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Abstract 

In this report, we have mainly developed an abstract framework of k bit (t,n) secret sharing framework for 
cloud storage. Such framework is clean and it can be implemented. A successful implementation of the 
framework would provide users with protection when the system is under the attack on its confidentiality, 
integrity and reliability. Furthermore, such system has its own encryption by using permutations and tailor 
made error detection, location and data rescue.  

We make use of Lagrange polynomials and take the advantages of the algebraic property “t distinct points 
on the plane can uniquely determine a polynomial function of degree t-1” to design a k bit (t,n) -secret 
sharing distributed storage. We employ the set with unique factorization property (UFP) so that we simply 
need to calculate the y intercept of a Lagrange polynomial and then use a look up table to recover a secret. 
Moreover, the set which has minimum UFP would help us to design storage with smallest containers. 

In addition to the algebraic methods, we can utilize the geometric facts that three non collinear points 
determine a unique circle and four non coplanar points determine a unique sphere to construct k bit (3,n)  
and k bit (4,n)  secret sharing storage respectively. To generalize to arbitrary case, it is straight forward if 
we have defined the Haar measure on the higher dimensional unit sphere. 

The last method is an application of Chinese Remainder Theorem (CRT) and we have designed k bit (t,n) 
secret sharing distributed storage and one of the designs can produce containers with the half size of the 
original secret. However, such k is no longer unrestricted and it has to be chosen from an interval. 

We have developed a C program for implementing both algebraic, geometric k bit (3,n)  secret sharing 
distributed storages as well as the CRT method. The performances of both algebraic and geometric designs 
are satisfactory in term of processing time and compressed container size. The container size is even half of 
the size of the original secret in the CRT case and it is also very speedy. 

 

1. Introduction 

The world keeps evolving, so as our life. Alvin Toffler, an America futurist, described in 
his famous book The Third Wave [1], that human progress could be divided into three 
‘waves’: The Agricultural Revolution constitutes the First wave; the Industrial 
Revolution, the Second Wave and the Third Wave, which is a different world we have 
just entered, comprises the Information Age based on the revolution brought by 
Computer Technology. To review from the past, IBM developed the mainframe computer 
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2. Literature Revision of  (t,n)-Secret Sharing 

Secret sharing [1] is currently a very popular topic which is a method of distributing a 
secret, among a group of users, requiring a cooperative effort to determine the secret. 
Secret sharing schemes are designed with specific parameters that determine the number 
of shares needed to uncover the secret, and the overall number of shares in the scheme. 
The ultimate goal of the scheme is to divide the secret being hidden into n  shares, but 
any subset of t shares can be used together to solve for the value of the secret. 
Additionally, any subset of 1t −  shares will prevent the secret from being reconstructed 
[2]. This is defined as a ( , )t n  threshold scheme, meaning that the secret is dispersed into 
n  overall pieces, with any t  pieces being able to recreate the original secret. We are 
interested in (3, )n -threshold scheme in this research. 

As in [3], we would like to consider the following problem: 

4 scientists are working on a secret project. They wish to lock up  the  documents  in  a  cabinet  so  that  
the  cabinet  can  be  opened  if and  only  if  3  or  more  of  the  scientists  are  present.  What  is  the 
smallest  number  of  locks  needed?  What  is  the  smallest  number  of keys  to  the  locks  each  scientist  
must carry? 

It is not hard to show that the minimal solution for this (3, 4)  problem uses 4 locks and 2 
keys per scientist. However, if we increase the number of scientist to 11 and at least 6 of 
the scientists have to present in order to open the cabinet. We can show that the minimal 
solution 462 locks and 252 keys per scientist. It is clearly not practical. Moreover, the 
numbers will increase exponentially as the number of scientist increases. Therefore, other 
schemes which are more innovative have been proposed. 

2.1 Shamir's Scheme  

In the Shamir’s scheme [3], [4], any t  out of n  shares may be used to recover the secret. 
The method is based on the fact that you can fit a unique polynomial of degree ( 1)t −  to 
any set of t  points that lie on the polynomial. The method is to create a polynomial of 
degree 1t −  with the secret as the first coefficient and the remaining coefficients picked 
at random. Next find n points on the curve of the polynomial and give one to each of the 
shares. When at least t  out of the n  shares reveal their points, there is sufficient 
information to fit a ( 1)t −  th degree polynomial to them, the first coefficient being the 
secret. 
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Example 2.1.1 (A (3,6)-Shamir’s scheme) 

Suppose that our secret 1234S = . We obtain 2  numbers 166 and 94 randomly. Define a 
quadratic function  

 2 2( ) 166 94 1234 166 94 .f x S x x x x= + + = + +  

We construct 6  points form f  as below: 

 (1,1494), (2,1942), (3, 2578), (4,3402), (5, 4414), (6,5614).  

In order to reconstruct the secret S , any three of the above points will be enough. Let us 
consider 0 0 1 1( , ) (2,1942), ( , ) (4,3402)x y x y= =  and 2 2( , ) (5, 4414).x y =  We will compute 
Lagrange basis polynomials: 

21 1
0

0 1 0 1

20 2
1

1 0 1 2

20 1
2

2 0 2 1

1 3 10
6 2 3

1 7 5 .
2 2
1 82
3 3

x x x xL x x
x x x x
x x x xL x x
x x x x
x x x xL x x
x x x x

− −
= = − +

− −

− − −
= = + −

− −
− −

= = − +
− −

 

Therefore,
2

2

0
( ) ( ) 1234 166 94j j

j
f x y L x x x

=

= = + +∑ . Hence (0)S f= . 

2.2 Blakley's Scheme 

Blakley's secret sharing scheme [5] is geometric in nature. For a ( , )t n  secret sharing, we 
use the fact that any t  nonparallel ( 1)t − -dimensional hyperplanes intersect at a specific 
point. So suppose the secret S  is a point in the t  dimensional space. Just create n  
nonparallel ( 1)t − -dimensional hyperplanes as keys. Then any t  of them will uniquely 
determine a point which is the secret point.  

 

Example 2.2.1 (A (2,6) Blakley's secret sharing scheme) 

Let S=(0,0). We can create a (2,6) Blakley's secret sharing. Make 6  keys for each share 
as below: 

1 2 3 4 5 6, 2 , 3 , 4 , 5 , 6K x K x K x K x K x K x= = = = = =  
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For any iK  and jK , we are able to solve the intercept point out which is the secret point 

(0,0) . 

 

2.3 Using the Chinese Remainder Theorem 

We would like to only illustrate the idea by an example. It is based on the Asmuth-
Bloom's Scheme [6]. Let 3t =  and 4n = . Let 0 1 2 33, 11, 13, 17m m m m= = = =  and 

4 19m = . Let the secret 2S =  . Pick 51α =  according to Asmuth-Bloom's Scheme. Then 

2 51 3 155+ × = . Assign ( ),155(mod )i im m  to the i  th share for 1, 2,3, 4i = . To recover 

the secret, we have one possible 3 of the shares for example, (11,1), (13,12)  and (17, 2) . 
Then apply to solve the system of equations  

 
( )
( )
( )

1 mod11
12 mod13
2 mod17

x
x
x

=
=
=

. 

[i.e. Consider the solutions of the following systems of equations 

( )
( )
( )

( )
( )
( )

( )
( )
( )

1 mod11 0 mod11 0 mod11
0 mod13 , 1 mod13 , 0 mod13
0 mod17 0 mod17 1 mod17

x x x
x x x
x x x

= = =
= = =
= = =

 

which are 221, 1496 and 715 respectively]. So the solution is 
1 221 12 1496 2 715 19603× + × + × =  and 19603 155(mod11 13 17)= × × . Finally, 

2 155(mod 3)S = = . 

It is worthy to note that the above method normally cannot be applied directly to practical 
problems. Further development, modification and design are needed to be made so that a 
real world problem can be solved. 
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3. Framework of k bit t Secret Sharing Distributed Storage  

In this Chapter, we will introduce the various notions related to proposed framework. 
Besides, we will give simplified examples in order to illustrate the ideas. The algorithms 
of generating containers and recovering the original secret are also given. A tailor made 
encryption for container is given by the end of the chapter. 

3.1 Secret Shareable Pairs 

Let k  be the set of all binary strings with length k , i.e. 

1 2{ : 0 or 1, 1,2, , }k k i i k= = =ε ε ε ε  

Definition 3.1.1: Let 3t ≥  be an integer and letΛ  be a family of subsets of d  such that  

if   

a) 1 2,C C ∈Λ  and  1 2C C t∩ ≥ , then 1 2C C= ; 

b) t  is the smallest integer which has property a).  
c) Let 1 2, , , tp p p C∈  and C∈Λ . There is a method Ψ  (or an algorithm) 

enable us to obtain C  from the given t  points. 

Then Λ  is t -secret shareable.  

Notation: We would like to denote the set of all the graphs of polynomials of degree 1t −  
by tΛ . Hence, 3Λ  is the set of all the graphs of quadratic functions. 

Example 3.1.2:  Recall that a classical algebra result, two quadratic functions agree with 
each other at three distinct points if and only if they are equal. Then 3Λ  has properties a) 

and b) in the definition 3.1.1. Assume that 1 1( , )x y , 2 2( , )x y  and 3 3( , )x y . Let  

2 3 1 3 1 2
1 2 3

1 2 1 3 2 1 2 3 3 1 3 2

( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )

x x x x x x x x x x x xL x y y y
x x x x x x x x x x x x
− − − − − −

= + +
− − − − − −

. 

Then 1 1 2 2( ) , ( )L x y L x y= =  and 3 3( )L x y= . Hence, 1 1( , )x y , 2 2( , )x y  and 3 3( , )x y  belong 

to the graph of ( )L x  and 3Λ  is 3 -secret shareable. 

Let : kΦ →Λ  be an one to one onto function from k  to Λ . Then it is called an 
encoding function and the ordered pair ( , )Λ Φ  is called a k bit t-secret shareable pair. 
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3.2  k bit (t,n) Secret Sharing Distributed Storage framework 

Assume that the ordered pair ( , )Λ Φ  is a k bit t-secret shareable pair and n t≥  is an 
integer. 

Definition 3.2.1: Let 1 2, , , nπ π π  be a sequence of functions from Λ  to d  such that 
for , ' 1, 2, ,j j n=  and C∈Λ , 

1. ( )j C Cπ ∈ ; 

2. '( ) ( )j jC Cπ π=  if and only if 'j j= . 

Then 1 2, , , nπ π π  is said to be a sequence of choice functions of Λ . 

Example 3.2.2: Consider kΛ andC∈Λ  such that C  is a graph of a polynomial ( )P x . We 
define 

( ) ( , ( ))j C j P jπ =  

for 1,2, ,j n= . 

Let Mk=  for some positive integer M . Then we call s  is a secret if  1 2s = ∈ε ε ε . 
Therefore, s  can also be written as  

1 2 Ms s s s=  

where ( 1) 1 ( 1) 2i i k i k iks − + − += ε ε ε   and 1,2, ,i M= . 

Note that it is sometime useful if we index is  as below 

1 2
i i i

kis = ε ε ε . 

and  so 

1 2 1
1 1 1 2 2

2 1 1
2

2 2 .Mi i i
k k

M M
k ks = ε ε ε ε ε ε ε ε ε ε ε ε  

3.2.1 Creating Containers from a Secret 

Given a secret 1 2 Ms s s s= ∈ , a container array [ ]s  is an M  by n  array of points in
d  such that  
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[ ] ( ( ))ij j is sπ= Φ  

for 1,2, ,i M=  and 1,2, ,j n= . The j th container [ ] js  of the secret s  is the j  

column of the container array [ ]s  where 1,2, ,j n= . 

Example 3.2.3:  if 100111s = , then 1 2 310, 01, 11s s s= = = . Then 

( )( ) ( )( ) ( )
( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

1

2

3

10 , ( 2)( 1)

01 , ( 1)( 3)

11 , ( 2)( 3)

j j

j j

j j

s j j j

s j j j

s j j j

π π

π π

π π

Φ = Φ = − −

Φ = Φ = − −

Φ = Φ = − −

 

where 1,2,3.j =  So the container array of the secret s  is  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1,0 2,0 3,2 4,6 5,12
[ ] 1,0 2,3 3,0 4,3 5,8

1,2 2,0 3,0 4,2 5,6
s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦ . 

Finally, we can obtain 5 containers  

( )
( )
( )

( )
( )
( )

( )
( )
( )

( )
( )
( )

( )
( )
( )

1 2 3 4 5

1,0 2,0 3,2 4,6 5,12
[ ] 1,0 ,[ ] 2,3 ,[ ] 3,0 ,[ ] 4,3 ,[ ] 5,8

1,2 2,0 3,0 4,2 5,6
s s s s s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 

Remark: The size of containers depends on the parameter k. However, it is not always the 

case that the bigger k, the smaller the size of containers would be theatrically. 

3.2.2 Recover the Secret from t Containers 

To recover the secret 1 2 1 2 Ms s s s= =ε ε ε , we have to have at least  t  distinct 
containers. By the property c) of definition 3.3.1, without loss of generality, we can 
assume that they are 1 2[ ] ,[ ] , ,[ ]ts s s . First of all, we form the M  by t  collector array  

[ ] [ ]1 212
[ ] ,[ ] , [ ],[ ] i

jtt
s s ss p= = . 

The i th row of the collector array consists of t  distinct points 1 2, , ,i i i
tp p p  of ( )isΦ . By 

the properties a) and  c) of Definition 3.1.1, we have  
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1 2( ) ( , , , )i i i
i ts p p pΦ = Ψ  

and  

1
1 2( , , , )( )i i i

i ts p p p−= Φ Ψ  

for 1, 2, ,i M= . 

Finally, we recover the secret 

1 2

1 1 1 1 1 2 2 2 1
1 2 1 2 1 2( ( , , , )) ( ( , , , )) ( ( , , , )).

M

n n n
t t t

s s s s

p p p p p p p p p− − −

=

=Φ Ψ Φ Ψ Φ Ψ

 

Moreover, from property b) of Definition 3.1.1, the number of distinct containers needed 
to recover the secret s  should be at least t . 

3.2.3 Algorithms of k bit (t,n) Secret Sharing Distributed Storage 

Assume a ( , )Λ Φ  is a k bit t-secret shareable pair, n t≥  is an integer and 1 2, , , nπ π π  is 
a sequence of choice functions of Λ . 

Algorithm for Distributed Storage 

Step 1. Input a secret 1 2 Ms s s s= ∈ . 

 // Mk= // 

Step 2. Form the container array [ ]s  by  

[ ] ( ( ))ij j is sπ= Φ  

 where 1,2, ,i M=  and 1,2, ,j n= . 

Step 3. Store the i th container [ ]is  into the i th storage. 

Step 4. End 

 

Algorithm for (t,n) Secret Sharing Recovery 

Step 1. Get t  containers 
1 2

[ ] ,[ ] , ,[ ]
tj j js s s  from t  distinct storages 

Step 2 Form the collector array [ ]
221 1

[ ] ,[ ] , ,[ ]
tt

j j jj jj
s ss s⎡ ⎤= ⎣ ⎦ . 

S20

Page - 450



Shing-Tung Yau High School Applied Mathematical Sciences Award 2013 
 

15 
 

Step 3. For 1, 2, ,i M= , recover is  from the i th row of the collector array 

 as in section 3.2.2 

Step 4 Output 1 2 Mss s s=  . 

Step 5 END 

 

  3.3 Permutations and encryptions 

Definition 3.3.1: Let σ  be an one to one onto function from {1,2,3, , }n . Then we call 
the function σ  a permutation. The set of all the permutations on {1,2,3, , }n  is denoted 
by nS . Let id  be a permutation in nS such that id  maps every element of {1,2,3, , }n to 

itself. For any nSσ ∈ , we define 0 idσ =  and 1j jσ σ σ−= .  

Given a permutation nSσ ∈  and M n×  container array [ ]s  of a secret s ,  we define σ  

encrypted container array [ ]s σ  to be M n×  array of points in d  such that 

[ ] [ ] ( )ij i j
s sσ

σ
=  

for 1, 2, ,i M=  and 1,2, ,j n= . The i  th column of  [ ]s σ  is said to be the i th σ  

encrypted container denoted by [ ]is σ .  

Let 2 m n≤ ≤ . A permutation 'σ  in nS , denoted by 1 2( , , , )mn n n , is called a cycle if 

there exist 1 2, , , mn n n  are distinct numbers in {1,2,3, , }n such that  

mod ( 1)( )
mr rn nσ +′ =  

for 1, 2, ,r m=  and 'σ  maps other element to itself. The number m  is the length of 'σ  

denoted by 'σ  .  

Example 3.3.2: Let 5' (2,5,1) Sσ = ∈ . Then '(2) 5, '(5) 1, '(1) 2, '(3) 3σ σ σ σ= = = =  and 
'(4) 4σ = . The length of (2,5,1)  is now equal to3 . 

The period of a permutation σ  is the smallest positive integer T  such that Tσ σ= . 
Obviously, the period of a circle 1 2' ( , , , )mn n nσ =  is its length ' mσ = . Since a 
permutation σ  can be factorized uniquely into a product of cycles, we have the period of 
σ  is the L. C. M. of the lengths of the cycles in the product.  It is also known as Ruffini 
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Theorem (1799) [1]. We would like to use a permutation with biggest period for 
encryption for highest complexity of containers. 

Example 3.3.3: Consider 10S . Since 10 5 3 2= + + , the pattern of  permutations in 10S  
with maximum period 30 5 3 2= × ×  is (*****)(***)(**) . There are 120960  of them in 
total and and we list some of them below: 

(0, 8, 6, 7, 2)(1, 4, 9)(3, 5), (2, 4, 7, 6, 9)(0, 8, 5)(1, 3), (0, 3, 7, 9, 2)(4, 5, 8)(1, 6) 

(1, 6, 9, 4, 5)(0, 2, 8)(3, 7), (0, 1, 8, 9, 4)(2, 5, 6)(3, 7), (0, 2, 8, 4, 9)(1, 6, 5)(3, 7) 

(0, 8, 9, 5, 4)(1, 6, 7)(2, 3), (0, 2, 7, 8, 9)(1, 4, 3)(5, 6), (0, 9, 5, 4, 7)(1, 8, 3)(2, 6) 

(0, 2, 9, 5, 3)(1, 8, 4)(6, 7). 

Example 3.3.4:  Let  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1,0 2,0 3, 2 4,6 5,12
[ ] 1,0 2,3 3,0 4,3 5,8

1,2 2,0 3,0 4,2 5,6
s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

and (1,2,3)(4,5)σ = . Then 2 (1,3,2)(5,4)σ =  and 3 (4,5)σ =  . Hence, 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3,2 1,0 2,0 5,12 4,6
[ ] 2,3 3,0 1,0 4,3 5,8

1,2 2,0 3,0 5,6 4,2
s σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

and the σ  encrypted containers are  

( )
( )
( )

( )
( )
( )

( )
( )
( )

( )
( )
( )

( )
( )
( )

1 2 3 4 5

3, 2 1,0 2,0 5,12 4,6
[ ] 2,3 ,[ ] 3,0 ,[ ] 1,0 ,[ ] 4,3 ,[ ] 5,8

1,2 2,0 3,0 5,6 4, 2
s s s s sσ σ σ σ σ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

Assume a ( , )Λ Φ  is a k bit t-secret shareable pair, n t≥  is an integer, nSσ ∈  and 

1 2, , , nπ π π  is a sequence of choice functions of Λ . 

Algorithm for Encrypted Distributed Storage 

Step 1. Input a secret 1 2 Ms s s s= ∈ . 

 // Mk= // 
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Step 2. Form the container array [ ]s  by  

[ ] ( ( ))ij j is sπ= Φ  

 where 1,2, ,i M=  and 1,2, ,j n= . 

Step 3. Obtain the σ  encrypted container array [ ]s σ  from [ ]s . 

Step 4. Store the i th encrypted container [ ]is  into the i th storage. 

Step 5. End 

 

Note that the property c) of definition 3.1.1 is true regardless the order of the points 

1 2, , , tp p p . Therefore, it is no need to modify the recovery algorithm in subsection 
3.2.3 and it also works well with encrypted containers. 

3.4 Features of k bit (t,n) Secret Sharing Distributed Storage 

In this section, we will mention some theoretical features of the framework of k bit (t,n) 
Secret Sharing Distributed Storage. 

Recall that in Chapter 1, we mention that distributed storages will be under three major 
kinds of attacks: 

-The attack on confidentiality reveals stored server contents to attackers; 

-The attack on integrity modifies data in victim storage servers without being noticed; 

-The attack on reliability makes storage server unavailable to legitimate users. 

The propose framework will provide the following protections. 

a) Ensuring confidentiality 

The original secret is a binary string. However, a container is a column of points in d  
which carries only partial information of the secret. Even attackers successfully obtain 
less than t  containers. They are not able to extract any information of the secret.  

b) Ensuring integrity 

Before the discussion, we would like to mention first that practically t  will not be a large 
number and it is very likely less than 5  and n  is much larger then t . Now assume that 
the storage system is under attack and the content of container is  modified without 
notification and authorization. We are able to detect such modification and correct it 
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when a defected container is used for recovery. For example, we have t  containers of a 
secret s , namely  1[ ]s , 2[ ]s , , [ ]ts  such that the first entry of the first container has 
been modified illegally. When we recover s  from 1 2,[ ] [ ]s s , , [ ]ts , the first row of 
collector array will determine an element in Λ  which is not in the range of Φ . It is 
because the size of Λ  is very much larger than the size of the range of  Φ . Besides, in 
practice, we would like to make the elements of the range of Φ  “away from each other”. 
So we are able to know that the first row of 1 2,[ ] [ ]s s , , [ ]ts  has been modified illegally. 
To identify the location and correct the illegal modification, we need another t  good 
containers. Check the containers one by one with 1t −  good containers. Then 1[ ]s  is the 
bad container. So we conclude that the first entry of the first container has been modified 
illegally. To correct this, firstly we use the first row of the t  good containers to recover 1s  
and then by using the choice function, we can recover the bad entry on 1[ ]s (i.e. the first 
entry in this case.).  
 

c) Ensuring reliability 

Assume attackers have damaged a container. Administrators have no problem to restore 
the impaired container. First of all, we obtain t  containers from non-compromised 
storages. Secondly, we recover the original secret s  from those containers and finally, we 
can utilize the secret s  to generate the damaged container again. Furthermore, we should 
note that getting t  good containers is possible since n  is much larger than t . For 

example, we choose 10n =  and 3t =  in this project. Therefore, we have 9! 84
6!3!

=  many 

of combinations of three good containers ready for recovering the damaged container. 
Besides, with big n , the framework provides user with more access availability for t  
containers and hence the secret. Even, because of the fact that it is ( , )t n  secret sharing, it 
still maintains the good confidentiality while the number of containers or storages 
increases. 

Reference  

1. Gallian, J. “Contemporary Abstract Algebra.” Brooks Cole, 6 edition, 2004. 
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4 Algebraic Methods 

Let tΛ  be the set of the graphs of all the polynomials of degree 1t − . By the elementary 
algebra result [1]: 

Assume that functions f and g are polynomial functions of degree 1t −  and they agree 
with each other on t distinct points, then f g=  and their coefficients are also equal. 

Therefore, tΛ  satisfies properties a) and b) of definition of 3.1.1. To show that tΛ  also 
satisfies property c) of the definition, we need Lagrange polynomials. 

4.1 Lagrange Polynomials. 

Given 1 1( , )x y , 2 2( , ),x y  , ( , )t tx y such that their x  coordinates are distinct, let  

1

1

( )

( )
( )

t

i
i
i j

j t

j i
i
i j

x x

L x
x x

=
≠

=
≠

−

=
−

∏

∏
 

where 1,2,3, .j =  So ( )jL x  is a polynomial of degree 1t −  such that  

1
( )

0j i

i j
L x

i j
=⎧

= ⎨ ≠⎩
 

where , 1, 2,3, ,i j t=  and they are called Lagrange basis functions. Hence, the Lagrange 
polynomial [2]  

1 1 2 2 3 3( ) ( ) ( ) ( )L x y L x y L x y L x= + + +  

will pass through all the given points. 

Note that the y  intercept of ( )L x  , (0)L , can be evaluated by 

1 1 2 2 3 3(0) (0) (0)y L y L y L+ + +  

where  
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1

1 1

1 1

(0 ) ( 1)

(0)
( ) ( )

t t
t

i i
i i
i j i j

j t t

j i j i
i i
i j i j

x x

L
x x x x

−

= =
≠ ≠

= =
≠ ≠

− −

= =
− −

∏ ∏

∏ ∏
 

for 1, 2,3,j = . 

Therefore, tΛ  is t  secret shareable if Ψ  maps 1 1( , )x y , 2 2( , ),x y  , ( , )t tx y to the graph 

of the Lagrange polynomial 1 1 2 2 3 3( ) ( ) ( )y L x y L x y L x+ + + . 

4.2 Unique Factorization Property (UFP) 

Let 1 2{ , , , }kA m m m=  be a set of positive integers bigger than 1 and we always assume 

that they are in increasing order i.e. 1 2 km m m< < < . The set A  (or the finite increasing 

sequence 1 2, , , km m m ) has unique factorization property (UFP) if for any binary strings 

1 2 kε ε ε  and 1 2 kε ε ε  ,  

1 2 1 2
1 2 1 2

k k
k km m m m m m=ε εε ε ε ε , 

implies i i=ε ε  for all 1,2, ,i k= .  

Also, the span of an UFP set A  denoted by A  is defined to be 

1 2
1 2 1 2{ :  for some binary string }k

k kA m m m m m= = εε ε ε ε ε . 

Suppose now 1 2{1 }kA m m m= ≤ ≤ ≤ ≤ ≤ is an infinite set of integers. For any 

1,2,3,k = ,  a k th segment kA  of A  is defined to be the set of the first k  elements of 

A . We call the set A  has UFP if for any 1,2,3,k = , kA  has UFP. The span of A , 

denoted by A , is the union of the span of all the segments of A .  

Example 4.2.1: The sets {2,3, }p  and {2,3,4} are of UFP where p  is a prime which is 
larger than 3. 

Lemma 4.2.2: Let k  be a positive integer. For any integer 0 2km≤ < , there is a unique 
binary string 1 2 kε ε ε  such that  

1
1 21 2 2k

km −= + +ε ε ε . 

Conversely, for any binary string 1 2 kε ε ε ,we have 1
1 20 1 2 2 2k

kk− <≤ + +ε ε ε . 
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Example 4.2.3:  Let p  be a prime number and let k  be a positive integer. Define  

2 3 11 2 2 2 2( ) { , , , , , }.
k

kX p p p p p p
−

=  

Assume that  

2 1 2 13 3
3 31 2 4 1 2 42 2 2 21 2 2 1 2 2k k

k kp p p p p p p p p p
− −

=ε ε ε εε ε ε ε ε ε . 

So  

2 1 2 13 3
3 31 2 4 1 2 42 2 2 21 2 2 1 2 2k k

k kp p
− −+ ++ + + ++ + + +=ε ε ε εε ε ε ε ε ε . 

By the Lemma 4.2.2, we have i i=ε ε  for all 1, 2, ,i k= . So ( )kX p  has UFP. 

From the lemma again, the span of ( )kX p  is the set 0 1 2 2 2 2 1{ , , , , , }
k k

p p p p p− − . 

Therefore, 
2 3 11 2 2 2 2 2( ) { , , , , , , , }

k k

X p p p p p pp
−

= has UFP and its span is 
0 1 2 3{ , , , , }p p p p . 

Example 4.2.4: Let { ( ) :  is a prime}X X p p=∪ .We arrange and index the elements of 

A  in increasing order and  

1 2 3{ , , } {2,3,4,5,7,9,11,13,16,17,19,23, },X m m m= =  

from now on. 

Let 1 2 3{ , , , }k km m mX m=  be the set of first k  elements of X  where 1, 2,3,k =  . We 
claim that kX  has UFP. Assume that kX  consist of the powers of primes 1 2, , , rp p p . 
Hence, kX  can be written as below: 

1 21 1 12 2 2 2 2 2
1 1 1 2 2 2{ , , , , , , , , , , , , }

k k kr

k r r rp p p p p p p p pX
− − −

= . 
where 1 2 rk k k k+ + + = . Let 

1 2

1 1 2 2
1 1 1 r

r r
k k kε ε ε ε ε ε  and 

1 2

1 1 2 2
1 1 1 r

r r
k k kε ε ε ε ε ε  

such that 
 

1 1 11 21 21 1 2 2
1 2 1 1 2 2 1 22 2 21 2 1 2 1 2

1 1 1 2 2 2

k k kr rr r
k k kr

r r rp p p p p p p p p
− − −ε ε εε ε ε ε ε ε  

1 1 11 21 21 1 2 2
1 2 1 1 2 2 1 22 2 21 2 1 2 1 2

1 1 1 2 2 2

k k kr rr r
k k kr

r r rp p p p p p p p p
− − −

= ε ε εε ε ε ε ε ε . 
 
So 

1 1 11 21 21 1 2 2
1 2 1 1 2 2 1 22 2 21 2 1 2 1 2

1 2

k k kr rr r
k k kr

rp p p
− − −

+ + + + + + + + +ε ε εε ε ε ε ε ε  
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1 1 11 21 21 1 2 2
1 2 1 1 2 2 1 22 2 21 2 1 2 1 2

1 2

k k kr rr r
k k kr

rp p p
− − −

+ + + + + + + + += ε ε εε ε ε ε ε ε . 
 
Since such factorization is unique and ( )

ik iX p  has UFP for all 1,2, ,i r= , we conclude 
that  

i i
j j=ε ε  

for all ,i j  and hence kX  has UFP and hence X  has UFP.  
 
Theorem 4.2.5 : Let kX  be the same as the one in above example and let m  be a positive 

integer less than km . Then m  is in the span of kX . 

Proof: Assume that 1 2
1 2

r
rm p p pα α α= . Since km x< , we have 1 2

1 2, , , r
r kp p p mα α α <  and 

hence 1 2, , , r kp p p X∈ .   For any 1, 2,3, ,i r= , there is a positive integer ik  such that  

12 2i ik k

i k ixp p
−

≤< . 

Since ( )
i ik kpX X⊂  and 2ki

i
i ip pα <  is in its span, 

12 3
31 2 4 221 2 2, ,

i iii i i k
ki i

i i i i i ip p p p p pα
−

= εεε ε ε  for 

some binary string 1 2 i

i i i
kε ε ε . Therefore, m  is in the span of kX .   

Let k  be a positive integer and let A  be an UFP set with A k= . Define AΠ  to be the 

product of all its elements. A  is minimum if for any UFP set A′  with A k′ = , we have 

A A′Π ≤ Π . A  is completely minimum if every segment of A  has minimum UFP. 

Example 4.2.6: The first eight minimum UFP sets are:  1 {2}X = , 2 {2,3}X = , 

3 {2,3,4}X = , 4 {2,3,4,5}X = , 5 {2,3,4,5,7}X = , 6 {2,3,4,5,7,9}X = , 

7 {2,3,4,5,7,9,11}X =  and 8 {2,3,4,5,7,9,11,13}X = . Also, 1 2XΠ = , 2 6XΠ = , 

3 24XΠ =  and 4 120XΠ = .  

Note that  

4X  is useful in this project since it has minimum UFP and 4 120XΠ =  is smaller than 
127, the absolute limit of a character type variables. 

We conclude the section by  two interesting conjectures: For, 1, 2,3,k = ,  

Conjecture 1) kX  is the unique set which has completely minimum UFP ; 

Conjecture 2) kX  is the unique set which has minimum UFP. 
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4.3 Proposed Encoding Function ΦΛt 

Recall that tΛ  is the set of  the graphs of all the polynomials of degree 1t − . For k  bits 

1 2 kε ε ε  and 1 2 1, , , 1tk k k − ≥ such that 1 2 1tk k k k−+ + + = ,  

1 2( )
t kΛΦ ε ε ε  is the graph of  

1 21 2 1 11 2 1 1 1 2

1 1 1 2 1 11 2 1 2 1 2( )( ) ( ).k kk k k k t t k

t tk k k k k k kx m m m x m m m x m m m+ ++ + − −

− −+ + + +− − − ε εε ε ε ε εε ε  

Since kX  is of UFP, we have the function 
tΛ

Φ  is one to one. Hence, ( ),
tt ΛΛ Φ  is k  bit t  

secret sharing pair. 

Example 4.3.1: Let 4 {2,3,4,5}X =  and 1 2 2k k= = . Therefore, 4k = . Let 3Λ  be the set 

of the graphs of all the quadratic polynomials. For any 4  bits 1 2 3 4ε ε ε ε ,  Φ  maps 1 2 3 4ε ε ε ε  to 

the graph of the quadratic polynomial 31 2 4( 2 3 )( 4 5 )x x− − εε ε ε . For convenience, we would 
like to identify the graph of 1 2 3 4( )Φ ε ε ε ε  with the polynomial 1 2 3 4( )Φ ε ε ε ε in this case. 

So the y  intercepts of 1 2 3 4( )Φ ε ε ε ε  , ( )1 2 3 4( ) 0Φ ε ε ε ε ,can be summarized in the table below: 

1 2 3 4ε ε ε ε  1 2 3 4( )Φ ε ε ε ε  ( )1 2 3 4( ) 0Φ ε ε ε ε 1 2 3 4ε ε ε ε 1 2 3 4( )Φ ε ε ε ε  ( )1 2 3 4( ) 0Φ ε ε ε ε
0000 (x-2030) (x-4050) 1 0110 (x-2031) (x-4150) 12 
1000 (x-2130) (x-4050) 2 0101 (x-2031) (x-4051) 15 
0100 (x-2031) (x-4050) 3 0011 (x-2030) (x-4151) 20 
0010 (x-2030) (x-4150) 4 1110 (x-2131) (x-4150) 24 
0001 (x-2030) (x-4051) 5 1101 (x-2131) (x-4051) 30 
1100 (x-2131) (x-4050) 6 1011 (x-2130) (x-4151) 40 
1010 (x-2130) (x-4150) 8 0111 (x-2031) (x-4151) 60 
1001 (x-2130) (x-4051) 10 1111 (x-2131) (x-4151) 120 

 

Then 3( , )Λ Φ  is a 4  bit 3-secret sharing pair. 

Remark: We would like to choose a encoding pair in order to making the size of 
containers to be as small as possible. In the example 4.3.1, the size of resulted containers 
is double of the size of origin secret. 

4.4 Choice functions of Λ  and the Calculation of Φ Λt
 -1(Ψ) 

Let ( ),
tt ΛΛ Φ be the k  bit t  secret sharing pair as above and n t≥ . For any C∈Λ  such 

that C  is a graph of a polynomial ( )P x  in tΛ . We define 
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( ) ( , ( ))j C j P jπ =  

for 1,2, ,j n= . 

Given 1 1( , )x y , 2 2( , ),x y  , ( , )t tx y , we are going to find  

1
1 1 2 2( , ), ( , ), , ( , )( ( ))

t t tx y x y x y−
ΛΦ Ψ . 

First of all, we build up a look up table which show the one to one correspondence 
between k  bits onto y intercept of polynomial in the range of Φ . By using Lagrange 
polynomials, we can find a polynomial of degree 1t − , ( )L x  passing through all the 
given points. Find the y  intercept of ( )L x  by evaluating (0)L . Then we can find 

1 2 kε ε ε such that 

1 2 1 1 2 2( , ), ( , ), , ( , )( ) ( )
t k t tx y x y x yΛΦ Ψ=ε ε ε . 

by looking up from a table which gives the correspondence between 1 2 kε ε ε  and 

1 2( )(0)
t kΛΦ ε ε ε . 

Exmaple 4.4.1:  Look up table for 
22( , )ΛΛ Ψ  is 

1 2 3 4ε ε ε ε  ( )
2 1 2 3 4( ) 0ΛΦ ε ε ε ε 1 2 3 4ε ε ε ε ( )

2 1 2 3 4( ) 0ΛΦ ε ε ε ε  
0000 1 0110 12 
1000 2 0101 15 
0100 3 0011 20 
0010 4 1110 24 
0001 5 1101 30 
1100 6 1011 40 
1010 8 0111 60 
1001 10 1111 120 

 

4.5 Robustness Analysis of Lagrange Polynomial when t=3 

Let 3t = . Given 1 1 2 2( , ), ( , )x y x y  and 3 3( , )x y , the y  intercept of the Lagrange 
polynomial passing given points is given by 

( )( ) ( )( ) ( )( )
3 2 1 3 1 2

1 2 3
1 3 1 2 2 1 2 3 1 33 2

(0) .x x x x x xL y y y
x x x x x x x c x x x x

= + +
− − − − − −

 

We assume that noise presents on 1 2 3, ,x x x  which is bounded by ε  and the noise presents 
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on 1 2 3, ,y y y  which is bounded byδ . Also, 1 2 3, ,x x x is bounded by M  and the distance 
between any pair of them is bigger than λ . We wish to found an error bound of the 
calculation of noisy (0), (0)L L .  
 
Observing that 

( ) ( )
( )( )

( )( )

2 1 2 2 1 1

2 1 2 1 2 1

2 1 2 1 2 1

2 1

2 1 2 1 2 1

1 1
x x x x

x x x x
x x x x

x x x x

ε ε

ε ε
ε ε

ε ε
ε ε

+ −

+ − −
=

+ −

−
=

+

−
− −

− −
− −

−− −

 

where 1 2,ε ε  are noises associated with 1 2,x x  respectively. If 1 2x x λ− ≥ , then 

 2 2 1 1 2x xε ε λ ε+ − > −− . 
Therefore, we have 

( )2 1 2 2 1 1

1 1 2
2xx xx

ε
ε ε λ λ ε

−
− −

≤
+ − −

. 

Observe that 

( )( )
( )( )

( )( )

( )( )
( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )

3 23 2

3 1 2 1 3 1 2 1

3 23 2

3 1 2 1 3 1 2 1

3 2 3 2

3 1 2

3 2

3 1 2 1

3 2

3 2 3 2

3 1

3 2 3 2

3 1

1 3 1 2 1

3 2 3 2

3 1 2 1 3 1 2 13 1 2 1

3 1 2

1

x xx x
x x x x x x x x

x xx x
x x x x x x x x

x x x x
x x x x x x x x

x x x x
x x x x x x x x

x x x

ε ε
ε ε ε ε

ε ε

ε ε ε ε
ε ε

ε ε ε ε
ε ε ε ε ε ε

−
− − − −

≤ −
− − − −

+ −
− − − −

+ −
− − −

+ +
+ − + −

+ +

+ + + +
+ −

+ + + +
+ −

=
−

+ − + − −

( )
( )( )

( ) ( ) ( )
( )( )
( ) ( ) ( )

3 2 3 2

3 2

3 1

3 2

2 3
1

3 2

2 1 3 1

3 1

3 1

3 2

3 1 2 1 2 12 1

1

1 1

1

x x
x

x x
x x x x x x

x x
x x x x x x

ε ε ε ε

ε ε
ε ε

ε ε
ε ε ε ε

−

+ −
− − −

+ −
− − + −

+ +

+ +
+ −

+ +
+ − −  
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( )( )
( )( )

( )( )

( ) ( ) ( )
( )

3 2

3 1

3 23 2

3 1 2 1 3 1 2 12 1

22
2 2

2

2 2

2

1 (2 )

1 2( )

1 2 4

2 2
2 2

2 2
2 2 2

x xx x
x x x x x x x x

M M M

M M M

ε ε
ε ε ε ε

ε εε ε ε ε
λ

ε ε εε
λ

ω ω ε

λ λ ε λ λ ε

ε ε
λ ε λ ε λ ε

λ

+ +
+ − + −

− −

≤
−

−
− − − −

≤ + + + + +

⎡ ⎤+ + +⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤≤

−

⎣

−

+ ⎦

Therefore, 

 

 
 

 

 

 

where 
2

M ε
ε

ω
λ

+
=

−
. So we have 

( )( )
( )( )

( )( ) ( )

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )( ) ( )

( )( )
( )

3 23 2
1 1 1

3 1 2 1 3 1 2 1

3 23 2
1 1

3 1 2 1 3 1 2 1

3 2

3 1 2 1

3 2

3 1 2

3 2 3 2
1 1 1

3 1 2 1 3 1 2 1

33 2

3 1 2 1

1

3 2 3 2

3 1 2 1 3 1 2 1

3

x xx x y y
x x x x x x x x

x xx x y y
x x x x x x x x

x x x x
y y

x x x x x x x x

xx x
x x x x

ε ε
ε ε ε ε

ε ε
ε ε ε ε

ε ε ε ε
ε ε ε ε ε ε ε

δ
ε

δ

ε

+ +
+ − + −

+ +
+ − + −

+ +

− +
− − − −

≤ −
− − − −

+ −
+ +

+ − + − + − +
+

− − − −

≤ −
−

−

+
−

( )
( )( )

( )( )
( )( )

( )

2
1

3 1 2 1

3 2
1

3 1 2 1

2

3 1 2 1

3 2

3 1 2 1

2 21 2 4 .

x
y

x x x x

x x
x x x x

M

ε
ε ε ε ε

ε ε
ε ε ε ε

δ

ω ω ε ω δ
λ

+
+ − + −

+ +
+ − + −

− −

+
− −

≤ + +

 

where M  is an upper bound of absolute values of all possible y . 

Theorem 4.5.1: Given 1 1 2 2( , ), ( , )x y x y  and 3 3( , )x y , noise presents on 1 2 3, ,x x x  which is 
bounded by ε  and on 1 2 3, ,y y y  with is bounded byδ . Also, 1 2 3, ,x x x  and 1 2 3, ,y y y  are 
bounded by M  and M  respectively. Also suppose that the distance between any pair of 
them is bigger than λ . Let (0)L  be a noisy evaluation of (0)L . Then  

( )2 21(0) (0) 6 12 3L L Mω ω ε ω δ
λ

− ≤ + +  

where 
2

M ε
ε

ω
λ

+
=

−
. 
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The following corollary gives a relatively simple inequality when 1 2, , , nx x x  are equally 
spaced and noise is not present on them. 

Corollary 4.5.2: If 0=ε , M
n

λ =  where n  is the number of containers then nω =  and  

2(0) (0) 3L L n δ− ≤ . 

We assume 10n =  in our study and employ the choice functions in 4.4. From corollary 
4.5.2. we have  

(0) (0) 300L L δ− ≤ . 

Therefore, keep the noise bounded by a “not very small” number 0.001δ = . Then 
(0) (0) 1/ 3L L− ≤ . Note that from the look up table in Example 4.4.1, the smallest 

distance between those y  intercept is 1 which is bigger than 1/ 3 . So the calculation of 
(0)L  is still stable in this case. 

 

4.6 Implementation of the Algebra Method 

All the programs developed in this report is in C and their interface is Qt from Qt Project 
[3]. They are all running under testing environment as described below: 

OS: Windows 8 
CPU: Inter Core i5-3337U(1.8.Ghz / Turbo:2.7Ghz) 
RAM: 4GB DDR3 
Harddisk: 128GB SSD 

The testing group is randomly generated text files with different sizes 2, 4, 6, 8 and 10 
MB (megabytes) and the compression is performed by 7-Zip. (http://www.7-zip.org/) 

 

Let 2( , )Λ Φ  be the 4  bit 3  secret sharing pair as in Example 4.3.1. Therefore, 

Φ  maps 4  bits 1 2 3 4ε ε ε ε  to the graph of a quadratic function  

31 2 4( 2 3 )( 4 5 )x x− − εε ε ε . 

The entries of containers can be stored in the character type variables for obtaining 
smaller size of containers. It can be done since the range of quadratic function 
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31 2 4( 2 3 )( 4 5 )x x− − εε ε ε  is from -120 to 120 and it is contained in the range of character 
which is from  -127 to 127. One character occupies 1 byte or 8 bits and the method takes 
4 bits at a time. Therefore, the size of the containers is double of that of the original secret 
file. 

4.6.1 Speed Tests 

a) Producing Containers 
 

The following table shows how much time needed for producing 10 uncompressed 
containers. 

 

 

 

 

Figure 7: Time required for various sizes of secrets to generate 10 containers. 

b) Recover the Original File 
 

The following table shows how much time needed for recovering original files from their 
containers in a) 

Secret Size  
( in MB) 

2 4 6 8 10 

Rcovert Time 
(in Sec) 

0.237 0.471 0.708 0.935 1.176 
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T
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ec
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Secret Size ( in MB)  2 4 6 8 10 
Generating Time for 10 
Containers  ( in Sec) 

1.183 2.349 3.58 4.73 5.917 
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Figure 8: Time required for various sizes of secrets to recover the secret from three containers. 

  

4.6.2 Size Tests 

The following table shows that average sizes of the compressed container files of the 
testing group. 

 

Secret Size (in MB) 2 4 6 8 10 

Compressed Secret Size 
(in Kb) 

987 1973 2960 3947 4934 

Compressed Container 
Size (in Kb) 

984.5 1950.2 2919.5 3879.1 4678.9 

 Size Ratio of 
Compressed Secret 
and Compressed 
Container (in %) 

100 99 99 98 95 
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Figure 9: Comparison of Sizes of compressed secret  

and compressed container  for various sizes of secrets. 

 

Reference 

1. Fine, H. B. “ A College Algebra.” Ginn & company, 1904. 
 

2. Hildebrand, F. B. “Introduction to Numerical Analysis.” New York: 
McGraw-Hill, 1956.  

 
3. Qt Project, http://qt-project.org/search/tag/qtgui 
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5. Geometric Methods 

5.1 3 Secret Shareable Set Λ3  

Let 3Λ  be the set of all circles on the plane. Recall that 3 non-collinear distinct points 
determine a circle. Since three points on a circle cannot be collinear in 2 , we have 3Λ  
satisfies a) and b). Indeed, it also satisfies property c). To see that, we consider the 
following calculation. [1]  

Let 1 1( , )x y , 2 2( , )x y  and 3 3( , )x y  lie on a circle  

2 2:C Ax By Cx Dy E+ + + +  or 2 2: ( ) ( )C C CC x x y y r− + − = . 

Consider the following determinant equation 

2 2

2 2
1 1 1 1
2 2
2 2 2 2
2 2
3 3 3 3

1
1

( , ) 0
1
1

x y x y
x y x y

J x y
x y x y
x y x y

+
+

= =
+
+

. 

By evaluating the cofactors 1 jM  for the first row of the determinant, the determinant can 

be written as an equation of these cofactors:  

2 2
11 12 13 14( ) 0M x y M x M y M+ − + − =  

or 

2 2 1312 14

11 11 11

( ) 0MM Mx y x y
M M M

+ − + − =  

Since 1 1 2 2 3 3( , ) ( , ) ( , ) 0J x y J x y J x y= = = , we have the above equation also represents the 

circle C . Extending 2 2( ) ( )C C Cx x y y r− + − =  into  

( )2 2 2 2 22 2C C C C Cx y x x y y x y r+ − − + + −  

and comparing the coefficients of  

2 2 1312 14

11 11 11

( ) 0MM Mx y x y
M M M

+ − + − = , 

we have  
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12

11

13

11

2 2 14

11

2

2

C

C

C C C

Mx
M

My
M

Mr x y
M

=

=

= + +

. 

Hence, Ψ  maps 1 1( , )x y , 2 2( , )x y  and 3 3( , )x y  to the circle with center 

( ) 1312

11 11

, ,
2 2C C

MMx y
M M

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 and radius 2 2 14

11
C C

Mx y
M

+ +  . Therefore, 3Λ  is 3  secret 

shareable. 

5.2 Encoding Function ΦΛ3 

Let 1k , 2k  and 3k  be positive integers such that 1 2 3k k k k= + + . Since a circle C  can be 

determined by its center ( , )C Cx y and its radius Cr , we would like to define 3Λ
Φ  to be a 

function that maps a k  bit string 1 2 kε ε ε  to a circle C  such that  

21

1 1 2

1

1 11 2 1 2( , ) ( 2 2 ),2 2k k
C C k k k k

k
kx y +

+
++= + + + + + +ε ε ε ε ε ε  

and  

 
1 2 1 21 21 2 2k

k k k kC kr + + + += + + + +ε ε ε . 

Then 3Λ
Φ  is one to one since binary representation of integers is unique and hence, 

3
3( , )

Λ
Λ Ψ  is a k  bit 3  secret sharing pair. 

5.3 Choice functions of Λ3 and the Calculation of Φ Λ3 -1(Ψ) 

Let 3n ≥ and 0
2n
πθ< ≤ .  For any 3C∈Λ  such that C  has center ( , )C Cx y and its radius

Cr . We define 

( ) ( sin( ), cos( ))j c c c cC x r j y r jπ θ θ= + +  

for 1,2, ,j n= .  
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Therefore, the set of all the spheres in 3  is not 4  secret shareable. However, by 
Theorem 5.4.1, we can see that it is “almost” 4  secret shareable. 

Theorem 5.4.1: The probability of picking n  distinct points randomly and independently 
on the 3 dimensional sphere such that there are 4  point among them lying on the same 
plane is equal to zero. 

Proof: We would like to prove it by induction.  

Assume that we have chosen 3  points from the sphere. The area of the intersection of the 
sphere and the plane determined by chosen points is equal to zero. So the event, picking a 
point randomly such that it lies on the intersection, has zero probability.  

Let A  be the event such that  n  th point is chosen and there is 4  points among them are 
coplanar and B  be the event such that  1n −  point has been chosen and there is 4  points 
among them are coplanar. We wish to prove that ( ) 0P A =  by using the formula of 
conditional probabilities 

( ) ( | ) ( ) ( | ) ( )c cP A P A B P B P A B P B= +  

where the event cB  is the negation of the event B . By the induction hypothesis 
( ) 0P B =  , so  ( ) ( | ) ( )c cP A P A B P B= . 

Now suppose that we have picked 1n −  points and any 4  points among them are not 
coplanar. Similarly, the area of the intersection the sphere and the union of all planes 
determined by 4  points in the 1n −  points is zero since the number of the planes is  

1
4

n −⎛ ⎞
⎜ ⎟
⎝ ⎠

 and the area of the intersection of the sphere and a plane is zero. Hence, 

( | ) 0cP A B = . So we conclude that ( ) 0P A =  and by the principle of Mathematical 
induction, the proof is complete. 

According to Theorem 5.4.1, a non-painful way is that just let Λ  be the set of all the 
spheres in 3  since the probability of making mistake is zero. However, how safe would 
it be probability 0 ? 

If we would like to go for a safe approach, pick enough points from the unit sphere and 
form a set Ω . Note that 1 1 1 2 2 2( , , ), ( , , )x y z x y z  and 3 3 3( , , )x y z  are coplanar if and only if  

1 1 1

2 2 2

3 3 3

0
x y z
x y z
x y z

≠ . 
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Check all the combinations of four distinct points in Ω  if they are coplanar. By the above 
Theorem, you are almost safe but it takes time. If not for all combinations, then stop and 
keep the set Ω . If yes for a combination, then choose n  points and repeat the checking 
again unit we finally have a non coplanar set Ω  of points on the sphere.  

Let 0r >  and let v  be a vector in 3 . Define if D  is in 3 , the r  dilation and v  
translation of D  is 

{ : }rD p p Dα= ∈  and { : }v D p v p D+ = + ∈ . 

Since coplanarity is invariant under dilation and then translation, we define 

4 3{ : 0 and }v r r vΛ = + Ω > ∈ . 

Note that v r+ Ω  is a subset of the sphere with center v  and radius r . Therefore, we can 
consider v r+ Ω  as a discrete model of the sphere such that any combination of four 
distinct points in v r+ Ω  are not coplanar. We would like to denote v r+ Ω  by ( , )S v r . 

Also, given four non-coplanar distinct points 1 1 1 2 2 2 3 3 3 4 4 4( , , ), ( , , ), ( , , ), ( , , )x y z x y z x y z x y z  
and similarly consider the determinant  

2 2 2

2 2 2
1 1 1 1 1 1
2 2 2
2 2 2 2 2 2
2 2 2
3 3 3 3 3 3
2 2 2
4 4 4 4 4 4

1
1

( , , ) 01
1
1

x y z x y z
x y z x y z

J x y z x y z x y z
x y z x y z
x y z x y z

+ +
+ +

= =+ +
+ +
+ +

, 

1 1 1 2 2 2 3 3 3 4 4 4( , , ), ( , , ), ( , , ), ( , , )x y z x y z x y z x y z  should belong to 1 2 3(( , , ), )S v v v r  such that 

12
1

11

13
2

11

14
3

11

2 2 2 15
1 2 3

11

2

2

2

Mv
M

Mv
M

Mv
M

Mr v v v
M

=

=

=

= + + +

 

where 11 12 13 14, , ,M M M M  and 15M  are cofactors corresponding to the first row of 

( , , )J x y z . Hence, 4Λ is 4  secret sharing.  
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5.5 Encoding Function ΦΛ4 

Let k  be an integer bigger than or equal to 4 and let 1k , 2 3,k k  and 4k  be positive integers 

such that 1 2 3 4k k kk k= + + + . Then the function 4Λ
Φ  maps a k  bit string 1 2 kε ε ε  to 

( , )S v r  such that  

2

2

2 3

2 2 2 3

1

1

1

1 1 1

1

1 1 1

1 2

1 2 3 1 2

1 2

2 2

( , , ) 2 2

2 2

k
k

k k
k k

k
k

kT
k k k

k
k k kk k

v v v +
+

+ +
+ +

+ +

+ + + +

⎡ ⎤+ + +
⎢ ⎥

= + + +⎢ ⎥
⎢ ⎥+ + +⎢ ⎥⎣ ⎦

ε ε ε

ε ε ε

ε ε ε

 

and  

 
1 1 23 32 1 21 2 2k

k k k k k k kr + + + ++ += + + + +ε ε ε . 

Again, 4Λ
Φ  is one to one since binary representation of integers is unique. Hence, 

4
4( , )

Λ
Λ Φ  is a k  bit 4  secret sharing pair. 

5.6 Choice functions of Λ4 and the Calculation of Φ Λ4 -1(Ψ) 

Suppose that 1 2{ , , , }lu u uΩ =  such that 4l n≥ ≥ . For any 3( , )S v r ∈Λ  ,we define 

( )( ( , ))j jS v r v r uπ = +  

for 1,2, ,j n= .  

Similarly, 4
1 ( )−
Λ

Φ Ψ  maps a k  bits 1 2 kε ε ε  to 

2 2 2

13 13 1512 14 12 14

11 11 11 11 11 11 11mod 2 mod 2 mod 2
mod 2

1
2 2 2 2 2 2

M M MM M M M
M M M M M M M

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟+ + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

We can implement the  k  bit ( )4,n  secret sharing storage for the pair 4
4( , )

Λ
Λ Φ . 

Note that to generate the geometric method to the case with 5t ≥ ,we only need the finite 
dimensional version of Theorem 3.4.1. Of course, it is true but we need the notion of 
“area” on the high dimensional sphere first. It is a topic of advanced Mathematics, called 
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Haar measure [2]. If we take it for granted, the generalization of the theorem for arbitrary 
t  is straight forward from the 4t =  case. 

 

5.6 Implementation of the Geometric Method 

Indeed, we have implemented the circle and sphere methods and  their performance is 
satisfactory as we expect. In this section, we only present testing results for 3

3( , )
Λ

Λ Ψ  

with 24k =  and 1 2 3 8k k k= = = . A point ( , )x y  is stored in two floating type variables 

which occupy 64 bits. So the size of the container is 64 22
24 3

=  times of that of the original 

secret file before compression. 

 

5.6.1 Speed Test 

 
a) Producing Containers 

 
The following table shows how much time needed for producing 10 uncompressed 
containers. 

Secret Size (in MB) 2 4 6 8 10 

Generating Time for 10 
Containers  ( in Sec) 

1.139 2.264 3.378 4.506 5.676 

  

Figure 11: Time required for various sizes of secrets to generate 10 containers. 
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b) Recover the Original File 
 

The following table shows how much time needed for recovering original files from their 
containers in a) 

Secret Size  
( in MB) 

2 4 6 8 10 

Rcovert Time 
(in Sec) 

0.151 0.313 0.457 0.607 0.763 

 

 

Figure 12: Time required for various sizes of secrets to recover the secret from three containers. 

5.6.2 Size Tests 

The following table shows that average sizes of the compressed container files of the 
testing group. 

Secret Size (in MB) 2 4 6 8 10 

Compressed Secret Size 
(in Kb) 

987 1973 2960 3947 4934 

Compressed Container 
Size (in Kb) 

1693.37 3317.6 4917.33 6501.7 8073.47 

 Size Ratio of 
Compressed Secret 
and Compressed 
Container (in %) 

172 168 166 165 164 
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Figure 13: Comparison of Sizes of compressed secret  

and compressed container  for various sizes of secrets. 
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6. Number Theory-Chinese Reminder Theorem (CRT) Methods 

In this chapter, we will develop a k  bit ( )3, n  secret sharing storage which is following 

the idea of Asmuth and Bloom [1]. Note that such n  is not any integer larger than 3. It 
actually depends on the primes prepared for such secret sharing method. The Asmuth and 
Bloom secret sharing is based on Chinese remainder theorem (CRT). Firstly, we are 
going to demonstrate the basic idea of CRT by solving the following problem: 

 

Find the smallest whole number that when divided by 3,5 and 7 gives remainders of 1,2, 
and 3respectively. 

 

Formally, the above problem is asking for the smallest whole number such that  

1 mod 3)
2 mo

(
( 5d )

3 mod ).( 7

x
x
x

≡
≡
≡

 

Instead of solving the above system, we would like to solve three much simpler systems: 

1 mod 3) 0 mod 3) 0 mod 3)
0 mod ) , 1 mod ) , 0 mod )
0 mod ) 0 mod )

( ( (

1 m
( 5 ( 5 ( 5
( 7 ( 7d( o )7

x x x
x x x
x x x

≡ ≡ ≡
≡ ≡ ≡
≡ ≡ ≡

 

The solutions of the first, second and third system are 70, 21 and 15 respectively. We call 
these numbers base solutions. Consider  

70 1 21 2 15 3 157× + × + × = . 

Although 157 divided by 3,5 and 7 gives remainders of 1, 2 and 3respectively, it is too 
big. Hence, 157x = −LCM(3,5,7) 157 105 52= − =  is the answer. Moreover, if we want to 
solve a system such as  

1

2

3

mod3)
mod )

(
( 5
mod )( 7

x y
x y
x y

≡
≡
≡

, 

then the general solutions are 1 2 370 21 15 105y y y ρ× + × + × − ×  where ρ ∈ . Therefore, 
the key is obtaining the base solution. Formally, we can state the Chinese Remainder 
Theorem as below: 
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Theorem :(Chinese Remainder Theorem) Let 1 2, , ,p p  and mp  be increasing distinct 

primes. For any integers 1 2, , , ma a a , there is an integer x  with 

( )
( )
( )

( )

1 1

2 2

3 3

mod
mod
mod

modm m

x a p
x a p
x a p

x a p

≡
≡
≡

≡

 

and x  is unique mod 1 2 mp p p . 

 

6.1 Three Shareable Set Λ(p1p2…pm) 

Let 1 2{ , , , }mp p p be the set of increasing prime numbers such that  

1 1 2 3m mp p p p p− < . 

and let 1 2 3 1

1

m m

m m

p p p p p
p p

−

−

−
= . For 1 1 2 3m mp p l p p p− < < , we define  

( ){ } 2, ( mod ) : 1,2, ,l i iC p l p i m= = ⊂ . 

and  

{ }2
1 2 1 1 2 3( , , , ) :m l m mp p p C p p l p p p−Λ = ⊂ < < . 

Suppose that 
1l

C  and 
2l

C  has three distinct points in common. Hence there are three 

prime 1p , 2p  and 3p  such that 

( ) ( )
( ) ( )
( ) ( )

1 1 1 2 1

2 2 2 2 2

2 2 2 2 2

1

1

1

, ,
, ,

mod mod
mod mod
mod mod, ,

p l p p l p
p l p p l p
p l p p l p

=
=
=

 

Since by CRT, 1l  and 2l  are the unique solutions of the systems  

( )
( )
( )

1 1

1 2

1 3

mod
mod
mod

x l p
x l p
x l p

≡
≡
≡

 and 
( )
( )
( )

2

3

2

2

2

1mod
mod
mod

x l p
x l p
x l p

≡
≡
≡

 respectively  

S20

Page - 477



Shing-Tung Yau High School Applied Mathematical Sciences Award 2013 
 

42 
 

and the systems in above are equivalent, we have 1 2l l= . Hence, 
21l lC C= .  

Ψ  can be defined as follow. Given three distinct points ( )11,p y , ( )22 ,p y  and ( )33,p y in 

1 2( , , , )mC p p p∈Λ , by applying CRT to the system  

2

3

1 1

2

3

mod
mod
mod

y p
y p

x y
x

p

x ≡
≡
≡

, 

 we have a unique solution 1 2 30 l p p p< ≤ . Since 1 2 3 1 2 3p p p p p p≥  we have lC =C .  

Lastly, Let ( )11,p y  and ( )22 ,p y  be two distinct points in lC . Suppose that l  is the 

unique solution of the system 

2 2

1 1mod
mod

x
x

y p
y p

≡
≡

 

which is between 0 and 1 2p p . Since 1 2 1m mpp pp −≤  there exist at least  numbers 

between 1m mp p− and 1 2 3p p p  equivalent to l  in mod 1 2p p . Therefore, lC  cannot be 
determined. 

Hence, 1 2( , , , )mp p pΛ is 3 shareable.  

6.2 Encoding Function ΦΛ(p1p2…pm) 

Let k be the biggest positive integer such that 1
1 1 2 32 1k

m mp p p p p+
− < − < . We would like 

to define 
1 2( , , , )mp p pΛΦ  to be a function that maps a k  bit string 1 2 kε ε ε  to a circle lC  

such that 

1 2 2 2k
kl = + + +ε ε ε . 

Then 
1 2( , , , )mp p pΛΦ  is one to one since binary representation of integers is unique and 

hence, 
1 21 2 ( , , , )( ( , , , ), )

mm p p pp p p ΛΛ Φ  is a k  bit 3  secret sharing pair. 

6.3 Choice functions of Λ(p1p2…pm) and the Calculation of Φ Λ(p1p2…pm)
 -1(Ψ) 

Let 3 n m< ≤ . For any 1,2, ,j n= , we define  

( ) ( , (mo ))dj l j jC p l pπ =  
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for all 1 2 31m mp p l p p p− <≤ . 

Given three distinct points ( )11,p y , ( )22 ,p y  and ( )33,p y in  

1 2( , , , ) 1 2 1 2( ) ( , , , )
mp p p k mp p pΛΦ ∈Λε ε ε . 

Then  

1 2( , , , ) 1 2( )
mp p p k lCΛΦ =ε ε ε  

where l  is the unique solution of the system: 

2

3

1 1

2

3

mod
mod
mod

y p
y p

x y
x

p

x ≡
≡
≡

. 

between 1m mp p−  and 1 2 3p p p . Then 1 2 1 mod2( )k m ml p p−= −ε ε ε . 

Hence, a k  bit ( )3,n  secret sharing storage can be launched for the k  bit 3  secret 

sharing pair 
1 21 2 ( , , , )( ( , , , ), )

mm p p pp p p ΛΛ Φ . 

Example 6.3.1: Consider the following table: 

1p  2p  3p  4p  5p  6p  7p  8p  9p  10p  
31 37 41 43 47 53 59 61 67 71 

Therefore, we have  

1 2 3 47027p p p =  and 9 10 4757p p = . 

Hence, 1 2 3 9 10

9 10

8.884p p p p p
p p
−

= = . 

Example 6.3.2: Also, look at 

1p  2p  3p  4p  5p  6p  7p  8p  9p  
37 41 43 47 53 59 61 67 71 

So,  

1 2 3 65231p p p =  and 8 9 4757p p = . 

Hence, 1 2 3 8 9

8 9

12.71.p p p p p
p p
−

= =  
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6.4 Implementation of the CRT Method 

We consider the following sequence of prime numbers 

1p  2p  3p  4p  5p  6p  7p  8p  9p  10p  
41 43 47 53 59 61 67 71 73 79 

and  

1 2 3 82861p p p =  and 9 10 5767p p = . 

Hence, 1 2 3 9 10

9 10

13.37p p p p p
p p
−

= = . The size of containers is now half of the original 

secret file. 

6.4.1 Speed tests 

a) Producing Containers 
 

The following table shows how much time needed for producing 10 uncompressed 
containers. 

Secrect Size (in MB) 2 4 6 8 10 
Generating Time for 10 
containers (in sec) 

0.161 0.304 0.454 0.588 0.718 

 

 

Figure 14: Time required for various sizes of secrets to generate 10 containers. 
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c) Recover the Original File 
 

The following table shows how much time needed for recovering original files from their 
containers in a) 

Secret Size (in MB) 2 4 6 8 10 
Recover Time (in sec)  0.037 0.078 0.104 0.150 0.188 

 

 

Figure 15: Time required for various sizes of secrets to recover the secret from three containers. 

 

6.4.2 Size Tests 

The following table shows that average sizes of the compressed container files of the 
testing group. 

Secret Size (in MB) 2 4 6 8 10 

Compressed Secret 
Size (in KB) 

987 1973 2960 3947 4934 

Compressed Container 
Size (in KB) 

394.1 788.5 1183.4 1577 1971.9 

Size Ratio of 
Compressed Secret and 
Compressed Containers 
(in %) 

40 40 40 40 40 
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Figure 16: Comparison of Sizes of compressed secret  

and compressed container  for various sizes of secrets. 
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7 Conclusion 

In this report, we have mainly developed an abstract framework of k  bit t  secret sharing 
framework for cloud storage. This framework is clean and it can be implemented. A 
successful implementation of the framework would provide users with protection when 
the system is under the attack on its confidentiality, integrity and reliability. Furthermore, 
such system has its own encryption by using permutations and tailor made error detection, 
location and data rescue.  

We make use of Lagrange polynomials and take the advantages of the algebraic property 
“ t  distinct points on the plane can uniquely determine a polynomial function of degree 

1t − ” to design a k  bit ( , )t n -secret sharing distributed storage. We employ the set with 
unique factorization property (UFP) so that we simply need to calculate the y  intercept 
of a Lagrange polynomial and then use a look up table to recover a secret. Moreover, the 
set which has minimum UFP would help us to design storage with smallest containers. 

In addition to the algebraic methods, we can utilize the geometric facts that  

a) three non collinear points determine a unique circle; 
b) four non coplanar points determine a unique sphere. 

to construct k  bit (3, )n  and k  bit (4, )n  secret sharing storage respectively. To 
generalize to arbitrary case, it is straight forward if we have defined the Haar measure on 
the higher dimensional unit sphere. 

The last method is an application of Chinese Remainder Theorem and we have designed 
k bit (t,n) -secret sharing distributed storage and one of the designs can offer containers 
with the same size of the original secret. However, such k is no longer unrestricted and it 
is chosen within a certain range. 

We have developed a C program for implementing both algebraic and geometric k  bit 
(3, )n secret sharing distributed storages. The performances of both algebraic and 
geometric designs are satisfactory in term of processing time and compressed container 
size. The container size reaches 50% of size of the original secret and 40% after 
compression in the CRT case. Besides, it is very speedy. 

Finally, concerning the framework of distributed storage and its techniques, the notion is, 
clean, cute and mostly original. Also, it is proved to be working efficiently. 
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 所獲獎項 

年份 比賽／獎勵名稱 頒發機構 所獲獎勵 備注 

2013 第 28 屆年全國青少年科技創

新大賽 

The 26th China Adolescents 
Science and Technology 
Innovation Contest 

周培源基金會和中國

科協、教育部、科技

部、國家環保總局、

國家體育總局、國家

自然科學基金委、全

國少工委、全國婦

聯、國家自然科學

基金委和南京人民政

府共同主辦。 

周培源青少

年科技創新

獎和二等銀

獎 

一等獎缺，二等獎兩

名 

2013 紅藍之光 澳門培正中學 得獎者 因在數學及科學上有

優異表現，為澳為校

爭光而獲獎。 

2013 科普活動傑出獎學金 澳門培正中學 得獎者  

2013 Intel 國際科學與工程大獎賽 
Intel International Science and 
Engineering Fair 

Society for Science & 
the Public (SSP) 

Finalist Nominated -The IEEE 
Foundation Presidents' 
Scholarship Award 

2013 科技創新成果競賽 2013 澳門教育暨青年局 高中組個人

項目優異獎 

 

2012 第 3屆丘成桐中學應用數學

科學獎  

The 3th Shing –Tung Yau 
Mathematical Science Award 

丘成桐教授 
泰康人壽保險股份有

限公司 

優勝獎 

 

全球決賽 

2012 澳門科學與工程大獎賽 2012 澳門教育暨青年局 優異獎  

2012 第 5 屆丘成桐中學數學科學

獎-南部賽區 

中山大學 一等獎 中國南部賽區決賽 

2012 紅藍之光 澳門培正中學 得獎者  

2012 科普活動傑出獎學金 澳門培正中學 得獎者  

2012 Intel 國際科學與工程大獎賽 
Intel International Science and 
Engineering Fair 

Society for Science & 
the Public (SSP) 

Finalist 國際大賽 

2011 第 26 屆年全國青少年科技創

新大賽 

The 26th China Adolescents 

中國科協、教育部、

科技部、國家環保總

局、國家體育總局、

內蒙古自治

區主席獎和

一等金獎 

全國獎項 
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Science and Technology 
Innovation Contest 

國家自然科學基金

委、全國少工委、全

國婦聯、國家自然

科學基金委和內蒙

古自治區人民政府共

同主辦 

2011 紅藍之光 澳門培正中學 得獎者 因在科學，數學，寫

作及音樂上有優異表

現，為澳為校爭光而

獲獎。 

2010 首屆澳門十大傑出少年選舉 

1st Macau 10 outstanding 
teenager election 

澳門基督教青年會 

Y. M. C. A. Macau 
十大傑出少

年 

 

2010 第 8 屆走進美妙的數學花園-

中國青少年數學論壇 

中國少年科學院 一等一名金

獎 

全國獎項 

2010 第 5 屆中國中學生作文比賽-

澳區比賽 

澳門青年聯合會 優異獎 獲選全國賽澳區代表 

2010 聖庇護十世音樂院獎學金 聖庇護十世音樂院 高階組得獎

者 

各階選一人得獎 

2009 第 27 屆澳門青年音樂比賽- 
鋼琴四手聯彈初級 

澳門文化局 第二名 

 

公開賽獎項 

2009 區師達神父獎學金 聖庇護十世音樂院 得獎者  

2008 第 25 屆全澳學生朗誦比賽- 
普通話高小獨誦 

澳門中華教育會 二等獎 校際賽獎項 

2007 “我與世界遺產”中國校際作

文徵集活動 
中國聯合國教科文組

織全國委員會 

一等獎 全國獎項 

2007 澳門青年交響樂團 – 
優秀團員獎 (少年團) 

澳門青年交響樂團 得獎者  

2006 第 23 屆全澳學生朗誦比賽- 
普通話初小獨誦 

澳門中華教育會 二等獎 校際賽獎項 

2005 第 23 屆澳門青年音樂比賽- 
鋼琴獨奏 B 組 

澳門文化局 第三名 公開賽獎項 

2005 
-
2013 

鋼琴成績優異獎 聖庇護十世音樂院 得獎者  
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著作 

譚知微 曾學為 , ““眾妙之門”——數學原理在電子門禁系統上的應用” ,《中国科技

教育1》2012 年 第 2 期 26-28 頁及第二十六屆全國青少年科技創新大賽獲獎作品集, 
科學普及出版社, 180-183 頁 

 

公演及展示 

23-29/08/2013 香港第四十六屆聯校科學展覽 (澳門區唯一所獲邀項目) 

25/07/2013 聖庇護十世音樂學院五十週年慶典音樂會-雙鋼琴八手聯彈 

 https://www.youtube.com/watch?v=2azl-6OncQA 

20/01/2013 扶樂普天頌-區師達神父作品音樂會-鋼琴獨奏 

 https://www.youtube.com/watch?v=bOPpoQQmzuk (由 00:20 開始) 

 https://www.youtube.com/watch?v=Lmpw21-s5BQ   

 (樂。跡。區師達神父生平及手稿展覽宣傳片 Opening Music)  

11/09/2010 澳門青年交響樂團- 13 週年會慶音樂會 

08/07/2010 培正中學管弦樂團新加坡公演 

03/04/2009  培正創校 120 周年紀念音樂會-管弦樂團之大提琴,鋼琴四手聯彈。 

20/12/2008  澳門回歸九週年-澳門青年交響樂團 

29/11/2008   踏出第一步青少年音樂會-大提琴獨奏 

30/08/2008  澳門青年交響樂團十一週年會慶音樂會-大提琴 

27/08/2008  澳門青年交響樂團-深圳之行-深圳市保利劇院 

02/08/2008  聖庇護十世音樂學院四十五週年慶典音樂會-雙鋼琴八手聯彈 

 

 

                                                 
1 《中國科技教育》是中國科學技術協會主管、中國青少年科技輔導員協會主辦的一本關於科技教

育的國家級專業科普刊物。 
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