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Abstract 
In this paper, we consider three generalizations of the classical secretary problem and 
get the corresponding optimal strategies by using the backward induction method: 
1) Suppose that the interviewer meets the applicants in groups sequentially, which 

we call panel interview case, to find the k -th best of n  applicants, what’s the 
highest probability of success? For this problem we give a general optimal 
strategy. 

2) Suppose that the interviewer meets the applicants in groups sequentially to find 
the best w  out of n  applicants, what’s the highest probability of success? For 
this problem we give some optimal strategies with some special restrictions on the 
groups. 

3) Suppose that we follow the setting of the standard secretary problem but allow the 

applicants to have a fixed probability 1 p  ( 0 1p  ) to reject an offer, we give 

an algorithm to compute the maximal success probability to find the t -th 
( 2 t n  ) best of n applicants, and also give a short remark on the last problem 
in panel interview case. 

 
 
Keywords: secretary problem; panel interview; backward induction; optimal strategy; 
Hamilton-Jacobi-Bellman equation. 
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Notation:  
 
n : Total number of the applicants  

m : Total number of the groups 

k : The specific rank of the desired applicant (0< k ≤ n) (Section 2)  

݃ ݆ : The j-th group (0< j ≤m)                      

ߙ ݆ : Total number of the applicants in the j-th group 

݈ ݎ : Total number of applicants in the first r group 

w : The specific rank of the desired applicant (Function as k; 2 ≤ w < n) (Section 3) 

t : The specific rank of the desired applicant (Function as k; 2 ≤ t < n) (Section 4) 

p : The probability that an applicant will receive an offer (0< p <1) 

݃ ݎ : First r groups that have been interviewed (0< r <m) 

ݑ ݎ : The probability of an applicant who is currently the second best continues to be 

the second best in the end (Section 2) 

ݒ ݎ : The probability of an applicant who is currently the best becomes the second 

best in the end (Section 2) 

ܣ ݎ : The probability of using the optimal stopping rule to find the exactly second 

best applicant with the assumption that the first r groups have been rejected (Section 

2) 

݃ ݎ బ
: The group that contains the [௡ାଵ

ଶ
]-th interviewed candidates 

ݒ ݅ ݎ, : The probability of the currently i-th best out of ݈ ݎ  candidates ends up to 

be the k-th best (Section 2) 

݆ ݅ : The thresholds of groups (1≤ i ≤w; 1 ≤ ݆ ଵ < ݆ ଶ < ⋯ < ݆ ݓ ≤ ݉ ) 

 ௥: The Probability of an applicant who is currently the second best continues to beݖ

the second best in the end (Section 4) 

 ௥: The probability of an applicant who is currently the best becomes the second bestݕ
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in the end in (Section 4) 

ܤ ݎ : The probability of using the optimal stopping rule to find the exactly second 

best applicant with the assumption that the first r groups have been rejected (Section 

4) 

݂ ݅ ݎ, : The probability of the currently i-th best out of ݈ ݎ  candidates ends up to 

be the k-th best (Section 4) 
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1. Introduction 
As a classical problem in optimal selection, the secretary problem is also known 

as the marriage problem, the googol game, the sultan’s dowry problem, and the best 
choice problem. 

 
Although the origin of the secretary problem is unclear, the consensus is that the 

standard secretary problem is first introduced by American mathematician Merrill M. 
Flood in 1949. Then, the problem was popularized by Martin Gardner[5]in February 
1960, when he published the first research about the secretary problem in Scientific 
American. Shortly after the first publication, the secretary problem was taken up and 
developed by groups of illustrious mathematicians, among them are Lindley[11](1961), 
Dynkin[3](1963), Chow, Moriguti, Robins and Samuels[2](1964), and Gilbert and 
Mosteller[7](1966). Gradually, the problem appealed to all. In 1975, M. H. 
Smith[12]gave the way to find the best applicant with some kind of uncertainty, i.e., 
each applicant has a fixed probability 1-p (0<p<1) to reject an offer. It was not until 
1984 that F. Thomas Bruss[1] came up with the first solution of the standard secretary 
problem: the 1/e-law of best choice, and the maximal win probability under the 
solution: 1/e as n goes to infinity. 

 
F. Thomas Bruss’s 1/e-law of best choice is an elegant solution: to reject the first 

[n/e] applicants, and then select the first candidate that is better than all the applicants 
have been interviewed so far, otherwise pick the last one. (e is the base of the natural 

logarithm, and  �  is the Gauss floor function, i.e.,  x is the largest integer not 

greater than x.) 
 

From then on, enormous amounts of variants of the secretary problem have been 
formulated and solved. In 1995, Robert J. Vanderbei[13] explored the problem of 
picking exactly the second best out of n applicants, and conjectured a general 
algorithm to find the k-th ( 0  k n  ) best applicant. In addition, Robert J. 
Vanderbei[14] showed that for n is even, and k = n/2, the probability of using optimal 

stopping rule to find the k-th best student equals 1/(௡
ଶ
+ 1) . Later, in 2009, 

Shoou-Ren Hsiau and Jiing-Ru Yang[9] further extended the problem by studying how 
to find the best applicant out of n applicants with the assumption that the applicants 
are interviewed sequentially in groups. 
 

In our paper, we slightly change the descriptions of the standard secretary 
problem, and place the problem in the situation that a university is enrolling students. 
This paper’s assumptions of the secretary problem can be described as follows. 
Assume n applicants are applying, which can be ordered from the best to the worst 
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with no ties. All n applicants can be randomly divided into m group 1{ }m
j jg  . In group

jg  there are j students,
1

m

j
j

n


 . Each time the interviewer meets one group of 

applicants. The interviewer cannot observe the absolute ranks. Also, immediately after 
the interview, the interviewer has to make the decision: to select some student or 
reject all the applicants in the group and start to interview the next group. Once an 
applicant is rejected, he or she cannot be recalled. The goal for the interviewer is to 
choose the k-th best applicant, i.e. the candidate that ranks k-th among total n 
applicants. The interview will be considered as a failure if the interviewer rejects all 
applicants, or picks up someone that turns out not to be the k-th best of all n 

candidates. In this paper, we also denote
1

r

r j
j

l 


 ,and then ml n . 

 
Based on the previous works, we mainly study three generalizations of the 

secretary problem in the panel interview cases to find optimal solution, and the 
maximal win probability under that solution for each generalizations.  

 
(1) Find the k -th best of n  
 

The administrator finds that the best student can always receive admissions from 
other better universities and then drops the opportunity of enrolling into this university. 
Therefore, the interviewer prefers to select the second best student. What is the 
optimal strategy to maximize the probability of selecting the second best student in 
panel interview case? More generally, what is the optimal strategy to maximize the 
probability of selecting the k -th ( 2 k n  ) best student in panel interview case? We 
study this problem in this paper. 
 
(2) Find the best w  out of n  
 

The interviewer would like to select the best two students out of n applicants. 
What is the optimal strategy to maximize the probability of success in panel interview 
case? More generally, what is the optimal strategy to maximize the probability of 
selecting the best w  ( 2 w n  ) students out of n  in panel interview case? We 
study this problem in this paper. 
 
(3) Find the t -th best of n  with uncertainty 
 

All the assumptions are the same as those of the standard secretary problem, 

besides that each of the applicants has a fixed probability 1 p  (0 1p  ) to refuse 
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an offer. What is the optimal strategy to maximize the probability of finding the 
second best applicant in the classical case with uncertain employment? More 
generally, what is the optimal strategy to maximize the probability of selecting the t
-th ( 2 t n  ) best applicant out of n  in such case? We study this problem in this 
paper. 
 

Here the best strategy refers to the optimal stopping rule and the maximal 
probability to select the desired applicant or applicants. 
 
 
 

2. Find the k -th best of n  
 

In this section, we focus on the problem: what is the optimal strategy to find the 
k -th ( 2k  ) best student in panel interview case? 
 

2.1  Panel interview case: 2k   
 

We follow R. J. Vanderbei’s[13] algorithm. To find exactly the second best 
candidate in panel interview case, first assume the interviewer picks up student   

among the r  interviewed groups 1, , rg g , and finishes to interview all the m  

groups to see whether the choice is right. 
 
Lemma 1. 

(i) If student   is currently the second best, the probability ru  of student   being 

the second best in the end is 

( 1)
( 1)

r r
r

l l
u

n n





,   1 r m  . 

(ii) If student   is currently the best, the probability rv  of student   being the 

second best in the end is 

( )
( 1)

r r
r

l n lv
n n





,   1 r m  . 

 
Theorem 1. 

Let rA  be the probability of using the optimal stopping rule to find the exactly 

second best applicant with the assumption that the first r  groups have been rejected. 
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Choose suitable 0r  such that the group 
0r

g contains the 1[ ]
2

n  -th candidates, i.e., 

0
1min{ | }

2r
nr r l 

  , and set 

1
1 1

( 1)1min{ | 1}
1

m
j j

j pp j

l
r p

l l


  


 

  , where 
1

p

p j
j

l 


 .        （1） 

We have 1 0r r . Furthermore, 

1

1

1
1

1

1
1 1

( 1)
, 0 ,

( 1)

( 1)
, .

( 1)

m
r j j

j r j
r m

j jr

j r j

l l
r r

n n l
A

ll r r m
n n l







 

  


   

   




         （2） 

The functions rA , 0 r m  , satisfy 

r r rv A u   , for 1r r m  , 

r rA u , r rA v , else. 

 

Proof for Lemma 1. For case (i), when the group 1rg   is coming, the probability 

that all the 1r  applicants in ( 1)r  -th group have lower relative ranks than   is 

1 1

( 1)
( 1)

r r

r r

l l
l l 




, and we have 

1
1 1

( 1) , 1 ,
( 1)

1, .

r r
r

r rr

l l u r m
l lu

r m


 

    
 

              （3） 

Then 

1 11 1

1 1 2 2

( 1)( 1) ( 1) ( 1) .
( 1) ( 1) ( 1) ( 1)

m mr r r r r r
r m

r r r r m m

l ll l l l l lu u
l l l l l l n n

  

   

  
 

   
  

 

For case (ii), when the group 1rg   is coming, the probability that all the 1r   

applicants in ( 1)r  -th group have lower relative ranks than   is 
1

r

r

l
l 

, and the 

probability that there is one and only one candidate in ( 1)r  -th group better than   
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is 1

1 1( 1)
r r

r r

l
l l
 

  
. Hence we have the recurrence formula 

1
1 1

1 1 1

, 1 ,
( 1)

0, .

r r r
r r

r r rr

l lu v r m
l l lv

r m

 
 

  

     
 

         （4） 

Plug （3） into （4）, we have  

1 1

1

.
( 1)

r r r

r r

v v
l n n l

  



 


 

Denote r
r

r

vh
l

 , then 1
1( 1)

r
r rh h

n n
 

 


. Since 0mh  , by induction 

1 2 ,
( 1) ( 1)

r r m r
r

n lh
n n n n

      
 

 


 

that is, 
( )
( 1)

r r
r

l n lv
n n





.             

 

Figure 1: ru  and rv , though we plot ru and rv  as continuous functions, they are 

actually discrete.  
 
Proof for Theorem 1. Use the principle of dynamic programming, it is sufficient to 
do the right thing at each stage. Suppose r  groups have been interviewed and no one 

has been accepted so far. Now comes the ( 1)r  -th group 1rg  , the probability that 

all students in 1rg   are worse than the best and the second best in first r  groups is 

S26

- 275 -



- 9 - 
 

1 1

( 1)
( 1)

r r

r r

l l
l l 




, then no students will be matriculated in such group. 

 

Moreover, suppose one applicant in group 1rg  to be the currently the best while 

currently the second best is in the first r  groups, and the probability of this situation 

is 1

1 1( 1)
r r

r r

l
l l
 

  
. If the interviewer rejects him or her with the whole group 1rg   and 

then the probability of success is 1rA  , if the interviewer accepts him or her and the 

probability of success is 1rv  . We should pick the case with larger probability. 

 

Furthermore, suppose one applicant in group 1rg  to be currently the second 

best while currently the best is in the first r groups, and the probability of this 

situation is 1

1 1( 1)
r r

r r

l
l l
 

  
. If the interviewer rejects him or her with the whole group 

1rg  , then the probability of success is 1rA  . If the interviewer accepts him or her, 

then the probability of success is 1ru  . We should pick the case with larger 

probability. 
 

Finally, suppose two applicants in group 1rg   respectively to be currently the 

best and currently the second best, and the probability of this situation is 

1 1

1 1

( 1)
( 1)

r r

r rl l
  

 




. If the interviewer rejects the whole group 1rg  , then the probability of 

success is 1rA  . If the interviewer accepts currently the best, then the probability of 

success is 1rv  . If the interviewer accepts currently the second best, then the 

probability of success is 1ru  . We should pick the case with larger probability. 

 
To summarize, we have 
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 
1 1

1
1 1 1 1 1

1 1 1 1

1 1
1 1 1

1 1

max( , ), 0,
( 1) max( , ) max( , )
( 1) ( 1)

( 1) max( , , ), 1 ,
( 1)

0, .

r r

r r r r
r r r r r

r r r r
r

r r
r r r

r r

A v r
l l lA A v A u

l l l l
A

A u v r m
l l

r m



 

 


    

   

 
  

 


   

 
     
 




 （5） 

 

Notice that if 1
2r

nl 
 , then r ru v , and if 1

2r
nl 

 , then r ru v . 

 

To simplify the formula（5）,we first consider 1
2r

nl 
 , then r ru v . Assume

r r rv A u  , from the second sub-formula of （5）, we have 

1
1

( 1) .
( 1)

r r r
r r

r

l lA A
l n n





 


 

Then 

1 1

( 1)
.

( 1)

m
j jr

r
j r j

llA
n n l



  




                    （6） 

Furthermore, since 

1

1 1 1

( 1) ( 1) ( 1)
,j j j j j j j

j j
j j j

l l
l l l

    
 

  

   
     

Hence 

1 11

( 1)
,

m m
j j

j r
j r j rj

l
n l

l



   


     

we have r rA v  for 0r r m  , and r rA v  for r m . It assures our assumption. 

 

Moreover, to satisfy r rA u , we need 

1 1

( 1)
1.

m
j j

r
j r j

l
l

l


  


   

That is 

1 1

( 1)
1

m
j j

r r
j r j

n l l
l

 

  


    .                    （7） 

We denote 
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1
1 1

( 1)1min{ | 1}
1

m
j j

j pp j

l
r p

l l


  


 

  , where 
1

p

p j
j

l 


 . 

Because 1
1
r

r

n l
l





 for 0r r ,we have 1 0r r . 

 

(i) In the case 1 0r r , we have r r rv A u   for 1r r m  , and r rA u  for 

0 1r r r  . We need to discuss the value of rA  for 0 1r r r  . Since we have

1 11 1r rA u  , apply to the second sub-formula of （5）, then
1 1 12 1 1r r rA A u    .Moreover, 

for 0 1r r r  , 1r rA A  , we have 

0 0 1 1 11 2 1 1r r r r rA A A A u        . 

Now consider 1
2r

nl 
 , and then r ru v . We need to compare the value of

0 1rA   and 

that of 
0 1rv  . On one hand, if 

0

1
2r

nl 
 , then 

0 01r rv v  , and 

1 1 0 01 1r r r rA u u v    .Then we have 
0 01 1r rA v  . On the other hand, if 

0

1
2r

nl 
 , 

then 
0

2
2r

nl 
 .Then  

1 0 01 2 1
2 2

| |
r r

r r r n r n rl l
A u u v v  

 
    . 

That is,
1 01 1r rA v  . Here one can get 2

2 2

| |
r r

r n r nl l
u v

 
  from Lemma 1 by direct 

computation, 2
2

|
r

r nl
u 


 means the value of ru  when 2

2r
nl 

 , and 
2

|
r

r nl
v


 means 

the value of rv  when 
2r
nl  . Therefore we have 

0 01 1r rA v  . 

 

In sum we have
0 0 01 1 1r r rA v u    . From the second sub-formula of （5）, for 

01 r r  , 1r rA A  , we have 

0 00 1 2 1.r rA A A A      

 

(ii) In the case 1 0r r , we have r r rv A u   for 1r r m  . 
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If 
0

1
2r

nl 
 , then

0 0 0r r rA v u  , that is 1 0r r , which is contradicted. It means 

that when 
0

1
2r

nl 
 , there won’t be 1 0r r . 

If 
0

1
2r

nl 
 , then 

0 0 0r r rv A u  . Applying it to the second sub-formula of （5）, 

we have 

0

0

0

1

1

( 1)
( 1)

m
r j j

r
j r j

l l
A

n n l


 




  . 

By direct computation we have 
0 01 1r rA v   (similar as the discussion of （6）). 

Applying it to the second sub-formula of （5）, we have 1r rA A  for 01 r r  ,  

that is 

0 00 1 2 1.r rA A A A       

 
Remark 1. The recursive formula (5) gives a partial differential equation that is called 

Hamilton–Jacobi–Bellman (HJB) equation, and rA  can be viewed as the "value 

function", which gives the minimum cost (or maximal revenue) for a given dynamical 
system with an associated cost function. The optimal strategy is determined by values 
of the three max-functions of last two terms in the second sub-formula. 
 

2.2  Example 
 
In this section we give a concrete example of the Section 2.1. 
 
Theorem 2. 

Assume n is even, and in each group there are two students， i.e., 2n m , 2j  , 

1 j m  ,set 0
1min{ | }

2r
nr r l 

  , then 

2 (2 1) ,
( 1)r

r ru
n n





 

2 ( 2 ) .
( 1)r

r n rv
n n





 

Moreover, 
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        0

0
0

0
1

2( 1) 2 1, 0 ,
( 1) 1

2 2 1, .
( 1) 1

m

j r
r m

j r

r j r r
n n j

A
r j r r m

n n j



 

 
    

  
  




        （8） 

 
Proof for Theorem 2. We have 

     
 

1 1

1 1 1 1 1

1 1 1

max( , ), 0,
(2 1) 2 max( , ) max( , )

( 1)(2 1) ( 1)(2 1)
1 max( , , ), 1 ,

( 1)(2 1)
0, .

r r

r r r r r

r

r r r

A v r
r r rA A v A u

r r r r
A

A u v r m
r r

r m

 

    

  


   

   
 
  
  




  （9） 

Since n  is even, if 2
2
nr  , then r ru v , and if 2

2
nr  , then r ru v . 

To simplify the formula (9), first we consider 1
2r

nl 
 , then r ru v . We have 

2 1
2
nr   , assume r r rv A u  .From the second sub-formula of (9), we have 

1
1 2 (2 1)

( 1)r r
r r rA A

r n n
 

 


.                  （10） 

Then 

1

2 2 1
( 1) 1

m

r
j r

r jA
n n j 




  .                   （11） 

Since 

2 1 12 2
1 1

j
j j


  
 

, 

hence 

1

2 1 2
1

m

j r

j n r
j 


 

 . 

That is, r rA v , which assures our assumption. 

Moreover, to satisfy r rA u , we need 

1

2 1 2 1
1

m

j r

j r
j 


 

 . 

Write it as 
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1

1 4 1
1

m

j r

r n
j 

  
 . 

Since 4 1 1r n    is true for all 2 1
2
nr   , and

1

1 1
1

m

j r j 


  is true for all 

2 1
2
nr   . Hence r rA u  is true for 0r r . 

 

Furthermore, if 2 1
2
nr   , then （11） tells r rA u , that is at least we have 

0 01 1r rA u  . Notice that even though 
0 01 1r rA u   does not satisfy our assumption 

r r rv A u  ，we can induce the value of 
0 1rA   from 

0r
A by applying the second 

sub-formula of （9）. Moreover, 
0 01 1r rA v   (the proof is similar as the above 

discussion of formula (11)).  
 

Now we consider 1
2r

nl 
 , that is r ru v . First we have 

0 0 01 1 1r r rA v u    , 

then we have 1r rA A   for 00 r r  by applying the second sub-formula of （9）. 

That is 

0 00 1 2 1.r rA A A A       

 
Remark 2. From the proof of Theorem 2, we have the optimal stopping rules： 
 

Reject the first 0 1r   groups of applicants, then accept currently second best student 

that comes along. When n goes to infinite, the maximal win probability is nearly 

0

02( 1) 2 1 1lim
( 1) 1 4

m

n j r

r j
n n j



 


  . 

 
 
 

2.3  Panel interview case: 2k   
 

Assume the interviewer has met r  groups of candidates, and selects the 

currently i -th best, who is actually the k -th best of all candidates. Let ,i rv  be the 
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probability of the currently i -th best out of rl  candidates ends up to be the k -th 

best.  
 

For simplicity, assume 2j  , 1 j m   and n  is even, then 2rl r  and 

2n m . 
 
Lemma 2. For i k , 

              ,

2 2

.i r

r n r
i k i iv

n k
k

  
    

 
 
 

          （12） 

Proof for Lemma 2. We have 

       

, 1 1, 1

1, 1 2, 1,

(2 2 )(2 1 ) (2 1 )
(2 2)(2 1) (2 2)(2 1)

(2 2 ( 1)) ( 1) , 2 ,
(2 2)(2 1) (2 2)(2 1)
1, , ,
0, , .

i r i r

i r i ri r

r i r i i r iv v
r r r r

i r i i iv v i r nv
r r r r

i k r m
i k r m

  

   

          
           

  


 

   （13） 

The first sub-formula of (13) can be written as 

, , 1 1, 1 2, 1
(2 2 )(2 1 ) 2 (2 1 ) ( 1)

(2 2)(2 1) (2 2)(2 1) (2 2)(2 1)i r i r i r i r
r i r i i r i i iv v v v

r r r r r r    
      

  
     

. 

Backward induction on i  and r  proves the uniqueness of ,i rv .  

Moreover, 
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, 1 1, 1 2, 1
(2 2 )(2 1 ) 2 (2 1 ) ( 1)

(2 2)(2 1) (2 2)(2 1) (2 2)(2 1)
2 2 2 2

(2 2 )(2 1 )
(2 2)(2 1)

2 2 2 2
12 (2 1 )

(2 2)(2 1)

i r i r i r
r i r i i r i i iv v v

r r r r r r
r n r
i k ir i r i i

nr r k
k

r n r
i ki r i

r r

    
      

 
     

    
        

   
 
 

   
    

 
1 1

2 2 2 2
2 2( 1) 2

(2 2)(2 1)

2 2 2 2 2 2 2 2 2
1 2

2

2

i i
n k
k

r n r
i k ii i i

nr r k
k

r n r r n r r n r
i k i i k i i k ii i i

n n nk k k
k k k

r
i

 
    
 
 
 

    
       

   
 
 

             
                      

     
     
     





2

.

n r
k i i

n k
k

 
  
 
 
 

 

Here, notice that we used the combinatorial identity： 

2 2 2 2 2 2 2
2

1 2
n r n r n r n r
k i k i k i k i
             

                     
. 

 
Theorem 3. 

Let rA  denote the optimal probability of success given that r  groups of applicants 

have been interviewed and rejected.  

1 1 , 1
1

(2 2 )(2 1 ) 1 1 2 1 max( , ).
(2 2)(2 1) 2 1 2 2 (2 2)(2 1)

k

r r r i r
i

r k r k iA A A v
r r r r r r  



     
          



 

It is not possible to have explicit solutions except the four cases 1,2, 1,k n n  . 

However, with the above equation, the result is easy to compute numerically. 
 
Using computer program, we have the figures of cases when ݇ = 3 and ݇ = 5. 

S26

- 283 -



- 17 - 
 

 

 
From the figure above, we notice that ܣ௥ remains constant when r is small, and 

decrease when r approaches m. Notice , 1k mv  . ,k rv  increases rapidly when r 

approaches m. For  , 1i rv i k  , they first increase, then decrease and finally reach 

0. 
 

3. Find the best w  out of n  
 

In this section, the interviewer randomly divides all the n candidates into m  

groups 1{ }m
j jg  . In group jg  there are j  students, 

1

m

j
j

n


 . Each time the 

interviewer meets one group. Then the interviewer either selects some students or 
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rejects all the candidates in the group. What is the optimal strategy to find the best w  
student? 
 
We follow the algorithm of F. Thomas Bruss and Guy Louchard[1]. Similarly we 

denote w  thresholds of groups: 1 21 wj j j m     , and define two sorts of 

candidates: 
 
◇ Compulsory candidates i.e., candidates who should be accepted by the 

interviewer based on the current information. For example, the interviewer has 
accepted so far k candidates, and then he should accept the coming student who 
is better than some of the k  candidates. 

◇ Marginal candidates i.e., candidates who are relative better than or equal to the

( 1)k  -th best. 

For all possible values of 1j  with 11 j m  , first choose the relative best (if any) 

located at position 1 1p j , then for each possible position 1p  compute an optimal 

threshold 2 1 1( )j p p . If there is a compulsory candidate at 2 2p j , the interview 

should accept and start the strategy at 2p  with a new threshold 3 2( )j p . If there is no 

compulsory candidates before 2j , then from 2j  on, choose a compulsory candidate 

or a marginal candidate (if any) at position 2p . And then start again the strategy at 

2p  with a new threshold 3 2( )j p . And we continue such process to the threshold

1( )i wj p  . Here 1, , wp p  are groups that contain selected people. 

 

3.1  Panel interview case: 2w   
 

For the panel interview case with 2w  , define a 1 2( , )j j -strategy as following: 

 

Reject the first 1j  groups of candidates, and then there are four possibilities: 

◇ From 1j  on, the interviewer accepts the currently best two candidates up to a 

certain index 2j , and they are in the same group; 
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◇ From 1j  on, the interviewer accepts the currently best two candidates up to a 

certain index 2j , but they are not in the same group. 

◇ From 1j  on, choose the currently best (if any) compared to all previous 

candidates. And if the interviewer accepts only one relative best candidate up to a 

certain index 2j , then selects a currently best or second best after 2j . 

◇ From 1j  to 2j  , no one satisfies the condition of enrollment, and after 2j  the 

interviewer accepts the currently best two candidates, which are possibly in or not 
in the same group. 

 

For simplicity, we consider the case n  is even, and 2j   for all j  and then 

2
nm  . With those assumptions, we have 

 

Theorem 4. The optimal thresholds *
1j and *

2j  for the panel interview case with 

2w   satisfy the asymptotic relationship as m goes to infinity: 
1
2

1*
31 2 ( ) 0.2291147285ej e W e

m
      , 

1*
2 2 0.6065306596j e

m


   , 

where ( )W x  is the Lambert’s function. The asymptotic success probability of the 

* *
1 2( , )j j -strategy equals 0.2254366561. 

 

Proof for Theorem 4. Given p, first we compute 2 1 1( )j p p .We have three 

possibilities: 1 2 2p j p  , 1 2 2p p j   and 1 2 2p p j  . 

The probability of success of the first case 1 2 2p j p   is given by 

2 2

2 2 1 2 2

2 2

2 2 1 2 2

1 1
2

1
1 12 2

1 1

1 12 2

4(2 2)2 2 2 1 2 3 2 2 2 3 2 2
2 1 2 2 1 2 2 (2 1) 2 1 2

1 3 2 4 4 3 21 1 1
2 1 2 1 2 1

j p mm

p j k p l j s p

j p mm

p j k p l j s p

pk k l l s sP
k k l l p p s s

k l l p p s s

 

     

 

     

     


   

                          

   

   

� �

� �
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Notice 1 1
2 1 2k k




, 1 2 2
1 2 1k k k
 

 
 for 2k  ，

3 2 2
2 1 1k k k

   
 

 for 1k  . 

Then we have 
2 2

2 2 1 2 2

2 2

1 1

1
1 12

1 2 2
1 1 1 2

2 2

1 2 2 21 1 1
1

2 ( 2) ( , ),
( 1)( 2)( 1)

j p mm

p j k p l j s p

m

p j

P
k l p s

p p j p S p j
m m p p

 

     



                  




  

   



� �

�

 

and 
2 2

2 2 1 2 2

2 2

1 1

1
1 12

2 1 2
1 1 1 2

2 2

1 2 2 21 1 1
1 1

2 ( 1) ( , ).
( 1)( 1)

j p mm

p j k p l j s p

m

p j

P
k l p s

j p p p T p j
m m p p

 

     



                   




 

   



� �

�

 

The probability of success of the second case 1 2 2p p j   is given by 

22

2 1 1 2

22

2 1 1 2

11
2

2
1 1 12 2

11

1 1 12 2

2(2 2)2 2 2 1 2 3 2 2
2 1 2 2 (2 1) 2 1 2

1 2 2 3 21 1
2 1 2 1

pj m

p p k p s p

pj m

p p k p s p

pk k s sP
k k p p s s

k p p s s



     



     

   


  

                 

  

  

� �

� �

 

Similarly, 
22

2 1 1 2

2

2 1

11

2
1 1 12

1
1 2

1 2 1 2
1 2

1 1 21 1
1

( , ),
( 1)( 1)

pj m

p p k p s p

j

p p

P
k p s

p p p S p j
m m p



     



 

           


 

  



� �

�

 

2P  is monotone in 2j , so does 2S  and 2T . 

22

2 1 1 2

2

2 1

11

2
1 1 12

1
1 2

1 2 1 2
1 2

1 1 21 1
1

( 1) ( , ).
( 1)

pj m

p p k p s p

j

p p

P
k p s

p p p T p j
m m p



     



 

           






  



� �

�

 

Notice that 1 1 1 2 1 2 1 2( , ) ( , )p S p j p S p j  and 1 1 1 2 1 2 1 2( , ) ( , )pT p j p T p j  are 

unimodal in 2j , i.e., 

2 2

1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2

1

2 2 2

( , ) ( , ) ( , 1) ( , 1)

1 21
( 1) ( 2)( 1)

m

p j

p S p j p S p j p S p j p S p j

p
m m j p p

    

 
    

   


（14） 

changes sign at most once. 
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The probability of success of the third case 1 2 2p p j   is given by 

1 1

3
1 1

2 3 2 2 3 21
2 1 2 2 1

m m

s p s p

s sP
s s s s   

         
  . 

Moreover, 

1 1

3
1 1

2 21 1
1

m m

s p s p
P

s s   

            
  . 

And we denote 

1

1 1
1 3 1 2

1

( 1)21 ( , )
( 1)

m

s p

p p p S p j
s m m 

     
 � , 

1

1 1
1 3 1 2

1

( 1)21 ( , )
1 ( 1)

m

s p

p p p T p j
s m m 

     
 � . 

Here 3S  and 3T  are affine linear in 2j  (actually do not involve with 2j ), then we 

have 

1 1 1 2 1 2 1 2 1 3 1 2( , ) ( , ) ( , )p S p j p S p j p S p j   

and  

1 1 1 2 1 2 1 2 1 3 1 2( , ) ( , ) ( , )pT p j pT p j pT p j   

are unimodal in 2j . 

 
We want to maximize the value 

1 1 1 2 1 2 1 2 1 3 1 2( , ) ( , ) ( , )p S p j p S p j p S p j  . 

As m  , we would like to replace each term of sums by integrals, and use 
continuous variables by normalizing: 

ଵᇱ݌ ≜
௣భ
௠

ଶᇱ݌ , ≜
௣మ
௠

, ݆ଶᇱ ≜
௝మ
௠

                    （15） 

And we continue to use 1p , 2p  and 2j  (a bit abuse of notations) as continuous 

variables. It is equivalent to maximize the asymptotic expression 

 

2

2 2 2 1

1 22
1 1 2 1 2 2 1

2

2 2 2 1

2( , ) 1

2 ln( ) ,

j

p j p p

jV p j p dp dp p
p

j j j p

 

 
  

 
  

 �
 

here notice that 2 22 1,p p
m m
   and 2p

m
 are asymptotic equivalent as m  . 

Moreover, write 1 1 2( , )V p j  as a product 1 2( )p j . Since 
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2
2

2

( ) 2ln( ) 1d j j
dj


    

is monotone in 2j , 2( )j  is unimodal. 

Let 1 1 2

2

( , ) 0dV p j
dj

 , then 2
1ln( )
2

j   , which gives 

1
* 2
2 0.6065306596j e


   . 

 
Now we want to consider 

1 1 1 2 1 2 1 2 1 3 1 2( , ) ( , ) ( , )pT p j pT p j pT p j  . 

Similar as the above discussion, we replace terms of the sum by integrals and obtain

1 1 2( , )V p j , which is the same as 1 1 2( , )V p j . Hence for our original problem, to 

maximize 1 2 3P P P   as m  , we should take 

1
* 2
2 0.6065306596j e


   . 

 
 

Now we compute 1j . First notice that the first successful pick may happen after *
2j  

(here we abuse1 the notation of *
2j , and it actually means 

1
2me


). For 2( )j  is 

unimodal, 2 1( )j p  is exactly given by 1p , i.e., 

* *
2 1 2

2 1 *
1 1 2

, ,
( )

, .
j p j

j p
p p j

 
 


                 （16） 

There are three cases. Denote 1Q ， 2Q and 3Q to be the win probabilities of the cases 

*
1 2 2p j p  ， *

2 1 2j p p   and *
2 1 2j p p  , respectively.  

We need to compute the aggregation of success probabilities 

                                                        
1 When we transform the sum to integral, all 1j , 2j  are normalized by 1

1
jj
m

 � , 2
2

jj
m

 � , but we abuse 

the notations and still write them as 1j , 2j . After we got the desired values *
1j and *

2j by taking derivatives, the 

order numbers of the thresholds should be *
1mj and *

2mj , while we abuse the notations again and still write 

them as *
1j and *

2j . 
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                    1 1 1 2 1 3 1( ) ( ) ( ) ( )Q j Q j Q j Q j   .                    （17） 

The probability 1Q  of success of the case *
1 2 2p j p  is given by 

 

 

 

*
12

1 1 1

*
12

1 1 1

11
*1

1 1 2 3 1 2
1 1 1 1

11
*

1 2 3 1 2
1 1 1 1

*
1 1 2 3 1 2

2(2 2)2 2 2 1 ( , )
2 1 2 2 (2 1)

1 2 21 ( , )
2 1

( , ).

pj

p j i j

pj

p j i j

pi iQ P P P p j
i i p p

P P P p j
i p p

R P P P p j



   



   

 
  

 

            
 

 

 

� �

� �

� �

 

Notice that if 1 1 1p j  , we do not have the term 

1

1

1

1

2 2 2 1
2 1 2

p

i j

i i
i i



 

 
 , 

and we have 
* *

1 12 2

1 1 1 11 1

1 11 1

1
1 11 11 1

1 1 1 11 1
1

p pj j

p j p ji j i j
R

i p i p

  

      

            
  � � . 

That is 
* *
2 2

1 1 1 1

1 1
1 1

1
1 11 1 1 1( 1)( 1) ( 1)

j j

p j p j

j jR
p p p p

 

   

 
    . 

The probability 2Q  of success of the case *
2 1 2j p p  is given by 

1

*
2 1 11 2

2

1 2

1

*
2 1 11 2

11
1

2
1 1 1 1

1
2

1 12 2

11

1 1 1 1

2(2 2)2 2 2 1
2 1 2 2 (2 1)

4(2 2)2 2 2 1 2 3 2 2
2 1 2 2 (2 1) 2 1 2

1 2 21
2 1

3 21
2

pm m

p p i jp j

p m

l j s p

pm m

p p i jp j

pi iQ
i i p p

pl l s i
l l p p s s

i p p

l



   



   



   

 


 

   
  

          

 

  

 

  

�

� � �

�

�
2

1 2

1

1 12 2

4 4 3 21
1 2 1 2 1

p m

l j s pl p p s s



   

                
 � �

 

2Q  is monotone in 1j , and we have 

1 2

*
2 1 1 1 21 2

*
2 11 2

1 11

2
1 1 1 11 2

1
1 2 1

1 1 2 2

1 1 2 2 21 1 1
1 1

2 ,
( 1)( 1)( 2)( 1)

p p mm m

p p i j l j s pp j

m m

p pp j

Q
i p l p s

p p j
m m p p p

 

       



 

                   


   

    

 

� � � �

 

and 
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1 2

*
2 1 1 1 21 2

*
2 11 2

1 11

2
1 1 1 11 2

1
1 1 2

1 1 2 2

1 1 2 2 21 1 1
1 1

2 ( 1)( 1) .
( 1)( 1) ( 1)

p p mm m

p p i j l j s pp j

m m

p pp j

Q
i p l p s

j p p
m m p p p

 

       



 

                   

 


  

    

 

� � � �

 

The probability 3Q  of success of the case *
2 1 2j p p   is given by, 

1

*
1 12 1 2

1

*
1 12 1 2

1

3
1 11 1

1

1 11 1

2 2 2 1 2 2 3 2 2
2 1 2 2 (2 1) 2 1 2

1 2 3 21 1 .
2 (2 1) 2 1

p mm

i j s pp p j

p mm

i j s pp p j

i i s iQ
i i p p s s

i p p s s



    



    

   


  

             

  

  

� �

� �

 

3Q  is also monotone in 1j , and we have 

* *
2 1 2 2 1 2

1 1 1
3

1 1 1

2 2 ( 1) .
( 1)(2 1) ( 1)( 1)(2 1)

m m

p p j p p j

j j pQ
m m p m m p p   


 

       

 
In sum, we can control the sum 

1 1 1 2 1 3 1( ) ( ) ( ) ( )Q j Q j Q j Q j    

by two sides and it is easy to check that two bounds of 1( )Q j  are unimodal in 1j  

(similar as (14), one can show the difference changes the sign at most once). Similar 

as we compute the value 1 1 2( , )V p j , we normalize 1p , 2p  and 1j  as (15), and 

replace the terms of (17) by integrals, and then compute the asymptotic success 

probability of 1( )Q j  by two sides, which gives the same 

*
2

* *
1 1 1 2 2 1 1 2

1 1 1*1 1 1
2 1 1 1 2 1 2 1 12

1 2 1

1 1
2 2

1 1 1

2( ) ( , ) (1)

2ln( ) 5 2 .

j

p j p j p p p j

j j jV j V p j dp dp dp o dp
p p p

j j j e e

   

 

 

 
    

 

   �

 

To maximize 2 1( )V j , let 2 1

1

( ) 0dV j
dj

 , that is 

1 1
2 2

1 12 2ln( ) 7 2 0j j e e
 

    ， 
11
22

1

1
3 2

1 ,j eee j e e     

Then, we solve the equation, and gives 
1
2

1
* 32
1 ( ),ej e W e

      
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where ( )W x  is the Lambert function, i.e., yx ye , then ( )y W x .  

With Matlab, we have *
1  0.2291147285j    

 

Furthermore, we have 2 1 0.22543665) 1( 6V j  , which is the maximal probability of 

success of * *
1 2( , )j j -strategy. The unimodality of 2 1( )V j  implies the uniqueness of *

1j . 

Transform this normalized *
1j  to the original threshold by multiplying m , still 

denote as *
1j  (again here we abuse the notation a bit), and we have finished the 

proof. 

 

3.2  Panel interview case: 3w   
 

For simplicity, we only consider the case 3n m  and 3j   for1 j m  . For 

3w  , define a 1 2 3( , , )j j j -strategy similar as the case 2w  , then we have 

 

Theorem 4. The optimal thresholds *
1j ， *

2j  and *
3j  for the panel interview case 

with 3w  satisfy the asymptotic relationship as m  goes to infinity: 
*
1 0.1666171752 ,j

m
   

1
31 5*

2 3 2( ) 0.4369818602
ej e W e

m
  

    , 

1*
3 3  0.7165313106j e

m


   . 

( )W x  is the Lambert’s function, and the asymptotic success probability of the 

* * *
1 2 3( , , )j j j -strategy equals 0.1625200069. 

 
Proof for Theorem 4. The proof is quite similar as the proof of case 2w  but a bit 
more complicated. However, one can finish it by using techniques of the proof of the 
case 2w  and section 3 of Bruss and Louchard[1]. 
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Remark 3. One can generalize the computational technique to any 3w   with the 

restriction n wm  and j w   for 1 j m  . It is harder to discuss the general 

case with no restriction on the number of students in each group. 
 

4. Find the t -th best of n  with uncertainty 
 
M. H. Smith[12] studied the problem of finding the best with the assumptions of 
standard secretary problem and an additional condition that each applicant has a fixed 

probability 1 p  to refuse an offer. In the section, we extend his work from 1t   to

2t  , and also give a remark on the problem in panel interview case at the end. 
 

4.1  Matriculate with uncertainty: 2t   
 
To find exactly the second best candidate, we assume the interviewer picks up student 
  among the r interviewed applicants, and finishes interviewing all the n  
applicants to see whether the choice is right. 
 
Lemma 3. 

(i) If student   is currently the second best, the probability rz  of the student 

being the second best at the end is 

          
( 1)

( 1)r
pr rz
n n





,   1 r n  .          (18) 

 (ii) If student   is currently the best, the probability ry  of the student  being the 

second best at the end is 

           
( )
( 1)r

pr n ry
n n





, 1 r n  .          (19) 

 
Proof for Lemma 3. For case (i), we have 

1
1 , 1 ,
1

, .

r
r

r z r n
z r

p r n


   

 

 

For case (ii), we have the recurrence formula 
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1 1
1 , 1 ,

1 1
0, .

r r
r

r y y r n
y r r

r n

 
     
 

 

 

Let rB  be the probability of success under the condition that the first r  applicants 

have been rejected, and then we have the related HJB equation: 
 

 
1 1

1 1 1 1 1

max( , ), 0,
1 1 max( , ) max( , ) 1
1 1

0, .

r r

r r r r r r

B py r
rB B B py B pz r n
r r

r n

 

    


       



（20） 

 

Here, for the second sub-formula of （20）, when the ( 1)r  -th applicant is coming, 

an candidate may have 1
1

r
r



 possibility worse than all previous r  candidates, and 

the interviewer should reject that candidate. He or she has 1
1r 

 possibility to be 

currently the second best. If the interviewer rejects that candidate, the win probability 

will be 1rB  .If the interviewer accepts the applicant, he or she has p  possibility to 

accept the offer, and the win probability is 1rz  . The ( 1)r  -th applicant has 1
1r 

 

possibility to be currently the best. If the interviewer rejects him or her, the win 

probability will be 1rB  .If the interviewer accepts the applicant, he or she has p

possibility to accept the offer, and the win probability is 1ry  . 

 

Set 0 [ ]
2
nr  , then 0 2

nr   if n  is even and 0
1

2
nr 

  if n  is odd. Then we 

have 
 

Theorem 5. Let 0 [ ]
2
nr  , then 

          

2
0 0

0

2

0

( ) , 0 ,
( 1)
( ) , .

( 1)

r

p r n r r r
n n

B
p r n r r r n
n n

 
   

   

         （21） 
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Proof for Theorem 5. It is clear that (21) is true for r n . For 0r r , we have 

r ry z , and assume r r rpy B pz   for 0r r n  , then from the second 

sub-formula of the above HJB equation (20), we have 
2 ( )
( 1)r r

p r n rB py
n n


 


. 

That means (21) is true for 0r r n  . From the second sub-formula of (20), (21) is 

also true for 0r r . 

 

Now we want to show (21) is correct for 00 r r  . No matter n  is even or 

odd, we have 
0 0r r r rB py py pz    for 00 r r  .Applying the second sub-formula 

of the equation (20), we have 1r rB B  , that is for 00 r r  , 

we have 

0 0 00 1 2 1 .r r rB B B B B        

 
Here we give one optimal strategy: 

 

Reject the first 0r  applicants. After that, accept the first currently second best 

applicant that comes sequentially. 
 

With this optimal strategy, the win probability of finding the second best student 
is nearly 

0

2 2
0 0( )lim lim
( 1) 4rn n

p r n r pB
n n 


 


. 

 
Remark 4. The maximal win probability of finding the best student with uncertainty 

is 
1

1 pp  , as n  goes to infinity (see Smith[12]), which is always larger than the 
maximal win probability of finding the second best student with uncertainty, i.e., 

2

4
p

. 
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4.2  Matriculate with uncertainty: 2t   
 
Assume the interviewer has met r  candidates, and selects the currently i -th best, 

who is actually the t -th best of all candidates at the end. Let ,i rf  be the probability 

of the currently i -th best ends up to be the t -th best. 
 
Theorem 6. For i t , 

, .i r

r n r
i t i ipf

n t
t

  
     

 
 
 

 

 
Proof for Theorem 6. We have the recurrence formula 

௜݂ ,௥ = ൞

ݎ − ݅ + 1
ݎ + 1 ௜݂,௥ାଵ +

݅
ݎ + 1 ௜݂ାଵ,௥ାଵ														݅ ≤ ݎ < ݊

݅																																																														݌ = ,ݐ ݎ = ݊
0																																																														݅ ≠ ,ݐ ݎ = ݊

� 

Similar as the proof of Lemma 2, one can use backward induction to finish the proof. 
 

 

Remark 5. Let rB be the optimal probability of success given r  applicants have 

been interviewed and rejected.  
The Hamilton-Jacobi-Bellman (HJB) equation is 

1 , 1
1

1

max( , )1
1 1

t
r i r

r r
i

B pfr tB B
r r

 




 
 

  . 

Besides the cases 1,2, 1,t n n  , there is no explicit solution for other cases. 

However, the HJB equation gives the algorithm and one can easily compute the 
results numerically. 
 
Remark 6. We can consider the problem of finding the t -th best of n  with 
uncertainty in panel interview case. All the techniques can be found in Section 2 and 

Section 4, the results are similar. It is easy to check that for 2t  , the relative rz , 

ry  and rB  are: 

( 1)
( 1)
r r

r
pl lz
n n





,   1 r m  , 
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( )
( 1)

r r
r

pl n ly
n n





,   1 r m  , 

1

1

2
1

1
1

2

1
1 1

( 1)
, 0 ,

( 1)

( 1)
, .

( 1)

m
r j j

j r j
r m

j jr

j r j

p l l
r r

n n l
B

lp l r r m
n n l







 

  

 
 

 
   




 

Here, all the setting is the same as that in Section 2 except each applicants has a fixed 

probability 1 p  to refuse an offer. The definitions of rz , ry , rB  and 1r  are the 

same as those in Lemma 1 and Theorem 1. 
 
Similarly we can discuss for 2t  in panel interview case with special restrictions on 

the groups that are same as those in Theorem 1 of Section 2. And the relative ,i rf  

should be the result in Lemma 2 times p , i.e., 

,

2 2

, .i r

r n r
i t i ipf i t

n t
t

  
     

 
 
 

 

Notice that k  in (12) is replaced by t  here. 
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From the figure above, we notice that ܤ௥ remains constant when r is small, and 

decrease when r approaches m. Notice ,k mf p . ,k rf  increases rapidly when r 

approaches m. For  , 1i rf i k  , they first increase, then decrease and finally reach 

0. 
 

5.  Conclusions and Discussions 
 

In the first two problems, we consider the panel interview case instead of 
one-by-one interview case, and the results of maximal probabilities of success of 
panel interview case are not worse than those of classical case. That is, using panel 
interview is more convenient and more realistic, which saves plenty of time of the 
university administrators. In addition, the techniques of proof in panel interview case 
can be used to generalize massive other previous works. 
 

In the first problem of finding the second-best from a pool of n applicants by 
panel interview, we have given an explicit solution for general case. Specifically, the 
optimal strategy is to reject the groups that the sum of which nearly contains half of 
all applicants and then to accept the first currently-second-best applicant that arrives 
sequentially. In an special example with suitable restrictions, we give the probability 

of success using this strategy, which is about 1
4

. Apparently, it is harder to select the 

second-best from a pool of applicants than it is to select the best. Moreover, we give a 
general algorithm to compute the maximal win probability of selecting the k -th best 
students for 2 k n  . 
 

In the second problem of finding best m out of n applicants by panel interview, 
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we follow the algorithm of Bruss and Louchard[1] and discuss the problem in special 
setting of groups, in order to simplify the computation. And we prove that in the panel 
interview case, if each group contains the same number of people then the result of 
panel interview case is the same as that of the standard case that interviewer 
interviews applicants one by one for large enough n. Specially, the asymptotic win 
probabilities for 2w   and 3w  are 0.2254366561  and 0.1625200069 , 
respectively. 
 

In the last problem, we study the problem with all assumptions that are the same 
as those of the standard secretary problem besides each applicant has a fixed 

probability 1 p ( 0 1p  ) to refuse an offer. The optimal strategy of finding the t

-th ( 2 t n  ) is giving. Specifically, the optimal strategy is to reject (nearly) the first 
half applicants and then to accept the first second-best-so-far applicant that arrives 
sequentially. When n  goes to infinity, the probability of success using this strategy 

is 
2

4
p

, which is less than the win probability of finding the best applicant. We also 

give a short comment for the problem in panel interview case. 
 

Of course, the results in our paper raise series of questions: what about the 
number of n  is unknown in panel interview case or in matriculate with uncertainty 
case? What about the probability of rejection is not fixed but satisfies some kind of 
distribution in the matriculation with uncertainty case? What about in panel interview 
case the interviewer does not have full memory of the relative ranks of all interviewed 
students but only have partial memory of several latest interviewed students? 
Furthermore, there are various applications of secretary problem, for instance, 
applications to online auction by Robert Kleinberg[10](2005) and combinatorial 
auction. We leave these investigations to future work. 
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