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Abstract

In this report, we have mainly developed an abstract framework of k bit (t,n) secret sharing framework for
cloud storage. Such framework is clean and it can be implemented. A successful implementation of the
framework would provide users with protection when the system is under the attack on its confidentiality,
integrity and reliability. Furthermore, such system has its own encryption by using permutations and tailor
made error detection, location and data rescue.

We make use of Lagrange polynomials and take the advantages of the algebraic property “t distinct points
on the plane can uniquely determine a polynomial function of degree t-1” to design a k bit (t,n) -secret
sharing distributed storage. We employ the set with unique factorization property (UFP) so that we simply
need to calculate the y intercept of a Lagrange polynomial and then use a look up table to recover a secret.
Moreover, the set which has minimum UFP would help us to design storage with smallest containers.

In addition to the algebraic methods, we can utilize the geometric facts that three non collinear points
determine a unique circle and four non coplanar points determine a unique sphere to construct k bit (3,n)
and k bit (4,n) secret sharing storage respectively. To generalize to arbitrary case, it is straight forward if
we have defined the Haar measure on the higher dimensional unit sphere.

The last method is an application of Chinese Remainder Theorem (CRT) and we have designed K bit (t,n)
secret sharing distributed storage and one of the designs can produce containers with the half size of the
original secret. However, such K is no longer unrestricted and it has to be chosen from an interval.

We have developed a C program for implementing both algebraic, geometric k bit (3,n) secret sharing
distributed storages as well as the CRT method. The performances of both algebraic and geometric designs
are satisfactory in term of processing time and compressed container size. The container size is even half of
the size of the original secret in the CRT case and it is also very speedy.

1. Introduction

The world keeps evolving, so as our life. Alvin Toffler, an America futurist, described in
his famous book The Third Wave [1], that human progress could be divided into three
‘waves’: The Agricultural Revolution constitutes the First wave; the Industrial
Revolution, the Second Wave and the Third Wave, which is a different world we have
just entered, comprises the Information Age based on the revolution brought by
Computer Technology. To review from the past, IBM developed the mainframe computer
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in the 60s of the 20" century; personal computer (PC) become popular in the 90s which
followed immediately by information explosion brought by internet. Nowadays, network
servers and users exist everywhere in our world, perform various calculation tasks
according to different enquires. Now, in the early 21 century, we are living in the Third
Wave society which represented as the Cloud Computing Era. Cloud computing has
become increasingly important owing to the continuous economic development. Apart
from performing calculation and providing storage at supercomputer-level at any time,
cloud computing require much lesser cost compared to the supercomputers.

According to SME (Small and medium enterprises) cloud adoption study by Microsoft
and Edge Strategies in 2011 (Ref. Figure 1) [2], it indicated that top three workloads
addressed by paid cloud service in three years are accounting & payroll, collaboration
and File/Storage and back up. Especially, and File/Storage and back up workload is
expected to be increased almost double in 2014.

Workloads Addressed by Paid Cloud Services today and in 3yrs Number of employees
(Today = 3 yrs.)

W3Yrs HToday 210 11-50 51-250

Business class email [10% - > 9% 13%  12% - 16% 15% - 21%

Accounting & payroll * | 214%

12% - 18%  18% - 25% 24% < 2%

CRM ™ - % 6% - 13% 11% = 17% 15% = 24%

Web Conferencing 7% 6% = 13% 8% 2 15% 11% = 20%

File sharing SR 4% 10% 7% 13%  11% - 20%

{

Collaboration (Le, project mgmt) 8% 7% = 16% 11% = 18% 18% = 29%

!

Specific business applications [S% 6% = 9% 5% = 11% 7% = 13%

File/Data storage and backup | 8% 15% 7% 14%  10% - 18%  12% - 24%

Data archiving and compliance | 5% 13% 4% = 12% 11% = 17% 1% = 22%

* Reflects companies using hosted service for Payr
Figure 1. SME cloud adoption study by Microsoft and Edge Strategies in 2011

In spite of the rapid growth of demands of cloud service, people still hesitate to use
clouds. A survey by HKPC (Hong Kong Productivity Council) (Ref. Figure 2) [3], we
can see that up to 50 % of the samples show their concerns about the security of cloud
service which is the major concern in the survey. Also, from an InformationWeek survey
2013 (Ref. Figure 3) [4], security not only occupies the position of the top cloud storage
concern but also draws more user attention on the matter.
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Uncertainty about how to choose the right cloud solutions

30.2%

Lack of skills for using cloud or related IT applications

25.2%

Unfamiliar with cloud concepts and technologles

10.0%
Others

Figure 2. Survey by HKPC on Not Using Cloud in 2012

Cloud Storage Concerns

What are your main concerns about using cloud storage services?
L FUE 2012
Security

Reliability and availability
e — 0
52%

Performance

B[l
49%

I i
39%

Regulatory concerns
B R
38%
Other
11%
3%

Note: Multiple responses allowed RG400213/730
Base: 90 respondents in January 2013 and 133 in January 2012 not using nor considering cloud storage services
Data: InformationWeek State of Storage Survey ol busi technelogy professional

Figure 3. Survey by InfromationWeek on Cloud Storage Concern in 2013

Currently, there are many cloud storage providers that let users share and store
documents easily online. However, we are lack of control of our documents. For example,
when we upload a file to cloud storage, the service provider has not only the total detail

of the file but also right to read, duplicate and even transfer the file to anywhere. It will
give an opportunity to malicious attackers. Besides, attackers will attack cloud storage
server to steal all kinds of documents. Such personal information or documents might be
sold or distributed illegally as well as immorally. It hurts benefits of companies, privacy
of people and innocent victims themselves.
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Usually the cloud storage provider will store files over networks in more than one storage
nodes. Such distributed storage will be under three major kinds of attacks. [5]

-The attack on confidentiality reveals stored server contents to attackers;

-The attack on integrity modifies data in victim storage servers without being noticed;
-The attack on reliability makes storage server unavailable to legitimate users.

In this report, we will propose a (t,n) secret sharing secure distributed storage system
which can ensure its confidentiality, integrity as well as reliability. Basically, suppose we
would like to save a file. What we will do is creating n files called containers which are
quite different from the original file. These containers will be store in distinct storages. If
we want to restore the file, we need to have at least t containers. These containers will be
processed a recovery program. The output of the program is the original file. (ref. Figure

4)
L1

Container 1

Container 3

Container
..... | 02
Container 2 —h Container

(|0 Ud Container n

. . R =
Container i Confainer is Container is

Figure 4. The idea of the proposed system

Besides, we will be expected to have more features such as unauthorized modification
detection, location and correction.
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2. Literature Revision of (t,n)-Secret Sharing

Secret sharing [1] is currently a very popular topic which is a method of distributing a
secret, among a group of users, requiring a cooperative effort to determine the secret.
Secret sharing schemes are designed with specific parameters that determine the number
of shares needed to uncover the secret, and the overall number of shares in the scheme.
The ultimate goal of the scheme is to divide the secret being hidden into n shares, but
any subset of t shares can be used together to solve for the value of the secret.
Additionally, any subset of t—1 shares will prevent the secret from being reconstructed
[2]. This is defined as a (t,n) threshold scheme, meaning that the secret is dispersed into

n overall pieces, with any t pieces being able to recreate the original secret. We are
interested in (3,n) -threshold scheme in this research.

As in [3], we would like to consider the following problem:

4 scientists are working on a secret project. They wish to lock up the documents in a cabinet so that
the cabinet can be opened if and only if 3 or more of the scientists are present. What is the
smallest number of locks needed? What is the smallest number of keys to the locks each scientist
must carry?

It is not hard to show that the minimal solution for this (3,4) problem uses 4 locks and 2
keys per scientist. However, if we increase the number of scientist to 11 and at least 6 of
the scientists have to present in order to open the cabinet. We can show that the minimal
solution 462 locks and 252 keys per scientist. It is clearly not practical. Moreover, the
numbers will increase exponentially as the number of scientist increases. Therefore, other
schemes which are more innovative have been proposed.

2.1 Shamir's Scheme

In the Shamir’s scheme [3], [4], any t out of n shares may be used to recover the secret.
The method is based on the fact that you can fit a unique polynomial of degree (t—1) to
any set of t points that lie on the polynomial. The method is to create a polynomial of
degree t —1 with the secret as the first coefficient and the remaining coefficients picked
at random. Next find n points on the curve of the polynomial and give one to each of the
shares. When at least t out of the n shares reveal their points, there is sufficient
information to fita (t—1) th degree polynomial to them, the first coefficient being the

secret.
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Example 2.1.1 (A (3,6)-Shamir’s scheme)

Suppose that our secret S =1234. We obtain 2 numbers 166 and 94 randomly. Define a
quadratic function

f(X)=S +166X+94%> =1234 +166X + 94X".
We construct 6 points form f as below:
(1,1494),(2,1942),(3,2578),(4,3402),(5,4414),(6,5614).

In order to reconstruct the secret S, any three of the above points will be enough. Let us
consider (Xx,,Y,) =(2,1942),(x,,Y,) = (4,3402) and (X,,Y,) =(5,4414). We will compute

Lagrange basis polynomials:

L, = ==X —=X+—
Xo =X X, =X, 6 2 3
X=X, X=X, -1 7

L, = 0 2 =— X +—X-5
Xp =Xy X, =X, 2
X=X, X=X 1 8

L, = L L= —x* = 2X+—
X, =Xy X =% 3

2
Therefore, f (x) = Z y;L;(x)=1234+ 166X +94x. Hence S = f(0).

j=0
2.2 Blakley's Scheme

Blakley's secret sharing scheme [5] is geometric in nature. For a (t,n) secret sharing, we
use the fact that any t nonparallel (t —1) -dimensional hyperplanes intersect at a specific

point. So suppose the secret S is a point in the t dimensional space. Just create n
nonparallel (t —1) -dimensional hyperplanes as keys. Then any t of them will uniquely

determine a point which is the secret point.

Example 2.2.1 (A (2,6) Blakley's secret sharing scheme)

Let S=(0,0). We can create a (2,6) Blakley's secret sharing. Make 6 keys for each share
as below:

K, =X K, =2X,K, =3x,K, =4x,K; =5X,K, = 6X
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Forany K; and K;, we are able to solve the intercept point out which is the secret point

(0,0).

2.3 Using the Chinese Remainder Theorem

We would like to only illustrate the idea by an example. It is based on the Asmuth-
Bloom's Scheme [6]. Let t=3 and n=4.Let m;=3,m, =11,m, =13,m, =17 and

m, =19. Let the secret S =2 . Pick a =51 according to Asmuth-Bloom's Scheme. Then
2+51x3=155. Assign (m;,155(modm,)) to the i th share for i =1,2,3,4. To recover

the secret, we have one possible 3 of the shares for example, (11,1),(13,12) and (17,2).
Then apply to solve the system of equations

x=1 (modll)
x=12 (mod13).
x=2 (modl17)

[i.e. Consider the solutions of the following systems of equations

x=1 (modll) Xx=0 (modll) Xx=0 (modll)
x=0 (mod13),x=1 (mod13),x=0 (modl3)
x=0 (mod17) x=0 (modl7) x=1 (mod17)

which are 221, 1496 and 715 respectively]. So the solution is
I1x221+12%x1496+2x715=19603 and 19603 =155(mod11x13x17). Finally,

S=2=155(mod3).

It is worthy to note that the above method normally cannot be applied directly to practical
problems. Further development, modification and design are needed to be made so that a
real world problem can be solved.
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3. Framework of k bit t Secret Sharing Distributed Storage

In this Chapter, we will introduce the various notions related to proposed framework.
Besides, we will give simplified examples in order to illustrate the ideas. The algorithms
of generating containers and recovering the original secret are also given. A tailor made
encryption for container is given by the end of the chapter.

3.1 Secret Shareable Pairs

Let Z, be the set of all binary strings with length k , i.e.
Z, =466 :¢=0o0r1i=12,-k}

Definition 3.1.1: Let t >3 be an integer and let A be a family of subsets of R? such that
if
a) C.,C,eA and |C1 mC2| >t,then C, =C,;

b) t is the smallest integer which has property a).
c) Let p,,p,,-:~, P, €C and C € A. There is a method ¥ (or an algorithm)

enable us to obtain C from the given t points.
Then A is t-secret shareable.

Notation: We would like to denote the set of all the graphs of polynomials of degree t —1
by A,. Hence, A, is the set of all the graphs of quadratic functions.

Example 3.1.2: Recall that a classical algebra result, two quadratic functions agree with
each other at three distinct points if and only if they are equal. Then A, has properties a)

and b) in the definition 3.1.1. Assume that (X, Y,), (X,,Y,) and (X;,Y;). Let

(X—Xz)(X—X3) n (X—Xl)(X—X3) + (X_Xl)(X_XZ)

L(x) = | 2 3
(X1 _Xz)(xl _X3) (Xz _Xl)(XZ _X3) (X3 _X1)(X3 _Xz)

Then L(X)=Y,,L(X,)=Y, and L(X;) =Y. Hence, (X,Y,), (X,,Y,) and (X;,Y;) belong
to the graph of L(X) and A, is 3-secret shareable.

Let ®:Z, — A be an one to one onto function from Z, to A. Then it is called an

encoding function and the ordered pair (A, ®) is called a k bit t-secret shareable pair.

10
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Example 3.1.3: For any €€, € Z,, we define @ A, (€6,) to be the graph of the quadratic

function (X+2%)(X+3%). Then (A,,® x,) isa 2 bit 3 secret shareable pair.

We would like to give another example of secret shareable pair.

Example 3.1.4: Let A’ be the set of all circles in R*. Then by the elementary Geometry
theorem, three points which are not collinear determine a unique circle as in the below
figure.

Figure 5: Three non-collinear points determine a unique circle.

Hence, A’ is 3 secret shareable. Now we define a function ® from Z, to A’ by

where C, is a circle such that its center is (x,y) and its radius is 1/3 . (Ref. Figure 6)

(1.1}

N

(0,0)

Figure 6: The function ® maps two bits €, &, to a circle C ¢, ¢..

Then (A’,®) isa 2 bit 3 secret shareable pair as well.
11
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3.2 kbit (t,n) Secret Sharing Distributed Storage framework

Assume that the ordered pair (A, ®) is a K bit t-secret shareable pair and n>t is an

integer.

Definition 3.2.1: Let 7,,7,, -, 7, be a sequence of functions from A to R such that
for j,j'=12,---,nand CeA,

1. 7;(C)eC;
2. 7;(C)=r;(C) ifandonlyif j=j'.

Then x,,7,, -+, 7, is said to be a sequence of choice functions of A.

Example 3.2.2: Consider A, andC € A such that C is a graph of a polynomial P(Xx). We

define
7;(C)=(J,P(})
for j=1,2,---,n.

Let ¢ =Mk for some positive integer M . Then we call s is a secretif S=¢¢€, €, €Z,.

Therefore, s can also be written as
S=SS, S,
where §; =€ 1€y 6 and 1=1,2,---, M.

Note that it is sometime useful if we index S, as below

and so
S= 11... 1.2 2... 2... i i... i... M M... M
66 EE € E 66 6 € € 6

3.2.1 Creating Containers from a Secret

Given a secret S=S;S,--*S,, €Z,, a container array [S] isan M by n array of points in

RY such that

12
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[l =7; (@(s)))

fori=12,---,M and j=1,2,---,n. The jth container [S]

; of the secret s is the ]

column of the container array [S] where j=1,2,---,n.

Example 3.2.3: if s=100111, then s, =10,s, =01,s, =11. Then

7, (©(10))=(i.(i-2(i-D)
7, (®(s,)) =7, (®(01)) = (J.(i -D(i-3))
7 7, (@(11)) = (J.(i-2)(i-3))

where j=1,2,3. So the container array of the secret s is

(L0) (2.0) (3.2) (4.6) (5.12)
[s1=[(1,0) (2.3) (3,0) (43) (5.8)
(L2) (2.0) (3.0) (42) (56)

Finally, we can obtain 5 containers

(1,0) (2,0) (3,2) (4,6) (5,12)
[s], =[(L0) |.[s], =[ (2.3) |.[], =] (3,0) |.[s], =| (4.3) |.[s]s =| (5.8)

(1,2) (2,0) (3,0) (4,2) (5,6)

Remark: The size of containers depends on the parameter k. However, it is not always the
case that the bigger k, the smaller the size of containers would be theatrically.
3.2.2 Recover the Secret from t Containers

To recover the secret S=¢¢, -, =SS, S, , we have to have at least t distinct

containers. By the property c¢) of definition 3.3.1, without loss of generality, we can
assume that they are [S],,[S],,-*-,[S];. First of all, we form the M by t collector array

[8],... =[[81.[8T,s---. I8 ] =P}

The i th row of the collector array consists of t distinct points p;, p,--, p| of ®(s,). By
the properties a) and c) of Definition 3.1.1, we have

13

Page - 449



Shing-Tung Yau High Schoglzlgpplied Mathematical Sciences Award 2013
©(s,) = P(p}, P+, PY)
and
5 =07 (¥(p}, p.e--, p))
fori=12,---,M.
Finally, we recover the secret
$=8,S," Sy,
=07 ((pr, Py POIPT (F(PL, Py P @7 C(P] PY -, )

Moreover, from property b) of Definition 3.1.1, the number of distinct containers needed
to recover the secret s should be at least t.

3.2.3 Algorithms of k bit (t,n) Secret Sharing Distributed Storage

Assume a (A, D) is a k bit t-secret shareable pair, n>t is an integer and =,,7,, -+, 7, is
a sequence of choice functions of A.
Algorithm for Distributed Storage
Step 1. Input asecret S=SS,---S, €%Z,.

/] £ =MKk//
Step 2.  Form the container array [S] by

[s]j = 7;(D(s,))

where 1=1,2,---,M and j=1,2,---,n.
Step 3. Store the ith container [S]; into the i th storage.
Step 4. End
Algorithm for (t,n) Secret Sharing Recovery
Step 1. Get t containers [S] i8]y, [8];, from t distinct storages
Step2  Form the collector array [S]jljzmjl = [[S]j] 81,7+ [8], ]

14
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Step 3. For i=1,2,---,M, recover S, from the ith row of the collector array

as in section 3.2.2
Step 4 Output S=S;S,---S,, .

Step 5 END

3.3 Permutations and encryptions

Definition 3.3.1: Let o be an one to one onto function from {1,2,3,---,n}. Then we call

the function o a permutation. The set of all the permutations on {1,2,3,---,n} is denoted

by S, . Let id be a permutation in S such that id maps every element of {1,2,3,---,n}to

j-1

itself. For any o €S, , we define 6” =id and ¢’ =c'" o0 .

Given a permutation o €S, and M xn container array [S] of a secret s, we define o

encrypted container array [S]° to be M xn array of points in R® such that

for i=1,2,---,M and j=1,2,---,n. The i th column of [S]” is said to be the ith &

encrypted container denoted by [S]’.

Let 2<m<n. A permutation o' in S, denoted by (n,,n,,---,N, ), is called a cycle if

there exist n,n,,---,n_ are distinct numbers in {1,2,3,---,n} such that

a'(n)=n

mod ,(r+1)

for r=1,2,---,m and o' maps other element to itself. The number m is the length of o'

denoted by |G'| .

Example 3.3.2: Let 0'=(2,5,1)€S;. Then ¢'(2)=5,0'5)=1,06'1)=2,0'3)=3 and
o0'(4)=4. The length of (2,5,1) is now equal to3.

The period of a permutation & is the smallest positive integer T such thato' =0 .
Obviously, the period of a circle o'=(n;,n,,---,n_) is its lengthc'=m. Since a

permutation o can be factorized uniquely into a product of cycles, we have the period of
o is the L. C. M. of the lengths of the cycles in the product. It is also known as Ruftfini

15
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Theorem (1799) [1]. We would like to use a permutation with biggest period for
encryption for highest complexity of containers.

Example 3.3.3: Consider S,,. Since 10 =5+3+2, the pattern of permutations in S,
with maximum period 30 =5x3x2 is (*¥****)(***)(**) There are 120960 of them in

total and and we list some of them below:
0,8,6,7,2)(1,4,9)3,5),(2,4,7,6,9)0, 8,5)1, 3),(0,3,7,9, 2)4, 5, 8)(1, 6)
(1,6,9,4,5)0,2,8)3,7),(0,1,8,9,4)2, 5, 6)3,7), (0,2, 8,4,9)(1, 6,5)3,7)
(0,8,9,5,4)1, 6,7)2,3),(0,2,7,8,9)(1, 4, 3)(5, 6), (0,9, 5,4, 7)(1, 8, 3)(2, 6)
(0,2,9,5,3)1, 8, 4)6, 7).

Example 3.3.4: Let

(1L,0) (2,0) (3.2) (4.6) (512)
[s]=](1,0) (2,3) (3,0) (43) (5.8)
(L2) (2.0) (3.0) (42) (5:9)

and o =(1,2,3)(4,5). Then o° =(1,3,2)(5,4) and o =(4,5) . Hence,

(3,2) (L0) (2,0) (5,12) (4.6)
[sI” =[(2,3) (3,0) (10) (43) (5.8)
(L2) (2,0) (3,0) (56) (4.2)

and the o encrypted containers are

(3.2) (1,0) (2,0 (5.12) (4.6)
[s17 =1 (2,3) [,[s15 = (3,0) |.[s1 =| (1,0) |,[s1Z =| (4,3) |,[s1Z =] (5.8) |
(1.2) (2,0) (3.0) (5.6) (4,2)

Assume a (A, ®) is a k bit t-secret shareable pair, N>t is an integer, o €S, and

7,7, *, 7, 1s a sequence of choice functions of A.

Algorithm for Encrypted Distributed Storage

Step 1.  Inputasecret S=S;S,:--S,, €Z,.

/I 0 =Mk//

16
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Step 2.  Form the container array [S] by
[s]; = 7;(D(s)))
where i=1,2,---,M and j=12,---,n.
Step 3.  Obtain the o encrypted container array [S] from [S].

Step 4. Store the ith encrypted container [S] into the ith storage.

Step 5. End

Note that the property c) of definition 3.1.1 is true regardless the order of the points
P> Py, -+, Py - Therefore, it is no need to modify the recovery algorithm in subsection

3.2.3 and it also works well with encrypted containers.
3.4 Features of k bit (t,n) Secret Sharing Distributed Storage

In this section, we will mention some theoretical features of the framework of k bit (t,n)
Secret Sharing Distributed Storage.

Recall that in Chapter 1, we mention that distributed storages will be under three major
kinds of attacks:

-The attack on confidentiality reveals stored server contents to attackers;

-The attack on integrity modifies data in victim storage servers without being noticed;
-The attack on reliability makes storage server unavailable to legitimate users.

The propose framework will provide the following protections.

a) Ensuring confidentiality

The original secret is a binary string. However, a container is a column of points in R*
which carries only partial information of the secret. Even attackers successfully obtain
less than t containers. They are not able to extract any information of the secret.

b) Ensuring integrity

Before the discussion, we would like to mention first that practically t will not be a large
number and it is very likely less than 5 and n is much larger then t. Now assume that
the storage system is under attack and the content of container is modified without
notification and authorization. We are able to detect such modification and correct it
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when a defected container is used for recovery. For example, we have t containers of a
secret s, namely [S],, [S],, -+, [S]; such that the first entry of the first container has
been modified illegally. When we recover s from [S],,[S],, -+, [S];, the first row of

collector array will determine an element in A which is not in the range of @ . It is
because the size of A is very much larger than the size of the range of @ . Besides, in
practice, we would like to make the elements of the range of ® “away from each other”.
So we are able to know that the first row of [S],,[S],, :--, [S]; has been modified illegally.

To identify the location and correct the illegal modification, we need another t good
containers. Check the containers one by one with t —1 good containers. Then [S], is the

bad container. So we conclude that the first entry of the first container has been modified
illegally. To correct this, firstly we use the first row of the t good containers to recover §

and then by using the choice function, we can recover the bad entry on [S], (i.e. the first
entry in this case.).

c) Ensuring reliability

Assume attackers have damaged a container. Administrators have no problem to restore
the impaired container. First of all, we obtain t containers from non-compromised
storages. Secondly, we recover the original secret s from those containers and finally, we
can utilize the secret s to generate the damaged container again. Furthermore, we should
note that getting t good containers is possible since n is much larger than t. For

!
example, we choose N=10 and t =3 in this project. Therefore, we have It =84 many
6!3!

of combinations of three good containers ready for recovering the damaged container.
Besides, with big n, the framework provides user with more access availability for t
containers and hence the secret. Even, because of the fact that it is (t,n) secret sharing, it

still maintains the good confidentiality while the number of containers or storages
increases.

Reference

1. Gallian, J. “Contemporary Abstract Algebra.” Brooks Cole, 6 edition, 2004.
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4 Algebraic Methods

Let A, be the set of the graphs of all the polynomials of degree t —1. By the elementary
algebra result [1]:

Assume that functions f and g are polynomial functions of degreet —1 and they agree
with each other on tdistinct points, then f = g and their coefficients are also equal.

Therefore, A, satisfies properties a) and b) of definition of 3.1.1. To show that A, also

satisfies property c) of the definition, we need Lagrange polynomials.

4.1 Lagrange Polynomials.

Given (X, Y,), (X,,¥,),-*+ ,(X;,Y,) such that their x coordinates are distinct, let
t

H(X_Xi)

i=1

Lj(X)z':’—

H(Xj _Xi)

i=1
i#]

where j=1,2,3,---. So Lj (X) is a polynomial of degree t—1 such that

oi=]
L“‘):{o i |

where i, j =1,2,3,---,t and they are called Lagrange basis functions. Hence, the Lagrange

polynomial [2]
L(x) = ylLl(X)+ ysz(X)+"'+ y3L3(x)
will pass through all the given points.

Note that the y intercept of L(X) , L(0), can be evaluated by

Y1L1(O)+y2|—2(0)+"'+y3|-3(0)

where
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[[<0—xi> (—D‘*Hxi

L=t
H(Xj -X) H(Xj = %)
N i

for j=1,2,3, -

Therefore, A, is t secret shareable if ¥ maps (X, Y,), (X,,¥,),-*+ ,(X.,Y,) to the graph
of the Lagrange polynomial Y,L, (X)+Y,L,(X)+---+ Yy,L;(X).

4.2 Unique Factorization Property (UFP)

Let A={m,m,,---,m} be a set of positive integers bigger than 1 and we always assume
that they are in increasing order i.e. m <m, <---<m, . The set A (or the finite increasing
sequence M, m,,---,m, ) has unique factorization property (UFP) if for any binary strings
6162 ---Ek and ?62 ---E_k ,

mlelmgz .__m;k — mlam? .m'? ,

implies ¢ =¢ forall i=1,2,---,K.

Also, the span of an UFP set A denoted by A is defined to be

A={m:m=m'm---m¥ for some binary string ¢, ---€, } .
Suppose now A={1<m <m, <.-.-<m, <---}is an infinite set of integers. For any
k=1,2,3,---, a kth segment A of A is defined to be the set of the first k elements of

A. We call the set A has UFP if for any k =1,2,3,---, A has UFP. The span of A,
denoted by A, is the union of the span of all the segments of A.

Example 4.2.1: The sets {2,3, p} and {2,3,4} are of UFP where p is a prime which is
larger than 3.

Lemma 4.2.2: Let k be a positive integer. For any integer 0 < m < 2%, there is a unique

binary string ¢, ---€, such that
Mm=¢l+e2+--¢2".
Conversely, for any binary string €e, ---¢, ,we have 0<¢1+¢,2+-+-¢ 2" < 2%,
20
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Example 4.2.3: Let p be a prime number and let k be a positive integer. Define

Xk(p): {pla pza pzza p23,.“’ pZH}‘
Assume that

q 2" Gl 152 152 2!

pql pfzz pe322 p‘423 e p =p'pp pF423 e p

So

al+e, 246,27 16, 2%+t 25! G146 246 22+, 20+ 4 21!

P =Pp

By the Lemma 4.2.2, we have ¢ =¢ forall i=1,2,---,k.So X,(p) has UFP.

From the lemma again, the span of X, (p) is the set {p’, p', p*, -, pzk_z, pzk_l} .
Therefore, X (p)={p', p>, p>,p>,--,p> ,p”, -} has UFP and its span is
{p’.php% P
Example 4.2.4: Let X = U {X(p): p is a prime} .We arrange and index the elements of
A in increasing order and

X ={m,m,,m,,---}=12,3,4,5,7,9,11,13,16,17,19,23,---}
from now on.

Let X, ={m,m,,m,---,m,} be the set of first k elements of X where k=1,2,3,--- . We
claim that X, has UFP. Assume that X, consist of the powers of primes p,, P,,-*+, P, .

Hence, X, can be written as below:

2 zklfl 2 2k271 2 zkrfl
Xk_{pl,pla"'apl 7p2’p2a"',p2 :"',pr,pra"'apr }
_ 112 2 r r 1 —1=2 —2 —r —r
where k +k, +--+k =K.Let ¢ 66 6 g and & 6 & g g g
such that
6111 5%2”_ ﬂllzkrl (121 6222_” flgzzkrl qu 652... fl[rzkrl
B | > B b r Pr r
_ i lpe.. i gL g% paigd 2 s
- pl 1 1 2 2 2 r r r
So
A 2ty 297 R 2ty 297 1] 2, 27
| 2 r
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— _ —1 Akp-1 — — —2 Akp-1 — — —r Akp-1
G146 24 46q 20T G 14E 24 A 27 G146 2446 27

=p1 N e Py

Since such factorization is unique and Xk, (p;) has UFP for all i =1,2,---,r, we conclude

that

for all i, j and hence X, has UFP and hence X has UFP.

Theorem 4.2.5 : Let X, be the same as the one in above example and let m be a positive
integer less than m, . Then m is in the span of X, .

Proof: Assume that m= p/" p52--- p/* . Since m< X, , we have p/*, p;>,---, p;” <m, and
hence p,, p,,-*+, P, € X,. Forany i=1,2,3,---,r, there is a positive integer k. such that

zkifl Zki
pr <X <P .

) ) : ) i ki
& _ el a2 d2? 64"23. fllqzll

Since X, (p;) = X, and p;" < pi2ki is in its span, p; R el S N R for

some binary string €c, ---e,ii . Therefore, m is in the span of X, .

Let k be a positive integer and let A be an UFP set with |A| =k . Define ITA to be the

product of all its elements. A is minimum if for any UFP set A" with |A’| =k, we have

I[TA<TIA'. A is completely minimum if every segment of A has minimum UFP.

Example 4.2.6: The first eight minimum UFP sets are: X, ={2}, X, ={2,3},
X, =1{2,3,4}, X, ={2,3,4,5}, X,=1{2,3,4,5,7}, X, ={2,3,4,5,7,9},

X, =1{2,3,4,5,7,9,11} and X, ={2,3,4,5,7,9,11,13}. Also, I1X, =2, IIX, =6,
ITX; =24 and ITIX, =120.

Note that

X, is useful in this project since it has minimum UFP and I'TX, =120 is smaller than

127, the absolute limit of a character type variables.

We conclude the section by two interesting conjectures: For, k =1,2,3,---,
Conjecture 1) X, is the unique set which has completely minimum UFP ;

Conjecture 2) X, is the unique set which has minimum UFP.
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4.3 Proposed Encoding Function ®a,

Recall that A, is the set of the graphs of all the polynomials of degree t—1. For k bits

g6, € and K, k,, -,k _, >1such that k, +k, +---+k_, =k,
D, (€€, -+ +€) is the graph of

_miame...m% _m%atmarz . m%e ... Mm%t e L m&
(X ml m2 mkI )(X mkl+1mkl+2 mk2 ) (X m mkH+2 mk )

Ki_;+1

Since X, is of UFP, we have the function ®, is one to one. Hence, (At,CD A ) is k bit t
secret sharing pair.
Example 4.3.1: Let X, ={2,3,4,5} and k =k, =2. Therefore, k =4. Let A, be the set

of the graphs of all the quadratic polynomials. For any 4 bits ¢¢€,6¢,, @ maps ge6¢, to

the graph of the quadratic polynomial (X—23%)(X—4%5%). For convenience, we would

like to identify the graph of ®(ee,e,€,) with the polynomial ®(ge,€¢,) in this case.

So the y intercepts of D(e6,6€,) , Plee6¢,)(0),can be summarized in the table below:

66,66 D(e,6€,) D(ge6,6€,) (O) 66,6364 D(ec,6¢,) q)(€1€2€3€4)(0)
0000 | (x-2%3°) (x-4%5°) 1 0110 | (x-2°3") (x-4'5% 12
1000 | (x-2'3%) (x-4°5") 2 0101 | (x-2°3") (x-4"5") 15
0100 | (x-23") (x-4%5°) 3 0011 | (x-2°3% (x-4'5" 20
0010 | (x-2"3%) (x-4'5") 4 1110 | (x-2'3") (x-4'5% 24
0001 | (x-2%3°) (x-4%5") 5 1101 | (x-2"3") (x-4"5" 30
1100 | (x-2'3") (x-4"5%) 6 1011 | (x-2"3% (x-4'5" 40
1010 | (x-2'3%) (x-4'5°) 8 0111 | (x-2°3") (x-4'5") 60
1001 | (x-2'3%) (x-4"5") 10 1111 | (x-2"3") (x-4'5" 120

Then (A,,®) is a 4 bit 3-secret sharing pair.

Remark: We would like to choose a encoding pair in order to making the size of
containers to be as small as possible. In the example 4.3.1, the size of resulted containers
is double of the size of origin secret.

4.4 Choice functions of A and the Calculation of ® A, (¥)

Let (At,d) A )be the k bit t secret sharing pair as above and n>t. For any C € A such

that C is a graph of a polynomial P(X) in A,. We define

23

Page - 459




S20
Shing-Tung Yau High School Applied Mathematical Sciences Award 2013

7, (C)=(],P(}))
for j=1,2,---,n.

Given (X, Y,), (X,,¥,),-*+ ,(X.,Y,), we are going to find

SN CTERPCHARRRCHA)) B

First of all, we build up a look up table which show the one to one correspondence
between K bits onto y intercept of polynomial in the range of @ . By using Lagrange
polynomials, we can find a polynomial of degree t—1, L(X) passing through all the

given points. Find the y intercept of L(X) by evaluating L(0). Then we can find

€6, € such that

(DAI (6162"'€k) :\P((Xl’yl)’(X25y2)7""(Xt’yt))-

by looking up from a table which gives the correspondence between ¢e, ---¢, and
@, (66 6)0).

Exmaple 4.4.1: Look up table for (A,,'¥, ) is

€666 | Oy (61626364)(0) €6e€, | Oy (61626364)(0)
0000 1 0110 12

1000 2 0101 15

0100 3 0011 20

0010 4 1110 24

0001 5 1101 30

1100 6 1011 40

1010 8 0111 60

1001 10 1111 120

4.5 Robustness Analysis of Lagrange Polynomial when t=3

Let t=3. Given (X, Y,),(X,,Y,) and (X;,Y;), the y intercept of the Lagrange

polynomial passing given points is given by

X, X X X X, X
L(0) = 37 173 172 )
( ) y1(X1_X3)(Xl_X2)+yz (XZ—XI)(XZ—C3)+y3 (X3_X1)(X3_Xz)

We assume that noise presents on X, X,, X; which is bounded by e and the noise presents
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ony,,Y,,Y, which is bounded by 0. Also, X,,X,,X;is bounded by M and the distance
between any pair of them is bigger than 4. We wish to found an error bound of the

calculation of noisy L(0),L(0).

Observing that

1 1 |

‘Xz

=X X2+€2—X1—81‘

&)—(x, —x

(%, =X +& -

(% =% ) (%=X +&—¢€

)
|

where ¢, &, are noises associated with X, X, respectively. If |X1 - X2| > A, then

|
)
& —& |
)l

(% —X%) (X, =% +&—¢&

|X2+52—X1—51|>l—25.
Therefore, we have
R 1 . 2
%=X X t+&—X—g| A(A-2¢)
Observe that
X, X, ~ (X, +&) (X, +¢&,) |
(% =% ) (% —x) (x3+g3—x1—gl)(x2+gz—x1—al)‘
. X, X, (x +&) (%, +gz)|

(% =%)(% =%

(%, =% ) (%, —xl)‘

(x,+¢ )(x +e )

)
(%, +&5) (%, + 2)
X)

(X, +&—X - X)) ‘

(% =%)(% =%
N (%, +g3)(x2 &) ~ (x3+g3)(x2+52) |
(% +&-%—&)(%-X) (x3+g3—xl—gl)(x2+gz—x1—gl)‘

‘(X3 _Xl)(xz -

(X, +&) (X, +¢&,)

+

| X,85 + X8, + £,8)]

1 1 |

(% =x)

(X% +&) (X +¢&,)

(%, —x,) (x3+g3—x1—£1)‘

(X +&—X—¢)
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Therefore,
| X,X, ) (% +8)(%+&) |
‘(x3—x1)(x2—xl) (x3+g3—x1—gl)(x2+gz—x1—gl)‘
2& 2 2¢
—(2M +&)e+(M +¢ P2 (M) —=2
2 2
l M+gj 2€+(M +8J ”
) é‘ A-2¢ A-2¢
[2a)+4w]
where o = . So we have
-2¢
| X,X, (X +&) (%, +¢&,)
— 0,
‘(x3—x1)(x2—xl)yl (x3+g3—xl—gl)(x2+gz—xl—gl)(y1+ )
. XX, _ (X, +&) (%, +¢&,) y‘
(% =%)(%=%)"" (+&-X-&)(%+e-%-¢&)"
. (X, +&) (% +¢,) Y. - (X +&) (X, +¢&,) (,+8)
(X +&-X—&)(%+6-X-8)" (X+&-X-&)(%+&—-X—¢)
< X,X, (X, +&) (% +¢,) ||y|
(% =% )(x, xl) (X, +& =X, gl)(x2+g2—x1—gl)‘ :
. (X +83)(X +&,) ||51|

(X, +&— (X, +& —X —sl)‘

&)
< l(2a)+4a)2)gm+w25.
A

where M is an upper bound of absolute values of all possible y .

Theorem 4.5.1: Given (X, Y,),(X,,Y,) and (X,,Y;), noise presents on X, X,, X; which is
bounded by € and ony,,Y,, Y, with is bounded by o . Also, X,X,,X, and Y,,Y,,Y, are

bounded by M and M respectively. Also suppose that the distance between any pair of
them is bigger than 1. Let L(0) be a noisy evaluation of L(0). Then

L)~ L(0)| < (6a)+12a) )eM +30°5

M+e

where w = .
A-2¢
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The following corollary gives a relatively simple inequality when X, X,,---, X, are equally

spaced and noise is not present on them.

Corollary 4.5.2: If e=0, A = M where n is the number of containers then @ =n and
n

IL(©0)-L(0) <3n°5.

We assume n =10 in our study and employ the choice functions in 4.4. From corollary
4.5.2. we have

IL(0) - L(0)| <3005 .

Therefore, keep the noise bounded by a “not very small” number ¢ =0.001. Then
‘L(O) - E(O)‘ <1/3. Note that from the look up table in Example 4.4.1, the smallest

distance between those Yy intercept is 1 which is bigger than 1/3. So the calculation of
L(0) is still stable in this case.

4.6 Implementation of the Algebra Method

All the programs developed in this report is in C and their interface is Qt from Qt Project
[3]. They are all running under testing environment as described below:

OS: Windows 8

CPU: Inter Core 15-3337U(1.8.Ghz / Turbo:2.7Ghz)
RAM: 4GB DDR3

Harddisk: 128GB SSD

The testing group is randomly generated text files with different sizes 2, 4, 6, 8 and 10
MB (megabytes) and the compression is performed by 7-Zip. (http://www.7-zip.org/)

Let (A,,®) be the 4 bit 3 secret sharing pair as in Example 4.3.1. Therefore,
@ maps 4 bits g¢6,6¢, to the graph of a quadratic function
(X—2932)(x—4°5%).

The entries of containers can be stored in the character type variables for obtaining
smaller size of containers. It can be done since the range of quadratic function
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(X—293%)(x—4°5%) is from -120 to 120 and it is contained in the range of character

which is from -127 to 127. One character occupies 1 byte or 8 bits and the method takes
4 bits at a time. Therefore, the size of the containers is double of that of the original secret

file.

4.6.1 Speed Tests

a) Producing Containers

S20

The following table shows how much time needed for producing 10 uncompressed

containers.

Secret Size (in MB)

10

Containers (in Sec)

Generating Time for 10

1.183 2.349

3.58

4.73

5917

-

P

Time in Sec

/

|

4 6
Secret Size in MB

10

Figure 7: Time required for various sizes of secrets to generate 10 containers.

b) Recover the Original File

The following table shows how much time needed for recovering original files from their

containers in a)

Secret Size 2 4 6 8 10
(in MB)

Rcovert Time 0.237 0.471 0.708 0.935 1.176
(in Sec)
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1.4
1.2

0.8
0.6
0.4
0.2

Time in Sec

6

Secret Size in MB

8

10

Figure 8: Time required for various sizes of secrets to recover the secret from three containers.

4.6.2 Size Tests

The following table shows that average sizes of the compressed container files of the

testing group.

Secret Size (in MB)

10

Compressed Secret Size
(in Kb)

987

1973

2960

3947

4934

Compressed Container
Size (in Kb)

984.5

1950.2

2919.5

3879.1

4678.9

Size Ratio of
Compressed Secret
and Compressed
Container (in %)

100

99

99

98

95
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6000
5000 e=g==Compressed
Secret

DQ 4000 -I-Comp.ressed
c Container
N
& 3000
2
w 2000

1000

0
2 4 6 8 10

Secret Size in MB

Figure 9: Comparison of Sizes of compressed secret

and compressed container for various sizes of secrets.

Reference

1. Fine, H. B. “ A College Algebra.” Ginn & company, 1904.

2. Hildebrand, F. B. “Introduction to Numerical Analysis.”” New York:
McGraw-Hill, 1956.

3. Qt Project, http://qt-project.org/search/tag/qtgui

30

Page - 466



S20
Shing-Tung Yau High School Applied Mathematical Sciences Award 2013

5. Geometric Methods

5.1 3 Secret Shareable Set A*

Let A’ be the set of all circles on the plane. Recall that 3 non-collinear distinct points

determine a circle. Since three points on a circle cannot be collinear in R, we have A’
satisfies a) and b). Indeed, it also satisfies property c). To see that, we consider the
following calculation. [1]

Let (X,Y,), (X,,Y,) and (X;,Y;) lie on a circle
C:AX+By’+Cx+Dy+E or C:(Xx=%) +(y-VY.) =T.

Consider the following determinant equation

2

X+y* x oy 1
X+yS X oy 1
Josy) = 7, T =0,
X2+y2 X2 y2 1
XY %o Y |

By evaluating the cofactors M,; for the first row of the determinant, the determinant can

be written as an equation of these cofactors:
M, +y) =M, x+M;,y-M,, =0

or

(X2+y2)_ M12 X + M13 y_ Ml4 =0
Mll 11 Mll

Since J(X;,Y,)=J(X,,¥,)=J(X;,Y;) =0, we have the above equation also represents the
circle C. Extending (X—X.)* +(y—Y.)> =T, into

X4y = 2% X=2Yey + (X + Y2 —12)

and comparing the coefficients of

we have
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X. = M,,
2M
M,
Ye oM

Hence, ¥ maps (X,,Y,), (X,,¥,) and (X;,Y;) to the circle with center

I"I ||13 3
Xe —12 B | andradius [X: + . Therefore, A’ is 3 secret
(%eve )= [2M11 2M, ] \/ c Vet

shareable.

5.2 Encoding Function ®a*

Let k;, k, and k; be positive integers such that k =k, +k, +K, . Since a circle C can be
determined by its center (X;, Y )and its radius I, we would like to define @ ; to be a

function that maps a k bit string €, --¢, to a circle C such that
— k k; +k
(Xc,yc)—(€1+€22+'~'+6kl2l,ékIH+€kl+22+-"+€k]+k22‘ 2)
and
k
o =146 1u T 62t +62°.

Then @ , is one to one since binary representation of integers is unique and hence,

(A, ¥ ) isa Kk bit 3 secret sharing pair.
5.3 Choice functions of A* and the Calculation of @ A* ()
Let n>3and 0< @< % For any C € A’ such that C has center (X, Y. )and its radius
I.. We define
7 (C)= (X, +1.sin(jO),y, +1, cos(jO))

for j=1,2,---,n
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Given (X, Y,), (X,,Y,) and (X;,Y;), ¥ maps these points to the circle with center

M., M
X.., — 12 13
(x> ¥e) (ZM“ 2M“j

and radius

M
o= X+ Yo +—1% .
C C '\/l11

Then the k bits gg, ---¢, such that

(DAz (6162 "'ek): \P((Xla y])a(xza yz):(X3: y3))

2 2
[Mnj (M] J( MQJ ( MBJ M
2M11 b 2M11 o 2M11 2M11 I\/I11

mod2

is

A Kk bit (3, n) secret sharing storage can be launched for the k bit 3 secret sharing pair
3
(A°, D).

5.4 4 Secret Shareable Set A*

In R’, if two spheres have four points in common (Ref. Figure 10), it does not implies
that they are equal. It is because these four distinct points may be coplanar. (Ref. Figure
10)

Figure 10: Two different spheres have four points in common
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Therefore, the set of all the spheres in R’ is not 4 secret shareable. However, by
Theorem 5.4.1, we can see that it is “almost” 4 secret shareable.

Theorem 5.4.1: The probability of picking n distinct points randomly and independently
on the 3 dimensional sphere such that there are 4 point among them lying on the same
plane is equal to zero.

Proof: We would like to prove it by induction.

Assume that we have chosen 3 points from the sphere. The area of the intersection of the
sphere and the plane determined by chosen points is equal to zero. So the event, picking a
point randomly such that it lies on the intersection, has zero probability.

Let A be the event such that n th point is chosen and there is 4 points among them are
coplanar and B be the event such that n—1 point has been chosen and there is 4 points
among them are coplanar. We wish to prove that P(A) =0 by using the formula of

conditional probabilities
P(A)=P(A|B)P(B)+P(A|B*)P(B°)
where the event B® is the negation of the event B . By the induction hypothesis

P(B)=0,s0 P(A)=P(A|B“)P(B).

Now suppose that we have picked n—1 points and any 4 points among them are not
coplanar. Similarly, the area of the intersection the sphere and the union of all planes
determined by 4 points in the n—1 points is zero since the number of the planes is

n —
[ 4 ] and the area of the intersection of the sphere and a plane is zero. Hence,

P(A|Bf)=0. So we conclude that P(A) =0 and by the principle of Mathematical

induction, the proof is complete.

According to Theorem 5.4.1, a non-painful way is that just let A be the set of all the

spheres in R’ since the probability of making mistake is zero. However, how safe would
it be probability 0 ?

If we would like to go for a safe approach, pick enough points from the unit sphere and
form a set Q. Note that (X, Y;,Z2,),(X,,Y,,Z,) and (X;,Y;,Z;) are coplanar if and only if

Xl yl Zl
X, Y, Z,|#0.

X3 Y 4

34

Page - 470



S20
Shing-Tung Yau High School Applied Mathematical Sciences Award 2013

Check all the combinations of four distinct points in Q if they are coplanar. By the above
Theorem, you are almost safe but it takes time. If not for all combinations, then stop and
keep the set Q. If yes for a combination, then choose n points and repeat the checking
again unit we finally have a non coplanar set € of points on the sphere.

Let r >0 and let v be a vector in R*. Define if D isin R, the r dilation and v
translation of D is

ID={ap:peD}and v+ D={p+Vv:peD}.
Since coplanarity is invariant under dilation and then translation, we define

A ={v+rQ:r>0andveR’}.

Note that v+ rQ is a subset of the sphere with center v and radius r. Therefore, we can
consider V+rQ as a discrete model of the sphere such that any combination of four
distinct points in V+rQ are not coplanar. We would like to denote v+rQ by S(v,r).

Also, given four non-coplanar distinct points (X, Y;,Z,), (X5, ¥,,2,), (X5, Y5, 23), (X5 ¥4 2,)

and similarly consider the determinant

X+y+27 x oy oz 1

X+yr+zoxoy oz 1
JXY, D) =X +Y,+20 X, Y, z, 1=0,

AR S A A

X +Yatzy X Y, oz, 1

(X5 Y152,), (X5, Y5, 2,), (X5, Y5, 23),(X,, ¥y, Z,) should belong to S((V,,V,,V;),r) such that

v, = M,
2M
v, = M,
2M,,
V}_&
2M

where M,;,M,,,M,;,M,, and M, are cofactors corresponding to the first row of

J(X,Y,z). Hence, A*is 4 secret sharing.
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5.5 Encoding Function ®a‘

Let k be an integer bigger than or equal to 4 and let K, K,,k; and k, be positive integers
such that k =k, +k, +k; +K,. Then the function @ , maps a Kk bit string €¢, €, to
S(v,r) such that

k
§+62+ 46 2"

T _ k, +k
(V,V,, V) = Ek1+l+€k1+22+"'+€kl+k22l ’

K+, +kg
€ +ky +1 +6k1+k2+22 T 6 gk 2

and
244625

r :1+€kl+k2 +6 1k,

+ky+1 +k3+2

Again, @ , is one to one since binary representation of integers is unique. Hence,

(A*, D ) 1sa k bit 4 secret sharing pair.

5.6 Choice functions of A* and the Calculation of @ A*™'(¥)

Suppose that Q= {U,,U,,---,U,} such that | >n>4. Forany S(v,r)e A’ ,we define
ﬂj(S(v,r)):v+r(uj)
for j=1,2,---,n.

Similarly, @ (¥) maps a k bits ¢, ¢, to

2 2 2
( MIZ ] ( M13 ] [ M14 ] \/( MIZ j +( M13 j +( M14 j + MlS _
2M11 mod?2 2'\/Ill mod?2 2M11 mod?2 2M11 2"\/Ill 2'\/Ill Mll

. . . . 4
We can implement the Kk bit (4, n) secret sharing storage for the pair (A", ® ,).

mod?2

Note that to generate the geometric method to the case with t > 5 ,we only need the finite
dimensional version of Theorem 3.4.1. Of course, it is true but we need the notion of
“area” on the high dimensional sphere first. It is a topic of advanced Mathematics, called
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Haar measure [2]. If we take it for granted, the generalization of the theorem for arbitrary
t is straight forward from the t =4 case.

5.6 Implementation of the Geometric Method

Indeed, we have implemented the circle and sphere methods and their performance is
. . . . 3
satisfactory as we expect. In this section, we only present testing results for (A", ;)

with k =24 and k; =k, =k, =8. A point (X, y) is stored in two floating type variables

which occupy 64 bits. So the size of the container is % = 2% times of that of the original

secret file before compression.

5.6.1 Speed Test

a) Producing Containers

The following table shows how much time needed for producing 10 uncompressed
containers.

Secret Size (in MB) 2 4 6 8 10

Generating Time for 10 1.139 2.264 3.378 4.506 5.676
Containers (in Sec)

5 P
4 .
3 P
N

Time in sec

2 4 6 8 10
Secret size in MB

Figure 11: Time required for various sizes of secrets to generate 10 containers.
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b) Recover the Original File

The following table shows how much time needed for recovering original files from their

containers in a)

Secret Size 2 4 6 8 10
(in MB)
Rcovert Time 0.151 0.313 0.457 0.607 0.763
(in Sec)
0.9
0.8
0.7 P ad
8 0.6 /
205
c .
g 04 /
Z 03 /
0.2
0.1 ~
O T T T T 1
2 4 10
Secret Size in MB

Figure 12: Time required for various sizes of secrets to recover the secret from three containers.

5.6.2 Size Tests

The following table shows that average sizes of the compressed container files of the

testing group.

Secret Size (in MB)

10

(in Kb)

Compressed Secret Size

987

1973

2960

3947

4934

Size (in Kb)

Compressed Container

1693.37

3317.6

4917.33

6501.7

8073.47

Size Ratio of
Compressed Secret
and Compressed
Container (in %)

172

168

166

165

164

Page - 474

38



S20
Shing-Tung Yau High School Applied Mathematical Sciences Award 2013

14000
Compressed
12000 Container

== Compressed Secret

10000

8000

6000

Size in KB

4000

2000

2 4 6 8 10
Secret size in MB

Figure 13: Comparison of Sizes of compressed secret

and compressed container for various sizes of secrets.

Reference

1. Center and Radius of a Circle from Three Points,
http://www.abecedarical.com/zenosamples/zs circle3pts.html

2. Halmos, R. “Measure Theory.” Springer, 1974.
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6. Number Theory-Chinese Reminder Theorem (CRT) Methods

In this chapter, we will develop a k bit (3, n) secret sharing storage which is following

the idea of Asmuth and Bloom [1]. Note that such n is not any integer larger than 3. It
actually depends on the primes prepared for such secret sharing method. The Asmuth and
Bloom secret sharing is based on Chinese remainder theorem (CRT). Firstly, we are
going to demonstrate the basic idea of CRT by solving the following problem:

Find the smallest whole number that when divided by 3,5 and 7 gives remainders of 1,2,
and 3respectively.

Formally, the above problem is asking for the smallest whole number such that

x=1 (mod3)
X=2 (mod5)
Xx=3 (mod7).

Instead of solving the above system, we would like to solve three much simpler systems:

I (mod3) x=0 (mod3) x=0 (mod3)
0 (mod5),x=1 (mod5),x=0 (mod5)
0 (mod7) x=0 (mod7) x=1 (mod7)

X
X
X

The solutions of the first, second and third system are 70, 21 and 15 respectively. We call
these numbers base solutions. Consider

T0x1+21x2+15x3=157.

Although 157 divided by 3,5 and 7 gives remainders of 1,2 and 3respectively, it is too

big. Hence, X =157 -LCM(3,5,7)=157—-105=52 is the answer. Moreover, if we want to
solve a system such as

X=Y, (mod3)
X=Y, (mod5),
X=Yy, (mod7)

then the general solutions are 70x Yy, +21x Y, +15x Yy, — px105 where p € Z . Therefore,

the key is obtaining the base solution. Formally, we can state the Chinese Remainder
Theorem as below:
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Theorem :(Chinese Remainder Theorem) Let p,, p,,---, and p, be increasing distinct

primes. For any integers a,,a,,---,a,,, there is an integer X with

x=a, (modp,)
x=a, (modp,)
x=a, (modp,)
x=a, (modp,)

and X is unique mod p,p,--- P, -

6.1 Three Shareable Set A(pipz2-..pPm)

Let {p,, P,, ", P,,} be the set of increasing prime numbers such that

pm—l pm < pl p2 p3 :

p1 pz p3 - pm—l pm
Prn-1 P

and let ¢/ =

.For p,.,p, <l <p,p,p,, we define

C, ={(p.I(mod p,)):i=12,-,m} = N°.
and
A(pl, Py pm)={C| CN2 * Pt P <l< p1p2p3} .

Suppose that C, and C, has three distinct points in common. Hence there are three

prime P,, P, and P, such that

(Pl mod p;)=(p,.1, mod ;)
(52:'1 mod ﬁz):(ﬁzalz mOdﬁz)
(52"1 mod ﬁz):(ﬁzalz mOdﬁz)

Since by CRT, |, and |, are the unique solutions of the systems

l, (modp,) x=1, (modp,)
l, (modp,) and x=1, (modp,) respectively
l, (modp;) x=1, (modp,)

x X X
1]
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and the systems in above are equivalent, we have |, =1,. Hence, C, =C, .

V¥ can be defined as follow. Given three distinct points (P,,Y,), (P,.Y,) and (P, Y, )in
CeA(p,, P+, P,y) > by applying CRT to the system

x=y, modp,
X=Yy, modp,,
Xx=y, modp,

we have a unique solution 0 <| <P, p,p;. Since p,p,p, = P,P,P;, we have C,=C.

Lastly, Let (P,,Y,) and (P,,Y,) be two distinct points in C,. Suppose that I is the

unique solution of the system

x=y, modp
x=y, modp,

which is between 0 and P, P, . Since P,p, < p,,_, P, there exist at least / numbers

between p,_,p,and p,p,p, equivalentto I in mod P,P,. Therefore, C, cannot be

determined.

Hence, A(p,, p,, ", P, )1s 3 shareable.
6.2 Encoding Function ®ap,p,...p.)

Let k be the biggest positive integer such that p,_,p, <2 —1< p,p,p;. We would like
to define @
such that

A(p.psop, [0 De @ function that maps a k bit string €¢, ---¢, to a circle C,

_ k
l=¢+62+-+¢2".

Then @ is one to one since binary representation of integers is unique and

AP, P25 Pm)

hence, (A(P; Pys s Pu)s o p,ip,)) 15 @ k bit 3 secret sharing pair.

6.3 Choice functions of A(pips...pm) and the Calculation of ® A@ips...pm " (F)

Let 3<n<m.Forany j=12,---,n, we define

”j(cl):(pjal(m()d p]))
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forall p, ,p, <I<pp,p;.

Given three distinct points (P, Y,), (P,,Y,) and (P;,Y;)in

D\ o (662 7 6) € ACPy Posoo Pry) -
Then
D r by, (662 6) =€y
where | is the unique solution of the system:

X=Yy, modp,
X=Yy, modp,.
X=Yy, modp,

between p, P, and p,p,p;. Then €€, -6 = =P, Pn) mods -

Hence, a k bit (3,n) secret sharing storage can be launched for the k bit 3 secret

Sharing pair (A( P> Pyseees pm)’(DA(pl,pz,m,pm)) .

Example 6.3.1: Consider the following table:

P, P, P; Py Ps Ps P, Pg Py Pio
31 37 41 43 47 53 59 61 67 71
Therefore, we have

P, P, P, =47027 and p,p,, =4757.

PP, Ps — Py Py —8.884
Py Pro

Hence, ¢ =

Example 6.3.2: Also, look at

Py P, P; P, Ps Ps P, Ps Py
37 41 43 47 53 59 61 67 71

So,

D,p,P, = 65231 and p,p, =4757 .

PP, P; — Py Py =12.71.
Ps Py

Hence, ¢ =
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6.4 Implementation of the CRT Method

We consider the following sequence of prime numbers

P, P, Ps P, Ps Ps P, Ps Py Pio
41 43 47 53 59 61 67 71 73 79

and

p, P, P, =82861 and p,p,, =5767.

PP, P; — Py Py
Py Pro

Hence, /= =13.37. The size of containers is now half of the original
secret file.
6.4.1 Speed tests

a) Producing Containers

The following table shows how much time needed for producing 10 uncompressed
containers.

Secrect Size (in MB) 2 4 6 8 10

Generating Time for 10 0.161 0.304 0.454 0.588 0.718
containers (in sec)

0.800
0.700
0.600 ‘//,‘!’//,
8 0.500 o
= 0.400
£
E 0300 ‘///,c”/'
0.200

0.100
0.000

2 4 6 8 10
Secret Size in MB

Figure 14: Time required for various sizes of secrets to generate 10 containers.
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c) Recover the Original File

Secret Size (in MB)

10

Recover Time (in sec)

0.037

0.078

0.104

0.150

0.188

0.200

0.180

0.160
0.140

0.120

0.100

Time in Sec

0.080
0.060

0.040

0.020
0.000

Secret Size in MB

10

Figure 15: Time required for various sizes of secrets to recover the secret from three containers.

6.4.2 Size Tests

The following table shows that average sizes of the compressed container files of the

testing group.
Secret Size (in MB) 2 4 6 8 10
T — 987 1973 | 2960 | 3947 | 4934
Size (in KB)
Compressed Container | 3941 788.5 | 11834 | 1577 | 1971.9
Size (in KB)
Size Ratio of 40 40 40 40 40

Compressed Secret and
Compressed Containers
(in %)
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The following table shows how much time needed for recovering original files from their
containers in a)
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6000

5000

4000
m
4
.S 3000 ¢— Compressed Secret
N
@ 2000 == Compressed

/ Containers
1000 ./.,
0 T T T T 1
2 4 6 8 10
Secrect Size in MB

Figure 16: Comparison of Sizes of compressed secret

and compressed container for various sizes of secrets.

Reference

1. Asmuth, C.A. and Bloom, J. “A modular approach to key safeguarding”. IEEE
Transactions on Information Theory, IT-29(2):208-210, 1983.

46

Page - 482



S20
Shing-Tung Yau High School Applied Mathematical Sciences Award 2013

7 Conclusion

In this report, we have mainly developed an abstract framework of k bit t secret sharing
framework for cloud storage. This framework is clean and it can be implemented. A
successful implementation of the framework would provide users with protection when
the system is under the attack on its confidentiality, integrity and reliability. Furthermore,
such system has its own encryption by using permutations and tailor made error detection,
location and data rescue.

We make use of Lagrange polynomials and take the advantages of the algebraic property
“t distinct points on the plane can uniquely determine a polynomial function of degree
t—1” to design a k bit (t,n)-secret sharing distributed storage. We employ the set with
unique factorization property (UFP) so that we simply need to calculate the y intercept

of a Lagrange polynomial and then use a look up table to recover a secret. Moreover, the
set which has minimum UFP would help us to design storage with smallest containers.

In addition to the algebraic methods, we can utilize the geometric facts that

a) three non collinear points determine a unique circle;
b) four non coplanar points determine a unique sphere.

to construct k bit (3,n) and k bit (4,n) secret sharing storage respectively. To

generalize to arbitrary case, it is straight forward if we have defined the Haar measure on
the higher dimensional unit sphere.

The last method is an application of Chinese Remainder Theorem and we have designed
k bit (t,n) -secret sharing distributed storage and one of the designs can offer containers
with the same size of the original secret. However, such K is no longer unrestricted and it
is chosen within a certain range.

We have developed a C program for implementing both algebraic and geometric K bit
(3,n) secret sharing distributed storages. The performances of both algebraic and

geometric designs are satisfactory in term of processing time and compressed container
size. The container size reaches 50% of size of the original secret and 40% after
compression in the CRT case. Besides, it is very speedy.

Finally, concerning the framework of distributed storage and its techniques, the notion is,
clean, cute and mostly original. Also, it is proved to be working efficiently.
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