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The diffusive transport of passive tracers or particles can be en-

hanced by incompressible, turbulent flow fields. Analyzing the ef-

fective behavior is a challenging problem with theoretical and prac-

tical importance in many areas of science and engineering, ranging

from the transport of mass, heat, and pollutants in geophysical

flows to sea ice dynamics and turbulent combustion. The long time,

large scale behavior of such systems is equivalent to an enhanced

diffusion process with an effective diffusivity tensor D∗. Two dif-

ferent formulations of integral representations for D
∗ were devel-

oped for the case of time-independent fluid velocity fields, involving

spectral measures of bounded self-adjoint operators acting on vec-

tor fields and scalar fields, respectively. Here, we extend both of

these approaches to the case of space-time periodic velocity fields,

allowing for chaotic dynamics, providing rigorous integral represen-

tations for D∗ involving spectral measures of unbounded self-adjoint

operators. We prove the different formulations are equivalent. Their

correspondence follows from a one-to-one isometry between the

underlying Hilbert spaces. We also develop a Fourier method for

computing D∗, which captures the phenomenon of residual diffu-

sion related to Lagrangian chaos of a model flow. This is reflected in

the spectral measure by a concentration of mass near the spectral

origin.
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1. Introduction

The long time, large scale motion of diffusing particles or tracers being ad-
vected by an incompressible flow field is equivalent to an enhanced diffusion
process [99] with an effective diffusivity tensor D

∗. Describing the associated
transport properties is a challenging problem with a broad range of scientific
and engineering applications, such as stellar convection [47, 86, 20, 21, 19],
turbulent combustion [3, 15, 98, 105, 82, 107], and solute transport in porous
media [12, 13, 104, 41, 48, 51, 49]. Time-dependent flows can have fluid
velocity fields with chaotic dynamics, which gives rise to turbulence that
greatly enhances the mixing, dispersion, and large scale transport of diffus-
ing scalars. Here, we develop a mathematical framework that provides an
analytic representation of D

∗ for such time-dependent, chaotic flows. This
representation is given in terms of a Stieltjes integral involving the spectral
measure of an unbounded self-adjoint operator and the molecular diffusion
constant ε. We demonstrate that this approach provides an effective method
for computing D

∗ for a model, chaotic flow.

1.1. Advection enhanced diffusion in the climate system

In the climate system [25, 40], turbulence plays a key role in transporting
mass, heat, momentum, energy, and salt in geophysical flows [69]. Turbu-
lence enhances the dispersion of atmospheric gases [27] such as ozone [43,
83, 84, 85] and pollutants [24, 11, 91], as well as atmosphere-ocean transfers
of carbon dioxide and other climatically important trace gas fluxes [109, 8].
Longitudinal dispersion of passive scalars in oceanic flows can be enhanced
by horizontal turbulence due to shearing of tidal currents, wind drift, or
waves [108, 50, 17]. Chaotic motion of time-dependent fluid velocity fields
causes instabilities in large scale ocean currents, generating geostrophic ed-
dies [31] which dominate the kinetic energy of the ocean [32]. Geostrophic
eddies greatly enhance [31] the meridional mixing of heat, carbon and other
climatically important tracers, typically more than one order of magnitude
greater than the mean flow of the ocean [94]. Eddies also impact heat and
salt budgets through lateral fluxes and can extend the area of high biological
productivity offshore by both eddy chlorophyll advection and eddy nutrient
pumping [22].

In sea ice dynamics, where the ice cover couples the atmosphere to the
polar oceans [102], the transport of sea ice can also be enhanced by eddie
fluxes and large scale coherent structures in the ocean [103, 54]. In sea ice
thermodynamics, the temperature field of the atmosphere is coupled to the
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temperature field of the ocean through sea ice, which is a composite of pure
ice with brine inclusions whose volume fraction and connectedness depend
strongly on temperature [100, 37, 36]. Convective brine flow through the
porous microstructure can enhance thermal transport through the sea ice
layer [55, 106, 52].

Both numerical and observational studies of scalar transport have sug-
gested that tracers are advected over large scales by a fluid velocity field
that is different from the mean flow [79]. This suggests that the effective
diffusivity tensor D

∗ should be spatially and possibly also temporally inho-
mogeneous [79]. The mixing of eddy fluxes is typically non-divergent and
unable to affect the evolution of the mean flow [66], and do not alter the
tracer moments [39]. In this sense, the mixing is non-dissipative, reversible,
and sometimes referred to as stirring [26, 39]. It has been noted in var-
ious geophysical contexts [84, 85] that eddy-induced skew-diffusive tracer
fluxes directed normal to the tracer gradient [66] are generally equivalent
to antisymmetric components in the effective diffusivity tensor D

∗, while
the symmetric part of D

∗ represents irreversible diffusive effects [87, 92, 39]
directed down the tracer gradient. Motivated by these observations, in the
ensuing sections we provide analytic representations for both the symmetric
and antisymmetric components of D

∗.

1.2. Mathematical characterization of effective diffusivity

Due to the computational intensity of detailed climate models [40, 102,
73], a coarse resolution is necessary in numerical simulations and param-
eterization is used to help resolve sub-grid scale processes, such as tur-
bulent entrainment-mixing processes in clouds [53], atmospheric boundary
layer turbulence [18], atmosphere-surface exchange over the sea [28] and sea
ice [93, 1, 2, 101], and eddies in the ocean [60, 35]. In this way, only the
effective or averaged behavior of these sub-grid processes are included in the
models. Here, we study the effective behavior of advection enhanced diffu-
sion by time-dependent fluid velocity fields, with possibly chaotic dynamics,
which gives rise to such a parameterization, namely, the effective diffusivity
tensor D∗ of the flow.

In recent decades, a broad range of mathematical techniques have been
developed which reduce the analysis of enhanced diffusive transport by com-
plex fluid velocity fields with rapidly varying structures in both space and
time, to solving averaged or homogenized equations that do not have rapidly
varying data, and involve an effective parameter [75, 61, 9, 14, 29, 74, 30,
58, 79, 80, 23, 42, 44, 56, 57, 107]. Motivated by [76], it was shown in [61]
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that the homogenized behavior of the advection-diffusion equation with a
random, time-independent, incompressible, mean-zero fluid velocity field, is
given by an inhomogeneous diffusion equation involving the symmetric part
of an effective diffusivity tensor D

∗. Moreover, a rigorous representation of
D
∗ was given in terms of an auxiliary cell or corrector problem involving

a curl-free random field [61]. We stress that the effective diffusivity tensor
D
∗ is not symmetric in general. However, only its symmetric part appears

in the homogenized equation for this formulation of the effective transport
properties of advection enhanced diffusion [61].

The incompressibility condition of the time-independent fluid velocity
field was used in [4, 5] to transform the cell problem in [61] into the quasi-
static limit of Maxwell’s equations [46, 38], which describe the transport
properties of an electromagnetic wave in a composite material [68]. The
analytic continuation method for representing transport in composites [38]
provides Stieltjes integral representations for the bulk transport coefficients
of composite media, such as electrical conductivity and permittivity, mag-
netic permeability, and thermal conductivity [68]. This method is based on
the spectral theorem [97, 88] and a resolvent formula for, say, the electric
field, involving a random self-adjoint operator [38, 72] or matrix [70]. Based
on the analytic continuation method [38], in [4, 5] the cell problem for the
advection diffusion equation was transformed into a resolvent formula involv-
ing a bounded self-adjoint operator, acting on the Hilbert space of curl-free
random vector fields. This, in turn, led to a Stieltjes integral representation
for the symmetric part of the effective diffusivity tensor D

∗, involving the
Péclet number Pe of the flow and a spectral measure µ of the operator [4, 5].
A key feature of the method is that parameter information in Pe is sepa-
rated from the complicated geometry of the time-independent flow, which
is encoded in the measure µ. This property led to rigorous bounds [5] for
the diagonal components of D

∗. Bounds for D
∗ can also be obtained using

variational methods [5, 29, 74, 30].
The mathematical framework developed in [61] was also adapted [79, 56]

to the case of a periodic, time-dependent, incompressible fluid velocity field
with non-zero mean. The velocity field was modeled as a superposition of a
large-scale mean flow with small-scale periodically oscillating fluctuations. It
was shown [79] that, depending on the strength of the fluctuations relative
to the mean flow, the effective diffusivity tensor D∗ can be constant or a
function of both space and time. When D∗ is constant, only its symmetric
part appears in the homogenized equation as an enhancement in the diffu-
sivity. However, when D∗ is a function of space and time, its antisymmetric
part also plays a key role in the homogenized equation. In particular, the
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symmetric part of D
∗ appears as an enhancement in the diffusivity, while

both the symmetric and antisymmetric parts of D
∗ contribute to an effective

drift in the homogenized equation. The effective drift due to the antisym-
metric part is purely sinusoidal, thus divergence-free [79]. This is consistent
with what has been observed in geophysical flows in the climate system, as
discussed in the final paragraph of Section 1.1.

In an alternate formulation of the effective parameter problem based
on [12], the cell problem discussed in [79] was transformed into a resolvent
formula involving a self-adjoint operator acting on a Sobolev space [63, 33]
of spatially periodic scalar fields, which is also a Hilbert space. In the case
where the mean flow and periodic fluctuations are time-independent, the self-
adjoint operator is compact [12], hence bounded [95]. This led to a discrete
Stieltjes integral representation for the antisymmetric part of D

∗, involving
the Péclet number of the steady flow and a spectral measure of the operator.

The incompressibility of the fluid velocity field is a central property
of the mathematical frameworks described above. However, these results
were extended in [62] to weakly compressible, anelastic, stratified, time-
independent, fluid velocity fields. Homogenization of the convection-reaction-
diffusion equation with a compressible velocity field is treated in [77].

1.3. Summary of Results

Here, we generalize both of the approaches described in [4, 5] and [79] to
the case of an incompressible, periodic, time-dependent fluid velocity field,
allowing for chaotic dynamics. In particular, for each approach, we provide
Stieltjes integral representations for both the symmetric and antisymmetric
parts of the effective diffusivity tensor D∗, involving a spectral measure of a
self-adjoint operator. In this time-dependent setting, the underlying opera-
tor becomes unbounded. The spectral theory of unbounded operators is more
subtle and technically challenging than the spectral theory of bounded op-
erators, since the domain of an unbounded operator and its adjoint plays a
central role in the spectral characterization of the operator. Neglecting such
important mathematical details, the Stieltjes integral representation for D∗

given in [4, 5] was extended to the time-dependent setting in [6]. Here, we
provide mathematically rigorous formulations of Stieltjes integral represen-
tations for D∗ in the time-dependent, unbounded operator setting. Moreover,
we prove that the two approaches in [4, 5] and [79] are equivalent in this
setting, and that their correspondence follows from a one-to-one isometry
between the underlying Hilbert spaces. We also establish a direct correspon-
dence between the effective parameter problem for D∗ and the analogous
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effective parameter problem arising in the analytic continuation method for
composite materials.

In over 25 years since the first derivation [4] of an integral represen-
tation for the effective diffusivity tensor D∗, analytical calculations of the
underlying spectral measure have been obtained only for a handful of sim-

ple flows, such as shear flow [5], and numerical computations of the effective
behavior based on this powerful representation have apparently not been at-
tempted. To help overcome this limitation, we develop a Fourier method for
the computation of D∗. In particular, we compute the effective properties
for the following space-time periodic flow in two spatial dimensions, with

x = (x, y),

u(t,x) = (cos y, cosx) + θ cos t (sin y, sinx), θ ∈ (0, 1].(1)

The steady part (cos y, cosx) of the flow is subject to a time-periodic pertur-

bation that gives rise to a transition to Lagrangian chaos for θ > 0 [14, 110].
In a study of residual diffusivity [14, 110] for the advection dominated
regime, we shall compare our computations of the effective diffusivity for
the steady θ = 0 and dynamic θ = 1 settings.

The rest of the paper is organized as follows. In Section 2, the theory of
homogenization for the advection-diffusion equation for space-time periodic

flows is reviewed. Novel Stieltjes integral representations for the effective dif-
fusivity tensor D

∗ are also obtained for a large class of space-time periodic
fluid velocity fields, involving a spectral measure of an unbounded self-adjoint
operator. In Section 3, we provide a rigorous mathematical framework for

the computation of the discrete part of the spectral measure µ and integral
representation for D

∗, providing a rigorous lower bound for D
∗. In partic-

ular, we use Fourier methods to transform the eigenvalue problem for the
self-adjoint operator involving the space-time periodic fluid velocity field in

equation (1) into an infinite system of algebraic equations. This framework
is employed in Section 4 to compute the discrete component of D

∗ for the ve-
locity field in (1), for both the time-independent θ = 0 and time-dependent
θ = 1 settings.

Our computations highlight that the behavior of the measure near the
spectral origin governs the behavior of the effective diffusivity in the advec-
tion dominated regime of small molecular diffusion. In particular, we demon-

strate that for θ = 0 there is a spectral gap in the measure near a limit point
at the spectral origin, giving rise to the known vanishing asymptotic be-
havior of 2D cell flows [29, 74]. However in the time dependent setting, a
strong concentration of measure mass near the spectral origin gives rise to
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the phenomenon of residual diffusivity in the limit of vanishing molecular
diffusion.

Technical background information and proofs of the key results of the
paper are deferred to the appendices. The spectral theory of unbounded
self-adjoint operators in Hilbert space is reviewed in Appendix A and Ap-

pendix B. Two mathematical formulations of the effective parameter prob-
lem for advection enhanced diffusion are presented in Appendix C.1 and Ap-
pendix C.2, leading to novel integral representations for the symmetric and
antisymmetric components of the effective diffusivity tensor. In Appendix D
we use powerful methods of functional analysis to prove that the two ap-
proaches are equivalent, which follows from a one-to-one isometry between
the associated Hilbert spaces. In Appendix E we derive an explicit formula
for the discrete component of the spectral measure, which is employed in
our numerical computations.

2. Effective transport by advective-diffusion

The density φ of a cloud of passive tracer particles diffusing along with
molecular diffusivity ε and being advected by an incompressible velocity
field u satisfies the advection-diffusion equation

∂tφ(t,x) = u(t,x)·∇φ(t,x) + ε∆φ(t,x), φ(0,x) = φ0(x),(2)

for t > 0 and x ∈ R
d. Here, the initial density φ0(x) and the fluid velocity

field u are assumed given, and u satisfies ∇·u = 0. In equation (2), the
molecular diffusion constant ε > 0, d is the spatial dimension of the system,
∂t denotes partial differentiation with respect to time t, and ∆ = ∇·∇ =
∇2 is the Laplacian. Moreover, ψ·ϕ = ψ Tϕ, ψ T denotes transposition of
the vector ψ, and ϕ denotes component-wise complex conjugation, with
ψ·ψ = |ψ|2. Later, we will extensively use this form of the dot product over
complex fields, with built in complex conjugation. However, we stress that
all quantities considered in this section are real-valued.

We consider enhanced diffusive transport by a periodic fluid velocity
field and non-dimensionalize equation (2) as follows. Let L and T be typical
length and time scales associated with the problem of interest. Mapping
to the non-dimensional variables t 7→ t/T and x 7→ x/L, one finds that
φ satisfies the advection-diffusion equation in (2) with a non-dimensional
molecular diffusivity ε 7→ T ε/L 2 and velocity field u 7→ T u/L. There are
several different non-dimensionalizations possible for the advection-diffusion
equation. A detailed discussion of various non-dimensionalizations involving
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the Strouhal number, the Péclet number, and the periodic Péclet number

is given in [62, 56]. Here, we focus on the long time, large scale transport

characteristics of equation (2) as a function of ε. To this end, for the case of

a time-dependent flow we simply take T to be the temporal periodicity of

the velocity field u and assume that the spatial periodicity of u is L in all

spatial dimensions, i.e.,

u(t+ T,x) = u(t,x), u(t,x+ L ej) = u(t,x), j = 1, . . . , d,(3)

where ej is a standard basis vector in the jth direction. In the case of a

time-independent spatially periodic flow, a natural choice for L and T is,

respectively, the maximum cell period and T = L/〈|u|2〉1/2, yielding the

non-dimensional quantities ε 7→ ε/(L 〈|u|2〉1/2) and u 7→ u/〈|u|2〉1/2.

2.1. Mean-zero flow

In this section we will discuss the effective transport properties of advection

enhanced diffusion, as described by the advection diffusion equation in (2).

We will assume in this section that the fluid velocity field is mean-zero. The

effects of a large-scale mean flow will be discussed in Section 2.2.

The long time, large scale dispersion of diffusing tracer particles be-

ing advected by an incompressible fluid velocity field is equivalent to an

enhanced diffusion process [99] with an effective diffusivity tensor D∗. In

recent decades, methods of homogenization theory [61, 29, 74, 56] have been

used to provide an explicit representation for D∗. In particular, these meth-

ods have demonstrated that the averaged or homogenized behavior of the

advection-diffusion equation in (2), with space-time periodic velocity field

u, is determined by a diffusion equation involving an averaged scalar density

φ̄ and an effective diffusivity tensor D∗ [56]

∂tφ̄(t,x) = ∇·[D∗
∇φ̄(t,x)], φ̄(0,x) = φ0(x).(4)

Equation (4) follows from the assumption that the initial tracer density

φ0 varies slowly relative to the variations of the fluid velocity field u [61,

30, 56]. This information is incorporated into equation (2) by introducing a

small dimensionless parameter δ � 1 and writing [61, 30, 56]

φ(0,x) = φ0(δx).(5)
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Anticipating that φ will have diffusive dynamics as t → ∞, space and time
are rescaled according to the standard diffusive relation

ξ = x/δ, τ = t/δγ , γ = 2.(6)

The rescaled form of equation (2) is given by [56]

∂tφ
δ(t,x) = δ−1u(t/δ2,x/δ)·∇φδ(t,x) + ε∆φδ(t,x), φδ(0,x) = φ0(x),

(7)

where we have denoted φδ(t,x) = φ(t/δ2,x/δ). The convergence of φδ to φ̄
can be rigorously established in the following sense [56]

lim
δ→0

sup
0≤t≤t0

sup
x∈Rd

|φδ(t,x) − φ̄(t,x)| = 0,(8)

for every finite t0 > 0, provided that φ0 and u obey some mild smoothness
and boundedness conditions, and that u is mean-zero (also see [81]). We will
discuss the consequences of a fluid velocity field u with a large scale mean
flow in Section 2.2.

An explicit representation of the effective diffusivity tensor D∗ is given
in terms of the (unique) mean zero, space-time periodic solution χj of the
following cell problem [14, 56],

∂τχj(τ, ξ) − ε∆ξχj(τ, ξ) − u(τ, ξ)·∇ξχj(τ, ξ) = uj(τ, ξ),(9)

where the subscript ξ in ∆ξ and ∇ξ indicates that differentiation is with
respect to the fast variable ξ defined in equation (6). The components D

∗
jk,

j, k = 1, . . . , d, of the matrix D∗ are given by [61, 29, 74, 56]

D
∗
jk = εδjk + 〈ujχk〉,(10)

where δjk is the Kronecker delta and uj is the jth component of the vector
u. The averaging 〈·〉 in (10) is with respect to the fast variables defined in
equation (6). The averaging is over the bounded sets T ⊂ R and V ⊂ R

d,
with τ ∈ T and ξ ∈ V , which define the space-time period cell ((d + 1)–
torus) T ×V . For example, in Section 4 we compute D∗ for the fluid velocity
field u in (1) with temporal periodicity T = [0, 2π] and spatial periodicity
V = [0, 2π]d, with d = 2. In the case of a time-dependent fluid velocity
field, 〈·〉 denotes space-time averaging over T × V . In the special case of
a time-independent fluid velocity field, the function χj is time-independent
and satisfies equation (9) with ∂τχj ≡ 0, and 〈·〉 in (10) denotes spatial
averaging over V [29, 74, 56].
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2.2. The effect of large scale mean flow

The periodic homogenization theorem summarized by equations (3)–(10)
depends on the detailed nature of the fluid velocity field u. It also depends
on the temporal scaling used [13, 79, 56], i.e., what value of γ is used in
equation (6). However, the mathematical structure of the cell problem in (9)
and the functional form of D∗ shown in equation (10) remain unchanged for
the space-time periodic setting. In order to illustrate the rich behaviors that
can arise in the effective diffusivity tensor D∗ for more general velocity fields
and alternate temporal scalings, we now discuss some key variations of the
theory described above.

In general, the effective diffusivity tensor D∗ has a symmetric S∗ and
antisymmetric A∗ part defined by

D
∗ = S

∗ + A
∗, S

∗ =
1

2

(

D
∗ + [D∗] T

)

, A
∗ =

1

2

(

D
∗ − [D∗] T

)

,(11)

where [D∗] T denotes transposition of the matrix D∗. Denote by S∗
jk and A∗

jk,
j, k = 1, . . . , d, the components of S∗ and A∗ in (11). When the fluid velocity

field is mean-zero and divergence-free, as discussed above, then equation (8)
holds and the effective diffusivity tensor D

∗ defined in (10) is constant [56].
Consequently, only the symmetric part of D

∗ plays a role in the effective
transport equation shown in (4) [79].

Now consider the more general, divergence-free fluid velocity field

u(t,x) = δu0(δ
2t, δx) + u1(t,x),(12)

which is the superposition of a weak, large-scale mean flow δu0(δ
2t, δx) that

varies on large spatial and slow time scales, with a mean-zero periodic flow
u1(t,x) that rapidly fluctuates in space and time [56]. If u0(t,x) is smooth
and bounded, the homogenization theorem for purely periodic velocity fields
discussed above can be rigorously extended to the present setting and the

effective transport equation in (4) is replaced by [56]

∂tφ̄(t,x) = u0(t,x)·∇φ̄(t,x) + ∇·[D∗
∇φ̄(t,x)], φ̄(0,x) = φ0(x),(13)

which includes an advective enhancement in transport by the large-scale
mean flow u0 [56]. In this case, the effective diffusivity tensor D∗ is com-
pletely independent of the mean flow u0, and is determined by the same
formula in equation (10) and the same cell problem in (9) with u replaced
by the mean-zero velocity field u1 [56]. Consequently, D∗ is again constant
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and only the symmetric part of D
∗ plays a role in the effective transport

equation shown in (13).

In [79], D
∗ was studied for the divergence-free fluid velocity field,

u(t,x) = u0(t,x) + δαu1(t/δ
γ ,x/δ),(14)

for a broad range of scaling parameters γ and α. The parameter γ controls
the separation of time scales while α determines the strength of the small
scale periodic fluctuations u1 relative to the mean flow u0. There are three
distinct behaviors that arise as the values of α and γ vary, and the function
χj in the analogue of the cell problem in (9) can be time-dependent or time-

independent (∂τχj ≡ 0) [79]. However, regardless of the values of α and γ
studied in [79], when the mean flow is is weak compared to the fluctuations,
to leading order, D∗ is constant and independent of the mean flow, which
only determines the transport velocity on large length and long time scales,

similar to equation (13). Consequently, only the symmetric part of D
∗ plays

a role in the effective transport equation, which is similar to the effective
transport equation in (13) [79]. However we stress that in all three cases,
the components D∗

jk of the effective diffusivity tensor are given by a formula

analogous to equation (10) and the structure of the cell problem is analogous
to equation (9), where the velocity field component arising the right side of
the cell problem is mean-zero.

The effective diffusivity tensor D
∗ being constant is not consistent with

measurements and numerical simulations of passive tracer transport in the
ocean and the atmosphere, as we discussed in the final paragraph of Sec-

tion 1.1. However, when the fluid velocity field is active on both the slow
and fast time scales, u = u(t,x, t/δ,x/δ), and the mean flow u0(t,x) =
〈u(t,x, t/δ,x/δ)〉 is equal in strength or stronger than the periodic fluctua-
tions, then the effective transport equation is analogous to equation (13) and

D
∗ is a function of both space and time [79], D

∗ = D
∗(t,x). Consequently,

in the effective transport equation, the antisymmetric part of D
∗(t,x) con-

tributes to a purely rotational (divergence-free) enhancement in advective
transport, while the symmetric part of D∗(t,x) contributes to an enhance-
ment in advective and diffusive transport [79]. This is consistent with obser-

vations and numerical simulations of geophysical flows in the climate system.
We stress that, in this formulation [79], the components D∗

jk(t,x), j, k =

1, . . . , d, of the effective diffusivity tensor are given by a formula that is
analogous to equation (10). However, the function uj appearing in (10) is
replaced by the jth component of u(t,x, t/δ,x/δ)−u0(t,x) which is mean-
zero. Moreover, in this formulation [79], the cell problem is given by a formula
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that is analogous to equation (9). However the function uj appearing on the
right side of (9) is again replaced by the jth component of u − u0 which is
mean-zero. We show in Appendix C that the essential conditions necessary
for Stieltjes integral representations for the symmetric S

∗ and antisymmetric
A
∗ parts of D

∗ are: 1) the fluid velocity field u is divergence free and 2)
the function uj appearing in (10) and on the right side of equation (9) is
mean-zero. Consequently, the Stieltjes integral representations for S

∗ and
A
∗ discussed in the following section hold for all of the fluid velocity fields

discussed in this section.

2.3. Integral representations for the effective diffusivity

In Appendix C.1 we provide a mathematically rigorous framework that leads
to Stieltjes integral representations for the effective diffusivity tensor D∗ for
space-time periodic flows. This formulation is based on the spectral theo-
rem for unbounded self-adjoint operators in Hilbert space. In Appendices A
and B, we review the spectral theory of unbounded operators. In Appendix C
we give two natural Hilbert space formulations of the effective parameter
problem for D∗ which lead to its integral representations. In Appendix D we
prove that the two different formulations are equivalent.

In this section we summarize the results of Appendix C.1, which provide
Stieltjes integral representations for both the symmetric S∗ and antisym-
metric A∗ parts of D∗. Since the analysis in this section involves only the
fast variables (τ, ξ) defined in equation (6), for notational simplicity, we will
drop the subscripts ξ shown in equation (9) and use ∂t to denote ∂τ .

In Appendix C.1 we inserted the expression for uj on the right side of (9)
into equation (10), which leads to the following functional representations
for the components S∗

jk and A∗
jk, j, k = 1, . . . , d, of S∗ and A∗ [79]

S
∗
jk = ε(δjk + 〈χj , χk〉1,2), A

∗
jk = 〈Aχj , χk〉1,2 , A = (−∆)−1(∂t − u·∇).

(15)

Here, 〈f, h〉1,2 = 〈∇f ·∇h〉 is a Sobolev-type sesquilinear inner-product [63]
and the operator (−∆)−1 is based on convolution with respect to the Green’s
function for the Laplacian ∆ [95]. Since the function χj is real-valued we have
〈χj , χk〉1,2 = 〈χk, χj〉1,2, which implies that S∗ is a symmetric matrix. The
function Aχj is also real-valued. We establish in Appendix C.1 that the
operator A is skew-adjoint on a suitable Hilbert space, which implies that
A∗
kj = 〈Aχk, χj〉1,2 = −〈χk, Aχj〉1,2 = −〈Aχj , χk〉1,2 = −A∗

jk which, in turn,
implies that A∗ is an antisymmetric matrix, hence A∗

kk = 〈Aχk, χk〉1,2 = 0.
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Applying the linear operator (−∆)−1 to both sides of the cell problem

in equation (9) yields the following resolvent formula for χj

χj = (ε+ A)−1gj, gj = (−∆)−1uj.(16)

From equations (15) and (16) we have the following functional formulas for

S∗
jk and A∗

jk involving the skew-adjoint operator A

S
∗
jk = ε

(

δjk + 〈(ε+A)−1gj, (ε+ A)−1gk〉1,2
)

,(17)

A
∗
jk = 〈A(ε+ A)−1gj, (ε+A)−1gk〉1,2.

Since A is a skew-adjoint operator, it can be written as A = ıM where M

is a symmetric operator [97]. We demonstrate in Appendix C.1 that M is

self-adjoint on an appropriate, dense subset of a Hilbert space.

The spectral theorem for self-adjoint operators states that there is a one-

to-one correspondence between the self-adjoint operator M and a family of

self-adjoint projection operators {Q(λ)}λ∈Σ — the resolution of the identity

— that satisfies limλ→ inf ΣQ(λ) = 0 and limλ→ supΣQ(λ) = I [97]. Here, Σ

is the spectrum of the operator M , while 0 and I denote the null and iden-

tity operators. Define the complex valued function µjk(λ) = 〈Q(λ)gj, gk〉1,2,
j, k = 1, . . . , d, where gj = (−∆)−1uj is defined in (16). The real, Reµjk(λ),

and imaginary, Imµjk(λ), parts of the function µjk(λ) are of bounded varia-

tion, and therefore have Stieltjes measures Re µjk and Imµjk associated with

them [97]. The function µkk(λ) is positive hence µkk is a positive measure,

while Reµjk and Imµjk, j 6= k, are signed measures. Given certain regularity

conditions on the components uj of the fluid velocity field u, the functional

formulas for S∗
jk and A∗

jk in (17) have the following Radon–Stieltjes integral

representations, for all 0 < ε <∞ (see Appendix C.1 for details)

S
∗
jk = ε

(

δjk +

∫ ∞

−∞

dRe µjk(λ)

ε2 + λ2

)

, A
∗
jk = −

∫ ∞

−∞

λ dIm µjk(λ)

ε2 + λ2
.(18)

The integral formulas in (18) involve a spectral measure µjk, j, k =

1, . . . , d, which has discrete and continuous components [88, 97]. The self-

adjoint operator M = −ıA has real eigenvalues λl and orthonormal eigen-

functions ϕl, l = 0, 1, 2, . . ., satisfying Mϕl = λlϕl and 〈ϕi, ϕl〉1,2 = δil. In

Appendix E.1 we employ an abstract mathematical framework to show the

discrete parts S̃∗
jk and Ã∗

jk of the integral representations in (18) have the
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following series representations involving the λl and ϕl (see equation (A-66))

S̃
∗
jk = ε

(

δjk +

∞
∑

l=0

Remjk(l)

ε2 + λ2
l

)

, Ã
∗
jk = −

∞
∑

l=0

λl Immjk(l)

ε2 + λ2
l

.(19)

Here, the spectral weights mjk(l) are given by (see equation (A-67))

mjk(l) = 〈gj, ϕl〉1,2 〈gk, ϕl〉1,2, 〈gj, ϕl〉1,2 = 〈uj, ϕl〉 = 〈uj ϕl〉.(20)

In the setting of a time-independent fluid velocity field u = u(x), the self-
adjoint operator M is given by M = −ı(−∆)−1[u·∇]. If u is smooth and
uniformly bounded on V , then M is a compact operator [12] and therefore
has only discrete spectrum with a limit point at λ = 0 [95, 88]. Consequently,
the spectral measure µjk is purely discrete, hence D∗

jk ≡ D̃∗
jk. Since µkk is a

positive measure, the discrete integral representation of S̃
∗
kk in (19) provides

a rigorous lower bound for the integral representation of S
∗
kk in equation (18),

S
∗
kk ≥ S̃

∗
kk.(21)

It is worth noting that using 〈gk, ϕl〉1,2 = 〈ϕl, gk〉1,2 and Dirac notation
〈∇gj·∇ϕl〉 = 〈∇gj|∇ϕl〉, we may formally write the spectral weights in
equation (20) as

mjk(l) = 〈∇gj|∇ϕl〉 〈∇ϕl|∇gk〉(22)

= 〈∇gj|∇ [ |ϕl〉 〈∇ϕl|∇ ] |gk〉
= 〈∇gj|∇Ql gk〉,

where the operator Ql is given by Ql = |ϕl〉 〈∇ϕl|∇ . In a similar way,
we may use 〈gk, ϕl〉1,2 = 〈ϕl, gk〉1,2 to instead write the spectral weights in
equation (22) as mjk(l) = 〈∇Ql gj|∇gk〉, hence Ql is a symmetric operator
with respect to the inner-product 〈·, ·〉1,2. Since 〈∇ϕi|∇ϕl〉 = δil it is clear
that theQl are mutually orthogonal projection operatorsQiQl = δilQi. With
this notation, we may formally identify the self-adjoint projection operator
Q(λ) and the spectral measure dµjk(λ) = d〈∇Q(λ)gj|∇gk〉 as

Q(λ) =
∑

l : λl≤λ

θ(λ− λl) Ql, dµjk(λ) =
∑

l : λl≤λ

δλl
(dλ)〈∇Ql gj|∇gk〉,(23)

where θ(λ) is the Heaviside function and δλl
(dλ) is the Dirac δ-measure

concentrated at λl. This formula is precisely true for the matrix setting,
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where the Ql are given by mutually orthogonal projection matrices, ∇ is
given by a finite difference matrix, and gj is a Euclidean vector [71].

A key feature of equations (18) and (19) is that parameter information
in ε is separated from the complicated geometry and dynamics of the time-
dependent flow, which are encoded in the spectral measure µjk. This impor-
tant property of the integrals in (18) follows from the non-dimensionalization
of the advection-diffusion equation discussed in the paragraph leading to
equation (3), yielding a spectral measure µjk that is independent of the
molecular diffusivity ε. An alternate formulation of the effective parame-
ter problem for advection-diffusion by time-dependent flows was discussed
in [6], which used a different non-dimensionalization, yielding a Stieltjes in-
tegral representation for S

∗
kk involving the Péclet number Pe of the flow

and a spectral measure that depends on the Strouhal number. However, as
pointed out in [16], the Strouhal number dependence of the measure led to
an implicit dependence of the spectral measure on Pe. This restricts the
utility of the integral representations, such as rigorous bounds [7, 38] which
depend explicitly on Pe but also implicitly on Pe through the moments of
the measure. Our formulation has no such restrictions.

3. Fourier methods

In equation (19) we provided series representations for the discrete parts of
the integral representations for S

∗
jk and A

∗
jk shown in (18). These series in-

volve the real eigenvalues λl, l = 0, 1, 2, . . ., and orthonormal eigenfunctions
ϕl of the self-adjoint operatorM = −ıA, where Mϕl = λlϕl, 〈ϕi, ϕl〉1,2 = δil,
and A = (−∆)−1(∂t−u·∇). In Appendix E.2 we provide a Fourier represen-
tation of the eigenvalue problem Mϕl = λlϕl, transforming it to an infinite
system of algebraic equations involving the trigonometric Fourier coefficients
of the ϕl. In this section we refine the mathematical framework, applying
it to the fluid velocity field in equation (1). In Section 4 we truncate the
resultant infinite system of algebraic equations and write the truncated sys-
tem as a generalized eigenvalue problem involving symmetric matrices. We
then compute the effective diffusivity directly in terms of the eigenvalues
and eigenvectors of this generalized eigenvalue problem.

In Appendix E.2 we demonstrate that a Fourier representation of the
eigenvalue problem Mϕl = λlϕl follows from expanding the eigenfunctions
ϕl and the components uj, j = 1, . . . , d, of the fluid velocity field u in a
trigonometric Fourier series

ϕl =
∑

`,k

al`,k φ`,k , uj =
∑

`′,k′

b j`′,k′ φ`′,k′ , φ`,k(t,x) = eı(`t+k·x),(24)
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where the series for uj involves only a finite number of terms. Here, al`,k =

〈ϕl, φ`,k〉, b j`′,k′ = 〈uj, φ`′,k′〉, the sesquilinear inner-product 〈·, ·〉 is given

by 〈f, h〉 = 〈f h〉, and 〈·〉 denotes space-time averaging over the period cell

T × V . In Appendix C.1 we show it is necessary that the eigenfunction

ϕl in (24) satisfies 〈ϕl〉V = 0, where 〈·〉V denotes spatial average over V .

Therefore, in general, the series for ϕl in equation (24) runs over the index

set I = {(`, k) ∈ Zd+1 | k 6= 0}. It is also necessary that 〈uj〉V = 0, though

〈uj〉T = 0 is also allowed but not necessary, where 〈·〉T denotes spatial

average over T (see the discussion after the statement of Theorem 1 in

Appendix C.1 for details). The fluid velocity field u in equation (1) satisfies

〈u〉V = 0 and 〈u〉 = 0 but 〈u〉T = (cos y, cosx) 6≡ 0, and the associated series

for uj in equation (24) runs over the index set `, ki ∈ {−1, 0, 1}, i = 1, 2,

with k 6= 0.

In Appendix E.2 we show that inserting the representations for ϕl and

uj in equation (24) into the eigenvalue problem Mϕl = λlϕl and denoting

b`′,k′ =
(

b 1
`′,k′ , . . . , b d`′,k′

)

yields the Fourier representation of Mϕl = λlϕl,

|k|−2
(

` al`,k −
∑

`′,k′

[b`′,k′·k] al`+`′,k+k
′

)

= λl a
l
`,k.(25)

Equation (25) is an infinite system of algebraic equations that determines

the eigenvalues λl and Fourier coefficients al`,k of the eigenfunctions ϕl of the

self-adjoint operator M = −ıA. The Fourier representation of the spectral

weights mjk(l) = 〈uj, ϕl〉 〈uk, ϕl〉 in equation (20) are determined by

〈uj, ϕl〉 =
∑

`′,k′

b j`′,k′ al`′,k′ .(26)

We now apply the results shown in equations (25) and (26) to the fluid

velocity field u shown in equation (1). In particular, writing u = (u1, u2)

and x = (x, y) we have

u1(t, x, y) = cos y + θ cos t sin y, θ ∈ (0, 1],(27)

and u2(t, x, y) = u1(t, y, x).Using, for example, cos t = (exp(ıt)+exp(−ıt))/2
and sin y = (exp(ıy)− exp(−ıy))/(2ı), we have

u1(t, x, y) =
1

2
(eıy + e−ıy) +

θ

4ı
(eı(t+y) − eı(t−y) + eı(−t+y) − eı(−t−y)),(28)
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and similarly for u2(t, x, y) = u1(t, y, x). Consequently, denoting k = (m, n),
equation (25) can be written as

` a l`,m,n
m2 + n2

− 1

m2 + n2

[

1

2

[

m
(

a l`,m,n+1 + a l`,m,n−1) + n(a l`,m+1,n + a l`,m−1,n

)]

(29)

+
θ

4ı

[

m
(

a l`+1,m,n+1 − a l`+1,m,n−1 + a l`−1,m,n+1 − a l`−1,m,n−1

)

+n
(

a l`+1,m+1,n − a l`+1,m−1,n + a l`−1,m+1,n − a l`−1,m−1,n

)]

]

= λla
l
`,m,n, (m, n) 6= (0, 0).

Equations (26) and (28) imply the spectral weightsmjk(l) = 〈uj, ϕl〉 〈uk, ϕl〉
in (20) are determined by

〈u1, ϕl〉 =
1

2

(

a l0,0,1 + a l0,0,−1

)

− θ

4ı

(

a l1,0,1 − a l1,0,−1 + a l−1,0,1 − a l−1,0,−1

)

,

(30)

〈u2, ϕl〉 =
1

2

(

a l0,1,0 + a l0,−1,0

)

− θ

4ı

(

a l1,1,0 − a l1,−1,0 + a l−1,1,0 − a l−1,−1,0

)

.

Equation (30) shows, for the flow in equation (1), using the orthonormal

trigonometric basis functions φ`,k(t,x) = exp[ı(`t + k·x)] leads to an ex-

act representation of the spectral measure weights mjk(l) = 〈uj, ϕl〉 〈uk, ϕl〉
which involves a multiplication of two series with only six terms. Of course,
we could have used a different orthonormal basis. However, the representa-

tions of u1 and u2 in equation (28) and the spectral weights in equation (30)
would then be given by infinite series.

When θ = 0 in equation (1), the fluid velocity field u is time-independent,
u = u(x), the operator A no longer involves the time derivative, and the

associated eigenfunction ϕl is also time-independent, ϕl = ϕl(x). In this
case, the system of equations in (29) reduces to

−1

2(m2 + n2)

[

m(a lm,n+1 + a lm,n−1) + n(a lm+1,n + a lm−1,n)
]

= λla
l
m,n,(31)

where (m, n) 6= 0, while equation (30) reduces to

〈u1, ϕl〉 =
1

2

(

a l0,1 + a l0,−1

)

, 〈u2, ϕl〉 =
1

2

(

a l1,0 + a l−1,0

)

.(32)
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In the following section we will use equations (29)–(32) to compute the
discrete parts of the effective diffusivity tensor D∗ associated with the flow
in equation (1).

4. Numerical Results

In equation (19) we provided a series representation for the discrete compo-
nent S̃

∗ of the symmetric part S
∗ of the effective diffusivity tensor D

∗. This
series involves the real eigenvalues λl and the orthonormal eigenvectors ϕl
of the self-adjoint operator M = −ıA through the spectral measure weights
mjk(l) = 〈uj, ϕl〉 〈uk, ϕl〉, which involve the components uj, j = 1, . . . , d of
the fluid velocity field u. In Section 3, we used Fourier methods to transform
the eigenvalue problem Mϕl = λlϕl associated with the flow in equation (1),
for both θ 6= 0 and θ = 0, into infinite systems of algebraic equations shown
in (29) and (31), respectively, involving the trigonometric Fourier coefficients
of the eigenfunctions ϕl. We also determined in equations (30) and (32) the
spectral weights mjk(l) associated with the fluid velocity field u in equa-
tion (1) for θ 6= 0 and θ = 0, respectively. In this section, we truncate these
infinite systems, convert them to matrix eigenvalue problems, and numer-
ically compute S̃

∗
kk by directly computing the eigenvalues λl and spectral

measure weights mjk(l).
By restricting the indices, −N ≤ `, m, n ≤ N , and imposing the trunca-

tion conditions

a l`,m,n = 0 if max(|`|, |m|, |n|)> N,(33)

the infinite systems of equations in (29) and (31) become finite sets of equa-
tions. Consider the fluid velocity field in (1) with parameter θ ∈ [0, 1]. In the
dynamic (θ 6= 0) and steady (θ = 0) cases, the bijective mappings Θd(`, m, n)
and Θs(m, n) defined by

Θd(`, m, n) = (N +m+ 1) + (N + n)(2N + 1) + (N + `)(2N + 1)2,(34)

Θs(m, n) = (N +m+ 1) + (N + n)(2N + 1),

map each finite set of equations to a matrix equation C
−1

Bal = λlal which
can be written as the generalized eigenvalue problem

Bal = λlCal.(35)

Here, B and C is a symmetric and diagonal matrix, respectively. More specif-
ically, B is Hermitian in the dynamic case and is real-symmetric in the steady
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case. The matrix C is real-symmetric and diagonal in both cases, with the
values |k|2 = m2 + n2 along its diagonal. Since the indices (m, n) are re-
stricted to (m, n) 6= 0, the matrix C is strictly positive definite.

Since B and C are symmetric matrices and C is strictly positive defi-
nite, the generalized eigenvalues λl are real-valued and the eigenvectors al –
consisting of the Fourier coefficients for ϕl – satisfy the orthogonality con-
dition [78]

aj ·Cak = δjk.(36)

Moreover, since the matrix C is strictly positive definite, the generalized
eigenvalue problem in equation (35) can be written as the following standard
eigenvalue problem

C
−1/2

BC
−1/2vl = λlvl, vl = C

1/2al.(37)

Since B is a symmetric matrix and C is diagonal, the matrix C−1/2BC−1/2 is
also symmetric with real-valued eigenvalues and orthonormal eigenvectors.
From the orthogonality relation vj·vk = δjk we recover equation (36) via
vl = C

1/2al in (37).
In summary, our numerical method is the following. Create the matrices

B and C according to equation (29) or (31) and the corresponding bijective
mapping in (34). Compute all of the eigenvalues λl and eigenvectors vl of
the symmetric matrix C

−1/2
BC

−1/2. The computed Fourier coefficients of the
eigenfunction ϕl are given by al = C−1/2vl. The eigenvalues λl associated
with the discrete component of the spectral measure shown in equation (19)
are given by the eigenvalues of the matrix C

−1/2
BC

−1/2, while the spectral
measure weights mjk(l) = 〈uj, ϕl〉 〈uk, ϕl〉 in (20) are determined from the
vector al via equation (30) or (32).

In our computations, we used for the steady case N = 150, yielding
matrices of size (2N + 1)2 − 1 = 90, 600, while in the dynamic case we
used N = 20, yielding matrices of size (2N + 1)[(2N + 1)2 − 1] = 68, 880.
The eigenvalues and eigenvectors of the symmetric matrix C−1/2BC−1/2 were
computed using the Matlab function eig() and used to compute the discrete
spectral measure and effective diffusivity as described above. The stability of
the computations are measured in terms of the condition numbers Kl of the
eigenvalues λl, which are the reciprocals of the cosines of the angles between
the left and right eigenvectors. Eigenvalue condition numbers close to 1
indicate a stable computation. Our eigenvalue computations are extremely
stable with max l |1 − Kl| ∼ 10−14, which were computed using the Matlab
function condeig().
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Displayed in Fig. 1 are our computations of the discrete component of
the spectral measure dµ11(λ) =

∑

lm11(l)δλl
(dλ) associated with the fluid

velocity field u shown in equation (1), for (a) the steady (θ = 0) and (b)
the dynamic (θ = 1) settings. Here, the spectral weights m11(l) = |〈u1, ϕl〉|2
are determined by equations (32) and (30), respectively. Consistent with
the symmetries of the flows [14], we have µ11 = µ22, while Reµ12 = 0 and
Imµ12 = 0, up to numerical accuracy and finite size effects.

For the 2D steady cell flow in (1) with θ = 0, it is known [29, 74] that
S
∗
11 ∼ ε1/2 for ε � 1. Our computation of S

∗
11 displayed in Fig. 1(c) is in

excellent agreement with this result, with a computed critical exponent of
≈ 0.52 having an error of only 4% relative to its true value 0.5. Reducing
N from 150 to 100 changes the value of the critical exponent by less than
0.0015, indicating that the value of N = 150 is sufficiently large. In this
steady setting, the underlying operator (−∆)−1[u1·∇] is compact [12] and
therefore has bounded, discrete spectrum away from the spectral origin,
with a limit point at λ = 0 [95]. The limit point behavior of the measure
µ11 can be seen in the rightmost panel of Fig. 1(a). The decay of S

∗
11 for

vanishing ε is due to the magnitude of the measure masses m11(l) . 10−30

for |λl| � 1, with a significant spectral gap near the limit point. The rigorous
result [29, 74] S

∗
11 ∼ ε1/2 as ε→ 0 reveals that the spectrum of the operator

(−∆)−1[u1·∇] at λ = 0 is either continuous or it is discrete with zero mass,
otherwise S

∗
11 would diverge as ε→ 0.

In contrast, as shown in Fig. 1(b), the spectral measure µ11 associated
with the time-dependent fluid velocity field in (1), with θ = 1, has signif-
icant values of m11(l) near the spectral origin, with m11(l) & 10−10 more
than 20 orders of magnitude greater than that of the steady flow. A limit
point behavior in the measure µ11 near λ = 0 can be seen in the rightmost
panel of Fig. 1(b). It is interesting to note that the support supp µ11 of the
measure µ11 increases with N and satisfies supp µ11 ⊂ [−N,N ] for all values
of N investigated, which suggests that supp µ11 becomes an unbounded set
as N → ∞. This is consistent with the unboundedness of the self-adjoint
operator M = −ı(−∆)−1(∂t−u·∇). Due to the significant mass of the mea-
sure near the spectral origin and its uniform nature, as shown in the center
panel of Fig. 1(b), the effective diffusivity has an O(1) behavior, S∗

11 ∼ 1
for ε � 1, as shown in Fig. 1(d). This is consistent with numerical compu-
tations of S∗

11 using alternate methods [14]. This O(1) behavior of S∗
11 has

been attributed to Lagrangian chaos exhibited by the flow in (1) [14, 110].
This phenomenon is called residual diffusion since the chaotic mixing of the
flow gives rise to large scale macroscopic transport even in the absence of
molecular diffusion, ε→ 0.
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5. Conclusions

We have adapted and extended two approaches of the effective parameter
problem for advection enhanced diffusion proposed in [4, 5] and [79], from
the setting of a time-independent fluid velocity field u to space-time periodic
u, allowing for the possibility of chaotic dynamics. For each approach, we
formulated a rigorous mathematical framework which provides Stieltjes inte-
gral representations for both the symmetric S∗ and antisymmetric A∗ parts
of the effective diffusivity tensor D

∗ for such flows, involving a spectral mea-
sure of an unbounded self-adjoint operator. We also used abstract methods
of functional analysis to prove that the two approaches produce equivalent
spectral representations for D

∗. The approach proposed in [4, 5] is based on
the analytic continuation method for representing transport in composite
materials [38], though the definitions of the effective parameters are differ-
ent. We generalized a result in [29] to the time-dependent setting, providing
a precise relationship between D

∗ and the effective parameter arising from
the definition used in the analytic continuation method.

The integral representations for D
∗ involve a Stieltjes measure that

has continuous and discrete components. We have provided a mathemat-
ical foundation for rigorous computation of the discrete part of D∗, which
involves the eigenvalues and eigenfunctions of the associated self-adjoint,
integro-differential operator. In particular, we developed Fourier methods to
represent the eigenvalue problem as an infinite system of algebraic equations
involving the trigonometric Fourier coefficients of the eigenfunctions. We
truncated this system of equations to obtain a generalized eigenvalue prob-
lem involving symmetric matrices. The discrete part of the spectral measure
and D∗ are given explicitly in terms of the generalized eigenvalues and eigen-
vectors of the matrices. We implemented this method to compute D∗ for a
model cell flow and a time-dependent flow exhibiting Lagrangian chaos. Our
Fourier approach has accurately captured the known asymptotic behavior
of the the cell flow in the advection dominated regime. Our approach has
also captured the phenomenon known as residual diffusion related to the
Lagrangian chaos of the flow, where chaotic mixing of the flow gives rise to
large scale macroscopic transport even in the absence of molecular diffusion.

Appendix A. Spectral theory of unbounded self-adjoint

operators in Hilbert space

The theory of unbounded operators in Hilbert space was developed largely
by John von Neumann and Marshall H. Stone. It is considerably more tech-
nical and challenging than the theory of bounded operators, as unbounded
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operators do not form an algebra, nor even a linear space, because each one
is defined on its own domain. In this section, we review the spectral the-
ory for such operators and, in particular, the celebrated spectral theorem for
self-adjoint operators [88, 97].

An operator is not determined unless its domain is known. Let Φ1 and
Φ2 be operators acting on a Hilbert space H with domains D(Φ1) and
D(Φ2), respectively, D(Φi) ⊂ H , i = 1, 2. They are said to be identical,
in symbols Φ1 ≡ Φ2, if and only if D(Φ1) = D(Φ2) and Φ1f = Φ2f for
every f of their common domain. They are said to be equal in the set S ,
in symbols Φ1 = Φ2, if and only if S ⊆ D(Φ1) ∩D(Φ2) and Φ1f = Φ2f for
every f ∈ S . The operator Φ2 is said to be an extension (proper extension)
of the operator Φ1 if D(Φ1) ⊆ D(Φ2) (D(Φ1) ⊂ D(Φ2)) and the operators
Φ2 and Φ1 are equal in D(Φ1) [97].

Consider the sesquilinear inner-product 〈·, ·〉 associated with H satisfy-
ing 〈aψ, bϕ〉 = a b 〈ψ, ϕ〉 and 〈ψ, ϕ〉 = 〈ϕ, ψ〉 for all ψ, ϕ ∈ H and a, b ∈ C,
where z denotes complex conjugation of z ∈ C. The H –inner-product in-
duces a norm ‖ · ‖ defined by ‖ψ‖ = 〈ψ, ψ〉1/2. A linear operator Φ is said to
be closed if for every pair of sequences {fn} and {Φfn} (with fn ∈ D(Φ))
that converge in the norm ‖·‖ to the limits f and h, then these limits satisfy
f ∈ D(Φ) and Φf = h [97]. The (Hilbert space) adjoint Φ∗ of Φ is defined
by 〈Φψ, ϕ〉 = 〈ψ,Φ∗ϕ〉 for every ψ ∈ D(Φ) and ϕ ∈ D(Φ∗). The adjoint
Φ∗ of Φ is uniquely determined when the domain D(Φ) determines H , i.e.,
the smallest closed linear manifold containing D(Φ) is the Hilbert space
H [97]. In this case, D(Φ) ⊆ D(Φ∗) and Φ∗ is a closed linear operator [97].
The operator Φ is said to be symmetric if Φ = Φ∗. The operator Φ is said
to be self-adjoint if Φ ≡ Φ∗. A symmetric operator is said to be maximal if
it has no proper symmetric extension. A self-adjoint operator is a maximal
symmetric operator [97].

The operator Φ is said to be bounded (in operator norm) if ‖Φ‖ =
sup{ψ∈H : ‖ψ‖=1} ‖Φψ‖ < ∞. A bounded linear symmetric operator is self-
adjoint if and only if its domain is H [97]. In particular, the Hellinger–
Toeplitz theorem states that, if the operator Φ satisfies 〈Φψ, ϕ〉 = 〈ψ,Φϕ〉
for every ψ, ϕ ∈ H , then Φ is bounded on H [88]. This indicates that, if Φ
is an unbounded symmetric operator on H , then it is self-adjoint only on a
proper subset of H that is dense in H [88, 97].

The spectrum Σ of a self-adjoint operator Φ on a Hilbert space H is
real-valued [88, 97]. If Φ is also bounded, then its spectral radius equal to
its operator norm ‖Φ‖ [88], i.e.,

Σ ⊆ [−‖Φ‖, ‖Φ‖ ].(A-2)
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If Φ is instead unbounded, its spectrum Σ can be an unbounded subset of,
or can even coincide with the set of real numbers R [97].

We now summarize the spectral theorem for self-adjoint operators (see
Theorems 5.9 and 6.1 in [97]). Let Φ be a fixed self-adjoint operator with
spectrum Σ ⊆ R and domain D(Φ) that is dense in H . If Φ is bounded
then we simply take D(Φ) ≡ H . The spectral theorem states that there
is a one-to-one correspondence between the self-adjoint operator Φ and a
family of self-adjoint projection operators {Q(λ)}λ∈Σ — the resolution of
the identity — that satisfies [97]

lim
λ→ inf Σ

Q(λ) = 0, lim
λ→ supΣ

Q(λ) = I,(A-3)

where 0 and I denote the null and identity operators on H , respectively.
Furthermore, the complex-valued function of the spectral variable λ defined
by µψϕ(λ) = 〈Q(λ)ψ, ϕ 〉 has real, Re µψϕ(λ), and imaginary, Imµψϕ(λ),
parts that are of bounded variation for all ψ, ϕ ∈ D(Φ) and λ ∈ Σ [97],
where

Reµψϕ(λ) =
1

2

(

µψϕ(λ) + µψϕ(λ)
)

,(A-4)

Imµψϕ(λ) =
1

2 ı

(

µψϕ(λ)− µψϕ(λ)
)

,

ı =
√
−1, and λ ∈ Σ.

By the sesquilinearity of the inner-product and the fact that the pro-
jection operator Q(λ) is self-adjoint, the function µψϕ(λ) satisfies µϕψ(λ) =
µψϕ(λ). Moreover, the function µψψ(λ) is real-valued and positive, µψψ(λ) =
〈Q(λ)ψ, ψ〉 = 〈Q(λ)ψ,Q(λ)ψ〉 = ‖Q(λ)ψ ‖2 ≥ 0, hence Re µψψ(λ) = µψψ(λ)
and Imµψψ(λ) = 0. With each of these functions of bounded variation, we
associate Stieltjes measures [96, 97, 34]

dµψϕ(λ) = d〈Q(λ)ψ, ϕ〉, dRe µψϕ(λ) = dRe 〈Q(λ)ψ, ϕ〉,(A-5)

dµψψ(λ) = d‖Q(λ)ψ ‖2, dImµψϕ(λ) = dIm 〈Q(λ)ψ, ϕ〉,

which we will denote by µψψ , µψϕ, Re µψϕ, and Imµψϕ. We stress that µψψ
is a positive measure, µψϕ is a complex measure, while Reµψϕ and Imµψϕ
are signed measures [96, 97].

The spectral theorem also provides an operational calculus in Hilbert
space which yields powerful integral representations involving the Stieltjes
measures shown in equation (A-5). A summary of the relevant details is
as follows. Let F (λ) and G(λ) be arbitrary complex-valued functions and
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denote by D(F ) the set of all ψ ∈ D(Φ) such that F ∈ L2(µψψ), i.e., F
is square integrable on the set Σ with respect to the positive measure µψψ ,

and similarly define D(G). Then D(F ) and D(G) are linear manifolds and
there exist linear operators denoted by F (Φ) and G(Φ) with domains D(F )

and D(G), respectively, which are defined in terms of the following Radon–
Stieltjes integrals [97]

〈F (Φ)ψ, ϕ〉 =

∫ ∞

−∞

F (λ) dµψϕ(λ), ∀ψ ∈ D(F ), ϕ ∈ H ,(A-6)

〈F (Φ)ψ,G(Φ)ϕ〉 =

∫ ∞

−∞
F (λ)G(λ) dµψϕ(λ), ∀ψ ∈ D(F ), ϕ ∈ D(G),

where the integration in (A-6) is over the spectrum Σ of Φ [88, 97].

The mass µ0
ψϕ =

∫∞
−∞ dµψϕ(λ) of the Stieltjes measure µψϕ satisfies [97]

µ0
ψϕ = limλ→supΣ µψϕ(λ)− limλ→inf Σ µψϕ(λ). Consequently, equation (A-3)

and the Cauchy–Schwartz inequality yield

µ0
ψϕ =

∫ ∞

−∞

d〈Q(λ)ψ, ϕ 〉= 〈ψ, ϕ〉, |µ0
ψϕ| ≤ ‖ψ‖ ‖ϕ‖ <∞.(A-7)

Equation (A-7) demonstrates that the measures in (A-5) are finite measures,
i.e., they have bounded mass [97].

The operators encountered in the ensuing appendices are skew-adjoint

operators, which are an example of normal operators. Equation (A-6) can
be generalized, holding with suitable notational changes, for maximal nor-

mal operators [97]. Such a normal operator N with domain D(N) dense in
H commutes with its adjoint N∗, i.e., NN∗ = N∗N, and can be decom-
posed as N = Φ1 + ıΦ2, where Φ1 and Φ2 are self-adjoint and commute.

The spectrum of the normal operator N is a (possibly unbounded) subset
of C [97]. A special case of a normal operator is a skew-adjoint operator

satisfying N∗ = −N. It can be decomposed as N = ıΦ2 and since Φ2 is
self-adjoint having purely real spectrum, the skew-adjoint operator N = ıΦ2

has purely imaginary spectrum [97]. Consequently, given such a maximal
skew-adjoint operator, one can focus attention on the self-adjoint operator
Φ2 = −ıN without having to resort to the more notationally complicated

spectral theory of normal operators.

The signed measures Re µψϕ and Imµψϕ shown in (A-5) arise naturally
when considering a maximal skew-adjoint operator N = ıΦ, where Φ is self-

adjoint. This can be illustrated by considering some special cases that arise
naturally in Appendix C below. Consider the functional 〈F (N)ψ,G(N)ϕ〉
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involving real-valued Hilbert space members F (N)ψ and G(N)ϕ, so that
〈F (N)ψ,G(N)ϕ〉= 〈G(N)ϕ, F (N)ψ〉 ∈ R and, in particular,

〈F (N)ψ,G(N)ϕ〉=
1

2
(〈F (N)ψ,G(N)ϕ〉+ 〈G(N)ϕ, F (N)ψ〉).(A-8)

Now consider the special cases F (N) = G(N) and F (N) = NG(N), i.e.,
F (ıλ) = G(ıλ) and F (ıλ) = ıλG(ıλ) in equation (A-6), respectively. From
equations (A-6) and (A-8), the identities Re z = (z + z)/2 and Im z =
(z − z)/(2ı), and the linearity properties [97] of Stieltjes-Radon integrals

with respect to the functions µψϕ(λ) and µψϕ(λ), we have

〈G(N)ψ,G(N)ϕ〉=

∫ ∞

−∞

|G(ıλ)|2 dReµψϕ(λ),(A-9)

〈NG(N)ψ,G(N)ϕ〉= −
∫ ∞

−∞

λ |G(ıλ)|2dImµψϕ(λ).

An important property of a self-adjoint operator Φ which will be used in
Appendix D is that its domainD(Φ) comprises those and only those elements
ψ ∈ H such that the Stieltjes integral

∫∞
−∞ λ2 dµψψ(λ) is convergent. When

ψ ∈ D(Φ) the element Φψ is determined by the relations [97]

〈Φψ, ϕ〉 =

∫ ∞

−∞

λ dµψϕ(λ), ‖Φψ‖2 =

∫ ∞

−∞

λ2 dµψψ(λ),(A-10)

where ϕ is an arbitrary element inD(Φ) [97]. In fact, this determines the one-
to-one correspondence between the self-adjoint operator Φ and its resolution
of the identity Q(λ) [97].

Appendix B. Time derivative as a maximal normal operator

A key example of an unbounded operator is the time derivative ∂t acting
on the space L2(T ) of Lebesgue measurable functions that are also square
integrable on the interval T = [0, T ], say. The unboundedness of ∂t as an
operator on L2(T ) can be understood by considering the orthonormal set of

functions {ϕn} ⊂ L2(T ) defined by

ϕn(t) = β sin(nπt/T ), β =
√

2/T , 〈ϕn, ϕm〉2 = δnm,(A-11)

where n,m ∈ N and 〈·, ·〉2 denotes the sesquilinear L2(T )–inner-product. It
follows from ∂tϕn = (nπβ/T ) cos(nπt/T ) and ‖∂tϕn‖2 = (nπ/T )2, that the



26 Murphy et al.

norm of ∂tϕn grows arbitrarily large as n → ∞. This clearly demonstrates
the unboundedness of the operator ∂t with domain L2(T ).

When one also imposes periodic or Dirichlet boundary conditions, inte-
gration by parts demonstrates that the operator ∂t is skew-adjoint on L2(T )
so that −ı∂t is symmetric with respect to the sesquilinear inner-product
〈·, ·〉2. We now identify an everywhere dense subset of L2(T ) on which −ı∂t
is a linear self-adjoint operator [88, 97]. Consider the class AT of all func-
tions ψ ∈ L2(T ) such that ψ(t) is absolutely continuous [89] on the interval
T , having derivative ψ ′(t) belonging to L2(T ), i.e., [97, 89]

AT =

{

ψ ∈ L2(T )
∣

∣

∣
ψ(t) = c+

∫ t

0
g(s)ds, g ∈ L2(T )

}

,(A-12)

where the constant c and function g(s) are arbitrary. Now, consider the set
ÃT of all functions ψ ∈ AT that satisfy the periodic boundary condition
ψ(0) = ψ(T ), i.e. functions ψ satisfying the properties of equation (A-12)

with c arbitrary and
∫ T
0 g(s)ds = 0. In order to help clarify the ideas that

were discussed in Appendix A in terms of an abstract Hilbert space H , we
also consider the set ÂT of all functions ψ ∈ AT that satisfy the Dirich-
let boundary condition ψ(0) = ψ(T ) = 0, i.e. functions ψ satisfying the

properties of equation (A-12) with c = 0 and
∫ T
0 g(s)ds = 0. More concisely,

ÃT = {ψ ∈ AT |ψ(0) = ψ(T )},(A-13)

ÂT = {ψ ∈ AT |ψ(0) = ψ(T ) = 0}.

These function spaces satisfy ÂT ⊂ ÃT ⊂ AT and are each everywhere
dense in L2(T ) [97]. Let the operators B, B̃, and B̂ be identified as −ı∂t
with domains AT , ÃT , and ÂT , respectively. Then, B̂ is a closed linear
symmetric operator with the adjoint B̂∗ ≡ B, and the operator B̃ is a
self-adjoint extension of B̂ [97]. In symbols, this means that B̃ = B̃∗ on
ÃT and D(B̃) = D(B̃∗) = ÃT , i.e., B̃ ≡ B̃∗ on ÃT . This establishes that
the operator −ı∂t with domain ÃT is self-adjoint, hence ∂t is a maximal
skew-adjoint (normal) operator on ÃT [97]. The operator ı∂t on ÃT has a
simple point spectrum, consisting of eigenvalues λ = 2nπ/T , n ∈ Z, with
corresponding eigenfunctions exp(ı 2nπt/T ) [97].

Appendix C. Hilbert spaces, resolvents, and integral

representations of the effective diffusivity

In this section we provide a spectral theory of effective diffusivities for space-
time periodic flows. In particular, we consider two different approaches to
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the effective parameter problem for advection-diffusion which were proposed

in [79, 12] and [4, 5] for time-independent flows. We adapt and extend these
results to the setting of time-dependent flows, allowing fluid velocity fields

with chaotic dynamics. Specifically, we formulate rigorous mathematical

frameworks for each approach which provide Stieltjes integral representa-

tions for both the symmetric S
∗ and antisymmetric A

∗ parts of the effec-

tive diffusivity tensor D
∗ for space-time periodic flows, involving a spectral

measure of an unbounded self-adjoint operator. In Appendix C.1 we gen-

eralize the approach proposed in [79], while in Appendix C.2 we extend

the approach proposed in [4, 5]. In Appendix D we establish that the two

approaches are equivalent, using the one-to-one correspondence between a

self-adjoint operator and its resolution of the identity [97], discussed in the
paragraph containing equation (A-10).

C.1. Scalar fields and effective diffusivity

In this section we provide an abstract Hilbert space formulation of the ef-

fective parameter problem for advection-diffusion that was proposed in [79],

based on [12], generalizing it to the setting of a space-time periodic fluid ve-
locity field, allowing for flows with chaotic dynamics. To fix ideas, consider

the following sets T = [0, T ] and V = ⊗d
j=1[0, L] which define the space-time

period cell T × V . Now consider the Hilbert spaces L2(T ) and L2(V) of
Lebesgue measurable scalar functions over the complex field C that are also

square integrable [34]. Define the associated Hilbert spaces HT , HV , and

HT V = HT ⊗ HV of periodic functions, where

HT =
{

ψ ∈ L2(T ) |ψ(t) = ψ(t+ T )
}

,(A-14)

HV =
{

ψ ∈ L2(V) |ψ(x) = ψ(x+ Lej), j = 1, . . . , d
}

,

and the ej are standard basis vectors.

More specifically, denote time average over T by 〈·〉T , space average over

V by 〈·〉V, and space-time average over T ×V by 〈·〉. The space-time average

〈·〉, induces a sesquilinear inner-product 〈·, ·〉 given by 〈ψ, ϕ〉 = 〈ψ ϕ〉, with
〈ϕ, ψ〉 = 〈ψ, ϕ〉. This HT V–inner-product, in turn, induces a norm ‖·‖ given

by ‖ψ‖ = 〈ψ, ψ〉1/2 [34]. The set of space-time periodic Lebesgue measur-

able functions HT V satisfying ‖f‖ < ∞ is a (complete) Hilbert space [34].

Similarly, the space and time averages, 〈·〉V and 〈·〉T , induce sesquilinear

inner-products, 〈·, ·〉V and 〈·, ·〉T , that induce norms, ‖ · ‖V and ‖ · ‖T , asso-
ciated with the Hilbert spaces HV and HT .
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To treat temporal dependence, we defined in equation (A-13) the space
ÃT of absolutely continuous T –periodic functions with time derivatives be-

longing to L2(T ), which is not a Hilbert space but is instead an everywhere

dense subset of the Hilbert space HT [97]. To treat spatial dependence, we
now define the Sobolev space H

1,2
V which is itself a Hilbert space [12, 33, 63],

H
1,2
V =

{

ψ ∈ HV | ‖∇ψ‖V <∞, 〈ψ〉V = 0
}

.(A-15)

The condition 〈ψ〉V = 0 in (A-15) is required to eliminate non-zero constant
ψ, which satisfies ‖∇ψ‖V = 0. The H

1,2
V –norm ‖∇ · ‖V is induced by the

H
1,2
V –inner-product: ‖∇ψ‖V = 〈∇ψ·∇ψ〉1/2V . Define Ck(V) to be the space

of all V–periodic, mean-zero, k-times continuously differentiable functions in

HV . We define the Sobolev space H
1,2
V to be the closure in the norm ‖∇ · ‖V

of the space C3(V), containing those elements of HV that are mean-zero and
have square integrable gradients on the set V . Functions in H

1,2
V need not

be differentiable in the classical sense. Instead, f ∈ H
1,2
V has derivatives

∂f/∂xj ∈ L2(V) defined by ∂f/∂xj = limn→∞ ∂fn/∂xj, where fn ∈ C3(V)
are Cauchy in the norm ‖∇ · ‖V , and convergence is in L2(V) [63]. We

specifically chose H
1,2
V to be the completion of C3(V) so that the Cauchy

sequence {fn} associated with f ∈ H
1,2
V satisfies ∂fn/∂xj ∈ C2(V), for all

j = 1, . . . , d. We will repeatedly use this property of the Hilbert space H
1,2
V .

To characterize the spatial dependence of the function uj on the right

side of the cell problem in (9), we define the Hilbert space H
0,2
V to be the

closure in the norm ‖ · ‖V of the space C2(V). All the elements of H
0,2
V are

those elements of HV which are limits of sequences {fn} ⊂ C2(V) that are

Cauchy in the norm ‖ · ‖V .

Finally, define the Hilbert space H and its everywhere dense subset F

H = HT ⊗ H
1,2
V , F = ÃT ⊗ H

1,2
V .(A-16)

Due to the presence of ÃT in the definition of the function space F , it is
not a complete Hilbert space, and is instead an everywhere dense subset of

the complete Hilbert space H . Recall that 〈·〉 denotes space-time average
over T × V and ξ·ζ = ξT ζ. The sesquilinear H –inner-product is given

by 〈ψ, ϕ〉1,2 = 〈∇ψ·∇ϕ〉 with associated norm ‖ · ‖1,2 given by ‖ψ‖1,2 =

〈|∇ψ|2〉1/2. We emphasize that in the case of a time-dependent fluid velocity
field, it is necessary that ψ ∈ H satisfy 〈ψ〉V = 0, as required by the

definition of H
1,2
V in (A-15). Otherwise, ‖ · ‖1,2 =

∫

T ×V dt dx |∇ · |2 is not
a norm, since a strictly positive function ψ(t,x) = ψ(t) on T × V satisfies
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‖ψ‖1,2 = 0. In the case of a time-independent fluid velocity field u = u(x)

we set H ≡ F ≡ H
1,2
V and 〈·〉 = 〈·〉V.

We now use properties of the Hilbert space H to obtain functional
formulas for the symmetric S

∗ and antisymmetric A
∗ parts of the effective

diffusivity tensor D∗ defined in (10) and (11), involving the solution χj of
the cell problem in (9) and a maximal skew-adjoint operator A on F . We
then derive from the cell problem a resolvent formula for χj involving A.
The spectral theorem discussed in Appendix A then yields Stieltjes integral
representations for S∗ and A∗, which are established in Theorem 1 below.

Applying the linear operator (−∆)−1 to both sides of the cell problem
in equation (9) yields, with suitable notational changes,

(−∆)−1uj = (ε+A)χj , A = (−∆)−1(∂t − u·∇).(A-17)

We will discuss the key properties of the operators (−∆)−1 and A in more
detail below. Now write the functional 〈ujχk〉 in equation (10) as [79]

〈ujχk〉 = 〈[(−∆)(−∆)−1uj]χk〉 = 〈∇(−∆)−1uj·∇χk〉 = 〈(−∆)−1uj, χk〉1,2.
(A-18)

This calculation will be justified below. Substituting the formula in (A-17)
for (−∆)−1uj into equation (A-18) yields equation (15), which provides func-
tional formulas for the components S∗

jk and A∗
jk, j, k = 1, . . . , d, of S∗ and A∗.

Equation (A-17) leads to the resolvent formula shown in (16). From equa-
tions (15) and (16) we have the functional formulas for S∗

jk and A∗
jk shown

in equation (17) involving the resolvent of the operator A. The following
theorem establishes the Stieltjes integral representations in equation (18)
for these functional formulas of S

∗
jk and A

∗
jk.

Theorem 1 Assume uj ∈ ÃT ⊗ (H 0,2
V ∩L∞(V)) for all j = 1, . . . , d. Then

A = (−∆)−1(∂t − u·∇) is a maximal (skew-adjoint) normal operator on
the function space F , hence M = −ıA is self-adjoint on F . Let Q(λ) be
the resolution of the identity in one-to-one correspondence with M . Define
the complex valued function µjk(λ) = 〈Q(λ)gj, gk〉1,2, j, k = 1, . . . , d, where
gj = (−∆)−1uj. Consider the positive measure µkk and the signed mea-
sures Reµjk and Imµjk associated with µjk(λ), introduced in equations (A-4)
and (A-5). Then, for all 0 < ε <∞ the functional formulas for S∗

jk and A∗
jk

in (17) have the Radon–Stieltjes integral representations shown in (18).

Before we prove Theorem 1, we first provide in Appendix C.1.1 key
properties of the linear operator (−∆)−1 and justify the calculation in equa-
tion (A-18). Moreover, in Appendix C.1.2 we discuss key properties of the
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function uj on the right side of the cell problem in (9). These properties of
(−∆)−1 and uj will be used in the proof of Theorem 1, which is deferred to
Appendix C.1.3.

C.1.1. Properties of the inverse Laplacian. Since the Laplacian ∆
maps V–periodic functions to mean-zero V–periodic functions, in the present
context, the domain of the operator (−∆)−1 is mean-zero V–periodic func-
tions. The operator (−∆)−1 is based on convolution with respect to the
Green’s function for the Laplacian, i.e., (−∆)−1f(x) =

∫

V G(x−y) f(y) dy.
The Green’s functionG is positive [95],G > 0, symmetric [33, 95]G(x−y) =
G(y − x) and integrable [64, 65, 59],

sup
x∈V

∫

V

G(x− y)dy ≤ C <∞.(A-19)

The Green’s function G can be represented [64] in terms of the eigenvalues
λk and orthonormal eigenfunctions φk(x) of the operator −∆ with periodic
boundary conditions on V , G(x − y) =

∑

k∈Zd\{0} φk(x) φk(y)/λk, where

λk = |k|2 and {φk(x)} = {cos(k·x), sin(k·x)} when V = [0, 2π]d.
By equation (A-19) and Young’s inequality [33, 34], (−∆)−1 is a bounded

operator on Lp(V) for 1 ≤ p ≤ ∞: if ψ ∈ Lp(V) then (−∆)−1ψ ∈ Lp(V) and

‖(−∆)−1ψ‖p ≤ C‖ψ‖p, 1 ≤ p ≤ ∞,(A-20)

where ‖ · ‖p denotes the Lp(V)–norm and C is defined in (A-19). Since V is
bounded, it has finite Lebesgue measure |V| <∞. Consequently, we have [34]
Lp(V) ⊃ Lq(V) for all 0 < p < q ≤ ∞ with ‖ψ‖p ≤ ‖ψ‖q |V|(1/p)−(1/q).

Recall that H
0,2
V is the closure of C2(V) in the norm ‖·‖V . For f ∈ H

0,2
V ,

the operator (−∆)−1 satisfies 〈(−∆)(−∆)−1f, h〉V = 〈f, h〉V in the following
weak sense [95, 88]. Let {fn} ⊂ C2(V) be a sequence that is Cauchy in the
norm ‖·‖V with limn→∞ ‖fn−f‖V = 0. Then, for all h ∈ H

0,2
V (see Theorem

1 in Section 4.2 of [63]),

〈(−∆)(−∆)−1f, h〉V := lim
n→∞

〈
∫

V

G(x− y)(−∆y)fn(y)dy, h(x)

〉

V

(A-21)

= lim
n→∞

〈fn, h〉V = 〈f, h〉V ,

by the continuity of the inner-product [34, 95] and since the boundary
terms [63]

∫

∂V [fn(y) ∂G(x− y)/∂ny −G(x− y) ∂fn(y)/∂ny] dSy vanish by
periodicity. Here, dSy denotes the surface measure [34] on the boundary ∂V
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of V and ∂/∂ny is the outward normal derivative on ∂V [63]. Moreover, equa-
tion (A-21), integration by parts, Young’s inequality in (A-20) for p = 2, and
the Cauchy–Schwartz inequality, |〈f, g〉V| ≤ ‖f‖V ‖g‖V, imply for ψ ∈ H

0,2
V

‖∇(−∆)−1ψ‖2
V = |〈(−∆)−1ψ, ψ〉V| ≤ C‖ψ‖2

V ,(A-22)

in the weak sense shown in equation (A-21).
We now justify the calculation in (A-18). If uj(t, ·), χj(t, ·) ∈ H

0,2
V for

almost all t ∈ T , then equation (A-21) yields the first equality in (A-18).
However, the second equality requires χj(t, ·) ∈ H

1,2
V . We now establish

H
1,2
V ⊂ H

0,2
V . This, in turn, justifies the calculation in equation (A-18)

and, along with equation (A-22), also shows that the operator (−∆)−1 maps
functions in H

0,2
V to H

1,2
V .

Recall that H
0,2
V is the closure of C2(V) in the norm ‖ · ‖V , H

1,2
V is the

closure of C3(V) in the norm ‖∇ · ‖V , and C3(V) ⊂ C2(V). Let {fn} be
an arbitrary sequence in C3(V) that is Cauchy in the norm ‖∇ · ‖V . Then
equation (A-21), integration by parts, Young’s inequality in (A-20) for p = 2,
and the Cauchy–Schwartz inequality |〈ξ·ζ〉V | ≤ ‖ξ‖V‖ζ‖V imply

‖fn − fm‖V ≤ C‖∇(fn − fm)‖V ,(A-23)

where the constant C is defined in (A-19). Consequently, every sequence
{fn} in C3(V) that is Cauchy in the norm ‖∇ · ‖V is also a sequence in
C2(V) that is Cauchy in the norm ‖ · ‖V . This establishes H

1,2
V ⊂ H

0,2
V .

C.1.2. Properties of the forcing function in the cell problem. We
now discuss key properties of the forcing function uj on the right side of
the cell problem in (9). Recall the discussion in Section 2.2 regarding the

properties of the effective diffusivity tensor D
∗ when the fluid velocity field

u has a large scale mean flow u0. Specifically, recall that the cell problem
is analogous to equation (9), which holds for a mean-zero velocity field,
u0 ≡ 0. Moreover, the function uj on the right side of the cell problem is
mean-zero, 〈uj〉 = 0, regardless of whether the strength of u0 is weak [56, 79]

or comparable [79] to the periodic fluctuations, e.g. uj is replaced by the jth
component of the mean-zero vector field u− u0.

Using the H –inner-product to obtain Stieltjes integral representations

for D
∗ requires the function uj to be mean-zero in space alone, 〈uj〉V = 0.

In particular, in the proof of Theorem 1 below we show it is required that
(−∆)−1uj ∈ F , where F = ÃT ⊗ H

1,2
V . Recall for ψ ∈ H

1,2
V it is required

that 〈ψ〉V = 0. We therefore require 〈(−∆)−1uj(t, ·)〉V = 0 for almost all
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t ∈ T . Since the domain of the operator (−∆)−1 is mean-zero V–periodic
functions, we require 〈uj(t, ·)〉V = 0 for almost all t ∈ T .

Conversely, ψ ∈ HV and 〈ψ〉V = 0 imply 〈(−∆)−1ψ〉V = 0. More
specifically, since the eigenfunctions φk of −∆ are mean-zero, V–periodic,

and φk ∈ C∞(V), −∆φk = |k|2φk implies (−∆)−1φk = |k|−2φk, hence
〈(−∆)−1φk〉V = 0 (see Theorem 1 in Section 4.2 of [63]). Since {φk | k ∈ Z

d}
is a complete orthonormal basis for HV [34], ψ ∈ HV and 〈ψ〉V = 0 imply
the sequence of functions ψn defined by ψn =

∑

|k|≤n〈ψ, φk〉V φk converges

to ψ in norm, limn→∞ ‖ψ − ψn‖V → 0. Moreover 〈(−∆)−1ψn〉V = 0 for all

n ∈ N. Therefore, equation (A-20), L1(V) ⊃ L2(V), and the triangle in-
equality imply |〈(−∆)−1ψ〉V| = |〈(−∆)−1(ψ−ψn)〉V | ≤ C‖ψ−ψn‖1 → 0 as
n→ ∞. This implies 〈(−∆)−1ψ〉V = 0 for all mean-zero ψ ∈ HV .

The result of Lemma 2 below is used in the proof of Theorem 1. There,
we assume uj ∈ ÃT ⊗ L∞(V). This property, 〈uj(t, ·)〉V = 0 for almost all
t ∈ T , ÃT ⊗ L∞(V) ⊂ L2(T × V), and the Fubini-Tonelli theorem [34]

imply that 〈uj〉 = 0. We stress it is not necessary that 〈uj(·,x)〉T = 0
for almost all x ∈ V . The fluid velocity field u in equation (1) is such an
example, satisfying 〈u〉V = 0 and 〈u〉 = 0 but 〈u〉T = (cos y, cosx) 6≡ 0.

The condition 〈uj〉V = 0, rules out functions of the form uj(t,x) = uj(t) or
even uj(t,x) = f(t,x) + h(t) with 〈f〉V = 0, though functions of the form
uj(t,x) = h(t) f(t,x) with 〈f〉V = 0 are permitted.

In summary, the properties we require the function uj on the right
side of the cell problem in equation (9) to have are: uj is T × V–periodic,

uj ∈ ÃT ⊗ (H 0,2
V ∩L∞(V)), and 〈uj(t, ·)〉V = 0 for almost all t ∈ T , (which

implies that 〈(−∆)−1uj(t, ·)〉V = 〈(−∆)−1uj(t, ·)〉 = 0 and 〈uj〉 = 0). Note,

since every f ∈ C2(V) is also a member of H
0,2
V and L∞(V), the intersection

H
0,2
V ∩ L∞(V) is non-empty.

The following lemma identifies a sufficient condition for the fluid velocity
field u that ensures the operator (−∆)−1(u·∇) is bounded on the Hilbert

space H . This will be used in the proof of Theorem 1 below.

Lemma 2 Assume the components uj, j = 1, . . . , d, of the fluid velocity

field u satisfy uj ∈ ÃT ⊗ (H 0,2
V ∩L∞(V)). Then the operator (−∆)−1(u·∇)

is bounded on H . Moreover, its operator norm ‖(−∆)−1(u·∇)‖1,2 has the
following upper bound

‖(−∆)−1(u·∇)‖1,2 ≤
√
C ‖ |u| ‖∞ ,(A-24)

where ‖ · ‖∞ the L∞(T × V)–norm and the constant C is defined in equa-
tion (A-19) and satisfies 0 < C <∞.
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Proof of Lemma 2. The spectral theorem used in the proof of Theo-

rem 1 below requires that the operator u·∇ acts on the Hilbert space H and

(−∆)−1uj ∈ F , where H = HT ⊗H
1,2
V and F = ÃT ⊗H

1,2
V . Consequently,

based on the discussion in the paragraph following equation (A-22), we re-

quire that uj ∈ ÃT ⊗H
0,2
V . Moreover, writing u·∇f requires f ∈ H . Recall,

that H
1,2
V ⊂ H

0,2
V ⊂ L2(V), H ⊂ L2(T ) ⊗ L2(V), and L2(V) ⊇ Lr(V) for

all 2 ≤ r ≤ ∞, and similarly for L2(T ) and L2(T × V).

We now address the following question: when uj ∈ ÃT ⊗ (H 0,2
V ∩Lr(V))

for some 2 ≤ r ≤ ∞ and f ∈ H , for what value of p, 1 ≤ p ≤ ∞, is

u·∇f ∈ Lp(T × V)? Denote by ‖ · ‖p the Lp(T × V)–norm. The Cauchy–

Schwartz inequality, |ξ·ζ| ≤ |ξ| |ζ| and Hölder’s inequality [34], ‖f h‖1 ≤
‖f‖p1 ‖h‖q1 , with conjugate exponents satisfying (1/p1) + (1/q1) = 1 and

1 ≤ p1 ≤ 2 ≤ q1 ≤ ∞, yield

‖u·∇f‖pp = ‖ |u|pp1‖1/p1

1 ‖|∇f |p q1‖1/q1
1 .(A-25)

We require p q1 = 2 and write r = p p1. This and (1/p1) + (1/q1) = 1 yield

1

p
=

1

r
+

1

2
, 2 ≤ r ≤ ∞, 1 ≤ p ≤ 2.(A-26)

We now use equations (A-25) and (A-26) with r = ∞ to establish the bound

in equation (A-24).

Consider equation (A-21) with the functions f and h both given by

u·∇f with f ∈ H
1,2
V and uj(t, ·) ∈ H

0,2
V for almost all t ∈ T . This ensures

that the Cauchy sequence {ψn}, say, associated with the function u·∇f

has members satisfying ψ(t, ·) ∈ C2(V) for almost all t ∈ T . Consequently,

integration by parts, Young’s inequality in (A-20), and Hölder’s inequality

|〈f h〉| ≤ ‖f‖p2 ‖h‖q2 with (1/p2) + (1/q2) = 1 and 1 ≤ p2 ≤ 2 ≤ q2 ≤ ∞,

yield

‖(−∆)−1(u·∇)f‖2
1,2 = |〈[(−∆)−1(u·∇f)] (u·∇f)〉|(A-27)

≤ ‖(−∆)−1(u·∇f)‖p2 ‖u·∇f‖q2
≤ C ‖u·∇f‖p2 ‖u·∇f‖q2 .

Setting p2 = q2 = 2, equations (A-25) and (A-26) with r = ∞ (p1 = ∞
and q1 = 1) establishes the bound in (A-24). This completes the proof of

Lemma 2 �.
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C.1.3. Proof of Theorem 1. We first establish that the operator M =
−ıA with domain F is self-adjoint, where A = (−∆)−1(∂t−u·∇). We have
already established in Appendix B that the operator −ı∂t with domain ÃT

is self-adjoint [97]. A bounded linear symmetric operator is self-adjoint on a
Hilbert space if and only its domain is the Hilbert space itself (see Theorem
2.24 in [97]). By Young’s inequality in (A-20), the linear operator (−∆)−1

is bounded on the space of functions HV with mean-zero, HV\C. It is also
symmetric on HV\C [95, 33]. Consequently, the operator (−∆)−1 with do-
main HV\C is self-adjoint. It is also self-adjoint on H

1,2
V . Indeed, recalling

that V = [0, L]d, the calculation in equation (A-22) and the Poincaré in-
equality [63], ‖f‖V ≤ 2L‖∇f‖V , show that the operator (−∆)−1 is bounded
on H

1,2
V with operator norm bounded by the quantity 2L

√
C. It is also sym-

metric on the Hilbert space H
1,2
V , as the following calculation shows, which

establishes that the operator (−∆)−1 with domain H
1,2
V is self-adjoint. Sim-

ilar to (A-22) for f, h ∈ H
1,2
V we have

〈∇(−∆)−1f ·∇h〉V = 〈f, h〉V = 〈f, (−∆)(−∆)−1h〉V = 〈∇f ·∇(−∆)−1h〉V .
(A-28)

By equation (A-20), the operators −ı∂t and (−∆)−1 commute on F =
ÃT ⊗H

1,2
V (see Theorem 2.27 in [34]). By equation (A-22), the range of the

operator (−∆)−1 with domain H
0,2
V is contained in H

1,2
V . Consequently,

the operator −ı(−∆)−1∂t with domain F ∩ H = F [97] is self-adjoint.
In Lemma 2 we established that the linear operator (−∆)−1[u·∇] with

domain H is bounded when uj ∈ ÃT ⊗ (H 0,2
V ∩ L∞(V)). We now show

that this condition on uj implies that the operator is also antisymmetric on
H which, in turn, establishes that the symmetric operator −ı(−∆)−1[u·∇]
with domain H is self-adjoint. The antisymmetry of (−∆)−1[u·∇] on H

depends on the incompressibility, ∇·u = 0 (weakly), of the fluid velocity
field [12]. For f, h ∈ H we have, in a weak sense,

〈(−∆)−1(u·∇)f, h〉1,2 = 〈[∇((−∆)−1(u·∇f)]·∇h〉(A-29)

= 〈[(u·∇f)] , h〉
= 〈[∇·(uf)] , h〉
= −〈f , [(u·∇)h]〉
= −〈f , [(−∆)(−∆)−1(u·∇)h]〉
= −〈∇f ·[∇(−∆)−1(u·∇)h]〉
= −〈f, (−∆)−1(u·∇)h〉1,2.
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This establishes that the bounded linear operator −ı(−∆)−1(u·∇) is sym-

metric on H , hence self-adjoint on H .

We now summarize our findings. We have established that the operator

−ı(−∆)−1∂t with domain F is self-adjoint and the operator −ı(−∆)−1[u·∇]

with domain H is self-adjoint when the components uj, j = 1, . . . , d, of u

satisfy uj ∈ ÃT ⊗ (H 0,2
V ∩ L∞(V)). Consequently, the difference of these

two operators M = −ıA, A = (−∆)−1(∂t − u·∇), with domain D(M) =

F ∩ H = F [97] is self-adjoint when uj ∈ ÃT ⊗ (H 0,2
V ∩ L∞(V)). Thus

A = ıM is a maximal (skew-adjoint) normal operator on F [97].

The complex-valued functions involved in the functional formulas for

S∗
jk and A∗

jk in (17) are F (λ) = (ε + ıλ)−1 and G(λ) = ıλ(ε + ıλ)−1. For

all 0 < ε < ∞, we have |F (λ)|2 = (ε2 + λ2)−1 ≤ ε−2 < ∞ and |G(λ)|2 =

λ2(ε2 +λ2)−1 ≤ 1. Since µkk is a finite measure for all k = 1, . . . , d, as shown

in equation (A-7), we therefore have that f ∈ D(F ) and f ∈ D(G) for all

f ∈ D(M) when 0 < ε <∞.

We now establish that the function gj = (−∆)−1uj satisfies gj ∈ D(M).

By assumption, uj is T × V–periodic and satisfies 〈uj〉V = 0. From the dis-

cussion after the statement of Theorem 1 we have 〈gj〉V = 0. By assumption,

uj ∈ ÃT ⊗ (H 0,2
V ∩L∞(V)). By equation (A-22) the operator (−∆)−1 maps

H
0,2
V to H

1,2
V . Consequently, we have gj ∈ F , where F = ÃT ⊗ H

1,2
V .

Since F ⊆ D(M) we have gj ∈ D(M).

The conditions of the spectral theorem are thus satisfied. Consequently,

the integral representations in equation (A-6) hold for the functions F (λ)

and G(λ) defined above, involving the complex measure µjk. The discussion

leading to equation (A-9) then establishes the integral representations for

S
∗
jk and A

∗
jk shown in equation (18).

It is worth noting that from equations (A-7) and (A-22), the mass µ0
jk

of the measure µjk is given by µ0
jk = 〈gj, gk〉1,2 = 〈(−∆)−1uj, uk〉. Since

uj ∈ ÃT ⊗ HV and (−∆)−1 is a self-adjoint operator on HV , hence on

ÃT ⊗ HV , the spectral theorem demonstrates

µ0
jk = 〈(−∆)−1uj, uk〉 =

∫

λ d〈Q̃(λ)uj, uk〉.(A-30)

In other words, the mass µ0
jk of the measure µjk is the first moment of the

spectral measure d〈Q̃(λ)uj, uk〉 for the operator (−∆)−1, where Q̃(λ) is the

resolution of the identity in one-to-one correspondence with the self-adjoint

operator (−∆)−1. This completes the proof of Theorem 1 �.
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C.2. Curl-free vector fields and effective diffusivity

In this section we consider an alternate formulation of the effective pa-
rameter problem for advection-diffusion that was first proposed [4, 5] for
time-independent flows. In particular, we provide a rigorous mathematical
framework which generalizes this formulation to include space-time periodic
fluid velocity fields that are allowed to have chaotic dynamics. This ap-
proach provides analogous formulas to those shown in equations (15)–(18)
involving the curl-free vector field ∇χj shown in equation (9), with suitable
notational changes, and a maximal (skew-adjoint) normal operator A acting
on a Hilbert space of vector-valued functions.

Towards this goal, recall the Hilbert spaces HT and HV of scalar func-
tions given in equation (A-14) and the function space ÃT given in (A-13).
Now define their d-dimensional analogues over the complex field C,

HT = ⊗d
j=1HT , HV = ⊗d

j=1HV , ÃT = ⊗d
j=1ÃT .(A-31)

The Hilbert space HV can be decomposed into mutually orthogonal sub-
spaces of (weakly) curl-free H×, divergence-free H•, and constant H 0 vector
fields, HV = H× ⊕ H• ⊕ H 0 [29, 68]. The orthogonal projectors associ-
ated with this decomposition are given by Γ× = −∇(−∆)−1∇· , Γ• =
∇×(−∆)−1

∇× , and Γ0 = 〈·〉V , respectively, satisfying I = Γ× + Γ• +
Γ0 [29, 74, 68]. Here, ∆ = diag(∆, . . . ,∆) is the vector Laplacian with in-
verse ∆−1 = diag(∆−1, . . . ,∆−1), 〈·〉V denotes spatial averaging over V , and
I is the identity operator on HV .

Using the curl-free vector field ∇χj in the cell problem in equation (9),
we define the Hilbert space H× as

H× = {ψ ∈ HV | Γψ = ψ weakly, 〈ψ〉V = 0}, Γ = −∇(−∆)−1
∇· ,

(A-32)

Here, we have denoted Γ× by Γ for notational simplicity and will continue
to do so. Moreover, the requirement 〈ψ〉V = 0 is due to H× and H0 being
orthogonal spaces. Analogous to equation (A-16), we define the Hilbert space
H and its dense subset F ,

H = HT ⊗H×, F = ÃT ⊗H×.(A-33)

We emphasize again that due to the presence of ÃT in the definition of F ,
it is an everywhere dense subset of the Hilbert space H, and not a Hilbert
space itself. Recall that 〈·〉 denotes space-time averaging over T ×V . Denote
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by 〈·, ·〉× the sesquilinear inner-product associated with the Hilbert space H,

defined as 〈ψ,ϕ〉× = 〈ψ·ϕ〉, with 〈ψ,ϕ〉× = 〈ϕ,ψ〉×. Here, ψ·ϕ = ψ Tϕ,

transposition of the vector ψ is denoted ψ T , and ϕ denotes component-
wise complex conjugation, with ψ·ψ = |ψ|2. The norm ‖ · ‖× induced by

this inner-product is given by ‖ψ‖× = 〈ψ,ψ〉1/2× . In the case of a steady
fluid velocity field u = u(x), we set H ≡ F ≡ H× and 〈·〉 = 〈·〉V.

Recall that the Sobolev space H
1,2
V in equation (A-15) is the closure in

the norm ‖∇ · ‖V of the space C2(V) of all twice continuously differentiable
functions in HV which are also mean-zero and V–periodic [12]. If f ∈ H

1,2
V ,

equation (A-21) shows that ∇f is curl free, ∇f ∈ H×, in the following

weak sense. Let {fn} be a sequence of mean-zero V–periodic functions with
fn ∈ C2(V) that is Cauchy in the norm 〈|∇ · |2〉V and converges to f in

L2(V). Then, for all ψ ∈ H× we have

〈Γ∇f ·ψ〉V := lim
n→∞

〈∇(−∆)−1(−∆)fn·ψ〉V = lim
n→∞

〈∇fn·ψ〉V = 〈∇f ·ψ〉V .
(A-34)

Consequently, since the differential operator ∇ maps H
1,2
V to HV\C

d

we have {∇f ∈ HV\C
d | f ∈ H

1,2
V } ⊆ H×. It is therefore clear that on the

function space {∇f ∈ HV\C
d | f ∈ H

1,2
V } the operator Γ is a projection,

hence bounded by unity in operator norm and trivially symmetric (since it

acts as the identity operator on H×). This establishes a direct link between

the Hilbert spaces H
1,2
V and H×. The following lemma shows that these

Hilbert spaces are in one-to-one isometric correspondence. This establishes

that H× ≡ {∇f ∈ HV\C
d | f ∈ H

1,2
V } which, in turn, establishes that the

linear symmetric bounded operator Γ with domain H× is self-adjoint.

Lemma 3 The Hilbert spaces H
1,2
V and H× are in one-to-one isometric

correspondence, which we denote by H
1,2
V ∼ H×. More specifically, tem-

porarily denote the inner-product induced norm of the Hilbert space H
1,2
V

by ‖f‖1,2 = 〈∇f ·∇f〉1/2V and the inner-product induced norm of the Hilbert

space H× by ‖ψ‖× = 〈ψ·ψ〉1/2V . Then, for every f ∈ H
1,2
V we have ∇f ∈ H×

and ‖∇f‖× = ‖f‖1,2. Conversely, for every ψ ∈ H× there exists unique

f ∈ H
1,2
V (up to equivalence class) such that ψ = ∇f and ‖f‖1,2 = ‖ψ ‖×.

Proof of Lemma 3. The discussion involving equation (A-34) shows
that if f ∈ H

1,2
V , then the vector field ∇f ∈ HV\Cd satisfies Γ∇f = ∇f

weakly so that ∇f ∈ H×. Moreover, ‖∇f‖2
× = 〈∇f ·∇f〉V = ‖f‖2

1,2 < ∞.

Consequently, for every f ∈ H
1,2
V we have ∇f ∈ H× and ‖∇f‖2

× = ‖f‖2
1,2.
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Conversely, ψ ∈ H× implies ψ = Γψ = ∇f weakly, where we have defined
the scalar-valued function f = ∆−1∇·ψ . Since ψ = ∇f , the H

1,2
V norm

of f satisfies ‖f‖2
1,2 = 〈ψ·ψ〉V = ‖ψ ‖2

× < ∞ so that f ∈ H
1,2
V . Moreover,

f is uniquely determined by ψ (up to a zero Lebesgue measure equivalence

class), since if f1 = ∆−1
∇·ψ and f2 = ∆−1

∇·ψ then Γψ = ψ implies that
‖f1 − f2‖1,2 = ‖ψ −ψ ‖× = 0. Consequently, for every ψ ∈ H× there exists

unique f ∈ H
1,2
V such that ψ = ∇f and ‖f‖1,2 = ‖ψ ‖×. In summary, the

Hilbert spaces H
1,2
V and H× are in one-to-one isometric correspondence,

which we denote by H
1,2
V ∼ H×. This concludes our proof of Lemma 3 �.

Since the fluid velocity field u is incompressible, ∇·u = 0 (weakly),

there is a real skew-symmetric matrix H(t,x) satisfying [4, 5]

u = ∇·H, H
T = −H.(A-35)

Note that ∇·[H∇ϕ] = [∇·H]·∇ϕ+ H : ∇∇ϕ. Due to the anti-symmetry of
the matrix H and the symmetry of the Hessian operator ∇∇ when acting

on a sufficiently smooth space of functions, we have H : ∇∇ϕ = 0 for all

such smooth functions ϕ, yielding

∇·[H∇ϕ] = [∇·H]·∇ϕ = u·∇ϕ.(A-36)

Using this identity and the representation of the velocity field u in (A-35),

the advection-diffusion in equation (2) can be written as a diffusion equa-
tion [29, 74],

∂tφ = ∇·D∇φ, φ(0,x) = φ0(x), D = εI + H,(A-37)

where D(t,x) = εI + H(t,x) can be viewed as a local diffusivity tensor with

coefficients

Djk = εδjk + Hjk, j, k = 1, . . . , d.(A-38)

The cell problem in (9) can also be written as the following diffusion equa-

tion [29, 74]

∂τχj = ∇ξ·[D(∇ξχj + ej)], 〈∇ξχj〉 = 0, D = εI + H,(A-39)

where 〈∇ξχj〉 = 0 follows from the periodicity of χj . We stress that equa-

tion (A-37) involves the slow (t,x) and fast variables (τ, ξ), while equa-
tion (A-39) involves only the fast variables. As the remainder of the analysis
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involves only the fast variables, for notational simplicity, we will drop the
subscripts ξ shown in equation (A-39) and use ∂t to denote ∂τ .

We now recast the first formula in equation (A-39) in a more suggestive,
divergence form. Define the operator T : ÃT → HT by (Tψ)j = ∂tψj,
j = 1, . . . , d. For f ∈ F we have [29, 74, 34]

∇(−∆)−1∂tf = (−∆)−1T∇f,(A-40)

in a weak sense. This allows ∂tχj in (A-39) to be written in divergence
form [29, 74], ∂tχj = (−∆)(−∆)−1∂tχj = −∇·[(−∆)−1T]∇χj. Define the
vector-valued function Ej = ∇χj + ej and the operator σ = εI + S, where
S = (−∆)−1T + H. With these definitions, the cell problem in (A-39) can
be written via (A-36) as ∇·σEj = 0, 〈Ej〉 = ej, which is equivalent to

∇·J j = 0, ∇×Ej = 0, J j = σEj, 〈Ej〉 = ej, σ = εI + S.
(A-41)

In the case of a time-independent fluid velocity field u = u(x) we define
S = H and σ = D.

The formulas in (A-41) are analogous to the quasi-static limit of Maxwell’s
equations for a conductive medium [38, 68], where Ej and J j play the role of
the local electric field and current density, respectively, and σ plays the role
of the local conductivity tensor of the medium. In the analytic continuation
method for composites [38, 67, 10], the effective conductivity tensor σ∗ is
defined as

〈J j〉 = σ∗〈Ej〉,(A-42)

which relates the mean gradient field and flux. In the setting of a time-
independent fluid velocity field, where S = H, the linear constitutive relation
J j = σEj in (A-41) relates the local gradient field and flux. In this case,
due to the skew-symmetry of H, the local constitutive relationship is similar
to that of a Hall medium [45, 29, 74, 68]. However, in the setting of a time-
dependent fluid velocity field, where S = (−∆)−1T + H, the constitutive
relation J j = σEj in (A-41) is a non-local integro-differential equation. The
precise relationship between the bulk transport coefficients σ∗ and D∗ for the
effective parameter problems of composite materials and advection-diffusion
is addressed in Lemma 5 below.

We now derive functional formulas for the components S∗
jk and A∗

jk,
j, k = 1, . . . , d, of the symmetric S

∗ and antisymmetric A
∗ parts of the effec-

tive diffusivity tensor D∗ that are analogous to those shown in equation (15).
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Writing the cell problem in (A-41) as ∇·σ∇χj = −∇·Hej = −uj, and in-
serting this expression for uj into the functional 〈uj χk〉 in (10) yields

〈uj χk〉 = −〈[∇·σ∇χj ]χk〉(A-43)

= 〈σ∇χj ·∇χk〉
= ε〈∇χj ·∇χk〉 + 〈ΓSΓ∇χj ·∇χk〉.

Here, we have used the periodicity of χk and H in the second equality and
the final equality follows from the property Γ∇χj = ∇χj and the symmetry

of Γ, together yielding 〈S∇χj·∇χk〉 = 〈SΓ∇χj ·Γ∇χk〉 = 〈ΓSΓ∇χj·∇χk〉.
Equations (10), (11), and (A-43) imply that

S
∗
jk = ε(δjk + 〈∇χj ,∇χk〉×), A

∗
jk = 〈A∇χj ,∇χk〉×, A = ΓSΓ.

(A-44)

We stress that Γ is a self-adjoint projection on H, implying

〈ΓSΓ∇χj ,∇χk〉× = 〈ΓS∇χj ,∇χk〉× = 〈SΓ∇χj ,∇χk〉× = 〈S∇χj ,∇χk〉×.
(A-45)

Since ∇χk is real-valued we have 〈∇χk,∇χj〉× = 〈∇χj,∇χk〉×, im-
plying that S∗, as defined by (A-44), is a symmetric matrix. By Young’s

inequality in (A-20), the operators ∂t and (−∆)−1 commute on ÃT ⊗ HV

(see Theorem 2.27 in [34]). Therefore, we have (−∆)−1Tψ = T(−∆)−1ψ,
for ψ ∈ F [34, 95]. This, the symmetry of (−∆)−1 and the skew-symmetry
of the operators T and H imply that the operator S = (−∆)−1T + H is

skew-adjoint on F . Since Γ is self-adjoint on F , the operator ΓSΓ is also
skew-adjoint on F . Just as in the discussion below equation (15), this implies
that A∗, as defined by (A-44), is an antisymmetric matrix.

We stress that the operator ΓH + (−∆)−1T is unbounded on the sub-

space of square-integrable gradients of spatio-temporal periodic functions in
⊗d
j=1L

2(T × V). This is contrary to the claim given in [56] while review-
ing the formal results of [6], namely that the operator is compact on this
function space. The unboundedness of the operator is due to the presence

of the operator T which is unbounded on HT . This can be understood by
considering the orthonormal set of functions {ϕn} ⊂ HT with components
(ϕn)j, j = 1, . . . , d, defined by (ϕn)j(t) = β sin((n+j)πt/T ), β =

√

2/(Td),

satisfying 〈ϕn · ϕm〉T = δnm, which are analogous to the functions consid-
ered in (A-11). It follows from (∂tϕn)j(t) = [β(n+ j)π/T ] cos((n+ j)πt/T )
and 〈|Tϕn|2〉T =

∑

j[(n+j)π/T ]2/d that the norm of Tϕn grows arbitrarily
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large as n→ ∞. This establishes that T is unbounded on HT . Consequently,
in order to provide rigorous Stieltjes integral representations for D∗ we must

employ the spectral theory of unbounded self-adjoint operators.

Applying the integro-differential operator ∇(−∆)−1 to the cell problem
in equation (A-41), written via (A-36) as ∇·σ∇χj = −∇·Hej, yields

Γ(εI + S)∇χj = −ΓHej.(A-46)

This and Γ∇χj = ∇χj provides the following resolvent formula for ∇χj ,
which is analogous to equation (16),

∇χj = (εI + A)−1gj, gj = −ΓHej.(A-47)

Inserting the resolvent formula for ∇χj in equation (A-47) into (A-44) yields

the following analogue of equation (17)

S
∗
jk = ε

(

δjk + 〈(εI + A)−1gj, (εI + A)−1gk〉×
)

,(A-48)

A
∗
jk = 〈A(εI + A)−1gj , (εI + A)−1gk〉×.

The following corollary of Theorem 1 establishes the Stieltjes integral rep-
resentations equation in (18) for the functional formulas of S

∗
jk and A

∗
jk in

equation (A-48).

Corollary 4 Assume uj ∈ ÃT ⊗ (H
0,2
V ∩L∞(V)) for all j = 1, . . . , d. Then

A = ΓSΓ is a maximal (skew-adjoint) normal operator on the function
space F , hence M = −ıA is self-adjoint on F . Let Q(λ) be the resolution

of the identity in one-to-one correspondence with M. Define the complex
valued function µjk(λ) = 〈Q(λ)gj , gk〉×, j, k = 1, . . . , d, where gj = −ΓHej .
Consider the positive measure µkk and the signed measures Reµjk and Imµjk
associated with µjk(λ), introduced in equations (A-4) and (A-5). Then, for
all 0 < ε < ∞, the functional formulas for S∗

jk and A∗
jk shown in (A-48)

have the Radon–Stieltjes integral representations shown in equation (18).

Proof of Corollary 4. We first establish that the operator M = −ıA
with domain F is self-adjoint, where A = ΓSΓ and S = (−∆)−1T + H.
Let’s first consider the operator −ıΓ[(−∆)−1T]Γ with domain F . Since
Γ : HV → H× is a projection, it acts as the identity on H×. We can therefore

focus on the operator ı[(−∆)−1T]. Since the function spaces F and F differ
only in the characterization of the spatial variable, the one-to-one isometry
H

1,2
V ∼ H× established in Lemma 3 induces the one-to-one isometry F ∼
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F . Consequently, for all ψ,φ ∈ F there exist unique f, h ∈ F such that
ψ = ∇f and φ = ∇h. Therefore, recalling that 〈ψ,φ〉× = 〈ψ·φ〉, by
equation (A-40), we have

〈(−∆)−1Tψ,φ〉× = 〈∇(−∆)−1∂tf ·∇h〉 = 〈(−∆)−1∂tf, h〉1,2.(A-49)

In the proof of Theorem 1 we established that the operator −ı(−∆)−1∂t
with domain F is self-adjoint. This and equation (A-49) establishes that
the operator −ı(−∆)−1T with domain F is self-adjoint.

Now focus on the operator −ıΓHΓ with domain H. Since Γ is a self-
adjoint operator on H× and −ıH is a Hermitian matrix, the operator −ıΓHΓ
is symmetric on H. Recall that equation (A-35) provides the following rep-
resentation of the fluid velocity field u = ∇·H. We now establish that
ΓHΓ is bounded on H when the components uj, j = 1, . . . , d, of u sat-

isfy uj ∈ ÃT ⊗ (H 0,2
V ∩L∞(V)). This, in turn, establishes that the operator

−ıΓHΓ with domain H is self-adjoint.
The one-to-one isometry H

1,2
V ∼ H× established in Lemma 3 induces

the one-to-one isometry H ∼ H. Therefore, for every ψ ∈ H there exists
unique f ∈ H such that ψ = ∇f . Consequently, since the operator Γ =
−∇(−∆)−1∇· acts as the identity on H× and u = ∇·H, equation (A-36)
implies

‖ΓHΓψ‖× = ‖ΓH∇f‖× = ‖∇(−∆)−1[u·∇f ]‖× = ‖(−∆)−1[u·∇f ]‖1,2.

(A-50)

This, Lemma 2, and Lemma 3, in turn, show that ΓHΓ is bounded on H.
We now summarize our findings. We have established that the operator

−ıΓ[(−∆)−1T]Γ with domain F is self-adjoint and the operator −ıΓHΓ
with domain H is self-adjoint when the components uj , j = 1, . . . , d, of u

satisfy uj ∈ ÃT ⊗ (H 0,2
V ∩ L∞(V)). Consequently, the sum of these two

operators M = −ıA, where A = ΓSΓ and S = (−∆)−1T+H, with domain
D(M) = F∩H = F [97] is self-adjoint for uj ∈ ÃT ⊗ (H 0,2

V ∩L∞(V)). Thus
A = ıM is a maximal (skew-adjoint) normal operator on F [97].

In the proof of Theorem 1 we established that the functions F (λ) =
(ε + ıλ)−1 and G(λ) = ıλ(ε+ ıλ)−1 involved in the functional formulas for
S
∗
jk and A

∗
jk in (A-48) are bounded for all 0 < ε < ∞ so that ϕ ∈ D(F )

and ϕ ∈ D(G) for all ϕ ∈ D(M) when 0 < ε < ∞. We now establish
that gj ∈ D(M). By equations (A-35) and (A-36), and the definition of
gj = (−∆)−1uj in (16) we have

gj = −ΓHej = ∇(−∆)−1uj = ∇gj.(A-51)
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In the proof of Theorem 1 we established that gj ∈ F . This, equation (A-51)
and the correspondence F ∼ F via Lemma 3, imply that gj ∈ F . Since F ⊆
D(M) (by construction), the conditions of the spectral theorem are satisfied.
Just as in the remainder of the proof of Theorem 1, this establishes the
integral representations for S

∗
jk and A

∗
jk shown in (18). From equation (A-7),

the mass µ0
jk of the measure µjk is given by

µ0
jk = 〈gj , gk〉× = 〈ΓHej,ΓHek〉× = 〈HTΓHej , ek〉×.(A-52)

Moreover, |µ0
jk| ≤ ‖H‖2

× <∞ for all j, k = 1, . . . , d, where ‖ · ‖× denotes the
operator norm on H. This completes the proof of Corollary 4 �.

We conclude this section with the following lemma, which provides a
precise relationship between the effective parameter σ∗ defined in equa-
tion (A-42) and the effective parameter D

∗ defined in (10). This generalizes
an analogous result given in [29].

Lemma 5 Let the components D
∗
jk and σ∗jk, j, k = 1, . . . , d, of the effective

tensors D
∗ and σ∗ be defined as in equations (4)–(10) and (A-37)–(A-42),

respectively. Then these effective tensors are related by

σ∗ = [D∗]T + 〈H〉.(A-53)

Proof of Lemma 5. Below equation (A-31) we discussed the the or-
thogonal decomposition HV = H× ⊕ H• ⊕ H 0 . Temporally denote F =
ÃT ⊗H× by F× and define the function space F• = ÃT ⊗H• . From equa-
tion (A-41), the vector-valued functions J j = σEj and Ej = ∇χj + ej
satisfy J j ∈ F• and Ej ∈ F× ⊕H 0 while ∇χj ∈ F×, where σ = εI + S and
S = (−∆)−1T + H. By the mutual orthogonality of the Hilbert spaces H×

and H• and the Fubini-Tonelli theorem [34] we have 〈J j·∇χk〉 = 0 for all
j, k = 1, . . . , d (which is equivalent to equation (A-43)). Consequently, from
equations (A-41) and (A-42) we have 〈J j·Ek〉 = 〈J j·ek〉 = σ∗jk.

The definition u = ∇·H in (A-35), periodicity, and integration by parts
yields 〈∇χj·Hek〉 = −〈χj uk〉. From S = (−∆)−1T+H we have Sej = Hej.
Therefore, the skew-symmetry of S, the mean-zero property 〈∇χj〉 = 0, and
the formula D

∗
jk = εδjk + 〈ujχk〉 in (10) yield

σ∗jk = 〈(εI + S)(∇χj + ej)·ek〉(A-54)

= 〈(εI + S)∇χj·ek〉 + 〈(εI + S)ej·ek〉
= −〈∇χj ·Hek〉 + 〈(εI + H)ej·ek〉
= 〈χj uk〉 + εδjk + 〈Hjk〉
= D

∗
kj + 〈Hjk〉,
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which is equivalent to (A-53). This concludes our proof of Lemma 5 �.

Appendix D. An isometric correspondence

In this section we show that the effective parameter problem described in
Theorem 1 is equivalent to the effective parameter problem described in
Corollary 4. The correspondence between the two formulations is one of
isometry, and is summarized by the following theorem.

Theorem 6 The function spaces F and F defined in equations (A-16)
and (A-33) are in one-to-one isometric correspondence. This induces a one-
to-one isometric correspondence between the domains D(A) and D(A) of

the operators A and A defined in equations (15) and (A-44), respectively.
Specifically, F ⊆ D(A) and F ⊆ D(A). Moreover, for every f ∈ F we have
∇f ∈ F and ‖Af‖1,2 = ‖A∇f‖×. Conversely, for each ψ ∈ F there exists
unique f ∈ F such that ψ = ∇f and ‖Aψ ‖× = ‖Af‖1,2. The Radon–

Stieltjes measures underlying the integral representations of Theorem 1 and
Corollary 4 are equal, d〈Q(λ)gj, gk〉1,2 = d〈Q(λ)gj , gk〉×, j, k = 1, . . . , d, up
to null sets of measure zero, where gj = ∇gj. Moreover, the operators A
and A are related by A∇ = ∇A, which implies and is implied by the weak

equality Q(λ)∇ = ∇Q(λ).

Proof of Theorem 6. Recall, we have ∇gj = gj from equation (A-51).
We use the formula u = ∇·H in equation (A-35) and the weak identity
in (A-36) to write the operatorA = (−∆)−1(∂t−u·∇) defined in (15) asA =
(−∆)−1(∂t − ∇·H∇). Using the definition Γ = −∇(−∆)−1∇· in (A-32),

the formula ∇(−∆)−1∂t = (−∆)−1T∇ in (A-40), and the representation
A = (−∆)−1T + ΓH, which holds in the weak sense shown in (A-45), the
operators A and A are related by

∇A = [(−∆)−1T + ΓH]∇ = A∇, ∇gj = gj.(A-55)

Consequently, by applying the differential operator ∇ to both sides of the
formula (ε+A)χj = gj of (16), we obtain the formula (εI + A)∇χj = gj of
equation (A-47).

As discussed in the proof of Corollary 4, the one-to-one isometry H
1,2
V ∼

H× established in Lemma 3 induces the one-to-one isometry F ∼ F . By

construction, in Appendices C.1 and C.2 we established that F ⊆ D(A) and
F ⊆ D(A), respectively. Therefore, the one-to-one isometry between these
subsets F and F of D(A) and D(A), respectively, induces a one-to-one
isometric correspondence between these subsets of the domains D(A) and
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D(A) of the operators A and A, respectively. We will make the relationship
between the domains D(A) and D(A) more precise below. We now show
that this isometric correspondence and the one-to-one correspondence be-
tween a self-adjoint operator and its resolution of the identity, discussed in
the paragraph containing (A-10), establishes that the mathematical frame-
works given in Sections C.1 and C.2 produce equivalent Stieltjes integral
representations for the effective diffusivity tensor D

∗.
In Appendix A we discussed that the domain D(M) of the self-adjoint

operator M comprises those and only those elements f of H such that the
Stieltjes integral

∫

λ2 d‖Q(λ)f‖2
1,2 is convergent, and when f ∈ D(M) the

element Mf is determined by the relations in equation (A-10), with suitable
notational changes. Since A = ıM it is clear that D(A) = D(M). Analogous
statements hold for the self-adjoint operator M.

Let f ∈ F . The relation F ∼ F implies ∇f ∈ F , so from (A-55)

‖Af‖2
1,2 = 〈Af, Af〉1,2 = 〈∇Af ·∇Af〉 = 〈A∇f ·A∇f〉 = ‖A∇f‖2

×.

(A-56)

Consequently, from equation (A-10) we have

∫ ∞

−∞
λ2 d‖Q(λ)f‖2

1,2 =

∫ ∞

−∞
λ2 d‖Q(λ)∇f‖2

×,(A-57)

and the convergence of the integral on the left side of (A-57) implies the
convergence of the integral on the right side of (A-57). This, in turn, implies
∇f ∈ D(A).

Conversely, let ψ ∈ F . From the relation F ∼ F , there exists unique
f ∈ F such that ψ = ∇f . Equation (A-55) then implies

‖Aψ ‖2
× = 〈A∇f,A∇f〉× = 〈∇Af,∇Af〉× = 〈Af, Af〉1,2 = ‖Af‖2

1,2.

(A-58)

Again, equation (A-10) implies that (A-57) holds, and the convergence of the
integral on the right side of (A-57) implies the convergence of the integral
on the left side of (A-57) which, in turn, implies that f ∈ D(A).

In summary, for every f ∈ F we have ∇f ∈ D(A) and ‖Af‖2
1,2 =

‖A∇f‖2
×. Conversely, for every ψ ∈ F , there exists unique f ∈ D(A) such

that ψ = ∇f and ‖Aψ ‖2
× = ‖Af‖2

1,2. This generates a one-to-one isometric
correspondence between the domains D(A) and D(A).

We now show that this result implies, and is implied by the weak equal-
ity ∇Q(λ) = Q(λ)∇, where Q(λ) and Q(λ) are the self-adjoint projection
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operators in one-to-one correspondence with the operators A and A, respec-
tively. From equation (A-57) and the linearity properties of Radon–Stieltjes
integrals [97], we have that

0 =

∫ ∞

−∞
λ2 d(‖Q(λ)f‖2

1,2 − ‖Q(λ)∇f‖2
×)(A-59)

=

∫ ∞

−∞
λ2 d(〈[∇Q(λ)−Q(λ)∇]f ·∇f〉).

Equation (A-59) implies that d‖Q(λ)f‖2
1,2 = d‖Q(λ)∇f‖2

×, up to sets of
measure zero, for all f ∈ F ⇐⇒ ∇f ∈ F , and ∇Q(λ) = Q(λ)∇ in this
weak sense. Conversely, assume that Q(λ) and Q(λ) are the resolutions of
the identity in one-to-one correspondence with the operators A and A and
that ∇Q(λ)f = Q(λ)∇f for every f ∈ F ⇐⇒ ∇f ∈ F . Then equa-
tion (A-59) holds and implies equation (A-57). Equation (A-10) then im-
plies that ‖A∇f ‖2

× = ‖Af‖2
1,2 = ‖∇Af‖2

×, which implies that A∇ = ∇A
in this weak sense. Since gk ∈ D(A) and gk ∈ D(A) with gk = ∇gk,
this result implies that the Radon–Stieltjes measures underlying the inte-
gral representations of Theorem 1 are equal to the measures of Corollary 4,
d〈Q(λ)gj, gk〉1,2 = d〈Q(λ)gj , gk〉×, up to null sets of measure zero, for all
j, k = 1, . . . , d. This concludes our proof of Theorem 6 �.

Appendix E. Discrete integral representations by

eigenfunction expansion

The integral representations of Theorem 1 and Corollary 4 shown in equa-
tion (18), involve a Stieltjes measure µjk, j, k = 1, . . . , d, that has discrete
and continuous components [88, 97]. In this section, we review these prop-
erties of µjk and provide an explicit formula for its discrete component.
Towards this goal, in Section E.1 we summarize some general spectral prop-
erties of the self-adjoint operators M = −ıA and M = −ıA on the function
spaces F and F , which are dense subsets of the associated Hilbert spaces
H and H, given in equations (A-16) and (A-33), respectively. We will focus
on the operator M and the Hilbert space H , as the discussion regarding M
and H is analogous. In Section E.2 we refine the result in Section E.1, ap-
plying it to the space of fluid velocity fields that have finite (trigonometric)
Fourier series.

E.1. General methods

Recall from equation (A-10) that the domain D(M) of the self-adjoint
operator M comprises those and only those elements f ∈ H such that
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‖Mf‖2
1,2 =

∫∞
−∞ λ2 d‖Q(λ)f‖2

1,2 < ∞, where Q(λ) is the resolution of the
identity in one-to-one correspondence with M [97]. The integration is over
the spectrum Σ of M , which has continuous Σcont and discrete (pure-point)
Σpp components, Σ = Σcont ∪ Σpp [88, 97]. We first focus on the discrete
spectrum Σpp.

The f ∈ H , f 6= 0, satisfying Mf = λf with λ ∈ Σpp are called eigen-
functions and λ is the corresponding eigenvalue. Since M is self-adjoint, λ
is real-valued [97]. The span of all eigenfunctions is a countable subspace of
H [97]. Accordingly, we will denote the eigenfunctions by ϕl, l = 1, 2, 3, . . .,
with corresponding eigenvalues λl. Eigenfunctions corresponding to distinct
eigenvalues are orthogonal and can be normalized to be orthonormal [97],
i.e. if Mϕl = λlϕl and Mϕm = λmϕm for λl 6= λm, then 〈ϕm, ϕn〉1,2 = δmn.
There can be more than one eigenfunction associated with a particular eigen-
value. However, they are linearly independent and, without loss of general-
ity, can be taken to be orthonormal [97]. Consequently, associated with each
eigenfunction ϕl is a closed linear manifold, which we denote by M(ϕl).
When l 6= m, M(ϕl) and M(ϕm) are mutually orthogonal.

Set E = ⊕∞
l=1M(ϕl), M = E ⊕ {0}, and let N = M⊥ be the orthogonal

complement of M in H . There exists a countable orthonormal basis {ψm}
for N [97]. Denote by N (ψm) the closed linear manifolds associated with
each basis element ψm of N .

All the properties of M and N that are relevant here have been collected
in the following theorem [97], which provides a natural decomposition of the
Hilbert space H in terms of the mutually orthogonal, closed linear manifolds
M and N , and leads to a decomposition of the measure µkk into its discrete
and continuous components.

Theorem 7 ([97] pages 189 and 247) One of the three cases must oc-
cur:

1. E = ∅ and M = {0} has dimension zero; N = H has countably infi-
nite dimension. There exists an orthonormal set {ψm}, m = 1, 2, 3, . . .,
and mutually orthogonal, closed linear manifolds N (ψm) which deter-
mine N according to N = ⊕∞

m=1N (ψm).
2. E contains an incomplete orthonormal set {ϕl} so that both M and

N are proper subsets of H , N having countably infinite dimension
and M having finite or countably infinite dimension. There exists an
orthonormal set {ψm} in N . The closed linear manifolds M(ϕl) and
N (ψm) are mutually orthogonal and together determine H according
to

M = ⊕∞
l=1M(ϕl), N = ⊕∞

m=1N (ψm), H = M⊕N .
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3. E contains a complete orthonormal set {ϕl}; M = H has countably

infinite dimension; N = {0} has zero dimension. In this case, the
closed linear manifolds M(ϕl) are mutually orthogonal and together

determine M according to M = ⊕∞
l=1M(ϕl).

In each of these three cases, the closed linear manifolds M and N reduce

M , i.e.,M leaves both M and N invariant in the sense that if f ∈ D(M) and
f ∈ N then Mf ∈ N , and similarly for M. In cases (2) and (3), a necessary

and sufficient condition that an element ϕl ∈ H is an eigenfunction with

eigenvalue λl, is that the function ‖Q(λ)ϕl‖2
1,2 is constant on each of the

intervals −∞ < λ < λl and λl < λ < ∞ [97]. Moreover, a necessary and
sufficient condition that f ∈ M, f 6= 0, is

f =

∞
∑

l=1

〈f, ϕl〉1,2 ϕl, ‖f‖2
1,2 =

∞
∑

l=1

|〈f, ϕl〉1,2|2 6= 0,(A-60)

and similarly for f ∈ N with orthonormal set {ψm}. In cases (1) and (2),

a necessary and sufficient condition that ψ 6= 0 be an element of N is that

‖Q(λ)ψ‖2
1,2 be a continuous function of λ not identically zero [97].

Let f be an arbitrary element of H , and g and h be its (unique [34])

projections on M and N , respectively, then the equation

‖Q(λ)f‖2
1,2 = ‖Q(λ)g‖2

1,2 + ‖Q(λ)h‖2
1,2,(A-61)

d‖Q(λ)f‖2
1,2 = d‖Q(λ)g‖2

1,2 + d‖Q(λ)h‖2
1,2

is valid and provides the standard decomposition of the monotone function

‖Q(λ)f‖2
1,2 into its discontinuous and continuous monotone components, as

well as the decomposition of the measure d‖Q(λ)f‖2
1,2 into its discrete and

continuous components.

We now use the mathematical framework summarized in Theorem 7 to
provide explicit formulas for the discrete parts of the integral representa-

tions for S∗
jk and A∗

jk, shown in equation (18). Recall the cell problem in

equation (9) written as in (A-17), (ε +A)χj = gj. Here, A = ıM is defined

in (15), gj = (−∆)−1uj , and uj is the jth component of the velocity field
u, j = 1, . . . , d. Moreover, by Theorem 1 we have χj , gj ∈ F ⊂ H and

F ⊆ D(A). We stress that the arguments presented here are more subtle

than those typically used for bounded operators in Hilbert space. The reason

is a bounded linear operator typically commutes with all the infinite sums
encountered here, by the dominated convergence theorem [34]. However, for
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the operator A, we must instead rely on general principles of unbounded

linear operators in Hilbert space.

Let χ̃j and χ⊥j be the (unique) projections of χj on M and N , respec-

tively, with χj = χ̃j + χ⊥j and similarly for gj. Since A = ıM is a linear

operator, we have Aχj = Aχ̃j +Aχ⊥j . From Theorem 7, the linear manifolds

M and N both reduce A, which implies Aχ̃j ∈ M and Aχ⊥j ∈ N . From

equation (A-60) we then have Aχ̃j =
∑

l〈Aχ̃j, ϕl〉1,2 ϕl and

χj =
∑

l

〈χ̃j , ϕl〉1,2ϕl + χ⊥j , Aχj =
∑

l

ıλl〈χ̃j, ϕl〉1,2 ϕl +Aχ⊥j ,(A-62)

where 〈Aχ̃j , ϕl〉1,2 = −〈χ̃j, Aϕl〉1,2 = −〈χ̃j , ıλlϕl〉1,2 = ıλl〈χ̃j, ϕl〉1,2 was

used. From the cell problem (ε+A)χj = gj we therefore have

ε
∑

l

〈χ̃j, ϕl〉1,2 ϕl +
∑

l

ıλl〈χ̃j, ϕl〉1,2ϕl + (ε+A)χ⊥j = g̃j + g⊥j ,(A-63)

where (ε + A)χ⊥j , g
⊥
j ∈ N . Of course, each f ∈ N can be represented [97]

as f =
∑

m〈f, ψm〉1,2 ψm, where {ψm} is the orthonormal set defined in

Theorem 7, though we have suppressed this notation in the above equations

for simplicity. By the mutual orthogonality of the linear manifolds M and

N , the completeness of the set {ϕl} ∪ {ψm}, and Parseval’s identity [90],

taking the inner-product of both sides of equation (A-63) with ϕn yields

〈χ̃j, ϕn〉1,2 =
〈g̃j, ϕn〉1,2
ε + ıλn

, 0 < ε <∞.(A-64)

Recall the functional representations S∗
jk = ε(δjk+〈χj , χk〉1,2) and A∗

jk =

〈Aχj , χk〉1,2, j, k = 1, . . . , d, in equation (15). Writing χj = χ̃j + χ⊥j and

Aχj = Aχ̃j + Aχ⊥j , the mutual orthogonality of the linear manifolds M
and N , which both reduce A, implies 〈χj, χk〉1,2 = 〈χ̃j, χ̃k〉1,2 + 〈χ⊥j , χ⊥k 〉1,2
and 〈Aχj, χk〉1,2 = 〈Aχ̃j , χ̃k〉1,2 + 〈Aχ⊥j , χ⊥k 〉1,2. Consequently, from equa-

tions (A-62) and (A-64), the completeness of the set {ϕl} ∪ {ψm}, and Par-

seval’s identity [90], we have
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〈χj, χk〉1,2 − 〈χ⊥j , χ⊥k 〉1,2 =
∑

l

〈χ̃j, ϕl〉1,2 〈χ̃k, ϕl〉1,2(A-65)

=
∑

l

〈g̃j, ϕl〉1,2 〈g̃k, ϕl〉1,2
ε2 + λ2

l

〈Aχj, χk〉1,2 − 〈Aχ⊥j , χ⊥k 〉1,2 =
∑

l

ıλl 〈χ̃j , ϕl〉1,2 〈χ̃k, ϕl〉1,2

=
∑

l

ıλl 〈g̃j, ϕl〉1,2 〈g̃k, ϕl〉1,2
ε2 + λ2

l

.

Since χj and Aχj are real-valued, just as in equation (A-9), we have

〈χj, χk〉1,2 − 〈χ⊥j , χ⊥k 〉1,2 =
∑

l

Re [〈g̃j, ϕl〉1,2 〈g̃k, ϕl〉1,2]
ε2 + λ2

l

(A-66)

〈Aχj, χk〉1,2 − 〈Aχ⊥j , χ⊥k 〉1,2 = −
∑

l

λl Im [〈g̃j, ϕl〉1,2 〈g̃k, ϕl〉1,2]
ε2 + λ2

l

.

The right sides of the formulas in equation (A-66) are Radon–Stieltjes inte-
grals associated with a discrete measure.

The terms 〈χ⊥j , χ⊥k 〉1,2 and 〈Aχ⊥j , χ⊥k 〉1,2 also have Radon–Stieltjes inte-

gral representations involving the continuous measure d〈Q(λ)g⊥j , g
⊥
k 〉1,2 via

equation (18). We note that from the decomposition gj = g̃j + g⊥j , we have

〈g̃j, ϕl〉1,2 = 〈gj, ϕl〉1,2. A useful property of the inner-product 〈gj, ϕl〉1,2 and
the form of gj = (−∆)−1uj is (see equation (A-21))

〈gj, ϕl〉1,2 = 〈uj, ϕl〉,(A-67)

where 〈·, ·〉 is the HT V–inner-product defined below equation (A-14). This

property is used in Section E.2 to calculate S
∗
jk and A

∗
jk for a large class of

fluid velocity fields.

E.2. Trigonometric Fourier methods

In this section we refine the results shown in equations (A-66) and (A-67),

applying them to the class of fluid velocity fields u that have components uj,
j = 1, . . . , d, which are representable by finite trigonometric Fourier series.
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For the sake of notational simplicity and correspondence with Sections 3
and 4 we set T × V = [0, 2π]d+1. Let u ∈ UN , where UN = ⊗d

j=1 U j
N and

U j
N =

{

fj

∣

∣

∣

∣

fj =
∑

(`,k)∈Z
d+1

N

b j`,k φ`,k

}

, b j`,k =
〈

fj , φ`,k
〉

.(A-68)

Here, Z
n
N = {q ∈ Z

n | − N ≤ qi ≤ N, i = 1, . . . , n, N ∈ N}, 〈·, ·〉 de-
notes the sesquilinear HT V–inner-product defined below equation (A-14)
and φ`,k(t,x) = exp[ı(`t+ k·x)]. In the discussion following the statement
of Theorem 1 we established that 〈uj〉V = 0, which implies 〈uj〉 = 0, but

it is not necessary that 〈uj〉T = 0. Therefore, the sum uj =
∑

`,k b
j
`,kφ`,k

runs over the index set IN = {(`, k) ∈ Z
d+1
N | k 6= 0} when 〈uj〉T 6= 0

and IN = {(`, k) ∈ Z
d+1
N | ` 6= 0, k 6= 0} when 〈uj〉T = 0 as well. Our

class UN of fluid velocity fields is broad, as {φ`,k | (`, k) ∈ Z
d+1} is a com-

plete orthonormal basis for HT V [34], implying the set ∪N<∞ UN is dense
in HT V [90].

Consider the eigenvalue problem Aϕl = ıλlϕl, λl ∈ R, l ∈ N, involving
the integro-differential operator A = (−∆)−1(∂t − u·∇) defined in (15)

(−∆)−1(∂t − u·∇)ϕl = ıλlϕl.(A-69)

From ϕl ∈ F , F = Ã 0
T ⊗ H

1,2
V , equation (A-22), and the definition of Ã 0

T

in (A-13), we have (−∆)−1∂tϕl ∈ HT ⊗ H
1,2
V . By Lemma 2 and ϕl ∈ F

we have (−∆)−1[u·∇]ϕl ∈ F . Consequently, both of these functions are
members of the Hilbert space HT V . Since {φ`,k | (`, k) ∈ Zd+1} is a complete
orthonormal basis for HT V [34], we have for (`, k) ∈ Z

d+1

ϕl =
∑

`, k

〈ϕl, φ`,k〉φ`,k , (−∆)−1∂tϕl =
∑

`,k

〈

(−∆)−1∂tϕl, φ`,k
〉

φ`, k ,

(A-70)

(−∆)−1[u·∇]ϕl =
∑

`,k

〈

(−∆)−1[u·∇]ϕl, φ`,k
〉

φ`, k .

We now identify the index set for the series in equation (A-70). In the
discussion following the statement of Theorem 1 we established the domain
of the operator (−∆)−1 is contained in the space HV\Cd of V–periodic
functions that are also spatially mean-zero. Moreover, when f is in this
domain then (−∆)−1f is also spatially mean-zero, 〈(−∆)−1f〉V = 0. Since
ϕl ∈ F it follows that 〈ϕl〉V = 0, thus 〈(−∆)−1∂tϕl〉V = ∂t〈(−∆)−1ϕl〉V = 0
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(see Theorem 2.27 in [34]). Since, ∇·u = 0 (weakly), we have u·∇ϕl =
∇·(uϕl). Therefore, by the divergence theorem [63] and spatial periodicity,
the function u·∇ϕl is spatially mean-zero, thus 〈(−∆)−1[u·∇]ϕl〉V = 0.
Consequently, the series in equation (A-70) run over the index set I =
{(`, k) ∈ Zd+1 | k 6= 0}.

Since the orthonormal basis {φ`,k | (`, k) ∈ Z
d+1} is complete in HT V ,

the Fourier series representation of Aϕl ∈ HT V converges in norm topology
no matter how the series is ordered [34]. Moreover, by the completeness of the
basis

∑

`,k c`,k φ`,k = 0 only if c`,k = 0 for all (`, k) ∈ I [34]. Consequently,
plugging the formulas in (A-70) into equation (A-69) yields

〈

(−∆)−1∂tϕl, φ`,k
〉

−
〈

(−∆)−1[u·∇]ϕl, φ`,k
〉

− ıλl 〈ϕl, φ`,k〉 = 0.(A-71)

It is clear that ∂tφ`,k = ı` φ`,k and ∇φ`,k = ıkφ`,k. Since, for all t ∈ T ,
φ`,k(t, ·) ∈ C∞(V) and −∆φ`, k = |k|2φ`, k, applying (−∆)−1 to both sides
of this formula yields (−∆)−1φ`,k = |k|−2φ`,k (see Theorem 1 in Section
4.2 of [63]). In Theorem 1 of Appendix C.1 we established that the operator
−ı(−∆)−1∂t with domain F is self-adjoint and the operator −ı(−∆)−1[u·∇]
with domain H is self-adjoint when uj ∈ ÃT ⊗ (H 0,2

V ∩ L∞(V)) for all
j = 1, . . . , d, which is clearly satisfied for u ∈ UN . Consequently, since the
operators (−∆)−1 and ∂t are symmetric and skew-adjoint in the HT V–inner-
product, respectively, we have

〈

(−∆)−1∂tϕl, φ`,k
〉

=
〈

ϕl,−ı`|k|−2φ`,k
〉

,= ı`|k|−2 〈ϕl, φ`,k〉 .(A-72)

Moreover, the calculation in (A-29) shows the operator [u·∇] is skew-adjoint
in the HT V–inner-product. Therefore, denoting uj =

∑

`′,k′ b
j
`′,k′φ`′,k′ and

b`′,k′ =
(

b 1
`′,k′ , . . . , b d`′,k′

)

, we have

〈

(−∆)−1[u·∇]ϕl, φ`,k
〉

=
〈

ϕl,−[u· ık]|k|−2φ`,k
〉

(A-73)

=
∑

`′,k′

ı[b`′,k′ ·k]|k|−2
〈

ϕl, φ`+`′,k+k
′

〉

,

where φ`, k φ`′,k′ = φ`+`′,k+k
′ , (`′ , k′) ∈ IN , and (` , k) ∈ I . Inserting equa-

tions (A-72) and (A-73) into equation (A-71), removing the common factor
of ı, and denoting al`,k = 〈ϕl, φ`,k〉 yields the following Fourier representa-
tion of the eigenvalue problem Aϕl = ıλlϕl

|k|−2
(

` al`,k −
∑

`′,k′

[b`′,k′·k] al`+`′,k+k
′

)

= λl a
l
`,k.(A-74)
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Equation (A-74) is an infinite system of algebraic equations that determines
the eigenvalues λl and Fourier coefficients al`,k of the eigenfunctions ϕl of
the self-adjoint operator M = −ıA.

The Fourier representation of the spectral weights 〈ϕl, gj〉1,2 〈ϕl, gk〉1,2
in (A-66) are determined as follows. Since {φ`,k | (`, k) ∈ Z

d+1} is a complete
orthonormal basis for HT V , equations (A-67), (A-68), (A-70), and Parseval’s
identity [90] imply

〈gj, ϕl〉1,2 = 〈uj, ϕl〉 =
∑

`′,k′

b j`′,k′ al`′,k′ , (`′ , k′) ∈ IN(A-75)

Parseval’s identity [90] also implies the Fourier representation of the orthog-
onality relation 〈∇ϕl·∇ϕm〉 = δlm is

δlm = 〈∇ϕl·∇ϕm〉 =
∑

`,k

|k|2 a l`, k am`,k , (`, k) ∈ I.(A-76)

Truncating the index set for (`, k) in equation (A-74) defines an eigen-
value problem C−1Bal = λlal, involving a diagonal matrix C with values |k|2
along its diagonal and a matrix B that is Hermitian, as the fluid velocity field
u is real-valued which implies the terms b`′,k′ in its Fourier series come in
complex conjugate pairs. This can be written as the generalized eigenvalue
problem Bal = λlCal. However, in general, |k|2 al`,k does not have a finite
limit as |k| → ∞. This generalized eigenvalue problem can be rewritten as
the standard eigenvalue problem [C−1/2BC−1/2][C1/2al] = λl[C

1/2al], which
is defined even for the infinite system via equation (A-76). This standard
eigenvalue problem is used in Sections 3 and 4 to compute the discrete part
of the spectral measure and integral representation of the effective diffusivity
for the velocity field in (1).
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Figure 1: Computations of spectral measures and effective diffusivities for
steady and dynamic flows. The spectral measure µ11 associated with the flow
in (1) are displayed with increasing λ–axis magnifications from left to right
for (a) the steady setting and (b) the dynamic setting with the associated
effective diffusivity S∗

11 displayed in (c) and (d), respectively. In the steady
case (a), the limit point of the measure near λ = 0 has small measure
mass with m11 . 10−30, leading to the asymptotic behavior S∗

11 ∼ ε1/2 for
ε � 1, displayed in (c). In the dynamic case (b), the significant measure

mass m11 & 10−10 near λ = 0 leads to the asymptotic behavior S
∗
11 ∼ 1 for

ε� 1, displayed in (d).


