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Abstract 

 

Starting from an AIME problem, the Miquel circles created by two Miquel Points are 

studied in this paper, and then we come to a conclusion that no matter how the figure 

changes, three radical axes of the two corresponding Miquel circles are always 

concurrent. We explore from the shallower to the deeper, and establish our proof from 

the specialized cases to the general cases, using the properties of radical axes and 

Miquel Points as well as complex numbers. Furthermore, we study the cases with 

three sets of Miquel Points and Miquel circles and discover three collinear points and 

handle it with the help of computer. We also generalize the theorem into 

high-dimensional cases, finding out that the corresponding theorem is still true in 

some cases. In addition, still in other cases the theorem isn’t true, but with some 

restrictions some beautiful properties can be derived. 
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1 Introduction 

We find a problem in 2010 American Invitational Mathematics Examination (AIME). 

As is shown in Figure 1, in ABC , =13AC , 14BC  , and 15AB  . Points M  

and D  lie on AC  with AM MC , ABD BDC  . Points N  and E  lie on 

AB  with AN NB , ACE ECB  . Let P  be the point, other than A , of 

intersection of the circumcircles of AMN  and ADE . Ray AP  meets BC  at 

Q . The ratio /BQ CQ  can be written in the form /m n , where m  and n  are 

relatively prime positive integers. Find m n . [1]This is Problem 15 of 2010 AIME II, 

which is not easy to solve. According to the answer provided by the MAA, the 

similarity of triangles and area-method can be used to solve this problem, which are, 

however, too complicated to use. 

After doing some further researches over this problem, we found the proportion 

formula has kind of symmetry. Therefore, we made a guess and used Sketchpad to 

delve. We discovered that AQ  together with other two lines initiating from vertices 

,B C  have some fantastic properties. Then we wrote this article to explore the 

problem. 

  

 
Figure 1 2010 AIME Problem 15 
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2 Notations and Some Properties 

In this section, we introduce some notations that we use in this article. 

The following definition are all with respect to Euclidean Plane 
2
. Although using 

Projective Plane 
2
 sometimes brings convenience when talking about concurrent 

lines, the circumcircle, which plays a main role in the following theorems, cannot be 

well defined in Projective Plane. Therefore, we decide to base our theorem on the 

Euclidean Plane. 

 

We first introduce some notations and definitions in plane geometry. 

 

Notation 1
[2] Let A  and B  be two different points on the plane, then we use  AB  

to represent the segment starting from one point another, and we use AB  to denote 

the line passing A  and B . When we use AB  to represent the distance from A  to 

B , we consider it directed, which means after choosing a positive direction, the 

distance goes with the direction measures positive and that goes against the direction 

measures negative. Therefore, AB BA  .  

 

Notation 2
[2] Let , ,A B C  be three different points on the plane, then we use ABC  

to represent the directed angles, which means angles measured in the 

counter-clockwise direction is positive, and angles measured in the clockwise 

direction is negative.  

 

Definition 1
[3] On a plane, the power of a point P  with respect to a circle   of 

center O  and radius r  is defined by  
2

2P OP r   .  

 

Property 1 (Power of a Point Theorem) Given a circle   and a point P , draw a 

line l  through P  and intersect   at two points ,A B , and then on the power of 

P  with respect to   we have 

 P PA PB   .  

Definition 2
[3] The locus of a point having equal power with regard to two given 

non-concentric circles is called the radical axes of these two circles.  

 

Property 2
[3] Radical axis of two circles is always a certain line perpendicular to their 

line of centers. In particular, if the circles intersect, the radical axis is the line through 

their points of intersections. If the circles are tangent, it is the common tangent of two 

circles.  

 

In order to complete the proof of our theorem, we also introduce some notations on 

vectors and complex numbers here. In the following part of the article, we use 

boldface letter (such as a ) to represent a vector.  

 

Notation 3 Let z  be a complex number, then we denote  Re Rez z  as the real 

part of z  and  Im Imz z  as the imaginary part of z . z  is used to represent 

the length of z  and arg z  is used to represent the principle value of the argument 

of z . But because this article mainly deal with points and lines, i  doesn’t stand for 

S14

- 227 -



On Concurrent Lines Related to Miquel Points 

 

- 3 - 

imaginary units but index without special announcement.  

 

Then we introduce some knowledge from analytic geometry and linear algebra, which 

is used in the Section 7. 

 

Notation 4 Let A  be a matrix, then we denote the transpose of A  as d A . 

 

Notation 5 Let d  be a positive integer representing the number of dimensions. Let 

the point of Euclidean space d  be represented by column vectors  1, , dx x x  

having the Euclidean norm ,x x x , where the scalar product (also known as 

inner product) is defined by  

1 1, ' d dy z y z   y z y z  

for  1, , dy y y  and  1, , dz z z . 

 

Notation 6 Let A  be a square matrix, then we use det A  to represent its 

determinant and use  rank A  to represent its rank. We use 
*

A  to represent 

cofactor matrix of A . 
 

Definition 3
[4] Let A  be a square matrix, and A  is called skew-symmetric iff 

  A A . 

 

In cases of high dimensions beyond 2, we have a similar definition about the power of 

a sphere and the radical (hyper)plane. 

 

Definition 4 The power of a point 
1x with respect to a  1d  -sphere 

 0:dS r   x x x  of radius r  and center 0x  is defined by  

 
2 2

1 0P r   x x . 

 

Definition 5 The locus of a point having equal power to two given non-concentric 

 1d  -spheres is called the radical (hyper)plane of these two spheres. 

 

Property 3 Similarly, radical (hyper)plane of two spheres is always a certain 

(hyper)plane perpendicular to their line of centers, which can be proved by both 

analytic geometric method as well as some other methods. 

 

Then we introduce the notation of the sign of permutation. 

 

Notation 7 Given n  as a positive integer, let   be a permutation of  1,2, ,n , we 

denote  sgn   be the sign of permutation. 
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3 Lemmas 

Some basic theorem in circles and triangles are used in this article. 

 

Lemma 1 (Law of Sines) Let , ,a b c  be the length of the opposite side of vertices 

, ,A B C  in ABC , and then  

2
sin sin sin

a b c
R

A B C
   , 

where R  is the radius of the circumcircle of ABC . 

Lemma 2 (Theorem of Euler Line) Let , ,G O H  be the centroid, the circumcenter 

and the orthocenter of ABC , respectively, and then , ,G O H  is on the same line 

called Euler Line with respect to ABC . 

 

The trigonometric form of Ceva’s Theorem and its converse theorem are employed in 

this paper. For it is well known, we don’t provide its proof. 

 

Lemma 3
[5]

 (Ceva’s Theorem) If 1 2 3, ,P P P  are chosen on the lines of sides of 

1 2 3A A A , then line 1 1 2 2 3 3, ,A P A P A P  are concurrent iff  

2 2 3 3 3 11 1 2

1 1 3 2 2 1 3 3 2

sin sinsin
1

sin sin sin

P A A P A APA A

PA A P A A P A A

 
   

  
. 

 

Miquel’s Theorem is another important theorem related to the problem that we study, 

and we have some corollaries about this theorem. 

 

Lemma 4
[6]

 (Miquel’s Theorem) As is shown in Figure 2, given an arbitrary triangle 

1 2 3A A A , 1 2 3, ,P P P  are on sides 2 3 3 1 1 2, ,A A A A A A  respectively, then the 

circumcenters of 1 2 3 2 3 1 3 1 2, ,A P P A PP A PP    will meet at a point P , which is called 

the Miquel Point for the triad 1 2 3PP P  with respect to 1 2 3A A A .Proof Let the point P  

be of intersection of two of the circles 1 2 3A P P  and 2 3 1A P P , which lie in the 

triangle, distinct to 3P . Then at once 3 1 2 3 1 2A PP A PP A P P   , which shows that 

 
Figure 2 Miquel’s Theorem 
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1 2 3, , ,P P P A  are concyclic.  

Remark Although the original Lemma 1 is about 
1 2 3, ,P P P  which are on the sides of 

1 2 3A A A , but the circumcircles still meet at the same point as long as 1 2 3, ,P P P  are on 

the lines of the sides, even if P  is out of the triangle. Thus, the corollary is based on 

2 3 3 1 1 2, ,A A A A A A  instead of 2 3 3 1 1 2, ,A A A A A A . 

 

Corollary 1 As is shown in Figure 2, given a triangle 
1 2 3A A A , two points 

1 2,P P  lie 

on 
3 1 2 3,A A A A  respectively. Let 

3P  be a point on the plane. If circumcircles of 

1 2 3 2 3 1 3 1 2, ,A P P A PP A PP    meet at the same point P  distinct to 
3P , then 

3P  lies on 

1 2A A . That is, P  is exactly the Miquel Point of the triad 
1 2 3PP P  with respect to 

1 2 3A A A . 

 

Proof Obviously 3 1 2 3A PP A P P  , 2 3 3 1PP A PP A  . Note that 

3 1 2 3A PP PP A    , and we obtain 2 3 3 1A P P PP A    , which means 1 3 2, ,A P A  

are on the same line. As is shown in Lemma 4, P  is the Miquel Point of 1 2 3PP P  

with respect to 1 2 3A A A .  

 

Corollary 2 As is shown in Figure 3, given an arbitrary triangle 1 2 3A A A ,  1 2 3, ,P P P  

are on 2 3 3 1 1 2, ,A A A A A A  respectively, with P  being the Miquel Point for the traid 

1 2 3PP P  with respect to 1 2 3A A A . If 1 2 3, ,P P P  are the projection of vertices 1 2 3, ,A A A  

on the edges 2 3 3 1 1 2, ,A A A A A A  respectively, then P  is the orthocenter of 1 2 3A A A . 

Proof As is shown in Figure 3, from the characteristic of triangle, we derive that 

1 2 3, , ,A P P H  are concyclic, where H  is orthocenter of 1 2 3A A A . Then we know that 

P  must be on the circumcircle of the quadrilateral 1 2 3A P P H . Similarly, P  is on the 

circumcircle of the quadrilateral 2 3 1A P PH  and 3 1 2A PP H . Thus, we learn that P  is 

 
Figure 3 P  is the Miquel Point and the orthocenter as well 
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the same point as point H , the orthocenter of 
1 2 3A A A .  

Corollary 3 As is shown in Figure 4, given an arbitrary triangle 
1 2 3A A A , 1 2 3, ,P P P  

are on 
2 3 3 1 1 2, ,A A A A A A  and P  is the Miquel Point for the traid 

1 2 3PP P  with respect 

to 
1 2 3A A A . If 1 2 3, ,P P P  are midpoints of the edges 2 3 3 1 1 2, ,A A A A A A  respectively, 

then P  is the circumcenter of 
1 2 3A A A . 

Proof. From characteristics of triangle, 1 2 3, , ,A P P O  lie on the same circle, where O  

is the circumcenter of 1 2 3A A A . And then P  must be on the circumcircles of the 

quadrilaterals 1 2 3A P PO , 2 3 1A P PO  and 3 1 2A PPO . Thus, we obtain that P  is the 

circumcenter of 1 2 3A A A .  

Lemma 5 As is shown in Figure 5, given ABC , points D  and F  lie on AB  

 

Figure 5 Two similar triangles 
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Figure 4 P  is the Miquel Point and the circumcenter as well 
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and other two points G  and E  lie on AC . Assume circumcircle of AFG and 

ADE  meet at point P , which is distinct to A , then PDF PEG  . 

Proof Because of concyclic, PGE PFD  , FDP GEP  . Then we obtain 

that PDF PEG  .  

 

Then we introduce a series of theorems in the analytical geometry and linear algebra. 

Let d  be a positive integer for the number of dimensions in the following texts.  

 

Lemma 6 A  1d  -sphere S  passing the points 0 , , d

d x x , which are not on a 

(hyper)plane, then S  have the equation  
2

0 0

2

2

1

0
1

1

d d








x x

x x

x x

. 

 

Lemma 7 Given a  1d  -sphere S  with the equation 

 
2

1

0
d

k k

k

f B x C


   x x , 

where 
1 2, , , ,dB B B C  are all reals. For a point 1

dx , the power of 1x  with 

respect to S  is equal to  1f x . 

 

Lemma 8 Given two  1d  -spheres ,S T  with equations  

   
2 2

1 1

0, 0
d d

k k k k

k k

f B x C g B x C
 

         x x x x , 

respectively, where 
1 2 1 2, , , , , , , , ,d dB B B C B B B C     are all reals, then the radical 

(hyper)plane of ,S T  has the equation 

       
1

0
d

k k k

k

f g B B x C C


      x x . 

And that radical (hyper)plane is a (hyper)plane can be directly derived. 

 

Lemma 9 Given 1d   (hyper)planes 
0 1, , , du u u  and for  0, ,j d  ju  has the 

equation that  

   1
1

0
d

j jk k j d
k

f A x A




  x , 

where  1 1
, , ,j jd j d

A A A
  are all reals, and then 

0 1, , , du u u  are concurrent (or 

parallel) iff 
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 

 

 

01 02 0 1

11 12 1 1

1 2 1

0

d

d

d d d d

A A A

A A A

A A A







 . 

Lemma 10 Given 1d   (hyper)planes 
0 1, , , du u u  and for  0, ,j d  ju  has the 

equation that  

   1
1

0
d

j jk k j d
k

f A x A




  x , 

where  1 1
, , ,j jd j d

A A A
  are all reals, then 0 1, , , du u u  meet at one line (or parallel) 

iff 

 

 

 

01 02 0 1

11 12 1 1

1 2 1

rank 1

d

d

d d d d

A A A

A A A
d

A A A







 
 
 

  
 
 
 

. 

 

Lemma 11 and Lemma 12 are about some properties of skew-symmetric 

determinants, which we introduce in order to handle some skew-symmetric matrix in 

the Section 7. 

 

Lemma 11
[3] Let A  be a n n  skew-symmetric matrix that 

 

 

     

 

12 11 1

12 22 2

1 1 2 1 1

1 2 1

0

0

0

0

nn

nn

n n n n

n n n n

a a a

a a a

a a a

a a a





  



 
 
 

 
  
  
 
   
 

A , 

then there exists a polynomial of ija ,  1 , , 1,2, ,i j n i j n    , called the 

Pfaffian of A  or pf A , such that 

 
2

det pfA A . 

And if 2 | n , then pf A  can be explicitly represented as  

     

2

2 1 2

12

1
pf sgn

2 !
2

n

n

i in
S i

a
n

 





 


 
 
 

 A , 

where nS  is a set including all the permutations of  1,2, ,n . 

 

Lemma 12
[3] Let A  be a skew-symmetric matrix, then we have  

 2 | rank A
.  
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4 Specialized Cases 

We use the same method which is used to handle the problem in introduction to make 

other four circles produced by other two vertices. To sum up, we have six circles now. 

In this part, we take two of these three triads, including midpoints of sides, 

intersections of angular bisectors and the opposite sides, vertices’ projection on the 

opposite sides, to explore. We surprisingly find some astonishing properties, but we 

have no idea how to prove it for the very first time. These specialized cases enlighten 

us to prove the general cases, and are presented below without proof.  

 

Case 1 As is shown in Figure 6, given ABC , , ,D E F  are the midpoints of 

, ,BC CA AB  respectively and , ,G H I  are the intersections of angular bisectors and 

, ,BC CA AB  respectively. Let the radical axis of the circumcircles of AIH  and 

AEF  be 1l , the radical axis of the circumcircles of BDF and BGI  be 2l  and 

the radical axis of the circumcircles of CDE  and CGH  be 
3l , and in this case 

1 2 3, ,l l l  are concurrent (or parallel). 

Case 2 As is shown in Figure 7, given ABC , , ,D E F  are the intersections of 

angular bisectors and , ,BC CA AB  respectively and , ,G H I  are the projections of 

vertices , ,A B C  onto , ,BC CA AB  respectively. Let the radical axis of the 

circumcircles of AIH and AEF  be 1l , the radical axis of the circumcircles of 

BDF and BGI  be 2l  and the radical axis of the circumcircles CDE  and 

CGH  be 3l , and in this case 1 2 3, ,l l l  are concurrent (or parallel). 

 

 

Figure 6 The figure of Case 1 

(Note: The three radical axes indeed meet at a point, which is too far to be shown.) 
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Case 3 As is shown in Figure 8, given ABC , , ,D E F  are the midpoints of 

, ,BC CA AB  respectively and , ,G H I , are the projections of vertices , ,A B C  onto 

, ,BC CA AB  respectively. Let the radical axis of the circumcircles of AIH and  

AEF  be 1l , the radical axis of the circumcircles of BDF and BGI  be 2l  and 

the radical axis of the circumcircles of CDE  and CGH  be 3l , and in this case 

 

 

Figure 8 The figure of Case 3 

(Note: The three radical axes are indeed parallel.) 
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Figure 7 The figure of Case 2 

(Note: The three radical axes indeed meet at a point, which is too far to be shown.) 
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1 2 3, ,l l l  are parallel. 

However, we find Case 3 is not very complicated, so we manage to prove it. 

Proof We denote the point J  as the intersection of the circumcircles of AIH  and 

AEF  different from A , the point K  as the intersection of the circumcircles of 

BDF  and BGI  different from B  and the point L  as the intersection of the 

circumcircles of CDE  and CGH  different from C . 

From Corollary 2, we know that Q  is the orthocenter of ABC . And from 

Corollary 3, we know that P  is the circumcenter of ABC . Therefore according to 

Lemma 2, PQ  is the Euler line of ABC  and ,AI IQ AF FP  . Then 

considering the circles, we have ,AJ JQ AJ JP  , and therefore we obtain that 

, ,J Q P  are collinear. 

In a similar way, we can prove that , ,K P Q  and , ,P L Q  are also collinear. 

Therefore, , , , ,P Q J K L  are on the same line, so PQ  is perpendicular to 1 2 3, ,l l l , 

and that the 1 2 3, ,l l l  are parallel can be derived.  

 

Therefore, as a byproduct, this theorem comes out. 

 

Theorem 1 In Case 3, we denote the point J  as the intersection of the circumcircles 

of AIH  and AEF  different from A , the point K  as the intersection of the 

circumcircles of BDF  and BGI  different from B  and the point L  as the 

intersection of the circumcircles of CDE  and CGH  different from C . Let 

,P Q  respectively be the Miquel Point for triads DEF , GHI  with respect to 

ABC , and then , , , ,P Q J K L  are on the same line, which is the Euler line of 

ABC , perpendicular to 1 2 3, ,l l l . 
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Figure 9 Two sets of Miquel Points and Miquel circles 

l1l3

l2

KP

Q

A1

A2 A3

P3

P2

P1

Q3

Q2

Q1

5 General Cases 

After working on special cases, we then analyze the general ones. We set two points 

on each sides, and use the same way used in Section 4 to construct circles and radical 

axes. We surprisingly find that even though the points are not specialized, the three 

constructed radical axes are still concurrent (or parallel). Thus, we make a conjecture 

and finally prove the theorem below. 

 

Theorem 2 As is shown in Figure 9, given arbitrary 
1 2 3A A A , points 

1 2 3, ,P P P  are on 

2 3 3 1 1 2, ,A A A A A A  respectively and 1 2 3, ,Q Q Q  are also on 2 3 3 1 1 2, ,A A A A A A  

respectively. Let kl  be the radical axis of the circumcircle of 1 2k k kA P P   and that 

of 
1 2k k kA Q Q   for  1,2,3k (for notation convenience, we regard 

4 1 5 2 4 1 5 2, , ,P P P P Q Q Q Q    ), and then 1 2 3, ,l l l  are concurrent (or parallel). 

We used complex number method to verify its validity for the very first. 

 

Proof 1 See Figure 10. Here we consider i  as the imaginary unit. 

According to Lemma 4, we make a Miquel Point P  of traid 1 2 3PP P  with respect to 

1 2 3A A A  and another Miquel Point Q  of traid 1 2 3Q Q Q  with respect to 1 2 3A A A . 

Suppose the circumcenter of 1 2k k kA P P   is kS  and the circumcenter of 

1 2k k kA Q Q   is kT  for  1,2,3k . Because 1 2 3, , ,A P P P  are concyclic, we can 

obtain that 3 1 1 2 2 3PP A PPA PP A   , therefore we can get 

1 1 2 2 3 3PS A PS A PS A   .  
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Using the same method, we can know that 
1 1 2 2 3 3QT A QT A QT A   . 

Use one certain point as origin, a certain unit length and a certain direction of axes to 

set up the complex plane. We use the letters of different points to express the 

corresponding complex numbers. 

According to Property 2, we know that k k kl S T  for  1,2,3k
. 

In order to prove that 1 2 3, ,l l l  are concurrent, we apply Lemma 3 here. Owing to the 

perpendicularity, it is sufficient to prove 

3 31 1 2 2

1 2 2 3 3 1

cosarg cosarg cosarg
S TS T S T

A A A A A A

 
 

  
 

3 31 1 2 2

1 3 2 1 3 2

cosarg cosarg cosarg
S TS T S T

A A A A A A

 
   

  
 

         3 3
1 2

1 11 2

Re / Re /

/ /

k k k k k k k k

k kk k k k k k k k

S T A A S T A A

S T A A S T A A

 

  

   
  

   
   

3 3

1 11 2

Re Rek k k k

k kk k k k

S T S T

A A A A  

    
     

    
   

       
3 3

1 2

1 1

Re Rek k k k k k k k

k k

S T A A S T A A 

 

        . 

On complex plane, we assume that 

1 1

2

PS A



 , ie    (  0,2  is a directed angle), 

1 1

2

QT A



 , ie    (  0,2  is a directed angle), 

k k kA x iy   ( ,k kx y  ,  1,2,3k ), 

P PP x iy  , 
Q QQ x iy   ( , , ,P P Q Qx y x y  ). 

According to definition of  , and note that 1 1 2 2 3 3PS A PS A PS A   , we can 

 
Figure 10 Proof of complex number method 
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obtain that for  1,2,3k , 

    1

k k kA S P S     . 

Then, we have for  1,2,3k , 

1

1

k
k

A P
S

 

 









, 

from which we can derive that for  1,2,3k , 

         2 cot cotk k P k P P k k PS x x y y x x y y i         . 

Similarly, with symmetry, we can write that for  1,2,3k , 

         2 cot cotk k Q k Q Q k k QT x x y y x x y y i         . 

Thus, for  1,2,3k , 

   1Re 2 2k k k kS T A A    

     1 1k k P Q k k P Qx x x x y y y y        

    1 1 1 1cot P k k P k k k k k ky x x x y y x y y x           

    1 1 1 1cot Q k k Q k k k k k ky x x x y y x y y x          . 

Similarly, we get that for  1,2,3k , 

   1 1 1Re 2 2k k k kS T A A     

     1 1k k P Q k k P Qx x x x y y y y        

    1 1 1 1cot P k k P k k k k k ky x x x y y x y y x           

    1 1 1 1cot Q k k Q k k k k k ky x x x y y x y y x          . 

Therefore, we can get that for  1,2,3k , 

       1 1 1 1Re 2 2 Re 2 2k k k k k k k kS T A A S T A A         , 

that is for  1,2,3k  

       1 1 1 1Re Rek k k k k k k kS T A A S T A A         . 

Thus, considering the symmetry, we obtain 

       
3 3

1 1 1 1

1 1

Re Rek k k k k k k k

k k

S T A A S T A A   

 

        

   
3

2

1

Re k k k k

k

S T A A 



    . 

According to equivalency, we get that 1 2 3, ,l l l  are concurrent (or parallel).  

 

We are also enlightened by the question in introduction, which resulted in our further 

exploration over this figure. Finally, we find an easier pure geometric method to deal 

with this problem. 

 

Proof 2 We only provide the proof when 1 2 3, ,l l l  intersect inside the triangle. When 
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the three lines intersect outside the triangle, the proof is basically the same.  

See Figure 11. 

According to Lemma 4, we assume the circumcircle of 
1 2 3A P P  intersect the 

circumcircle of 1 2 3AQ Q  at point 1R , distinct to P . 

Then we have 

1 2 2 1 3 3RQ P RQ P  . 

So according to Lemma 1, we know that 

3 31 33 1 1

2 1 1 1 2 2 2

sin

sin

PQR QQ A R

Q A R R Q PQ


   


. 

Similarly, we make an intersection 2R  of the circumcircles of 2 3 1A P P  and 

2 3 1A Q Q , which is different from P , and then make another intersection 3R  of the 

circumcircles of 3 1 2A PP  and 3 1 2A QQ , which is different from P . 

Similarly, we can obtain two other identities, that is  

2 1 1 1
1 2 2

3 2 2 2 3 3 3

sin

sin

R Q PQQ A R

Q A R R Q PQ


   


, 

and 

3 2 2 2
2 3 3

1 3 3 3 1 1 1

sin

sin

R Q PQQ A R

Q A R R Q PQ


   


. 

As a result, 

 
Figure 11 Proof of pure geometry method 

 

l1l3

l2

R3 R1

R2

KP

Q

A1

A2 A3

P3

P2

P1

Q3

Q2

Q1

S14

- 240 -



On Concurrent Lines Related to Miquel Points 

 

- 16 - 

1 1 3 3 2 2
3 1 1 2 3 31 2 2

3 2 2 2 1 1 1 3 3 3 3 2 2 1 1

sin sinsin
1

sin sin sin

PQ PQ PQQ A R Q A RQ A R

Q A R Q A R Q A R PQ PQ PQ

      
              

        
     

. 

According to Lemma 3, 1 2 3, ,l l l  are concurrent (or parallel).  

 

Based on the deduction above, we found that no matter whether we use complex 

number method, or use similar triangles, the ratio of sines or sides both have a 

mysterious symmetry. Therefore, we doubt whether these propositions are correct or 

not when we generalize the theorem to polygons. We make some further investigation, 

realizing that the theorem can be generalized actually. Eventually, we are able to 

prove the generalized theorem. 

 

Theorem 3 As is shown in Figure 12, Given an arbitrary quadrilateral 1 2 3 4A A A A  

(for notation convenience, we assume 4i iA A  , i ), and ,k kP Q  (for notation 

convenience, we assume 4i iP P  , 4i iQ Q  , i ) are points on 1k kA A   

respectively for  1,2,3,4k  so that the circumcircles of 3k k kA P P   are all 

concurrent at P  and the circumcircles of 3k k kA Q Q   are concurrent at Q , for 

 1,2,3,4k . Let kl  be the radical axis of the circumcircles of 3k k kA P P   and 

3k k kA Q Q   for  1,2,3,4k , and then kl are concurrent (or parallel) for 

 1,2,3,4k . 

Proof Make an intersection P  of the circumcircles 4 4 3A P P  and 2 2 1A P P , which 

is different from P . 

According to Lemma 4, P  is the Miquel Point of triad 4 1P PP  with respect to 

4 1 2A A A . 

Similarly, make an intersection Q  of circumcircle of 4 4 3A Q Q  and 2 2 1A Q Q , 

     
Figure 12 The figure of Theorem 3 
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which is different from Q , then we obtain that Q  is the Miquel Point of triad 

4 1Q Q Q  with respect to 
4 1 2A A A . 

According to Theorem 2, with regard to 
4 1 2A A A , 4 1 2, ,l l l  are concurrent (or 

parallel). 

In a similar way, we can obtain that, with respect to 
1 2 3A A A , 1 2 3, ,l l l  are concurrent 

(or parallel). 

Therefore, we succeed in proving that 
1 2 3 4, , ,l l l l  are concurrent (or parallel).  

 

Theorem 4 Given an arbitrary n -polygon 1 2 nA A A (for notation convenience, we 

assume n i iA A  , i ), and ,k kP Q  (for notation convenience, we assume 

n i iP P  , 
n i iQ Q  , i ) are points on 1k kA A   respectively for  1,2, ,k n  so 

that the circumcircles of 1k k k nA P P    are concurrent at P  and the circumcircles of 

1k k k nA Q Q    are concurrent at Q , for all  1,2, ,k n . Let kl  is the radical axis 

of circumcircles of 1k k k nA P P    and 
1k k k nA Q Q    for  1,2, ,k n , and then kl

are  all concurrent (or parallel) for  1,2, ,k n . 

 

Proof With the exactly same method of proof to Theorem 3, we know ,P Q  are 

both Miquel Points of 1 2k k kA A A   for  1,2, ,k n . According to Theorem 2, for 

any 1 2k k kA A A  , for  1,2, ,k n , and therefore for all  1,2, ,k n  we obtain  

1 2, ,k k kl l l   are concurrent (or parallel). 

Therefore, kl are concurrent (or parallel) for all  1,2, ,k n .  
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6 On More Sets of Miquel Points 

According to the proof above, two sets of Miquel Points and Miquel circles have 

some special propoties. But how about more sets of Miquel Points and Miquel circles? 

We go further and discover a theorem as beautiful as Theorem 2. 

 

Theorem 5 As is shown in Figure 13, given an arbitrary ABC , , ,P Q R , are 

different Miquel Points for triads 
1 2 3 1 2 3 1 2 3, ,PP P QQ Q R R R  with respect to 

1 2 3A A A . 

According to Theorem 2, we assume that radical axes produced by Miquel circles of 

P  and Q , Q  and R , R  and P  meet at 
1 2 3, ,K K K  respectively, then 

1 2 3, ,K K K  are collinear. 

 In Figure 14, we can feel that 1 2 3, ,K K K  seem to be collinear. 

 

Proof We designed a Maple program to verify this theorem, using coordinate method.

 

Figure 13 3 sets of Miquel Points and Miquel circles (triangle) 
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Figure 14 3 sets of Miquel Points (triangle, simplified) 
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(*Here list some procedure used later*) 

Reduce3 := proc(P) (*Reduce the polynomial of a point or a line*) 

    local g := gcd(gcd(P[1], P[2]), P[3]); 

    return [simplify(P[1]/g), simplify(P[2]/g), simplify(P[3]/g)]; 

end proc: 

Reduce4 := proc(P) (*Reduce the polynomial of a circle equation*) 

    local g := gcd(gcd(gcd(P[1], P[2]), P[3]), P[4]); 

    return [simplify(P[1]/g), simplify(P[2]/g), 

        simplify(P[3]/g), simplify(P[4]/g)]; 

end proc: 

Scale := proc(P, Q, t); (*Get the coordinate of a point on a segment *) 

    return Reduce3([t*P[1]+(1-t)*Q[1], t*P[2]+(1-t)*Q[2], 

        t*P[3]+(1-t)*Q[3]]); 

end proc: 

GetCircle := proc(P, Q, R); (*Get the equation of the circumcircle *) 

    return Reduce4([ 

        -LinearAlgebra[Determinant](Matrix( 

        [[P[1]*P[3], P[2]*P[3], P[3]^2], 

        [Q[1]*Q[3], Q[2]*Q[3], Q[3]^2], 

        [R[1]*R[3], R[2]*R[3], R[3]^2]])), 

        +LinearAlgebra[Determinant](Matrix( 

        [[P[1]^2+P[2]^2, P[2]*P[3], P[3]^2], 

        [Q[1]^2+Q[2]^2, Q[2]*Q[3], Q[3]^2], 

        [R[1]^2+R[2]^2, R[2]*R[3], R[3]^2]])), 

        -LinearAlgebra[Determinant](Matrix( 

        [[P[1]^2+P[2]^2, P[1]*P[3], P[3]^2], 

        [Q[1]^2+Q[2]^2, Q[1]*Q[3], Q[3]^2], 

        [R[1]^2+R[2]^2, R[1]*R[3], R[3]^2]])), 

        +LinearAlgebra[Determinant](Matrix( 

        [[P[1]^2+P[2]^2, P[1]*P[3], P[2]*P[3]], 

        [Q[1]^2+Q[2]^2, Q[1]*Q[3], Q[2]*Q[3]], 

        [R[1]^2+R[2]^2, R[1]*R[3], R[2]*R[3]]]))]); 

end proc: 

GetRadicalAxis := proc(E, F); (*Get the equation of radical axis*) 

    return Reduce3([E[2]*F[1]-E[1]*F[2], 

        E[3]*F[1]-E[1]*F[3], E[4]*F[1]-E[1]*F[4]]); 

end proc: 

GetIntersection := proc(L, M); (*Get the coordinate of intersection*) 

    return Reduce3([L[2]*M[3]-L[3]*M[2], 

        L[3]*M[1]-L[1]*M[3], L[1]*M[2]-L[2]*M[1]]); 

end proc: 

IsCoLine := proc(P, Q, R); (*Judge whether three point is collinear*) 

    return P[1]*Q[2]*R[3]+P[2]*Q[3]*R[1]+P[3]*Q[1]*R[2] 

        -P[3]*Q[2]*R[1]-P[1]*Q[3]*R[2]-P[2]*Q[1]*R[3]; 

end proc: 

(*Assume A1, A2, A3*) 

A1 := [a1x, a1y, 1]: A2 := [a2x, a2y, 1]: A3 := [a3x, a3y, 1]: 

(*Assume and get the coordinates of P1, P2, P3, Q1, Q2, Q3, R1, R2, R3*) 

P1 := Scale(A2, A3, t1): P2 := Scale(A3, A1, t2): P3 := Scale(A1, A2, t3): 

Q1 := Scale(A2, A3, s1): Q2 := Scale(A3, A1, s2): Q3 := Scale(A1, A2, s3): 

R1 := Scale(A2, A3, r1): R2 := Scale(A3, A1, r2): R3 := Scale(A1, A2, r3): 

(*Get the equation of the circumcircles and radical axes*) 

u1 := GetCircle(A1, P2, P3): u2 := GetCircle(A2, P3, P1): 

u3 := GetCircle(A3, P1, P2): v1 := GetCircle(A1, Q2, Q3): 

v2 := GetCircle(A2, Q3, Q1): v3 := GetCircle(A3, Q1, Q2): 

w1 := GetCircle(A1, R2, R3): w2 := GetCircle(A2, R3, R1): 

w3 := GetCircle(A3, R1, R2): L1 := GetRadicalAxis(u1, v1): 

L2 := GetRadicalAxis(u2, v2): L3 := GetRadicalAxis(u3, v3): 

M1 := GetRadicalAxis(v1, w1): M2 := GetRadicalAxis(v2, w2): 

M3 := GetRadicalAxis(v3, w3): N1 := GetRadicalAxis(w1, u1): 

N2 := GetRadicalAxis(w2, u2): N2 := GetRadicalAxis(w3, u3): 

(*Get the coordinate of K1, K2, K3*) 

K1 := GetIntersection(L1, L2): 

K2 := GetIntersection(M1, M2): 

K3 := GetIntersection(N1, N2): 

(*Judge whether K1, K2, K3 is collinear*) 

e := IsCoLine(K1, K2, K3): 

(*Simplify the criterion and print the result*) 
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69 simplify(e); 

After executing the program, line 69 give out the only result: 0, which stands for 

1 2 3, ,K K K  are collinear no matter where 1 2 3 1 2 3 1 2 3, ,PP P QQ Q R R R  lie and what shape 

1 2 3A A A  is.  

 

We can also generalize Theorem 5 to n -polygon. 

 

Theorem 6 Based on Theorem 4, give an arbitrary n -polygon 
1 2 nA A A  and  n

-point sets 
1 2 1 2 1 2, ,n n nPP P QQ Q R R R    to make three sets of n  radical axes, 

which respectively meet at 1 2 3, ,K K K , and then 1 2 3, ,K K K  are collinear. 

Proof Applying the same method in the proof of Theorem 3, we know that , ,P Q R  

are also the Miquel Point with respect to 1 2 3A A A . Hence, based on the conclusion of 

Theorem 5, 1 2 3, ,K K K  are collinear.  

 

After working on three sets of Miquel Points and Miquel circles, we continue delving 

on more sets of Miquel Points and Miquel circles. 

If we have four sets of Miquel Points and Miquel circles, we found the shape like 

Figure 16. It’s a complete quadrilateral.  

As for five sets of Miquel Points and Miquel circles, it will be like Figure 17. It’s the 

same shape as Desargues’ theorem. 

If we have n  sets of Miquel Points and Miquel circles, there will be 
2

n 
 
 

 

intersections of radical axes, and 
3

n 
 
 

 lines pass through these points, which satisfies 

 

Figure 15 3 sets of Miquel Points and Miquel circles (quadrilateral as an example) 
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that there are and only are 3 points on each line. It is hard to draw, but we believe it 

might be more amazing in figures of more Miquel Points and Miquel circles, 

indicating combinatorics properties between points and lines relating to Miquel 

Points. 

 

 

  

  

Figure 17 5 sets of Miquel Points and Miquel circles 

(Note: As the figure is so complicated that we simplify it.) 
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Figure 16 4 sets of Miquel Points and Miquel circles 
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7 On Higher Dimensions 

It is well known that some theorems in plane geometry still work in solid geometry, 

indicating a magical connection from 2-dimension to 3-dimension. [7] In addition, 

some geometric elements in different dimensions have some relationship with each 

other, as the table describes below. 

Dimension 2n   3n   4n   

Object 

Plane Space Hyperspace 

Line Plane Hyperplane 

Triangle Tetrahedron n -Simplex 

Circle Sphere  1n -Sphere 

Radical Axis Radical Plane 
Radical 

Hyperplane 

Thus, we make some research on the Miquel Points on higher dimensions, wondering 

whether the Miquel’s Theorem holds. Eventually, we find the Robert’s Theorem, the 

corresponding theorem of Miquel’s Theorem in 3-dimesional space. 

  

 
Figure 18(Left hand side) Miquel Point in 3-demension 

Figure 19(Right hand side) Add a plane through Miquel Point 

  

Figure 20(Left hand side) Another viewpoint to see the plane through Miquel Point 

Figure 21(Right hand side) Sectional view of 3-dimension Miquel’s Theorem 
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Robert’s Theorem
[8] Given a general tetrahedron, choose any point (but not vertex) 

on each edge and draw through each vertex a sphere passing through the three points 

on the edges which is adjacent to that vertex. Then these four spheres always have a 

point in common, and this point is denoted as Miquel Point or Robert Point.  

 

See Figure 18, Figure 19, Figure 20 and Figure 21 above, we can clearly see that 

four spheres indeed meet at a point in Figure 21. 

 

Furthermore, there is even a generalized Miquel’s Theorem for high dimensions too, 

based on simplices in high-dimensional cases. 

 

Miquel’s Theorem for high dimensions
[9] Let *d  stands for the number of 

dimensions. For arbitrary linearly independent vectors 0 1, , , d

d x x x  and real 

numbers 
ij ,  , 0,1, ,i j d , satisfying 1ij ji    and  0,1ij   for 

 , 0,1, ,i j d , we have a d -simplex 

   0 1 0 0

1 1

, , , : 1, 0, 1, ,
d d

d i i i i

i i

S i d  
 

 
      
 

 x x x x x x , 

with positive volume and for  0,1, ,i d  a sphere iS  is drawn through each 

vertex ix  and the points  1ij i ij j  x x , where    0,1, , \j d i . In this case, 

there exists a unique point *
x , which is of the intersection 0 1 dS S S , also 

denoted as Miquel Point M  with respect to the d -simplex  0 1, , , dS x x x . 

 

With Miquel’s Theorem being true in high-dimensional cases, it inspired us to 

consider whether our Theorem 2 also holds for higher dimensions beyond 2. After a 

long period of tough calculation, we eventually found a generalized theorem of 

Theorem 2, which shows that in some cases, radical hyperplanes of two sets of 

spheres in Miquel’s Theorem are still concurrent (or prarllel), and prove with a 

method a bit similar to that is used in [9]. 

 

Theorem 7 Let *d , 2 | d  stands for the number of dimensions. For arbitrary 

linearly independent vectors 0 1, , , d

d x x x  and real numbers 
ij , 

ij , 

 , 0,1, ,i j d , satisfying 1ij ji   , 1ij ji    and  0,1ij  ,  0,1ij   

for  , 0,1, ,i j d , we have a d -simplex 

   0 1 0 0

1 1

, , , : 1, 0, 1, ,
d d

d i i i i

i i

S i d  
 

 
      
 

 x x x x x x , 

with positive volume and for  0,1, ,i d , a sphere iS  is drawn through each 

vertex ix  passing the points  1ij i ij j  x x ,    0,1, , \j d i , and for

 0,1, ,i d , a sphere iT  is drawn through each vertex ix  passing the points 

 1ij i ij j  x x ,    0,1, , \j d i  similarly. Then for  0,1, ,i d  let iu  be 

the radical (hyper)plane of iS  and iT . In this case, for  0,1, ,i d  all the iu  

are concurrent, that is to say they meet at the same point, (or parallel with each other). 
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Proof We denote the matrix  

   

01 0

1 1 1

1

1

1

1

d

d d d

d dd

x x

x x

x x

 

 
 
 
 
 
 
 

A . 

Because 
0 , , dx x  are linearly independent and d -simplex  0 1, , , dS x x x  has a 

positive volume, we can obtain det 0A . Denote ijA  as the cofactor of the element 

of the i -th row and j -th column in A  for  , 1, , 1i j d  . Therefore  

 

 

      

11 1 1 1

*

1 1

1 1 1 1 1

d d

d dd d d

d d d d d

A A A

A A A

A A A





   

 
 
 

  
 
 
 

A . 

We denote  1ij ij i ij j   y x x ,  1ij ij i ij j   z x x , which represent the points 

on the  1 / 2d d   edges of  0 1, , , dS x x x  which iS  and iT  passes. Because 

we have 1ij ji   , 1ij ji   , we know that 
ijy  and 

jiy  represent the same 

point, and so do 
ijz  and 

jiz , for  , 0,1, ,i j d . 

Noting that  1ii ii i ii i i    y x x x , then from Lemma 6 we can easily obtain that 

for  0,1, ,i d , the sphere iS  satisfies the equation 

 

2

0 0

2

2

1

0
1

1

i i

i

id id



  




y y

x
y y

x x

. 

where the determinant is for a    2 2d d    one, the  1i  -th row of which is 

   2 2
1 1ii ii i i

 y y x x , representing a matrix of  1 2d  . 

Noting that    
22 222 2 1 , 1ij ij i ij ij i j ij j       y x x x x , then by applying 

the well-known transformation rules for determinants (subtracting ij  times the 

 1i  -th row from the  1j  -th row, and then divide the  1j  -th row by 

 1 ij , for    0,1, , \j d i ), we derive that      
0

1
d

i i ik

k




   x x , where 

 

 

 

2 2

0 0 0 0 0 0

2 2

2

2 , 1 1

2 , 1 1

1

i i i i i

i

id i id i d id d d

  

  

   

 
   



x x x x x

x
x x x x x

x x

. 
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Because  0,1ij   for  , 0,1, ,i j d ,   0i x  iff   0i
 x . Thus, the 

sphere 
iS  satisfies the equation 

 

 

2 2

0 0 0 0 0 0

2 2

2

2 , 1 1

0
2 , 1 1

1

i i i i i

id i id i d id d d

  

  

   


   



x x x x x

x x x x x

x x

, 

in which the coefficient of 
2

x  happen to be det 0A ,  0,1, ,i d . 

By substituting ij  with ij  in the equation of 
iS , we can get the equation of iT , in 

which the coefficient of 
2

x  is still det A ,  0,1, ,i d . 

Thus, the equation of iu , the radical (hyper)plane of iS  and iT  can be represented 

as 

 

 

2

0 0 0 0

2

1

0
1

0 1

i i i

id id i d dx

 

 

 


 



x x x

x x

x

, 

simply subtracting the equation of iS  from that of iT , and applying the identity 

2 2 2

0 0 02 ,i i i   x x x x x x ,  0,1, ,i d . 

Denote  
2

ij ij i j ijQ   x x  for  , 0,1, ,i j d , and after expanding the 

determinant the equation of iu  can be represented as 

  

 

 

      

11 1 1 1

0 1
1 1

1 1 1 1 1

d d

i idi d
d dd d d

d d d d d

A A A

Q Q Q
A A A

A A A






   

 
 
 

 
 
 
 

x 0 , 

which is equivalent to 
   *

0 1i idi d
Q Q Q


A x 0 , for  0,1, ,i d . 

According to Lemma 9, 0 , , du u  are concurrent (or parallel) iff  

  

  

*

00 00 1
00 0

*

*
0

0 01

det det

dd
d

d dd
d dd d

Q Q Q Q Q

Q QQ Q Q





 
   
           

    
 

A

A

A

 

00 0

*

0

det det 0

d

d dd

Q Q

Q Q

 
 

  
 
 

A . 

Noting that *det 0 det 0  A A , thus 0 , , du u  are concurrent (or parallel) iff 

det 0Q , where 
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 

 

     

 

01 00 1

01 11 100 0

0 0 1 1 1 1

0 1 1

0

0

0

0

dd

ddd

d dd d d d d

d d d d

Q Q Q

Q Q QQ Q

Q Q Q Q Q

Q Q Q





  



 
 
  

  
    
     

 
   
 

Q . 

is a skey-symmetric matrix, because  
2

ij ij ij i j ijQ Q     x x , 0iiQ   for all 

 , 0,1, ,i j d . 

Therefore, when conditioned *d , 2 | d , we have 

   
1

det det det 1 det det 0
d

       Q Q Q Q Q , 

and thus we can conclude that 0 , , du u  are concurrent (or parallel) no matter what 

ij , ij , where  , 0,1, ,i j d , exactly are. So we have done.  

 

Theorem 8 Given the same condition in Theorem 7 except 2 | d , we have that 

0 , , du u  pass the same point (or parallel) iff 

     
2

2 1 2

1

sgn 0
n

n

i i
S i

Q
 






 

  , 

where 
1

2

d
n


 ,  

2

ij ij i j ijQ   x x  for  , 0,1, ,i j d , and 
2nS is a set 

including all the permutations of  1,2, ,2n . 

 

Proof Similarly, 0 , , du u  pass the same point (or parallel) iff det 0Q . 

According to Lemma 11, 2det pf 0 Q Q , thus we obtain 

     
2

2 1 2

1

1
pf sgn 0

2 !
n

n

i in
S i

Q
n

 





 

  Q , 

which is equivalent to what needs to be proved.  

 

Corollary 4 Given the same condition in Theorem 8, if 0 , , du u  pass the same 

point, then there exists a line l  such that 0 , , du u  all pass l . 

 

Proof Similarly, 0 , , du u  pass the same point only if det 0Q . 

According to Lemma 12, we obtain that  2 | rank Q . Because det 0Q , therefore 

 rank 1d Q . Adding that  2 | 1d  , we can derive that  rank 1d Q . 

Noting that    * *0 rank rank 1d    A QA Q , and according to Lemma 10 

that there exists a line l  such that 0 , , du u  all pass l .  

The case that 3d   is quite interesting, for 3-dimesional world is what we can 

imagine and the case 3d   is rather astonishing for the four plane all pass the same 

line as long as the condition is satisfied to make them meet at a point. 
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Figure 22 below shows the spheres and the Tetrahedron (although mostly hidden by 

the spheres). and Figure 23 below shows that the four planes pass the same line. 

 

In conclusion, we put forward the following corollary, directly derived by assuming 

3d   in Corollary 4. 

 

Corollary 5 Given a tetrahedron 1 2 3 4A A A A , and points ijD , ijE  are on the edges 

i jA A , where  , 1,2,3,4i j , i j . For each  1,2,3,4i , a sphere iS  was drawn 

through iA and 
ijD  (or 

jiD ),    1,2,3,4 \j i . So are spheres iT ,  1,2,3,4i  

constructed, with respect to ijE ,  , 1,2,3,4i j , i j . Let iu  be the radical plane 

of iS  and iT ,  1,2,3,4i , and then 1 2 3 4, , ,u u u u  meet at a same point iff 

12 12 1 2 34 34 3 4D E A A D E A A  
14 14 1 4 23 23 2 3D E A A D E A A     

13 13 1 3 24 24 2 4 0D E A A D E A A     , 

and if this condition is satisfied, 1 2 3 4, , ,u u u u  all pass the same line. 

  

 

Figure 23 A far viewpoint to see that four radical planes are indeed meet at one line 

 

Figure 22 Tetrahedron and spheres along with their radical planes 

(Left-hand side figure highlights the tetrahedron, 

while right-hand side highlights the spheres) 
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9 Postscript 

Miquel Points of complete quadrilateral and triangle has been studied a lot. Few 

people, however, have studied two series of Miquel Points and Miquel circles even 

among triangles. So this paper is an attempt. Step by step, we study from triangles to 

polygons, from two sets of Miquel Points and Miquel circles to the more sets, from 

2-dimensional cases to high-dimensional cases. We not only find a ‘Fixed Point’, 

which never changes (the lines are always concurrent at this point) when we put in 

more random points, but also find ‘Fixed Lines’ as well as more beautiful theorems 

and propoties, which is also the highlight of this paper. We will go on with our 

research and more elegant conclusions are waiting for us to exvacate. 
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