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Abstract 
Hypothesis Testing is an important statistical tool. It is used to judge whether a 

hypothesis should be rejected or accepted. In hypothesis testing, two types of errors 
are possible: type I error which indicates rejecting null hypothesis ܪ଴ when it’s true, 
and type II error which refers to accepting ܪ଴when it’s false. Traditional hypothesis 
testing controls the possibility of Type I error by setting ߙ. While in researches and 
industries, we have many cases where a well consideration of both types of errors is 
necessary, such as controlling the economical lost in quality testing and decision 
making. Thus, we raise a new approach to parametric tests to take the risks caused by 
both types of error into account and apply the method on the test of population mean. 

First, we provide a method to calculate the possibility of Type I error ߙ and 
Type II error ߚ . Previous researchers calculate ߚ  by giving the distribution 
parameter ߠ a prior distribution (ߠ)ߨ. We, on the other hand, choose use empirical 
Bayesian method to give the empirical prior distribution ߨௌ(ߠ) of parameter ߠ with 
the obtained Sample S. Thereby, we get the formulas to calculate ߙ and ߚ: 

ߙ = න ߠ݀(ߠ)ௌߨ(ߠ)ఆߙ
ுబ

, ߚ = න ߠ݀(ߠ)ௌߨ(ߠ)ఆߚ
ுభ

 

To take the impact of both types of errors into consideration, we introduce target 
function ܶ  to measure the risks caused by the two types of errors. ܶ  can be 
calculated with the sample ܵ and rejection region ߗ. Then, we optimize ܶ to obtain 
an ideal rejection region ߗௌ that leads to a minimal ܶ. After getting ߗௌ from the 
sample ܵ and target function ܶ, we are able to judge directly whether we should 
reject null hypothesis ܪ଴ or not. 

We also apply this general method to the specific test of population mean ߤ with 
known variance. We discuss the numerical relation of ߙ, ,ߚ ܶ,  ௌ in this case, andߤ
solve the rejection region under different target functions.  

Overall, we give a new hypothesis testing method base on sample and Type I and 
II errors to minimize the risks caused by these errors. We also implement the method 
numerically on a common test. 

Key Words: Hypothesis Testing, Type I & II errors, Target Function, Optimization, 
Empirical Bayes 
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1 Introduction and Notation 

 1.1 Introduction 

 Hypothesis Test is an important tool in Statistics which is widely used in 

researches and industry. It is used to test if there is enough evidence to reject certain 

hypothesis. Usual way to conduct a Hypothesis Test is to provide a pair of null 

hypothesis ܪ଴ and alternative hypothesis ܪଵ as well as a significance level ߙ and 

to find a rejection region that when ܪ଴ is true, the probability to reject ܪ଴ is ߙ.  

This tradition hypothesis testing method is clear and direct, but it pays little 

attention to Type II error. As we know[1], Type I error is rejecting the null hypothesis 

when it is true, while Type II error is failing to reject the null hypothesis when it is 

false. In some cases, Type II error is also significantly important. For example, in 

quality tests, economical loss are produce both when qualified products are rejected 

and when disqualified ones fail to be rejected. Thus, minimizing the loss brought by 

two types of errors come to be crucial.  

Researchers have noticed that in the same hypothesis test with the same sample, 

 can be calculated by assuming ߚ ,increases. In parameter test ߙ decreases whenߚ

the parameter of population distribution. Wu[2](1990) calculates ߚ by assuming the 

actual population mean ߤ. 

Concurrently, there’s people consider about synthesizing ߙ  and ߚ  in 

hypothesis test. Degroot[3](1975) designed a special pair of hypothesis and determine 

the rejection region with the weighted average of ߙ  and ߚ . Pericchi 和

Pereira[4](2013) used Bayesian methods to expand Degroot’s method in general 

hypothesis and calculates ߙ and ߚ by granting distribution parameter ߠ a set of 

prior distributions. 

Our goal is to design a method that both synthesize Type I and II method that 

does not require people to give a prior distribution of parameter ߠ.  
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1.2 Notation 

 ଴ Null hypothesisܪ

 ଵ Alternative hypothesisܪ

 Probability of Type I error, Significance level ߙ

 Probability of Type II error  ߚ

 Rejection region  ߗ

ܵ Sample 

 Distribution parameter ߠ

 ௌ  Sample estimator of distribution parameterߠ

ఆߠ   The boundary of rejection region in test of distribution 

parameter 

 Prior distribution of distribution parameter  (ߠ)ߨ

 Population ߤ

 ௌ  Sample meanߤ

ఆߤ   The boundary of rejection region in test of population mean 

,ߙ)ܮ，ܮ  Target Function (ߚ
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2 Calculating the probability of Type I and Type II errors 

To synthesize of two types of errors, the first thing to clarify is how to calculate their 

probability. Unlike ߙ, the probability of Type I error, calculating ߚ the probability 

of Type II error is not direct.  

 

2.1 Existing Calculating Methods 

 In conventional hypothesis test, the probability of Type I error ߙ is significance 

level, which is the probability when sample mean is in the rejection region when the 

null hypothesis is true. 

Degroot provided the following method in 1975. He points out that, in test of 在

population mean, when null hypothesis and alternative hypothesis looks like 

:଴ܪ  ߤ = :ଵܪ ଴ VSߤ ߤ =  ଵ (1)ߤ

where ߤ଴ ≤  ଵ, the rejection region isߤ

ߗ  = ቄߤௌቚߤௌ ≥ ଴ߤ + ఈݖ
ఙ

√௡ቅ (2) 

Where ߙ is the significance level and ݊ is the sample size. 
 

Since null hypothesis has given ߤ଴, when ߪ is known, the rejection region 

depends on ߙ, so the rejection region can be written in the form of (ߙ)ߗ. Then, the 

probability of Type II error is 

ߚ  = ܲ{fail to reject ܪ଴|ܪଵ} = ∫ ఓబା௭ഀݔ݀(ݔ)݂
഑

√೙
ିஶ

 (3) 

in which 

(ݔ)݂  = ଵ
√ଶగఙ

݁ି(ഋೄషഋభ)మ

మ഑మ   (4) 

However, when hypothesis test has the form of  

:଴ܪ  ߤ = :ଵܪ ଴ VSߤ ߤ >  ଴ (5)ߤ

 is not easy to ߚ ,is unknown ߤ So when .ߤ depends on the actual value of ߚ

calculate. One approach[2] is to assumeߤ =  with formula (3) ߚ ଵ, and then calculateߤ
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and (4). Similarly, Pericchi 和 Pereira[3] adopted Bayesian method to discuss in a 

broader situation. They set the null hypothesis and alternative hypothesis as 

:଴ܪ  ߠ ∈ :ଵܪ  ଴  VS߆ ߠ ∈  ଵ (6)߆
Where ߠ is distribution parameter, ߆ is the set where ߠ is hypothesized to be in. 

They give ߠ in ܪ଴ and ܪଵ prior distribution ߨ଴(ߠ) and ߨଵ(ߠ) respectively and 

guarantee that 

න ߠ݀(ߠ)଴ߨ
௵బ

+ න ߠ݀(ߠ)ଵߨ
௵భ

= 1 

 (7) 

. Then they use 

(ߜ)ߙ = න ߠ݀(ߠ)଴ߨ(ߜ)ߙ
௵బ

 

(8) 

(ߜ)ߚ = න ߠ݀(ߠ)ଵߨ(ߜ)ߚ
௵భ

 

(9) 

to obtain the probability of Type I and II error in test ߜ respectively.  

2.2 The method of calculating ࢻ and ࢼ based on sample 

 To avoid reliance on the prior distribution mentioned in 2.1, we developed a new 

method with the help of Pericchi and Pereira’s method. We used empirical Bayesian 

method so that it is not necessary to give a prior distribution beforehand. We treat 

distribution ߠ as a random variable and used sample ܵ to obtain the empirical prior 

distribution of ߨ :ߠௌ(ߠ), this distribution expresses the probability density of ߠ in 

its possible range when ܵ is collected.  

න (ߠ)ௌߨ
஺

ߠ݀ = ߠ)ܲ ∈  (ܵ|ܣ

(10) 

This calculation method is similar to calculating confidence interval. It is also 

worth-noted that as we are using sample to estimate the distribution of population 

distribution parameter, we do not have to give prior distribution ߨ଴(ߠ) and ߨଵ(ߠ) 

to the null hypothesis and alternative hypothesis as what Pericchi and Pereira does. 
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Now we are considering the cases when parameter ߠ equals to its possible 

candidates. For parameter ߠ = ଴ߠ ଴, whereߠ ∈  ଴ܪ

(଴ߠ)ఆߙ  = ௌߠ)ܲ ∈ ߠ|ߗ =  ଴) (11)ߠ

(଴ߠ)ஐߚ  = 0 (12) 

For ߠ = ଵߠ ଵ, whereߠ ∈  ଵܪ

(ଵߠ)ஐߙ  = 0 (13) 

(ଵߠ)ஐߚ  = ௌߠ)ܲ ∉ ߠ|ߗ =  ଵ) (14)ߠ

 Now we have obtained the calculation method of ߙ and ߚ when we have 

known ߠ and ߗ. After obtaining the empirical prior distribution of ߨ ,ߠௌ(ߠ), we 

include it in our calculation. For a rejection region ߗ，the probability of Type I and 

Type II error is respectively 

  

(ߠ)ఆߙ = ௌߠ)ܲ ∈ (଴ܪ|ߗ = න ߠ݀(ߠ)ௌߨ(ߠ)ఆߙ
ுబ

 

  (15) 
  

(ߠ)ఆߚ = ௌߠ)ܲ ∉ (ଵܪ|ߗ = න ߠ݀(ߠ)ௌߨ(ߠ)ఆߚ
ுభ

 

 (16) 
In the formula, ߙఆ(ߠ) and ߚఆ(ߠ) are the probability of Type I and Type II 

error when ߠ equals a certain value. With Formula (15) and (16), it’s possible to 
calculate ߙ and ߚ directly without having to give a prior distribution beforehand. 
 

2.4 Comparison of the calculating methods 

Existing methods calculate with two approaches: the first adopts special 

alternative hypothesis ܪଵ: ߠ =  prior distribution. When the ߠ ଵ; the second grantsߠ

hypothesis or prior distribution is accurate, these two methods have good performance. 

Yet this indicates that these methods heavily rely on the accuracy of hypothesis or 

prior distribution.  

Our method, however, is based on actual sample. We use sample to derive 

empirical prior distribution so that we do not have to provide a prior distribution 

S27

- 307 -



beforehand. The empirical prior distribution can also fit actual situation better and 

shows a better robustness than prior distribution provided manually. 

 
3 Derive Rejection Region with Target Function 

Our purpose is to find an index that would evaluate the risk of Type I and Type II 

error. Thus, we constructed a target function ߙ)ܮ,  and derive an ideal rejection (ߚ

region ߗ by optimizing ߙ)ܮ,   .(ߚ

 
3.1 Establishing Target Function 

To synthesize ߙ and ߚ, Pericchi and Pereira[3] use simple weighted addition to 

establish their target function 

(ߜ)ܴܱܴܴܵܧܵ   =  ܽ · (ߜ)ߙ  +  ܾ ·  (17) (ߜ)ߚ

However, we believe that the target function, which is desired to evaluate the risk 

when Type I and Type II errors take place, would not necessarily be a concise linear 

addition. It is necessary to consider the non-linear relation between the risk and ߙ or 

ߚ . It is also possible that ߙ   and ߚ  would have interactive effect on the risk. 

Therefore, we construct the target function in a more general term: 

,ߙ)ܮ   (18) (ߚ

 When the two type of error have only linear relation with the target function and 
no interactive effect, we can write the target function in the form of 

,ߙ)ܮ (ߚ = ߙܽ + (1 −  ߙ(ܽ
in which 0 < ܽ < 1. This expression can standardize the linear addition by making 

the sum of weight equal 1 and help us to do comparison among target functions in 

linear form.  

 

 3.2 Optimizing Target Function 

In 2.2, we have already provided a method to calculate ߙ and ߚ with Sample 

ܵ and rejection region ߗ. Therefore, we can write ߙ)ܮ, ,ߗ)ܮ in the form of (ߚ ܵ), 

by optimizing function 

,ߗ)ܮ  ܵ) (19) 

We can obtain a rejection region ߗௌ so that when we have Sample ܵ, the target 
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function ߗ)ܮ, ܵ), in other words the risk of having two types of error, is smallest 

when we use ߗௌ as the rejection region.  

After obtaining rejection region ߗ, we can use ߗ and ܵ to decide whether we 

should rejection null hypothesis or not. When 

 ܵ ∈  ௌ (20)ߗ

, we reject null hypothesis. One worth-noted point is that the rejection region ߗௌ 

here relies on Sample ܵ. Therefore, we can have the rejection region in general 

ߗ  = {ܵ|ܵ ∈  ௌ} (21)ߗ

that includes all Samples that we should reject. 

As long as we get Sample ܵ and provide target function ܮ, we are able to tell 

whether we should reject null hypothesis or not. At same time, we have to obtain ܵ 

and provide ߙ in traditional hypothesis testing. The important difference between ߙ 

and ܮ is that ߙ shows the probability of Type I error. In real applications, it is 

usually given by convention, such as 0.1 or 0.05. On the other hand, target function 

has a very specific meaning in reality: the total risk of having Type I and II errors. The 

method can optimize the loss produced by Type I and Type II error which brings it a 

good prospect in applied field. 

 
 
4 Case Study: Hypothesis Test of Population Mean 

 In section 2 and 3, we have covered the general method in use Sample ܵ and 

target function ܮ to minimize the total risk of Type I and Type II error. Now we are 

going to use it in a common test: test of population mean ߤ. Though the numerical 

calculation in this specific case, we can have a more direct understanding of the 

method we have designed.  

According to central limit theorem[1], for independent Sample following same 对

distribution, when sample number is large enough sample mean ߤௌ~ܰ(ߤ,   .(݊/ଶߪ

 Now we have this random variable ܺ whose population mean is ߤ (unknown) 

and population variance is ߪଶ; assume we know ߪ, we test the following null 

hypothesis: 

:଴ܪ  ߤ ≤  ଴ (22)ߤ
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and alternative hypothesis: 

:ଵܪ  ߤ >  ଴ (23)ߤ

 Also, we collect Sample ܵ whose sample size is ݊; the sample mean is ߤௌ, 

whereas the variance of ߤௌ is ߪଶ/݊. To simplify, we make a linear transformation 

ܺᇱ = ௑ିఓబ
ఙ/√௡

 so that ߤ଴ = 0 and ߪଶ/݊ = 1.  

 

4.1 The relation between ࢼ and ࢻ and ࣆષ and ܁ࣆ 

 First, we treat ߤ as a random variable. For distinction, we call it ݔ here. 

According to central limit theorem[1], sample mean ߤௌ~ܰ(ݔ, 1), so that when we 

have sample ܵ, the probability density function of ݔ is 

(ݔ)ௌߨ  = ଵ
√ଶగ

݁ି(ೣషഋೄ)మ

మ  (24)  

which is our empirical distribution. 

 Using formula (15) and (16), and rejection region ߗ = ௌߤ} >  ߚ and ߙ ,{ఆߤ

equals: 

(ߤ)ఆߙ = ௌߤ)ܲ ∈ (଴ܪ|ߗ = න ߤ݀(ߤ)ௌߨ(ߤ)ఆߙ
ுబ

= න න
1

ߨ2√
݁ି(ఓିఓೄ)మ

ଶ ݀ߤ
ஶ

ఓ೾

·
1

ߨ2√
݁ି(௫ିఓೄ)మ

ଶ ݀ݔ
଴

ିஶ
 

 
 (25) 

(ߤ)ఆߚ = ௌߤ)ܲ ∉ (ଵܪ|ߗ = න ߠ݀(ߤ)ௌߨ(ߠ)ఆߚ
ுభ

= න න
1

ߨ2√
݁ି(ఓିఓೄ)మ

ଶ ݀ߤ
ఓಈ

ିஶ

1
ߨ2√

݁ି(௫ିఓೄ)మ

ଶ ݀ݔ
ஶ

଴
 

(26) 
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For different ߤఆ  and ߤௌ, the ߙ and ߚ changes as in graph 1 and 2 

Graph 1    ߙ with different ߤఆ  and ߤௌ 

Graph 2    ߚ with different ߤఆ  and ߤௌ 

In the graph, color indicated the probability of having the type of error. As we see, 

when ߤௌ increases, ߙ gradual decrease while ߚ increase first and then decrease; 

when ߤఆ , the boundary of rejection region increases, ߙ decreases gradually while ߚ 

increases. 
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 4.2 Establish and Optimize Target Function to Derive the Rejection Region 

Using formula (18) in section 3.1, we can evaluate the loss cause by Type I and 

Type II error with target function ߙ)ܮ,  Specifically, when the loss have linear .(ߚ

relation with ߙ and ߚ independently, we can use formula (19) to get 

(ܵ)ఆܮ  = (ߤ)ఆߙܽ + (1 −  (27) (ߤ)ఆߚ(ܽ

where 0 < ܽ < 1. For each target function, we can find the right rejection region ߗௌ 

to minimize ܮஐ(ܵ). Now we use ܽ=0.9 to analysis how ܮஐ(ܵ) changes with ߤஐ 

with fixed ߤௌ.  

 
Graph 3   ܮ changing with ߤఆ  when ߤௌ = 0, 1, 2  

Now we should try the right ߤఆ  to get the smallest ܮஐ(ܵ). It is observed that when 

ఆߤ ௌ increases, theߤ  we should choose is smaller. 

We also want to know the variation of ߤఆ  when we adopt different target 

function ܮ. When ܽ equals different number, ܮஐ(ܵ) changes with ߤఆ  as Graph 4 

shows. 
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Graph 4   ܮ changing with ߤఆ  when ܽ = 0.8, 0.9, 0.99 

where ߤௌ = 1. We see that as ܽ increases, the ߤఆ  we should choose decreases.  

 

4.3 Deriving Rejection Region 

For each sample ܵ, we can have a rejection region ߗௌ. Using this formula 

ߗ  = {ܵ|ܵ ∈  ௌ} (28)ߗ

we can have the rejection region for the test. 

 
We choose a few target function in the form of ܮఆ(ܵ) = (ߤ)ఆߙܽ + (1 −

 :the results are listed ,ߗ to calculate its rejection region ,(ߤ)ఆߚ(ܽ

Table 1   ߤఆ  with different  
ܽ 

ܽ 0.5 0.8 0.9 0.99 0.999 

ఆߤ  0 0.59 0.91 1.64 2.18 

 

 After we give ܮ, we can use sample ܵ to derive rejection region ߗ. Although 尽

this calculation method may not be direct, it minimizes the risk of having Type I and 

II error. We can give different target function for effective usage in different cases. 

 We can also see that when ܽ = 0.99 ఆߤ , = 1.64 . Whereas in traditional 

hypothesis test, when ߤఆ = 1.645 when significance level is 0.05. When ߙ has 

much larger important ߚ, the test is close to the traditional test. 
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5 Conclusion 

In many real applications, we care about the total risk brought by Type I and Type 

II errors. Consequently, we need to design a hypothesis testing method to minimize 

their risk. Our hypothesis testing method starts with this basic consideration. 

Previously, researchers have granted distribution parameter a prior distribution (ߠ)ߨ 

to calculate ߙ, the probability of Type I error, and ߚ, the probability of Type II error. 

However, instead of using this method depending on prior distribution given by 

people, we use empirical Bayesian method to determine the empirical prior 

distribution of parameter ߠ  to calculate ߙ  and ߚ . After that, we give a target 

function ߙ)ܮ,  .instead of giving significance level as in traditional hypothesis test (ߚ

With the obtained sample ܵ, we optimize ఆܶ(ܵ) to get the ideal ߗௌ and then decide 

whether to reject the null hypothesis or not by testing if ܵ ∈   .ௌߗ

Our hypothesis testing method is not direct comparing to traditional method. 

However, we successful take Type II error into consideration. In some real life 

applications such as quality test of industrial products, both types of error lead to 

certain loss. Traditional method control the probability of Type I error under the 

significance level while the method we established consider both types of error to 

minimize the total loss. This feature gives our method good prospect in applied areas. 

Due to the limited time, we still have ideas not analyzed yet. We are curious 

about worth-thinking question such as the application of this method in non-parameter 

test and how non-linear target function affect the rejection region. 
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