yδ = r, x+ δ =

1, 1 + z = α, y − λ = β. Using Jensen’s inequality gives

N∑

n=1

apn

n∑

i=1

aqiA
r
i =

N∑

n=1

(
aαnA

β
n

)x
(
an
Aλ

n

)δ n∑

i=1

ai
An

(aziA
y
i )

δ

≤
N∑

n=1

(
aαnA

β
n

)x
(
an
Aλ

n

)δ n∑

i=1

(
a1+z
i Ay

i

An

)δ

=
N∑

n=1

(
aαnA

β
n

)x n∑

i=1

(
ana

1+z
i Ay

i

A1+λ
n

)δ

.

In view of x+ δ = 1, 0 < δ < 1, applying Hölder’s inequality gives

N∑

n=1

(
aαnA

β
n

)x n∑

i=1

(
ana

1+z
i Ay

i

A1+λ
n

)δ
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≤
(

N∑

n=1

aαnA
β
n

)x( N∑

n=1

an
A1+λ

n

n∑

i=1

a1+z
i Ay

i

)δ

. (17)

On the other hand, interchanging the order of summation and by Lemma 4, we get

N∑

n=1

an
A1+λ

n

n∑

i=1

a1+z
i Ay

i =

N∑

n=1

a1+z
n Ay

n

N∑

m=n

am
A1+λ

m

=

N∑

n=1

a1+z
n Ay

n

N∑

m=n

am
A1+λ

m

≤
(
1

n
+

1

λ

) N∑

n=1

a1+z
n Ay−λ

n

=

(
1

n
+

q − 1

pr − q − r + 1

) N∑

n=1

aαnA
β
n.

Hence

N∑

n=1

apn

n∑

i=1

aqiA
r
i ≤

(
N∑

n=1

aαnA
β
n

)1−δ [ N∑

n=1

(
1

n
+

q − 1

pr − q − r + 1

)
aαnA

β
n

]δ
,

which concludes the proof. �

Remark 4. (i) Since 1
n

≤ 1, we get Theorem 2 from Theorem 3 without the

monotonicity of {an}.
(ii) In particular, setting p = 3, q = 2 and r = 1 in Theorem 3 gives

N∑

n=1

a3n

n∑

i=1

a2iAi ≤
(

N∑

n=1

a4nA
2
n

)2/3 [ N∑

n=1

(
1

n
+ 1

)
a4nA

2
n

]1/3
. (18)

Next we extend Theorem 2 as follows.

Theorem 4. Let 0 ≤ r ≤ 1, q > 1−r, p > q/(q+r−1), α = p(q+r)/q, β = q+r, δ =

(pq + pr − p − q)/(pq + pr − q). For any non-negative sequence {an}, we have for any

n ≥ 1,

N∑

n=1

apnA
q
n

(
N∑

m=n

a
1+ p

q
m

)r

≤
[
p(q + r − 1)

q

]δr N∑

n=1

(apnA
q
n)

1+ r
q . (19)

Proof. Set x = p/(pq + pr − q), y = (q + r − 1)(pq + pr − q)/(pq + pr − p− q), z =

(pq + pr − q)/q, λ = q/(pq + pr − p − q). It is obvious that αx + δ = 1 + p
q
, βx − λδ =

1, zδ+1 = p(q+r−1)/q, yδ = r, x+δ = 1, 1+z = α, y−λ = β. Using Jensen’s inequality
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and interchanging the order of summation, we have

∑N
n=1 a

p
nA

q
n

(∑N
m=n a

1+ p

q
m

)r

∑N
i=1 (a

p
iA

q
i )

1+ r
q

=
N∑

n=1

(apnA
q
n)

1+ r
q

∑N
i=1 (a

p
iA

q
i )

1+ r
q

(∑N
m=n a

1+ p

q
m

a
p

q
nAn

)r

≤
(

N∑

n=1

(apnA
q
n)

1+ r
q

∑N
i=1 (a

p
iA

q
i )

1+ r
q

·
∑N

m=n a
1+ p

q
m

a
p

q
nAn

)r

=




∑N
n=1 a

1+ p

q
n

∑n
m=1

(
a

p

q
mAm

)q+r−1

∑N
i=1 (a

p
iA

q
i )

1+ r
q




r

.

Applying Theorem 2 gives

N∑

n=1

a
1+ p

q
n

n∑

m=1

(
a

p

q
mAm

)q+r−1

≤
[
p(q + r − 1)

q

]δ N∑

i=1

(apiA
q
i )

1+ r
q . (20)

Thus (19) is valid. �

Remark 5. For p = 2, q = r = 1 in (19), we also get (7).

Theorem 5. Let 0 ≤ r ≤ 1, q > 1 − r, p > q/(q + r − 1), α = p(q + r)/q, β =

q + r, δ = (pq + pr − p − q)/(pq + pr − q). For any non-negative sequence {an} with

a1 ≥ a2 ≥ a3 ≥ · · · , we have for any n ≥ 1,

N∑

n=1

apnA
q
n

(
N∑

m=n

a
1+ p

q
m

)r

≤
[

N∑

n=1

(apnA
q
n)

1+ r
q

]1−δr

×
[

N∑

n=1

(
1

n
+

pq + pr − p− q

q

)
(apnA

q
n)

1+ r
q

]δr
. (21)

Proof. Set x = p/(pq + pr − q), y = (q + r − 1)(pq + pr − q)/(pq + pr − p− q), z =

(pq + pr − q)/q, λ = q/(pq + pr − p− q). It is obvious that αx+ δ = 1 + p/q, βx− λδ =

1, zδ+1 = p(q+r−1)/q, yδ = r, x+δ = 1, 1+z = α, y−λ = β. Using Jensen’s inequality

and interchanging the order of summation, we have

∑N
n=1 a

p
nA

q
n

(∑N
m=n a

1+ p

q
m

)r

∑N
i=1 (a

p
iA

q
i )

1+ r
q

=

N∑

n=1

(apnA
q
n)

1+ r
q

∑N
i=1 (a

p
iA

q
i )

1+ r
q

(∑N
m=n a

1+ p

q
m

a
p

q
nAn

)r

≤
(

N∑

n=1

(apnA
q
n)

1+ r
q

∑N
i=1 (a

p
iA

q
i )

1+ r
q

·
∑N

m=n a
1+ p

q
m

a
p

q
nAn

)r

=




∑N
n=1 a

1+ p

q
n

∑n
m=1

(
a

p

q
mAm

)q+r−1

∑N
i=1 (a

p
iA

q
i )

1+ r
q




r

.
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Applying Theorem 3 gives

N∑

n=1

a
1+ p

q
n

n∑

m=1

(
a

p

q
mAm

)q+r−1

≤
[

N∑

i=1

(apiA
q
i )

1+ r
q

]1−δ [ N∑

i=1

(
1

i
+

pq + pr − p− q

q

)
(apiA

q
i )

1+ r
q

]δ
. (22)

Then (21) holds. �
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§5. Analogues of Littlewood’s Inequalities

In this section, we give some analogues of Littlewood’s inequalities.

Theorem 6. Let p, q ≥ 1, r > 0, r(p − 1) ≤ 2(q − 1), α = [(p − 1)(q + r) + p2 +

1]/(p+1), β = (2q+2r+ p− 1)/(p+1), δ = (q+ r− 1)/(p+ q+ r). For any non-negative

sequence {an}n∈N and a0 = A0 > 0, a1 > 0, An =
∑n

k=1 ak, we have for any n ≥ 1,

N∑

n=1

apn
An−1

An

n∑

i=1

aqiA
r
i−1 ≤

N∑

n=1

aαnA
β
n−1. (23)

Proof. Set x = (p+1)/(p+q+r), y = (p+q+r)r/(q+r−1), z = (q−1)(p+q+r)/(q+

r−1). It is obvious that αx+δ = p, βx−δ = 1, zδ+1 = q, yδ = r, x+δ = 1, z−α = β−y.

Using Jensen’s inequality gives

N∑

n=1

apn
An−1

An

n∑

i=1

aqiA
r
i−1 =

N∑

n=1

(
aαnA

β
n−1

)x( an
An−1

)δ n∑

i=1

ai
An

(
aziA

y
i−1

)δ

≤
N∑

n=1

(
aαnA

β
n−1

)x( an
An−1

)δ
(

n∑

i=1

a1+z
i Ay

i−1

An

)δ

=

N∑

n=1

(
aαnA

β
n−1

)x n∑

i=1

(
ana

1+z
i Ay

i−1

An−1An

)δ

.

In view of x+ δ = 1, 0 < δ < 1, applying Hölder’s inequality gives

N∑

n=1

(
aαnA

β
n−1

)x n∑

i=1

(
ana

1+z
i Ay

i−1

An−1An

)δ

≤
(

N∑

n=1

aαnA
β
n−1

)x( N∑

n=1

an
An−1An

n∑

i=1

a1+z
i Ay

i−1

)δ

.

On the other hand, interchanging the order of summation, we get

N∑

n=1

an
An−1An

n∑

i=1

a1+z
i Ay

i−1 =

N∑

n=1

a1+z
n Ay

n−1

N∑

m=n

am
Am−1Am

=
N∑

n=1

a1+z
n Ay

n−1

N∑

m=n

Am − Am−1

Am−1Am

≤
N∑

n=1

a1+z
n Ay−1

n−1.

Since 1 + z − α = β − y + 1 ≥ 0 from r(p− 1) ≤ 2(q − 1), it follows that

N∑

n=1

a1+z
n Ay−1

n−1 ≤
N∑

n=1

aαnA
β
n−1.

The proof is complete. �
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§6. Further Discussions

In this paper, we’ve extended or improved some discrete inequalities formulated by

Littlewood. The integral case with best possible constant and related inequalities are

presented. The methods include Hölder’s inequality, integration by parts and Jensen’s

inequality, and the skills are very strong.

In this section, we list some problems for further research.

(I) Numerical calculations indicate that the constant factor
(

pr−r
pr−r−q+1

)δ
in Theorem

2 is not best possible (see [2]). Is it possible to replace the constant with a smaller one?

Maybe we can try to modify Lemmas 3 and 4 to get a more accurate estimate. Noting

inequality (5), Theorem 3, and combining with mathematical software, a monotonically

decreasing sequence {an} will reflect the best of the constant factor. As to what form of

{an} taken, the constant factor is the best possible? we will focus on it in the future.

(II) We can discuss the reverse inequalities, high dimensional inequalities and others.

Hölder’s inequality and Jensen’s inequality remain fundamental tools.

(III) We have not discussed the improvements of inequality (1) in this article. Gao

[14] has done some work on it. We expect to get some beautiful and simple inequalities

by improving it or doing some related work.

(IV) We can discuss Littlewood-type inequalities on time scales. The theory of time

scales was introduced by Hilger [15] in 1988 in order to unify continuous and discrete

analysis (see also [16]). The study of dynamic inequalities on time scales has received a

lot of attention in the literature.

(V) Littlewood’s inequality has applications on the general theory of orthogonal

series. We will seek more applications of the Littlewood-type inequalities.
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