On Concurrent Lines Related to Miquel Points

CHEN Hong-zheng, CHEN Ming-wei, LI Zhi-han Guangdong Experimental High School
Supervisor: LIANG Wan-feng
Guangdong China

December 2015

Abstract

Starting from an AIME problem, the Miquel circles created by two Miquel Points are studied in this paper, and then we come to a conclusion that no matter how the figure changes, three radical axes of the two corresponding Miquel circles are always concurrent. We explore from the shallower to the deeper, and establish our proof from the specialized cases to the general cases, using the properties of radical axes and Miquel Points as well as complex numbers. Furthermore, we study the cases with three sets of Miquel Points and Miquel circles and discover three collinear points and handle it with the help of computer. We also generalize the theorem into high-dimensional cases, finding out that the corresponding theorem is still true in some cases. In addition, still in other cases the theorem isn't true, but with some restrictions some beautiful properties can be derived.

Key words: Plane geometry, Miquel Point, Radical axis, Concurrent lines

Catalogue

1 Introduction 1 -
2 Notations and Some Properties - 2 -
3 Lemmas - 4 -
4 Specialized Cases -9-
5 General Cases 12 -
6 On More Sets of Miquel Points 18 -
7 On Higher Dimensions 22 -
8 Acknowledgement 28 -
9 Postscript 28 -
10 Reference 28 -

1 Introduction

We find a problem in 2010 American Invitational Mathematics Examination (AIME). As is shown in Figure 1, in $\triangle A B C, A C=13, B C=14$, and $A B=15$. Points M and D lie on $\overline{A C}$ with $A M=M C, \angle A B D=\angle B D C$. Points N and E lie on $\overline{A B}$ with $A N=N B, \angle A C E=\angle E C B$. Let P be the point, other than A, of intersection of the circumcircles of $\triangle A M N$ and $\triangle A D E$. Ray $A P$ meets $B C$ at Q. The ratio $B Q / C Q$ can be written in the form m / n, where m and n are relatively prime positive integers. Find $m-n .{ }^{[1]}$ This is Problem 15 of 2010 AIME II,

Figure 12010 AIME Problem 15
which is not easy to solve. According to the answer provided by the MAA, the similarity of triangles and area-method can be used to solve this problem, which are, however, too complicated to use.
After doing some further researches over this problem, we found the proportion formula has kind of symmetry. Therefore, we made a guess and used Sketchpad to delve. We discovered that $A Q$ together with other two lines initiating from vertices B, C have some fantastic properties. Then we wrote this article to explore the problem.

2 Notations and Some Properties

In this section, we introduce some notations that we use in this article.
The following definition are all with respect to Euclidean Plane \mathbb{R}^{2}. Although using Projective Plane \mathbb{P}^{2} sometimes brings convenience when talking about concurrent lines, the circumcircle, which plays a main role in the following theorems, cannot be well defined in Projective Plane. Therefore, we decide to base our theorem on the Euclidean Plane.

We first introduce some notations and definitions in plane geometry.
Notation $1^{[2]}$ Let A and B be two different points on the plane, then we use $\overline{A B}$ to represent the segment starting from one point another, and we use $A B$ to denote the line passing A and B. When we use $\overline{A B}$ to represent the distance from A to B, we consider it directed, which means after choosing a positive direction, the distance goes with the direction measures positive and that goes against the direction measures negative. Therefore, $\overline{A B}=-\overline{B A}$.

Notation $2^{[2]}$ Let A, B, C be three different points on the plane, then we use $\angle A B C$ to represent the directed angles, which means angles measured in the counter-clockwise direction is positive, and angles measured in the clockwise direction is negative.

Definition $1^{[3]}$ On a plane, the power of a point P with respect to a circle ω of center O and radius r is defined by $\rho(P)=|\overline{O P}|^{2}-r^{2}$.

Property 1 (Power of a Point Theorem) Given a circle ω and a point P, draw a line l through P and intersect ω at two points A, B, and then on the power of P with respect to ω we have

$$
\rho(P)=\overline{P A} \cdot \overline{P B}
$$

Definition $2^{[3]}$ The locus of a point having equal power with regard to two given non-concentric circles is called the radical axes of these two circles.

Property $2{ }^{[3]}$ Radical axis of two circles is always a certain line perpendicular to their line of centers. In particular, if the circles intersect, the radical axis is the line through their points of intersections. If the circles are tangent, it is the common tangent of two circles.

In order to complete the proof of our theorem, we also introduce some notations on vectors and complex numbers here. In the following part of the article, we use boldface letter (such as a) to represent a vector.

Notation 3 Let z be a complex number, then we denote $\operatorname{Re}\{z\}=\operatorname{Re} z$ as the real part of z and $\operatorname{Im}\{z\}=\operatorname{Im} z$ as the imaginary part of $z \cdot|z|$ is used to represent the length of z and $\arg z$ is used to represent the principle value of the argument of z. But because this article mainly deal with points and lines, i doesn't stand for
imaginary units but index without special announcement.
Then we introduce some knowledge from analytic geometry and linear algebra, which is used in the Section 7.

Notation 4 Let \mathbf{A} be a matrix, then we denote the transpose of \mathbf{A} as d^{\prime}.
Notation 5 Let d be a positive integer representing the number of dimensions. Let the point of Euclidean space \mathbb{R}^{d} be represented by column vectors $\mathbf{x}=\left(x_{1}, \cdots, x_{d}\right)^{\prime}$ having the Euclidean norm $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$, where the scalar product (also known as inner product) is defined by

$$
\langle\mathbf{y}, \mathbf{z}\rangle=\mathbf{y}^{\prime} \mathbf{z}=y_{1} z_{1}+\cdots+y_{d} z_{d}
$$

for $\mathbf{y}=\left(y_{1}, \cdots, y_{d}\right)^{\prime}$ and $\mathbf{z}=\left(z_{1}, \cdots, z_{d}\right)^{\prime}$.
Notation 6 Let \mathbf{A} be a square matrix, then we use $\operatorname{det} \mathbf{A}$ to represent its determinant and use $\operatorname{rank}(\mathbf{A})$ to represent its rank. We use \mathbf{A}^{*} to represent cofactor matrix of \mathbf{A}.

Definition $\mathbf{3}^{[4]}$ Let \mathbf{A} be a square matrix, and \mathbf{A} is called skew-symmetric iff

$$
\mathbf{A}^{\prime}=-\mathbf{A}
$$

In cases of high dimensions beyond 2 , we have a similar definition about the power of a sphere and the radical (hyper)plane.

Definition 4 The power of a point \mathbf{x}_{1} with respect to a $(d-1)$-sphere $S=\left\{\mathbf{x} \in \mathbb{R}^{d}:\left\|\mathbf{x}-\mathbf{x}_{0}\right\|=r\right\}$ of radius r and center \mathbf{x}_{0} is defined by

$$
\rho(P)=\left\|\mathbf{x}_{1}-\mathbf{x}_{0}\right\|^{2}-r^{2} .
$$

Definition 5 The locus of a point having equal power to two given non-concentric $(d-1)$-spheres is called the radical (hyper)plane of these two spheres.

Property 3 Similarly, radical (hyper)plane of two spheres is always a certain (hyper)plane perpendicular to their line of centers, which can be proved by both analytic geometric method as well as some other methods.

Then we introduce the notation of the sign of permutation.
Notation 7 Given n as a positive integer, let σ be a permutation of $(1,2, \cdots, n)$, we denote $\operatorname{sgn}(\sigma)$ be the sign of permutation.

3 Lemmas

Some basic theorem in circles and triangles are used in this article.
Lemma 1 (Law of Sines) Let a, b, c be the length of the opposite side of vertices A, B, C in $\triangle A B C$, and then

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R,
$$

where R is the radius of the circumcircle of $\triangle A B C$.
Lemma 2 (Theorem of Euler Line) Let G, O, H be the centroid, the circumcenter and the orthocenter of $\triangle A B C$, respectively, and then G, O, H is on the same line called Euler Line with respect to $\triangle A B C$.

The trigonometric form of Ceva's Theorem and its converse theorem are employed in this paper. For it is well known, we don't provide its proof.

Lemma $3^{[5]}$ (Ceva's Theorem) If P_{1}, P_{2}, P_{3} are chosen on the lines of sides of $\Delta A_{1} A_{2} A_{3}$, then line $A_{1} P_{1}, A_{2} P_{2}, A_{3} P_{3}$ are concurrent iff

$$
\frac{\sin \angle P_{1} A_{1} A_{2}}{\sin \angle P_{1} A_{1} A_{3}} \cdot \frac{\sin \angle P_{2} A_{2} A_{3}}{\sin \angle P_{2} A_{2} A_{1}} \cdot \frac{\sin \angle P_{3} A_{3} A_{1}}{\sin \angle P_{3} A_{3} A_{2}}=-1 .
$$

Miquel's Theorem is another important theorem related to the problem that we study, and we have some corollaries about this theorem.

Lemma $4^{[6]}$ (Miquel's Theorem) As is shown in Figure 2, given an arbitrary triangle $\Delta A_{1} A_{2} A_{3}, \quad P_{1}, P_{2}, P_{3}$ are on sides $\overline{A_{2} A_{3}}, \overline{A_{3} A_{1}}, \overline{A_{1} A_{2}}$ respectively, then the circumcenters of $\Delta A_{1} P_{2} P_{3}, \Delta A_{2} P_{3} P_{1}, \Delta A_{3} P_{1} P_{2}$ will meet at a point P, which is called the Miquel Point for the triad $P_{1} P_{2} P_{3}$ with respect to $\Delta A_{1} A_{2} A_{3}$. Proof Let the point P

Figure 2 Miquel's Theorem
be of intersection of two of the circles $\Delta A_{1} P_{2} P_{3}$ and $\Delta A_{2} P_{3} P_{1}$, which lie in the triangle, distinct to P_{3}. Then at once $\angle A_{3} P_{1} P=\angle A_{2} P_{3} P=\angle A_{1} P_{2} P$, which shows that
P, P_{1}, P_{2}, A_{3} are concyclic.
Remark Although the original Lemma 1 is about P_{1}, P_{2}, P_{3} which are on the sides of $\Delta A_{1} A_{2} A_{3}$, but the circumcircles still meet at the same point as long as P_{1}, P_{2}, P_{3} are on the lines of the sides, even if P is out of the triangle. Thus, the corollary is based on $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2}$ instead of $\overline{A_{2} A_{3}}, \overline{A_{3} A_{1}}, \overline{A_{1} A_{2}}$.

Corollary 1 As is shown in Figure 2, given a triangle $\Delta A_{1} A_{2} A_{3}$, two points P_{1}, P_{2} lie on $A_{3} A_{1}, A_{2} A_{3}$ respectively. Let P_{3} be a point on the plane. If circumcircles of $\Delta A_{1} P_{2} P_{3}, \Delta A_{2} P_{3} P_{1}, \Delta A_{3} P_{1} P_{2}$ meet at the same point P distinct to P_{3}, then P_{3} lies on $A_{1} A_{2}$. That is, P is exactly the Miquel Point of the triad $P_{1} P_{2} P_{3}$ with respect to $\Delta A_{1} A_{2} A_{3}$.

Proof Obviously $\angle A_{3} P_{1} P=\angle A_{2} P_{3} P \quad, \quad \angle P P_{2} A_{3}=\angle P P_{3} A_{1}$. Note that $\angle A_{3} P_{1} P+\angle P P_{2} A_{3}=\pi$, and we obtain $\angle A_{2} P_{3} P+\angle P P_{3} A_{1}=\pi$, which means A_{1}, P_{3}, A_{2} are on the same line. As is shown in Lemma 4, P is the Miquel Point of $P_{1} P_{2} P_{3}$ with respect to $\Delta A_{1} A_{2} A_{3}$.

Corollary 2 As is shown in Figure 3, given an arbitrary triangle $\Delta A_{1} A_{2} A_{3}, \quad P_{1}, P_{2}, P_{3}$ are on $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2}$ respectively, with P being the Miquel Point for the traid $P_{1} P_{2} P_{3}$ with respect to $\Delta A_{1} A_{2} A_{3}$. If P_{1}, P_{2}, P_{3} are the projection of vertices A_{1}, A_{2}, A_{3} on the edges $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2}$ respectively, then P is the orthocenter of $\Delta A_{1} A_{2} A_{3}$.

Figure $3 P$ is the Miquel Point and the orthocenter as well
Proof As is shown in Figure 3, from the characteristic of triangle, we derive that A_{1}, P_{2}, P_{3}, H are concyclic, where H is orthocenter of $\Delta A_{1} A_{2} A_{3}$. Then we know that P must be on the circumcircle of the quadrilateral $A_{1} P_{2} P_{3} H$. Similarly, P is on the circumcircle of the quadrilateral $A_{2} P_{3} P_{1} H$ and $A_{3} P_{1} P_{2} H$. Thus, we learn that P is
the same point as point H, the orthocenter of $\Delta A_{1} A_{2} A_{3}$.
Corollary 3 As is shown in Figure 4, given an arbitrary triangle $\Delta A_{1} A_{2} A_{3}, P_{1}, P_{2}, P_{3}$ are on $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2}$ and P is the Miquel Point for the traid $P_{1} P_{2} P_{3}$ with respect to $\Delta A_{1} A_{2} A_{3}$. If P_{1}, P_{2}, P_{3} are midpoints of the edges $\overline{A_{2} A_{3}}, \overline{A_{3} A_{1}}, \overline{A_{1} A_{2}}$ respectively, then P is the circumcenter of $\Delta A_{1} A_{2} A_{3}$.

Figure $4 P$ is the Miquel Point and the circumcenter as well
Proof. From characteristics of triangle, A_{1}, P_{2}, P_{3}, O lie on the same circle, where O is the circumcenter of $\Delta A_{1} A_{2} A_{3}$. And then P must be on the circumcircles of the quadrilaterals $A_{1} P_{2} P_{3} O, A_{2} P_{3} P_{1} O$ and $A_{3} P_{1} P_{2} O$. Thus, we obtain that P is the circumcenter of $\triangle A_{1} A_{2} A_{3}$.

Figure 5 Two similar triangles
Lemma 5 As is shown in Figure 5, given $\triangle A B C$, points D and F lie on $\overline{A B}$

S14

and other two points G and E lie on $\overline{A C}$. Assume circumcircle of $\triangle A F G$ and $\triangle A D E$ meet at point P, which is distinct to A, then $\triangle P D F \sim \triangle P E G$.
Proof Because of concyclic, $\angle P G E=\angle P F D, \angle F D P=\angle G E P$. Then we obtain that $\triangle P D F \sim \triangle P E G$.

Then we introduce a series of theorems in the analytical geometry and linear algebra. Let d be a positive integer for the number of dimensions in the following texts.

Lemma 6 A $(d-1)$-sphere S passing the points $\mathbf{x}_{0}, \cdots, \mathbf{x}_{d} \in \mathbb{R}^{d}$, which are not on a (hyper)plane, then S have the equation

$$
\left|\begin{array}{ccc}
\left\|\mathbf{x}_{0}\right\|^{2} & \mathbf{x}_{0}^{\prime} & 1 \\
\vdots & \vdots & \vdots \\
\left\|\mathbf{x}_{d}\right\|^{2} & \mathbf{x}_{d}^{\prime} & 1 \\
\|\mathbf{x}\|^{2} & \mathbf{x}^{\prime} & 1
\end{array}\right|=0 .
$$

Lemma 7 Given a $(d-1)$-sphere S with the equation

$$
f(\mathbf{x})=\|\mathbf{x}\|^{2}+\sum_{k=1}^{d} B_{k} x_{k}+C=0,
$$

where $B_{1}, B_{2}, \cdots, B_{d}, C$ are all reals. For a point $\mathbf{x}_{1} \in \mathbb{R}^{d}$, the power of \mathbf{x}_{1} with respect to S is equal to $f\left(\mathbf{x}_{1}\right)$.

Lemma 8 Given two ($d-1$)-spheres S, T with equations

$$
f(\mathbf{x})=\|\mathbf{x}\|^{2}+\sum_{k=1}^{d} B_{k} x_{k}+C=0, g(\mathbf{x})=\|\mathbf{x}\|^{2}+\sum_{k=1}^{d} B_{k}{ }^{\prime} x_{k}+C^{\prime}=0
$$

respectively, where $B_{1}, B_{2}, \cdots, B_{d}, C, B_{1}^{\prime}, B_{2}^{\prime}, \cdots, B_{d}^{\prime}, C^{\prime}$ are all reals, then the radical (hyper)plane of S, T has the equation

$$
f(\mathbf{x})-g(\mathbf{x})=\sum_{k=1}^{d}\left(B_{k}-B_{k}^{\prime}\right) x_{k}+\left(C-C^{\prime}\right)=0 .
$$

And that radical (hyper)plane is a (hyper)plane can be directly derived.
Lemma 9 Given $d+1$ (hyper)planes $u_{0}, u_{1}, \cdots, u_{d}$ and for $j \in\{0, \cdots, d\} u_{j}$ has the equation that

$$
f_{j}(\mathbf{x})=\sum_{k=1}^{d} A_{j k} x_{k}+A_{j(d+1)}=0
$$

where $A_{j 1}, \cdots, A_{j d}, A_{j(d+1)}$ are all reals, and then $u_{0}, u_{1}, \cdots, u_{d}$ are concurrent (or parallel) iff

$$
\left|\begin{array}{cccc}
A_{01} & A_{02} & \cdots & A_{0(d+1)} \\
A_{11} & A_{12} & \cdots & A_{1(d+1)} \\
\vdots & \vdots & \ddots & \vdots \\
A_{d 1} & A_{d 2} & \cdots & A_{d(d+1)}
\end{array}\right|=0 .
$$

Lemma 10 Given $d+1$ (hyper)planes $u_{0}, u_{1}, \cdots, u_{d}$ and for $j \in\{0, \cdots, d\} \quad u_{j}$ has the equation that

$$
f_{j}(\mathbf{x})=\sum_{k=1}^{d} A_{j k} x_{k}+A_{j(d+1)}=0
$$

where $A_{j 1}, \cdots, A_{j d}, A_{j(d+1)}$ are all reals, then $u_{0}, u_{1}, \cdots, u_{d}$ meet at one line (or parallel) iff

$$
\operatorname{rank}\left(\begin{array}{cccc}
A_{01} & A_{02} & \cdots & A_{0(d+1)} \\
A_{11} & A_{12} & \cdots & A_{1(d+1)} \\
\vdots & \vdots & \ddots & \vdots \\
A_{d 1} & A_{d 2} & \cdots & A_{d(d+1)}
\end{array}\right) \leq d-1
$$

Lemma 11 and Lemma 12 are about some properties of skew-symmetric determinants, which we introduce in order to handle some skew-symmetric matrix in the Section 7.

Lemma $11^{[3]}$ Let \mathbf{A} be a $n \times n$ skew-symmetric matrix that

$$
\mathbf{A}=\left(\begin{array}{ccccc}
0 & a_{12} & \cdots & a_{1(n-1)} & a_{1 n} \\
-a_{12} & 0 & \cdots & a_{2(n-2)} & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-a_{1(n-1)} & -a_{2(n-1)} & \cdots & 0 & a_{(n-1) n} \\
-a_{1 n} & -a_{2 n} & \cdots & -a_{(n-1) n} & 0
\end{array}\right),
$$

then there exists a polynomial of $a_{i j}, 1 \leq i<j \leq n, i, j \in\{1,2, \cdots, n\}$, called the Pfaffian of \mathbf{A} or pf \mathbf{A}, such that

$$
\operatorname{det} \mathbf{A}=(\operatorname{pf} \mathbf{A})^{2} .
$$

And if $2 \mid n$, then $\operatorname{pf} \mathbf{A}$ can be explicitly represented as

$$
\operatorname{pf} \mathbf{A}=\frac{1}{2^{\frac{n}{2}}\left(\frac{n}{2}\right)!} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{\frac{n}{2}} a_{\sigma(2 i-1) \sigma(2 i)}
$$

where S_{n} is a set including all the permutations of $(1,2, \cdots, n)$.
Lemma $12{ }^{[3]}$ Let \mathbf{A} be a skew-symmetric matrix, then we have

$$
2 \mid \operatorname{rank}(\mathbf{A}) .
$$

4 Specialized Cases

We use the same method which is used to handle the problem in introduction to make other four circles produced by other two vertices. To sum up, we have six circles now. In this part, we take two of these three triads, including midpoints of sides, intersections of angular bisectors and the opposite sides, vertices' projection on the opposite sides, to explore. We surprisingly find some astonishing properties, but we have no idea how to prove it for the very first time. These specialized cases enlighten us to prove the general cases, and are presented below without proof.

Case 1 As is shown in Figure 6, given $\triangle A B C, D, E, F$ are the midpoints of $\overline{B C}, \overline{C A}, \overline{A B}$ respectively and G, H, I are the intersections of angular bisectors and $B C, C A, A B$ respectively. Let the radical axis of the circumcircles of $\triangle A I H$ and $\triangle A E F$ be l_{1}, the radical axis of the circumcircles of $\triangle B D F$ and $\triangle B G I$ be l_{2} and the radical axis of the circumcircles of $\triangle C D E$ and $\triangle C G H$ be l_{3}, and in this case l_{1}, l_{2}, l_{3} are concurrent (or parallel).

Figure 6 The figure of Case 1
(Note: The three radical axes indeed meet at a point, which is too far to be shown.)
Case 2 As is shown in Figure 7, given $\triangle A B C, D, E, F$ are the intersections of angular bisectors and $B C, C A, A B$ respectively and G, H, I are the projections of vertices A, B, C onto $B C, C A, A B$ respectively. Let the radical axis of the circumcircles of $\triangle A I H$ and $\triangle A E F$ be l_{1}, the radical axis of the circumcircles of $\triangle B D F$ and $\triangle B G I$ be l_{2} and the radical axis of the circumcircles $\triangle C D E$ and $\Delta C G H$ be l_{3}, and in this case l_{1}, l_{2}, l_{3} are concurrent (or parallel).

Figure 7 The figure of Case 2
(Note: The three radical axes indeed meet at a point, which is too far to be shown.)
Case 3 As is shown in Figure 8, given $\triangle A B C, D, E, F$ are the midpoints of $\overline{B C}, \overline{C A}, \overline{A B}$ respectively and G, H, I, are the projections of vertices A, B, C onto $B C, C A, A B$ respectively. Let the radical axis of the circumcircles of $\triangle A I H$ and $\triangle A E F$ be l_{1}, the radical axis of the circumcircles of $\triangle B D F$ and $\triangle B G I$ be l_{2} and the radical axis of the circumcircles of $\triangle C D E$ and $\triangle C G H$ be l_{3}, and in this case

Figure 8 The figure of Case 3
(Note: The three radical axes are indeed parallel.)

l_{1}, l_{2}, l_{3} are parallel.

However, we find Case $\mathbf{3}$ is not very complicated, so we manage to prove it.
Proof We denote the point J as the intersection of the circumcircles of $\Delta A I H$ and $\triangle A E F$ different from A, the point K as the intersection of the circumcircles of $\triangle B D F$ and $\triangle B G I$ different from B and the point L as the intersection of the circumcircles of $\triangle C D E$ and $\triangle C G H$ different from C.
From Corollary 2, we know that Q is the orthocenter of $\triangle A B C$. And from Corollary 3, we know that P is the circumcenter of $\triangle A B C$. Therefore according to Lemma 2, $P Q$ is the Euler line of $\triangle A B C$ and $A I \perp I Q, A F \perp F P$. Then considering the circles, we have $A J \perp J Q, A J \perp J P$, and therefore we obtain that J, Q, P are collinear.
In a similar way, we can prove that K, P, Q and P, L, Q are also collinear. Therefore, P, Q, J, K, L are on the same line, so $P Q$ is perpendicular to l_{1}, l_{2}, l_{3}, and that the l_{1}, l_{2}, l_{3} are parallel can be derived.

Therefore, as a byproduct, this theorem comes out.
Theorem 1 In Case 3, we denote the point J as the intersection of the circumcircles of $\triangle A I H$ and $\triangle A E F$ different from A, the point K as the intersection of the circumcircles of $\triangle B D F$ and $\triangle B G I$ different from B and the point L as the intersection of the circumcircles of $\triangle C D E$ and $\triangle C G H$ different from C. Let P, Q respectively be the Miquel Point for triads $D E F$, $G H I$ with respect to $\triangle A B C$, and then P, Q, J, K, L are on the same line, which is the Euler line of $\triangle A B C$, perpendicular to l_{1}, l_{2}, l_{3}.

S14

5 General Cases

After working on special cases, we then analyze the general ones. We set two points on each sides, and use the same way used in Section 4 to construct circles and radical axes. We surprisingly find that even though the points are not specialized, the three constructed radical axes are still concurrent (or parallel). Thus, we make a conjecture and finally prove the theorem below.

Theorem 2 As is shown in Figure 9, given arbitrary $\Delta A_{1} A_{2} A_{3}$, points P_{1}, P_{2}, P_{3} are on $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2} \quad$ respectively and Q_{1}, Q_{2}, Q_{3} are also on $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2}$ respectively. Let l_{k} be the radical axis of the circumcircle of $\Delta A_{k} P_{k+1} P_{k+2}$ and that of $\Delta A_{k} Q_{k+1} Q_{k+2}$ for $k \in\{1,2,3\}$ (for notation convenience, we regard $P_{4}=P_{1}, P_{5}=P_{2}, Q_{4}=Q_{1}, Q_{5}=Q_{2}$), and then l_{1}, l_{2}, l_{3} are concurrent (or parallel).

Figure 9 Two sets of Miquel Points and Miquel circles
We used complex number method to verify its validity for the very first.
Proof 1 See Figure 10. Here we consider i as the imaginary unit.
According to Lemma 4, we make a Miquel Point P of traid $P_{1} P_{2} P_{3}$ with respect to $\Delta A_{1} A_{2} A_{3}$ and another Miquel Point Q of traid $Q_{1} Q_{2} Q_{3}$ with respect to $\Delta A_{1} A_{2} A_{3}$. Suppose the circumcenter of $\Delta A_{k} P_{k+1} P_{k+2}$ is S_{k} and the circumcenter of $\Delta A_{k} Q_{k+1} Q_{k+2}$ is T_{k} for $k \in\{1,2,3\}$. Because A_{1}, P_{2}, P_{3}, P are concyclic, we can obtain that $\angle P P_{3} A_{1}=\angle P P_{1} A_{2}=\angle P P_{2} A_{3}$, therefore we can get $\angle P S_{1} A_{1}=\angle P S_{2} A_{2}=\angle P S_{3} A_{3}$.

S14

Using the same method, we can know that $\angle Q T_{1} A_{1}=\angle Q T_{2} A_{2}=\angle Q T_{3} A_{3}$.

Figure 10 Proof of complex number method
Use one certain point as origin, a certain unit length and a certain direction of axes to set up the complex plane. We use the letters of different points to express the corresponding complex numbers.
According to Property 2, we know that $l_{k} \perp S_{k} T_{k}$ for $k \in\{1,2,3\}$.
In order to prove that l_{1}, l_{2}, l_{3} are concurrent, we apply Lemma 3 here. Owing to the perpendicularity, it is sufficient to prove

$$
\begin{gathered}
\cos \arg \frac{S_{1}-T_{1}}{A_{1}-A_{2}} \cdot \cos \arg \frac{S_{2}-T_{2}}{A_{2}-A_{3}} \cdot \cos \arg \frac{S_{3}-T_{3}}{A_{3}-A_{1}} \\
=-\cos \arg \frac{S_{1}-T_{1}}{A_{1}-A_{3}} \cdot \cos \arg \frac{S_{2}-T_{2}}{A_{2}-A_{1}} \cdot \cos \arg \frac{S_{3}-T_{3}}{A_{3}-A_{2}} \\
\Leftrightarrow \prod_{k=1}^{3} \frac{\operatorname{Re}\left\{\left(S_{k}-T_{k}\right) /\left(A_{k}-A_{k+1}\right)\right\}}{\left|S_{k}-T_{k}\right| /\left|A_{k}-A_{k+1}\right|}=-\prod_{k=1}^{3} \frac{\operatorname{Re}\left\{\left(S_{k}-T_{k}\right) /\left(A_{k}-A_{k+2}\right)\right\}}{\left|S_{k}-T_{k}\right| /\left|A_{k}-A_{k+2}\right|} \\
\Leftrightarrow \prod_{k=1}^{3} \operatorname{Re}\left\{\frac{S_{k}-T_{k}}{A_{k}-A_{k+1}}\right\}=-\prod_{k=1}^{3} \operatorname{Re}\left\{\frac{S_{k}-T_{k}}{A_{k}-A_{k+2}}\right\} \\
\Leftrightarrow \prod_{k=1}^{3} \operatorname{Re}\left\{\left(S_{k}-T_{k}\right)\left(\overline{A_{k}-A_{k+1}}\right)\right\}=-\prod_{k=1}^{3} \operatorname{Re}\left\{\left(S_{k}-T_{k}\right)\left(\overline{A_{k}-A_{k+2}}\right)\right\} .
\end{gathered}
$$

On complex plane, we assume that

$$
\begin{gathered}
\frac{\angle P S_{1} A_{1}}{2}=\theta, e^{i \theta}=\zeta \quad(\theta \in[0,2 \pi) \text { is a directed angle }), \\
\frac{\angle Q T_{1} A_{1}}{2}=\varphi, e^{i \varphi}=\xi \quad(\varphi \in[0,2 \pi) \text { is a directed angle }), \\
A_{k}=x_{k}+i y_{k} \quad\left(x_{k}, y_{k} \in \mathbb{R}, k \in\{1,2,3\}\right) \\
P=x_{P}+i y_{P}, Q=x_{Q}+i y_{Q} \quad\left(x_{P}, y_{P}, x_{Q}, y_{Q} \in \mathbb{R}\right) .
\end{gathered}
$$

According to definition of ζ, and note that $\angle P S_{1} A_{1}=\angle P S_{2} A_{2}=\angle P S_{3} A_{3}$, we can
obtain that for $k \in\{1,2,3\}$,

$$
\left(A_{k}-S_{k}\right) \zeta=\left(P-S_{k}\right) \zeta^{-1}
$$

Then, we have for $k \in\{1,2,3\}$,

$$
S_{k}=\frac{A_{k} \zeta-P \zeta^{-1}}{\zeta-\zeta^{-1}}
$$

from which we can derive that for $k \in\{1,2,3\}$,

$$
2 S_{k}=\left(\left(x_{k}+x_{P}\right)+\left(y_{k}-y_{P}\right) \cot \theta\right)+\left(\left(x_{P}+x_{k}\right) \cot \theta+\left(y_{k}+y_{P}\right)\right) i .
$$

Similarly, with symmetry, we can write that for $k \in\{1,2,3\}$,

$$
2 T_{k}=\left(\left(x_{k}+x_{Q}\right)+\left(y_{k}-y_{Q}\right) \cot \varphi\right)+\left(\left(x_{Q}+x_{k}\right) \cot \varphi+\left(y_{k}+y_{Q}\right)\right) i .
$$

Thus, for $k \in\{1,2,3\}$,

$$
\begin{gathered}
\operatorname{Re}\left\{\left(2 S_{k}-2 T_{k}\right)\left(\overline{A_{k}-A_{k+1}}\right)\right\} \\
=\left(x_{k}-x_{k+1}\right)\left(x_{P}-x_{Q}\right)+\left(y_{k}-y_{k+1}\right)\left(y_{P}-y_{Q}\right) \\
+\cot \theta\left(y_{P}\left(x_{k+1}-x_{k}\right)+x_{P}\left(y_{k}-y_{k+1}\right)+x_{k} y_{k+1}-y_{k} x_{k+1}\right) \\
-\cot \varphi\left(y_{Q}\left(x_{k+1}-x_{k}\right)+x_{Q}\left(y_{k}-y_{k+1}\right)+x_{k} y_{k+1}-y_{k} x_{k+1}\right) .
\end{gathered}
$$

Similarly, we get that for $k \in\{1,2,3\}$,

$$
\begin{gathered}
\operatorname{Re}\left\{\left(2 S_{k+1}-2 T_{k+1}\right)\left(\overline{A_{k+1}-A_{k}}\right)\right\} \\
=\left(x_{k+1}-x_{k}\right)\left(x_{P}-x_{Q}\right)+\left(y_{k+1}-y_{k}\right)\left(y_{P}-y_{Q}\right) \\
+\cot \theta\left(y_{P}\left(x_{k}-x_{k+1}\right)+x_{P}\left(y_{k+1}-y_{k}\right)+x_{k+1} y_{k}-y_{k+1} x_{k}\right) \\
-\cot \varphi\left(y_{Q}\left(x_{k}-x_{k+1}\right)+x_{Q}\left(y_{k+1}-y_{k}\right)+x_{k+1} y_{k}-y_{k+1} x_{k}\right) .
\end{gathered}
$$

Therefore, we can get that for $k \in\{1,2,3\}$,

$$
\operatorname{Re}\left\{\left(2 S_{k}-2 T_{k}\right)\left(\overline{A_{k}-A_{k+1}}\right)\right\}=-\operatorname{Re}\left\{\left(2 S_{k+1}-2 T_{k+1}\right)\left(\overline{A_{k+1}-A_{k}}\right)\right\},
$$

that is for $k \in\{1,2,3\}$

$$
\operatorname{Re}\left\{\left(S_{k}-T_{k}\right)\left(\overline{A_{k}-A_{k+1}}\right)\right\}=-\operatorname{Re}\left\{\left(S_{k+1}-T_{k+1}\right)\left(\overline{A_{k+1}-A_{k}}\right)\right\} .
$$

Thus, considering the symmetry, we obtain

$$
\begin{gathered}
\prod_{k=1}^{3} \operatorname{Re}\left\{\left(S_{k}-T_{k}\right)\left(\overline{A_{k}-A_{k+1}}\right)\right\}=-\prod_{k=1}^{3} \operatorname{Re}\left\{\left(S_{k+1}-T_{k+1}\right)\left(\overline{A_{k+1}-A_{k}}\right)\right\} \\
=-\prod_{k=1}^{3} \operatorname{Re}\left\{\left(S_{k}-T_{k}\right)\left(\overline{A_{k}-A_{k+2}}\right)\right\} .
\end{gathered}
$$

According to equivalency, we get that l_{1}, l_{2}, l_{3} are concurrent (or parallel).

We are also enlightened by the question in introduction, which resulted in our further exploration over this figure. Finally, we find an easier pure geometric method to deal with this problem.

Proof 2 We only provide the proof when l_{1}, l_{2}, l_{3} intersect inside the triangle. When

S14

the three lines intersect outside the triangle, the proof is basically the same.
See Figure 11.

Figure 11 Proof of pure geometry method
According to Lemma 4, we assume the circumcircle of $\Delta A_{1} P_{2} P_{3}$ intersect the circumcircle of $\Delta A_{1} Q_{2} Q_{3}$ at point R_{1}, distinct to P.
Then we have

$$
\Delta R_{1} Q_{2} P_{2} \sim \Delta R_{1} Q_{3} P_{3} .
$$

So according to Lemma 1, we know that

$$
\frac{\sin \angle Q_{3} A_{1} R_{1}}{\sin \angle Q_{2} A_{1} R_{1}}=-\frac{\overline{R_{1} Q_{3}} \mid}{\left|\overline{R_{1} Q_{2}}\right|}=-\frac{\left|\overline{P_{3} Q_{3}}\right|}{\left|\overline{P_{2} Q_{2}}\right|} .
$$

Similarly, we make an intersection R_{2} of the circumcircles of $\Delta A_{2} P_{3} P_{1}$ and $\Delta A_{2} Q_{3} Q_{1}$, which is different from P, and then make another intersection R_{3} of the circumcircles of $\Delta A_{3} P_{1} P_{2}$ and $\Delta A_{3} Q_{1} Q_{2}$, which is different from P.
Similarly, we can obtain two other identities, that is

$$
\frac{\sin \angle Q_{1} A_{2} R_{2}}{\sin \angle Q_{3} A_{2} R_{2}}=-\frac{\left|\overline{R_{2} Q_{1}}\right|}{\left|\overrightarrow{R_{2} Q_{3}}\right|}=-\frac{\left|\overline{P_{1} Q_{1}}\right|}{\left|\overline{P_{3} Q_{3}}\right|},
$$

and

$$
\frac{\sin \angle Q_{2} A_{3} R_{3}}{\sin \angle Q_{1} A_{3} R_{3}}=-\frac{\left|\overline{R_{3} Q_{2}}\right|}{\left|\overline{R_{3} Q_{1}}\right|}=-\frac{\left|\overline{P_{2} Q_{2}}\right|}{\left|\overline{P_{1} Q_{1}}\right|} .
$$

As a result,

$$
\frac{\sin \angle Q_{1} A_{2} R_{2}}{\sin \angle Q_{3} A_{2} R_{2}} \cdot \frac{\sin \angle Q_{3} A_{1} R_{1}}{\sin \angle Q_{2} A_{1} R_{1}} \cdot \frac{\sin \angle Q_{2} A_{3} R_{3}}{\sin \angle Q_{1} A_{3} R_{3}}=\left(\left.-\frac{\left|\overline{P_{1} Q_{1}}\right|}{\left|\overline{P_{3} Q_{3}}\right|} \right\rvert\,\right) \cdot\left(\left.-\frac{\left|\overline{P_{3} Q_{3}}\right|}{\left|\overline{P_{2} Q_{2}}\right|} \right\rvert\,\right) \cdot\left(-\frac{\left|\overline{P_{2} Q_{2}}\right|}{\left|\overline{P_{1} Q_{1}}\right|}\right)=-1 .
$$

According to Lemma 3, l_{1}, l_{2}, l_{3} are concurrent (or parallel).
Based on the deduction above, we found that no matter whether we use complex number method, or use similar triangles, the ratio of sines or sides both have a mysterious symmetry. Therefore, we doubt whether these propositions are correct or not when we generalize the theorem to polygons. We make some further investigation, realizing that the theorem can be generalized actually. Eventually, we are able to prove the generalized theorem.

Theorem 3 As is shown in Figure 12, Given an arbitrary quadrilateral $A_{1} A_{2} A_{3} A_{4}$ (for notation convenience, we assume $A_{i+4}=A_{i}, i \in \mathbb{Z}$), and P_{k}, Q_{k} (for notation convenience, we assume $\left.P_{i+4}=P_{i}, Q_{i+4}=Q_{i}, i \in \mathbb{Z}\right)$ are points on $A_{k} A_{k+1}$ respectively for $k \in\{1,2,3,4\}$ so that the circumcircles of $\Delta A_{k} P_{k} P_{k+3}$ are all concurrent at P and the circumcircles of $\Delta A_{k} Q_{k} Q_{k+3}$ are concurrent at Q, for $k \in\{1,2,3,4\}$. Let l_{k} be the radical axis of the circumcircles of $\Delta A_{k} P_{k} P_{k+3}$ and $\Delta A_{k} Q_{k} Q_{k+3}$ for $k \in\{1,2,3,4\}$, and then l_{k} are concurrent (or parallel) for $k \in\{1,2,3,4\}$.

Figure 12 The figure of Theorem 3
Proof Make an intersection P^{\prime} of the circumcircles $\Delta A_{4} P_{4} P_{3}$ and $\Delta A_{2} P_{2} P_{1}$, which is different from P.
According to Lemma 4, P is the Miquel Point of triad $P_{4} P_{1} P^{\prime}$ with respect to $\Delta A_{4} A_{1} A_{2}$.
Similarly, make an intersection Q^{\prime} of circumcircle of $\Delta A_{4} Q_{4} Q_{3}$ and $\Delta A_{2} Q_{2} Q_{1}$,

S14

which is different from Q, then we obtain that Q is the Miquel Point of triad $Q_{4} Q_{1} Q^{\prime}$ with respect to $\Delta A_{4} A_{1} A_{2}$.
According to Theorem 2, with regard to $\Delta A_{4} A_{1} A_{2}, l_{4}, l_{1}, l_{2}$ are concurrent (or parallel).
In a similar way, we can obtain that, with respect to $\Delta A_{1} A_{2} A_{3}, l_{1}, l_{2}, l_{3}$ are concurrent (or parallel).
Therefore, we succeed in proving that $l_{1}, l_{2}, l_{3}, l_{4}$ are concurrent (or parallel).

Theorem 4 Given an arbitrary n-polygon $A_{1} A_{2} \cdots A_{n}$ (for notation convenience, we assume $A_{n+i}=A_{i}, \quad i \in \mathbb{Z}$), and P_{k}, Q_{k} (for notation convenience, we assume $\left.P_{n+i}=P_{i}, Q_{n+i}=Q_{i}, i \in \mathbb{Z}\right)$ are points on $A_{k} A_{k+1}$ respectively for $k \in\{1,2, \cdots, n\}$ so that the circumcircles of $\Delta A_{k} P_{k} P_{k+n-1}$ are concurrent at P and the circumcircles of $\Delta A_{k} Q_{k} Q_{k+n-1}$ are concurrent at Q, for all $k \in\{1,2, \cdots, n\}$. Let l_{k} is the radical axis of circumcircles of $\Delta A_{k} P_{k} P_{k+n-1}$ and $\Delta A_{k} Q_{k} Q_{k+n-1}$ for $k \in\{1,2, \cdots, n\}$, and then l_{k} are all concurrent (or parallel) for $k \in\{1,2, \cdots, n\}$.

Proof With the exactly same method of proof to Theorem 3, we know P, Q are both Miquel Points of $\Delta A_{k} A_{k+1} A_{k+2}$ for $k \in\{1,2, \cdots, n\}$. According to Theorem 2, for any $\Delta A_{k} A_{k+1} A_{k+2}$, for $k \in\{1,2, \cdots, n\}$, and therefore for all $k \in\{1,2, \cdots, n\}$ we obtain l_{k}, l_{k+1}, l_{k+2} are concurrent (or parallel).
Therefore, l_{k} are concurrent (or parallel) for all $k \in\{1,2, \cdots, n\}$.

6 On More Sets of Miquel Points

According to the proof above, two sets of Miquel Points and Miquel circles have some special propoties. But how about more sets of Miquel Points and Miquel circles? We go further and discover a theorem as beautiful as Theorem 2.

Theorem 5 As is shown in Figure 13, given an arbitrary $\triangle A B C, P, Q, R$, are different Miquel Points for triads $P_{1} P_{2} P_{3}, Q_{1} Q_{2} Q_{3}, R_{1} R_{2} R_{3}$ with respect to $\Delta A_{1} A_{2} A_{3}$. According to Theorem 2, we assume that radical axes produced by Miquel circles of P and Q, Q and R, R and P meet at K_{1}, K_{2}, K_{3} respectively, then K_{1}, K_{2}, K_{3} are collinear.

Figure 133 sets of Miquel Points and Miquel circles (triangle)
In Figure 14, we can feel that K_{1}, K_{2}, K_{3} seem to be collinear.
Proof We designed a Maple program to verify this theorem, using coordinate method.

Figure 143 sets of Miquel Points (triangle, simplified)

```
(*Here list some procedure used later*)
Reduce3 := proc(P) (*Reduce the polynomial of a point or a line*)
    local g := gcd(gcd(P[1], P[2]), P[3]);
    return [simplify(P[1]/g), simplify(P[2]/g), simplify(P[3]/g)];
end proc:
Reduce4 := proc(P) (*Reduce the polynomial of a circle equation*)
    local g := gcd(gcd(gcd(P[1], P[2]), P[3]), P[4]);
    return [simplify(P[1]/g), simplify(P[2]/g),
        simplify(P[3]/g), simplify(P[4]/g)];
end proc:
Scale := proc(P, Q, t); (*Get the coordinate of a point on a segment *)
    return Reduce3([t*P[1]+(1-t)*Q[1], t*P[2]+(1-t)*Q[2],
        t*P[3]+(1-t)*Q[3]]);
end proc:
GetCircle := proc(P, Q, R); (*Get the equation of the circumcircle *)
        return Reduce4([
        -LinearAlgebra[Determinant](Matrix(
        [[P[1]*P[3], P[2]*P[3], P[3]^2],
        [Q[1]*Q[3], Q[2]*Q[3], Q[3]^2],
        [R[1]*R[3], R[2]*R[3], R[3]^2]])),
        +LinearAlgebra[Determinant](Matrix(
        [[P[1]^2+P[2]^2, P[2]*P[3], P[3]^2],
        [Q[1]^2+Q[2]^2, Q[2]*Q[3], Q[3]^2],
        [R[1]^2+R[2]^2, R[2]*R[3], R[3]^2]])),
        -LinearAlgebra[Determinant] (Matrix(
        [[P[1]^2+P[2]^2, P[1]*P[3], P[3]^2],
        [Q[1]^2+Q[2]^2, Q[1]*Q[3], Q[3]^2],
        [R[1]^2+R[2]^2, R[1]*R[3], R[3]^2]])),
        +LinearAlgebra[Determinant] (Matrix(
        [[P[1]^2+P[2]^2, P[1]*P[3], P[2]*P[3]],
        [Q[1]^2+Q[2]^2, Q[1]*Q[3], Q[2]*Q[3]],
        [R[1]^2+R[2]^2, R[1]*R[3], R[2]*R[3]]]))]);
end proc:
GetRadicalAxis := proc(E, F); (*Get the equation of radical axis*)
        return Reduce3([E[2]*F[1]-E[1]*F[2],
        E[3]*F[1]-E[1]*F[3], E[4]*F[1]-E[1]*F[4]]);
end proc:
GetIntersection := proc(L, M); (*Get the coordinate of intersection*)
        return Reduce3([L[2]*M[3]-L[3]*M[2],
            L[3]*M[1]-L[1]*M[3], L[1]*M[2]-L[2]*M[1]]);
end proc:
IsCoLine := proc(P, Q, R); (*Judge whether three point is collinear*)
        return P[1]*Q[2]*R[3]+P[2]*Q[3]*R[1]+P[3]*Q[1]*R[2]
        -P[3]*Q[2]*R[1]-P[1]*Q[3]*R[2]-P[2]*Q[1]*R[3];
end proc:
(*Assume A1, A2, A3*)
A1 := [a1x, a1y, 1]: A2 := [a2x, a2y, 1]: A3 := [a3x, a3y, 1]:
(*Assume and get the coordinates of P1, P2, P3, Q1, Q2, Q3, R1, R2, R3*)
P1 := Scale(A2, A3, t1): P2 := Scale(A3, A1, t2): P3 := Scale(A1, A2, t3):
Q1 := Scale(A2, A3, s1): Q2 := Scale(A3, A1, s2): Q3 := Scale(A1, A2, s3):
R1 := Scale(A2, A3, r1): R2 := Scale(A3, A1, r2): R3 := Scale(A1, A2, r3):
(*Get the equation of the circumcircles and radical axes*)
u1 := GetCircle(A1, P2, P3): u2 := GetCircle(A2, P3, P1):
u3 := GetCircle(A3, P1, P2): v1 := GetCircle(A1, Q2, Q3):
v2 := GetCircle(A2, Q3, Q1): v3 := GetCircle(A3, Q1, Q2):
w1 := GetCircle(A1, R2, R3): w2 := GetCircle(A2, R3, R1):
w3 := GetCircle(A3, R1, R2): L1 := GetRadicalAxis(u1, v1):
L2 := GetRadicalAxis(u2, v2): L3 := GetRadicalAxis(u3, v3):
M1 := GetRadicalAxis(v1, w1): M2 := GetRadicalAxis(v2, w2):
M3 := GetRadicalAxis(v3, w3): N1 := GetRadicalAxis(w1, u1):
N2 := GetRadicalAxis(w2, u2): N2 := GetRadicalAxis(w3, u3):
(*Get the coordinate of K1, K2, K3*)
K1 := GetIntersection(L1, L2):
K2 := GetIntersection(M1, M2):
K3 := GetIntersection(N1, N2):
(*Judge whether K1, K2, K3 is collinear*)
e := IsCoLine(K1, K2, K3):
(*Simplify the criterion and print the result*)
```


S14

69 simplify (e);

After executing the program, line 69 give out the only result: 0 , which stands for K_{1}, K_{2}, K_{3} are collinear no matter where $P_{1} P_{2} P_{3}, Q_{1} Q_{2} Q_{3}, R_{1} R_{2} R_{3}$ lie and what shape $\Delta A_{1} A_{2} A_{3}$ is.

We can also generalize Theorem 5 to n-polygon.
Theorem 6 Based on Theorem 4, give an arbitrary n-polygon $A_{1} A_{2} \cdots A_{n}$ and n -point sets $P_{1} P_{2} \cdots P_{n}, Q_{1} Q_{2} \cdots Q_{n}, R_{1} R_{2} \cdots R_{n}$ to make three sets of n radical axes, which respectively meet at K_{1}, K_{2}, K_{3}, and then K_{1}, K_{2}, K_{3} are collinear.

Figure 153 sets of Miquel Points and Miquel circles (quadrilateral as an example)
Proof Applying the same method in the proof of Theorem 3, we know that P, Q, R are also the Miquel Point with respect to $\Delta A_{1} A_{2} A_{3}$. Hence, based on the conclusion of Theorem 5, K_{1}, K_{2}, K_{3} are collinear.

After working on three sets of Miquel Points and Miquel circles, we continue delving on more sets of Miquel Points and Miquel circles.
If we have four sets of Miquel Points and Miquel circles, we found the shape like Figure 16. It's a complete quadrilateral.
As for five sets of Miquel Points and Miquel circles, it will be like Figure 17. It's the same shape as Desargues' theorem.
If we have n sets of Miquel Points and Miquel circles, there will be $\binom{n}{2}$ intersections of radical axes, and $\binom{n}{3}$ lines pass through these points, which satisfies
that there are and only are 3 points on each line. It is hard to draw, but we believe it might be more amazing in figures of more Miquel Points and Miquel circles, indicating combinatorics properties between points and lines relating to Miquel Points.

Figure 164 sets of Miquel Points and Miquel circles

Figure 175 sets of Miquel Points and Miquel circles (Note: As the figure is so complicated that we simplify it.)

7 On Higher Dimensions

It is well known that some theorems in plane geometry still work in solid geometry, indicating a magical connection from 2-dimension to 3-dimension. ${ }^{[7]}$ In addition, some geometric elements in different dimensions have some relationship with each other, as the table describes below.

Dimension	$n=2$	$n=3$	$n \geq 4$
Object	Plane	Space	Hyperspace
	Line	Plane	Hyperplane
	Triangle	Tetrahedron	n-Simplex
	Circle	Sphere	$(n-1)$-Sphere
	Radical Axis	Radical Plane	Radical Hyperplane

Thus, we make some research on the Miquel Points on higher dimensions, wondering whether the Miquel's Theorem holds. Eventually, we find the Robert's Theorem, the corresponding theorem of Miquel's Theorem in 3-dimesional space.

Figure 18(Left hand side) Miquel Point in 3-demension
Figure 19(Right hand side) Add a plane through Miquel Point

Figure 20(Left hand side) Another viewpoint to see the plane through Miquel Point
Figure 21(Right hand side) Sectional view of 3-dimension Miquel's Theorem

Robert's Theorem ${ }^{[8]}$ Given a general tetrahedron, choose any point (but not vertex) on each edge and draw through each vertex a sphere passing through the three points on the edges which is adjacent to that vertex. Then these four spheres always have a point in common, and this point is denoted as Miquel Point or Robert Point.

See Figure 18, Figure 19, Figure 20 and Figure 21 above, we can clearly see that four spheres indeed meet at a point in Figure 21.

Furthermore, there is even a generalized Miquel's Theorem for high dimensions too, based on simplices in high-dimensional cases.

Miquel's Theorem for high dimensions ${ }^{[9]}$ Let $d \in \mathbb{N}^{*}$ stands for the number of dimensions. For arbitrary linearly independent vectors $\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{d} \in \mathbb{R}^{d}$ and real numbers $\quad \lambda_{i j}, i, j \in\{0,1, \cdots, d\}$, satisfying $\lambda_{i j}+\lambda_{j i}=1$ and $\lambda_{i j} \notin\{0,1\}$ for $i, j \in\{0,1, \cdots, d\}$, we have a d-simplex

$$
S\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{d}\right)=\left\{\mathbf{x}_{0}+\sum_{i=1}^{d} \theta_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{0}\right): \sum_{i=1}^{d} \theta_{i} \leq 1, \theta_{i} \geq 0, i=1, \cdots, d\right\}
$$

with positive volume and for $i \in\{0,1, \cdots, d\}$ a sphere S_{i} is drawn through each vertex \mathbf{x}_{i} and the points $\lambda_{i j} \mathbf{x}_{i}+\left(1-\lambda_{i j}\right) \mathbf{x}_{j}$, where $j \in\{0,1, \cdots, d\} \backslash\{i\}$. In this case, there exists a unique point \mathbf{x}^{*}, which is of the intersection $S_{0} \cap S_{1} \cap \cdots \cap S_{d}$, also denoted as Miquel Point M with respect to the d-simplex $S\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{d}\right)$.

With Miquel's Theorem being true in high-dimensional cases, it inspired us to consider whether our Theorem 2 also holds for higher dimensions beyond 2. After a long period of tough calculation, we eventually found a generalized theorem of Theorem 2, which shows that in some cases, radical hyperplanes of two sets of spheres in Miquel's Theorem are still concurrent (or prarllel), and prove with a method a bit similar to that is used in [9].

Theorem 7 Let $d \in \mathbb{N}^{*}, 2 \mid d$ stands for the number of dimensions. For arbitrary linearly independent vectors $\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{d} \in \mathbb{R}^{d}$ and real numbers $\lambda_{i j}, \mu_{i j}$, $i, j \in\{0,1, \cdots, d\}$, satisfying $\lambda_{i j}+\lambda_{j i}=1, \quad \mu_{i j}+\mu_{j i}=1$ and $\lambda_{i j} \notin\{0,1\}, \mu_{i j} \notin\{0,1\}$ for $i, j \in\{0,1, \cdots, d\}$, we have a d-simplex

$$
S\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{d}\right)=\left\{\mathbf{x}_{0}+\sum_{i=1}^{d} \theta_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{0}\right): \sum_{i=1}^{d} \theta_{i} \leq 1, \theta_{i} \geq 0, i=1, \cdots, d\right\},
$$

with positive volume and for $i \in\{0,1, \cdots, d\}$, a sphere S_{i} is drawn through each vertex \mathbf{x}_{i} passing the points $\lambda_{i j} \mathbf{x}_{i}+\left(1-\lambda_{i j}\right) \mathbf{x}_{j}, j \in\{0,1, \cdots, d\} \backslash\{i\}$, and for $i \in\{0,1, \cdots, d\}$, a sphere T_{i} is drawn through each vertex \mathbf{x}_{i} passing the points $\mu_{i j} \mathbf{x}_{i}+\left(1-\mu_{i j}\right) \mathbf{x}_{j}, \quad j \in\{0,1, \cdots, d\} \backslash\{i\}$ similarly. Then for $i \in\{0,1, \cdots, d\}$ let u_{i} be the radical (hyper)plane of S_{i} and T_{i}. In this case, for $i \in\{0,1, \cdots, d\}$ all the u_{i} are concurrent, that is to say they meet at the same point, (or parallel with each other).

Proof We denote the matrix

$$
\mathbf{A}=\left(\begin{array}{cccc}
x_{01} & \cdots & x_{0 d} & 1 \\
\vdots & \ddots & \vdots & \vdots \\
x_{(d-1) 1} & \cdots & x_{(d-1) d} & 1 \\
x_{d 1} & \cdots & x_{d d} & 1
\end{array}\right)
$$

Because $\mathbf{x}_{0}, \cdots, \mathbf{x}_{d}$ are linearly independent and d-simplex $S\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{d}\right)$ has a positive volume, we can obtain $\operatorname{det} \mathbf{A} \neq 0$. Denote $A_{i j}$ as the cofactor of the element of the i-th row and j-th column in \mathbf{A} for $i, j \in\{1, \cdots, d+1\}$. Therefore

$$
\mathbf{A}^{*}=\left(\begin{array}{cccc}
A_{11} & \cdots & A_{1 d} & A_{1(d+1)} \\
\vdots & \ddots & \vdots & \vdots \\
A_{d 1} & \cdots & A_{d d} & A_{d(d+1)} \\
A_{(d+1) 1} & \cdots & A_{(d+1) d} & A_{(d+1)(d+1)}
\end{array}\right) .
$$

We denote $\mathbf{y}_{i j}=\lambda_{i j} \mathbf{x}_{i}+\left(1-\lambda_{i j}\right) \mathbf{x}_{j}, \quad \mathbf{z}_{i j}=\mu_{i j} \mathbf{x}_{i}+\left(1-\mu_{i j}\right) \mathbf{x}_{j}$, which represent the points on the $d(d+1) / 2$ edges of $S\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{d}\right)$ which S_{i} and T_{i} passes. Because we have $\lambda_{i j}+\lambda_{j i}=1, \mu_{i j}+\mu_{j i}=1$, we know that $\mathbf{y}_{i j}$ and $\mathbf{y}_{j i}$ represent the same point, and so do $\mathbf{z}_{i j}$ and $\mathbf{z}_{j i}$, for $i, j \in\{0,1, \cdots, d\}$.
Noting that $\mathbf{y}_{i i}=\lambda_{i i} \mathbf{x}_{i}+\left(1-\lambda_{i i}\right) \mathbf{x}_{i}=\mathbf{x}_{i}$, then from Lemma 6 we can easily obtain that for $i \in\{0,1, \cdots, d\}$, the sphere S_{i} satisfies the equation

$$
\Delta_{i}(\mathbf{x})=\left|\begin{array}{ccc}
\left\|\mathbf{y}_{i 0}\right\|^{2} & \mathbf{y}_{i 0}^{\prime} & 1 \\
\vdots & \vdots & \vdots \\
\left\|\mathbf{y}_{i d}\right\|^{2} & \mathbf{y}_{i d}^{\prime} & 1 \\
\|\mathbf{x}\|^{2} & \mathbf{x}^{\prime} & 1
\end{array}\right|=0 .
$$

where the determinant is for a $(d+2) \times(d+2)$ one, the $(i+1)$-th row of which is $\left(\begin{array}{lll}\left\|\mathbf{y}_{i i}\right\|^{2} & \mathbf{y}_{i i}^{\prime} & 1\end{array}\right)=\left(\begin{array}{lll}\left\|\mathbf{x}_{i}\right\|^{2} & \mathbf{x}_{i}^{\prime} & 1\end{array}\right)$, representing a matrix of $1 \times(d+2)$.
Noting that $\left\|\mathbf{y}_{i j}\right\|^{2}=\lambda_{i j}^{2}\left\|\mathbf{x}_{i}\right\|^{2}+2 \lambda_{i j}\left(1-\lambda_{i j}\right)\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle+\left(1-\lambda_{i j}\right)^{2}\left\|\mathbf{x}_{j}\right\|^{2}$, then by applying the well-known transformation rules for determinants (subtracting $\lambda_{i j}$ times the $(i+1)$-th row from the $(j+1)$-th row, and then divide the $(j+1)$-th row by $\left(1-\lambda_{i j}\right)$, for $\left.j \in\{0,1, \cdots, d\} \backslash\{i\}\right)$, we derive that $\Delta_{i}(\mathbf{x})=\Delta_{i}^{\prime}(\mathbf{x}) \prod_{k=0}^{d}\left(1-\lambda_{i k}\right)$, where

$$
\Delta_{i}^{\prime}(\mathbf{x})=\left|\begin{array}{ccc}
-\lambda_{i 0}\left\|\mathbf{x}_{i}\right\|^{2}+2 \lambda_{i 0}\left\langle\mathbf{x}_{i}, \mathbf{x}_{0}\right\rangle+\left(1-\lambda_{i 0}\right)\left\|\mathbf{x}_{0}\right\|^{2} & \mathbf{x}_{0}{ }^{\prime} & 1 \\
\vdots & \vdots & \vdots \\
-\lambda_{i d}\left\|\mathbf{x}_{i}\right\|^{2}+2 \lambda_{i d}\left\langle\mathbf{x}_{i}, \mathbf{x}_{d}\right\rangle+\left(1-\lambda_{i d}\right)\left\|\mathbf{x}_{d}\right\|^{2} & \mathbf{x}_{d}{ }^{\prime} & 1 \\
\|\mathbf{x}\|^{2} & \mathbf{x}^{\prime} & 1
\end{array}\right| .
$$

Because $\lambda_{i j} \notin\{0,1\}$ for $i, j \in\{0,1, \cdots, d\}, \quad \Delta_{i}(\mathbf{x})=0$ iff $\Delta_{i}^{\prime}(\mathbf{x})=0$. Thus, the sphere S_{i} satisfies the equation

$$
\left|\begin{array}{ccc}
-\lambda_{i 0}\left\|\mathbf{x}_{i}\right\|^{2}+2 \lambda_{i 0}\left\langle\mathbf{x}_{i}, \mathbf{x}_{0}\right\rangle+\left(1-\lambda_{i 0}\right)\left\|\mathbf{x}_{0}\right\|^{2} & \mathbf{x}_{0}^{\prime} & 1 \\
\vdots & \vdots & \vdots \\
-\lambda_{i d}\left\|\mathbf{x}_{i}\right\|^{2}+2 \lambda_{i d}\left\langle\mathbf{x}_{i}, \mathbf{x}_{d}\right\rangle+\left(1-\lambda_{i d}\right)\left\|\mathbf{x}_{d}\right\|^{2} & \mathbf{x}_{d}^{\prime} & 1 \\
\|\mathbf{x}\|^{2} & \mathbf{x}^{\prime} & 1
\end{array}\right|=0,
$$

in which the coefficient of $\|\mathbf{x}\|^{2}$ happen to be $\operatorname{det} \mathbf{A} \neq 0, i \in\{0,1, \cdots, d\}$.
By substituting $\lambda_{i j}$ with $\mu_{i j}$ in the equation of S_{i}, we can get the equation of T_{i}, in which the coefficient of $\|\mathbf{x}\|^{2}$ is still $\operatorname{det} \mathbf{A}, i \in\{0,1, \cdots, d\}$.
Thus, the equation of u_{i}, the radical (hyper)plane of S_{i} and T_{i} can be represented as

$$
\left|\begin{array}{ccc}
\left(\mu_{i 0}-\lambda_{i 0}\right)\left\|\mathbf{x}_{i}-\mathbf{x}_{0}\right\|^{2} & \mathbf{x}_{0}{ }^{\prime} & 1 \\
\vdots & \vdots & \vdots \\
\left(\mu_{i d}-\lambda_{i d}\right)\left\|\mathbf{x}_{i}-x_{d}\right\|^{2} & \mathbf{x}_{d}{ }^{\prime} & 1 \\
0 & \mathbf{x}^{\prime} & 1
\end{array}\right|=0,
$$

simply subtracting the equation of S_{i} from that of T_{i}, and applying the identity $\left\|\mathbf{x}_{i}\right\|^{2}-2\left\langle\mathbf{x}_{i}, \mathbf{x}_{0}\right\rangle+\left\|\mathbf{x}_{0}\right\|^{2}=\left\|\mathbf{x}_{i}-\mathbf{x}_{0}\right\|^{2}, \quad i \in\{0,1, \cdots, d\}$.
Denote $\left(\mu_{i j}-\lambda_{i j}\right)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=Q_{i j}$ for $i, j \in\{0,1, \cdots, d\}$, and after expanding the determinant the equation of u_{i} can be represented as

$$
\left(\begin{array}{lll}
Q_{i 0} & \cdots & Q_{i(d-1)}
\end{array} \quad Q_{i d}\right)\left(\begin{array}{cccc}
A_{11} & \cdots & A_{1 d} & A_{1(d+1)} \\
\vdots & \ddots & \vdots & \vdots \\
A_{d 1} & \cdots & A_{d d} & A_{d(d+1)} \\
A_{(d+1) 1} & \cdots & A_{(d+1) d} & A_{(d+1)(d+1)}
\end{array}\right) \mathbf{x}=\mathbf{0},
$$

which is equivalent to $\left(\begin{array}{llll}Q_{i 0} & \cdots & Q_{i(d-1)} & Q_{i d}\end{array}\right) \mathbf{A}^{*} \mathbf{x}=\mathbf{0}$, for $i \in\{0,1, \cdots, d\}$.
According to Lemma 9, u_{0}, \cdots, u_{d} are concurrent (or parallel) iff

$$
\begin{array}{r}
\operatorname{det}\left(\begin{array}{ccc}
\left(\begin{array}{lll}
Q_{00} & \cdots & Q_{0(d-1)}
\end{array} Q_{0 d}\right) \mathbf{A}^{*} \\
& \vdots & \\
\left(\begin{array}{lll}
Q_{d 0} & \cdots & Q_{d(d-1)}
\end{array} Q_{0 d}\right) \mathbf{A}^{*}
\end{array}\right)=\operatorname{det}\left(\left(\begin{array}{ccc}
Q_{00} & \cdots & Q_{0 d} \\
\vdots & \ddots & \vdots \\
Q_{d 0} & \cdots & Q_{d d}
\end{array}\right) \mathbf{A}^{*}\right) \\
\quad=\operatorname{det}\left(\begin{array}{ccc}
Q_{00} & \cdots & Q_{0 d} \\
\vdots & \ddots & \vdots \\
Q_{d 0} & \cdots & Q_{d d}
\end{array}\right) \operatorname{det} \mathbf{A}^{*}=0 .
\end{array}
$$

Noting that $\operatorname{det} \mathbf{A} \neq 0 \Rightarrow \operatorname{det} \mathbf{A}^{*} \neq 0$, thus u_{0}, \cdots, u_{d} are concurrent (or parallel) iff $\operatorname{det} \mathbf{Q}=0$, where

$$
\mathbf{Q}=\left(\begin{array}{ccc}
Q_{00} & \cdots & Q_{0 d} \\
\vdots & \ddots & \vdots \\
Q_{d 0} & \cdots & Q_{d d}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & Q_{01} & \cdots & Q_{0(d-1)} & Q_{0 d} \\
-Q_{01} & 0 & \cdots & Q_{1(d-1)} & Q_{1 d} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-Q_{0(d-1)} & -Q_{1(d-1)} & \cdots & 0 & Q_{(d-1) d} \\
-Q_{0 d} & -Q_{1 d} & \cdots & -Q_{(d-1) d} & 0
\end{array}\right)
$$

is a skey-symmetric matrix, because $Q_{i j}=\left(\mu_{i j}-\lambda_{i j}\right)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=-Q_{i j}, Q_{i i}=0$ for all $i, j \in\{0,1, \cdots, d\}$.
Therefore, when conditioned $d \in \mathbb{N}^{*}, 2 \mid d$, we have

$$
\operatorname{det} \mathbf{Q}=\operatorname{det} \mathbf{Q}^{\prime}=\operatorname{det}(-\mathbf{Q})=(-1)^{d+1} \operatorname{det} \mathbf{Q}=-\operatorname{det} \mathbf{Q}=0
$$

and thus we can conclude that u_{0}, \cdots, u_{d} are concurrent (or parallel) no matter what $\lambda_{i j}, \mu_{i j}$, where $i, j \in\{0,1, \cdots, d\}$, exactly are. So we have done.

Theorem 8 Given the same condition in Theorem 7 except $2 \nmid d$, we have that u_{0}, \cdots, u_{d} pass the same point (or parallel) iff

$$
\sum_{\sigma \in S_{2 n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} Q_{\sigma(2 i-1) \sigma(2 i)}=0
$$

where $n=\frac{d+1}{2},\left(\mu_{i j}-\lambda_{i j}\right)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=Q_{i j}$ for $i, j \in\{0,1, \cdots, d\}$, and $S_{2 n}$ is a set including all the permutations of $(1,2, \cdots, 2 n)$.

Proof Similarly, u_{0}, \cdots, u_{d} pass the same point (or parallel) iff $\operatorname{det} \mathbf{Q}=0$.
According to Lemma 11, $\operatorname{det} \mathbf{Q}=\mathrm{pf}^{2} \mathbf{Q}=0$, thus we obtain

$$
\operatorname{pf} \mathbf{Q}=\frac{1}{2^{n} n!} \sum_{\sigma \in S_{2 n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} Q_{\sigma(2 i-1) \sigma(2 i)}=0
$$

which is equivalent to what needs to be proved.
Corollary 4 Given the same condition in Theorem 8, if u_{0}, \cdots, u_{d} pass the same point, then there exists a line l such that u_{0}, \cdots, u_{d} all pass l.

Proof Similarly, u_{0}, \cdots, u_{d} pass the same point only if $\operatorname{det} \mathbf{Q}=0$.
According to Lemma 12, we obtain that $2 \mid \operatorname{rank}(\mathbf{Q})$. Because $\operatorname{det} \mathbf{Q}=0$, therefore $\operatorname{rank}(\mathbf{Q})<d+1$. Adding that $2 \mid(d+1)$, we can derive that $\operatorname{rank}(\mathbf{Q}) \leq d-1$.
Noting that $\left|\mathbf{A}^{*}\right| \neq 0 \Rightarrow \operatorname{rank}\left(\mathbf{Q A}^{*}\right)=\operatorname{rank}(\mathbf{Q}) \leq d+1$, and according to Lemma 10 that there exists a line l such that u_{0}, \cdots, u_{d} all pass l.
The case that $d=3$ is quite interesting, for 3 -dimesional world is what we can imagine and the case $d=3$ is rather astonishing for the four plane all pass the same line as long as the condition is satisfied to make them meet at a point.

Figure 22 below shows the spheres and the Tetrahedron (although mostly hidden by the spheres). and Figure 23 below shows that the four planes pass the same line.

Figure 22 Tetrahedron and spheres along with their radical planes
(Left-hand side figure highlights the tetrahedron, while right-hand side highlights the spheres)

Figure 23 A far viewpoint to see that four radical planes are indeed meet at one line
In conclusion, we put forward the following corollary, directly derived by assuming $d=3$ in Corollary 4 .

Corollary 5 Given a tetrahedron $A_{1} A_{2} A_{3} A_{4}$, and points $D_{i j}, E_{i j}$ are on the edges $A_{i} A_{j}$, where $i, j \in\{1,2,3,4\}, i<j$. For each $i \in\{1,2,3,4\}$, a sphere S_{i} was drawn through A_{i} and $D_{i j}$ (or $D_{j i}$), $j \in\{1,2,3,4\} \backslash\{i\}$. So are spheres $T_{i}, i \in\{1,2,3,4\}$ constructed, with respect to $E_{i j}, i, j \in\{1,2,3,4\}, i<j$. Let u_{i} be the radical plane of S_{i} and $T_{i}, i \in\{1,2,3,4\}$, and then $u_{1}, u_{2}, u_{3}, u_{4}$ meet at a same point iff

$$
\begin{gathered}
\overline{D_{12} E_{12}} \cdot \overline{A_{1} A_{2}} \cdot \overline{D_{34} E_{34}} \cdot \overline{A_{3} A_{4}}+\overline{D_{14} E_{14}} \cdot \overline{A_{1} A_{4}} \cdot \overline{D_{23} E_{23}} \cdot \overline{A_{2} A_{3}} \\
\\
-\overline{D_{13} E_{13}} \cdot \overline{A_{1} A_{3}} \cdot \overline{D_{24} E_{24}} \cdot \overline{A_{2} A_{4}}=0,
\end{gathered}
$$

and if this condition is satisfied, $u_{1}, u_{2}, u_{3}, u_{4}$ all pass the same line.

8 Acknowledgement

We are very grateful to Professor WU-Kang and Tutor CHEN-Zetong for their guidance and instruction on this paper, to Teacher LIANG-Wanfeng for his help, to Teacher CHEN-Jinghui for his careful examination for our translation, to other professors for their assistance to improve this paper significantly.
In the whole process of writing this paper, we use some informational technology to help us. We apply Sketchpad 5.06 to draw figures of plane geometry, apply Maple 18 to handle with coordinates and equations and use Mathematica 10 to do some visualization work. In other words, all the 3-D figures are generated by Mathematica.

9 Postscript

Miquel Points of complete quadrilateral and triangle has been studied a lot. Few people, however, have studied two series of Miquel Points and Miquel circles even among triangles. So this paper is an attempt. Step by step, we study from triangles to polygons, from two sets of Miquel Points and Miquel circles to the more sets, from 2-dimensional cases to high-dimensional cases. We not only find a 'Fixed Point', which never changes (the lines are always concurrent at this point) when we put in more random points, but also find 'Fixed Lines' as well as more beautiful theorems and propoties, which is also the highlight of this paper. We will go on with our research and more elegant conclusions are waiting for us to exvacate.

10 Reference

[1]2010 AIME II Problems/Problem 15
http://www. artofproblemsolving. com/wiki/index.
php/2010_AIME_II_Problems/Problem_15
[2] Johnson R. A. Advanced Euclidean Geometry[M] Dover Publications, Inc.1960: 2-3
[3] Johnson R. A. Advanced Euclidean Geometry[M] Dover Publications, Inc.1960: 29-31
[4] Ledermann W. A Note On Skew-Symmetric Determinants[C] P. Edinburgh Math. Soc.36(1993) 335-338
[5] Johnson R. A. Advanced Euclidean Geometry[M] Dover Publications, Inc.1960: 147
[6] Johnson R. A. Advanced Euclidean Geometry[M] Dover Publications, Inc.1960: 131-133
[7] Altitudes of a Tetrahedron and Traceless Quadratic Forms
[8] Backmeister T. Some Remarkable Spheres in Connection with Tetrahedra[C] Department of Geometry, University of Applied Arts Vienna, Austria
[9] Heinrich L. On Miquel Point of Simplices[C] Elem.Math.63(2008) 126-136

