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Abstract

The log-optimal strategy in gambling and asset allocation problem attempts to maximize the
expectation of the logarithmic rate of return but not the gross wealth itself. This strategy has been
shown to have long termsuperiority overother strategies in theory. Another remarkable virtue is it
allows updating the real-time market information quickly which could increase of the logarithmic
rate of return. We will prove these properties ourselves in a simple way. We further consider how to
do asset allocation by applying the log-optimal strategy in practice. The distribution function of the
returns is usually unknown and need to be estimated from the history in a real world. The estimation
error will affect the asset allocation directly, but such effect mayresult in a "butterfly effect" which
could bring an investment disaster. Therefore, it is an important issue to answer whether there is log-
optimal strategy resisted "butterfly effect". We develop a new log-optimal strategy based on the
allocation utility which is a quadratic approximation to the expectation of the logarithmic rate of
return. We show that the upper bound of the allocation utility deviation can be controlled by the 1;-
norm of portfolio and l,-norm of the bias of variance matrix estimator. This turns out that our
proposed strategy is robust. We apply our strategy for NYSE data. The results showed that our
strategy has high performance in return.

Keyword: allocation utility, logarithmic rate of return, log-optimal strategy, robustness, asset

allocation.

Page - 330



S05

A Robust Log-Optimal Strategy and its application in NYSE

1 Introduction

In investment portfolio, asset allocation is a primary strategythat aims to balance risk and reward
by apportioning a portfolio's assets according to an individual's goals, risk tolerance and investment
horizon . The log-optimal strategy as one of well-known asset allocation methods attemptsto
maximizethe expectation of the logarithmic rate of return but not the capital itself. This strategy has
been shown to have long-termsuperiority overother strategies in theory and allows updatingthe real-
time market information quickly which could increase the logarithmic rate of return. In practice, the
distribution function of returnsis usually unknown and need to be estimated from the history. The
attendant estimation error will affect the asset allocation directly, but we expect that the reasonably
small error could not affect the allocation tempestuously, in other words,we want to avoid “butterfly
effect” which could bring an investment disaster. To take this concern into consideration,we will
develop a proper robustlog-optimal strategywhich is not only gain reasonable return but also
resist“butterfly effect”.

Due to the common ground between investment and gamble:the randomness of return, we
introduce fundamental concepts and properties of the log-optimal strategy by beginning with classic

gambling capital allocation problem.

1.1 Classic gambling capital allocation problem

Suppose a gambler uses a part of his capital ineach game. His returnwill doublewhen he wins or
vanishes when he loses.If the games are consecutive and the probability of winning keeps the same
in each game, then denote this probability of winning by p, and letp € [0.5,1). We are looking fora
strategy to maximize the capital after severalconsecutivegames. Throughout the paper,the return is
defined as the ratio of the final capital (price) to the initialcapital (price)over the overall period,
which is different from the usualdefinition of the return.

Analysis: In an ideal condition, there is no floor limits on bets. The gambler cannot changethe
gambling rule but can distribute different bets in different games.Suppose the initial capital of the
gambler isX,. We consider two extreme cases:

1) Ifthe gambler uses up all of the capitalin each game, then the capital will become p™ X, after

n games. Note thatthe limit of the rate of return: lim,,_,,, p™ = Ofor p € [0.5,1), the capital
3
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goes to zero after infinite games.
2) If the gambler bets nothing in each game,the return is always 1, there will be no space to
increase the capital.

Hence, in order to get the maximallogarithmic rate of return and avoid the bankrupt,the optimal
betproportion of the capital in each game must be in [0,1)and the same if the probability of winning
is the same in each game. Wedenote this proportion byb.

Supposethe gambler winsS times and losesn — Stimes in an n-game gambling, then the capital
after n gamesisX, = X,(1 + b)5(1 — b)"5.

Let ;,(b) to bethe logarithmic rate of return, the average of the logarithmic returns,

)+ a(22)

SIH

= log (X ) —log(l + b) + log(l —b).

Xo

It actually assesses the capital exponent growth rate and its expectation is

X 1
log(x)

=plog(1+b)+ (1 —p)log(1—Db),
which does not depend on n, the game number. To maximize the expectationwith respect tob,

') l—p_ 2p—1—-b
r _1+b 1—b‘(1+mufm)‘

We get the solutionb =2p —1 € [0,1). Becauser' (b) =

r(b) =E

E[—log(1+-b)+- log(1-—bﬂ

(1+b)2 (1 b)2

<0, r2p—-1)=

log2 + plogp + (1 —p)log (1 —p) is the maximumof the expectation in [0, 1).Whenp =1, it
corresponds to a bet which the gamblerwon’t fail. Thus, betting all the money in each game is the
best strategy.

In addition, if the condition thatp € [0.5,1) doesn’t hold, the optimal b is negative. It means that
to sell short the b proportion of the capital can increase thecapital if it allows. A gambler usually
cannot oversell in aclassicgame, but an investor can do it in many financial markets. So we can only
reach the optimal growth rateforb = 0 here.

Through this simple example, we can find that only one fixed optimal bet proportion maximize

the expected value of the logarithmic rate of return in a classic gambling with
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unchangeableprobabilityof winning.

1.2 Extension to multivariate assets

We will consider the possible extension of the concepts to multivariate assets from a single capital
in last subsection. We meet many multivariate assets in real life. For instance, one may hold several
stocks in a stock market, the values ofthose stocksarea kind of multivariate assets.Asset allocation is
one of common investment managementsfor multivariate assets by creating an asset mix that will
optimize a certain object function. The object function is often the trade-off between expected risk
and return for a long-term investment horizon, but ours is different in that this function is the
expectation of the logarithmic rate of return as we illustrated in the classic gambling capital
allocation problem. Specially, supposethe d -dim vector X = (X1, X5, ..., X;)7 represents theasset
returns in a single period, its distributionfunctionisF, and denote the asset allocation vector or

portfoliobyb = (by, by, ..., bg)T . The expectation ofthe logarithmic rate of returnis defined as
re(b) = Elog(bTX) = j log(bTx) dF (x).

The optimal portfoliobyin some feasible regionBwhich constrains bis

by = argmax rx(b).
beB

If the distribution of returnsis 1.1.d. (independent identically distributed) over periods, then optimal
portfoliowhich maximizes the expectationofthe logarithmic rate of returnis fixed in each period. We

thus called this approach to asset allocationthe log-optimal strategy for convenience.
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2 Information’sbenefit

Some market information may help to predict the future profits and also affect the asset
allocationdirectly. We will investigate the effect of informationon the log-optimal strategy in this
section. When new information comes in each period, thei.i.d. assumption of the distribution will be
broken up, but it also brings benefit: it will increase the expectation ofthe optimal logarithmic rate of
return in general.

Denotethe information byYand the conditional distribution of Xgiven Y = yby F(X|Y = y)at

certain time point.Let b;}TW to be the optimal portfoliosuch that

b}}TW = argmax rxy(b) = argmaxj log(bTx)dF (x|Y = v).
beB beB
The increment of the expectation of the growth rate is defined as

AVy = TX|Y(b;(T|Yx) - TX|Y(b;(Tx)'
According to the definition of b}}Tw, we knowAVy > 0, which explains that theoretically the

information Y will not decrease theexpectation of theoptimal logarithmic rate of return. The result is
summarized in the following theorem.
Theorem 2.1AV} has an upper bound.

We prove two lemmas first.
Lemma2.1.1E(log ((X))) < log (E(¢(X))).V r.v.X 2 0,0(X) > 0.

Proof:Sincethe logarithm function satisfies
log(Ax; + (1 — A)xy) = Alog(xy) + (1 — ) log(x,), A € [0,1],

1t 1s a concave function.

Letd = 22~ when x € [xy, x,]
Xo2—X1
We have log(x) = 2= 1log(x;) + —21log(x,)
X2—X1 X2—X1

The inequality equivalences

[log(x) —log(x,)] = [log(xy) — log(xy)].

x—x1 xZ_xl

Let x = x;, we have
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(x2 — x)log'(x1) = [log(xz) —log(x,)].
Let

Xo = ik Aix;, when) ™ A4, =1, 4;>0.
For eachi, we have

A;(x; = xo)log' (x0) = A;[log(x;) — log (xo)].

Thus
m m
D Ail—xolog'(re) = ) Aflogle) - loglxy)]
i=1 i=
that is
m m
log (Z Ai xi) > Z Ailog(x;).
i=1 i=1
Since

B(10g(p(0) = [ 10g(p0) dF @)
© k

= limy Y. log(pCs))(F (5) - FE,

n

log (E((p(X))) = log (j @(x) dF(x))

= log (lim,_ Z)zl(p(xk) (F (S) —F (?))

and the logarithm function is continuous. Thus, let
K k-1
b= £(5) - moo
weget
[log(p(x))dF(x) < log (f p(x)dF(x)),
that is

E(lo g(p(0)) < lo g (E(p(X))).

Tx

b X
<
e 1,for any other

bT
b Tx —

Lemma 2.1.2 Ifb*is the optimalportfolioand E exists, we have E

portfoliob.
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Proof:Let
W(b,, F) = [log(byx) dF(x), b, = Ab + (1 — )b*
whereb is other portfolio. WhenA=0, we haveb, = b*.According to the definition we have the
greatest value
W (by, F) = W(b*,F) = rg&xj log(bTx) dF (x).
That is W (by, F) = W (b, F),k € [0,1]. By the definition of derivative, we know wheni — 0,
there is% <0

That is to say,

. dW(by, F)
lim —~—~

1
fm— = /{f& 7 [W (b, F) — W(by, F)]

= /11%1 %[E(log(/leX + (1= 2)bTX)) — E(log(b*TX))]

=E| L 1l AbTX 1-1
= Air(ﬁ/_l 0g b*TX+ - (%)

— £ ( tim iog (14225 —1
=B yleg\ 1+ AGax — D

(DX
=F (b*TX - 1) (*%)

<0.

The equality(*) can be referred to dominated convergence theorem in [5] and the equality(**)is

due to thel.’Hospital’s rule

lin(} log(l+c*x)/x=c,
x—

pTX
wherec = (b*TX —-1).
pTX
ThusE - < 1.
b*TX

The proof of Theorem 2.1:

AVy = rx|y(b}}T|Yx) — rgpy (b %)

= [ g xdr iy = ) - [ tog b x)aF Y =)
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jl lex f( ) )dF(x|Y=y)+jlogfxlyz—y(x)dF(x'Y=y)

b*T fX|Y y( ) f(x)
byjyx  f(x) _ fxir=y (%) )
jl b*T fX|Y y( ))dF(X|Y - y) + ij|Y=y(x)l f( )

bX|Yx f(x) _ fX|y y(x )
< log bTx Frpyy dF (x|Y = y) +]fx|y2y(x)l f( ) dx

(lemma 2.1.1)

X f Fyriy—
= tog [ ey O TR e+ [ o o
b*T v
= log b*T dF (x) + j fjr=y(®)lo f"'f (y§ )
<logl+ jf,qy:y(x)lo fxl;z—ggx)dx(lemma 2.1.2)
fX|Y y( ) dx

= [ fuiv=y@log e

Furthermore, we define AV = E(AV;), the expectation of the increment AV, with respect to Y,

then AV also has an upper bound. Denote byG (H) the cumulative distribution function of Y ((X,Y)),
and g (h)the density function of Y ((X,Y)), we verify that
AV = j AVy_, dG(y)

fxjy=y (%)
< j j fxw=y(x)logxlf(—,yc)dxd6(”

_ . . fX|Y=y(x)g(y)
= [ [ furey - 90) - logPEEZIE dx

- | [ e ”l"gf(() ;gv)dx‘iy'

AV hasan upper bound [ [ h(x,v) log f(()x?)dx dy ,that is the mutual information of X and

Y . When X and Yare independent, AV = 0 means no increment because the information Y does not
affectX in any way; When Xis completely determined by Y, this upper bound is exactly the entropy

of the information Y. Further exploration may be interesting but is out of the scope of this paper.
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3 Greed characteristic and optimal property
When thesequence of the returns X4, X5, ---arei.i.d., the best strategy maintains a certain fixed
portfolio. Owing to the information of investment which we discussed in section 2, the
1.1.d.assumption becomes unrealistic. Fortunately, this assumption is not necessary, the log-optimal
could vary the optimal portfolios over the periods but the strategy is still superior to other strategies

asymptotically in view of gross wealth.Recall that the logarithmic return can be presented
as log(TI;bTX;) = Xilog (bTX;) . To optimize log([];b7X;) is therefore equivalent to

optimizelog (b!X;)in thei™ period. This means that the local optimaldynamic portfolios together can
make a global optimal strategy, in other words, the log-optimal strategy hasthe greed characteristic.

Denote the gross wealth at the end of the nthperiod with an sequence of portfolios{b;}byS, =

So [T, bY X;and thegross wealth using the log-optimal strategyS; = So [T%, b}‘TX i- Nexttheorem

indicates the optimal property of thelog-optimal strategy.

Theorem3: S, is asymptotically superior toS,,.

Proof: According to lemma 2.1.2, we have E z—" <1,and
n

S
Pr(S, >n%-S;) = Pr (—n > nz)

Sn
+co S
= dF (=
Lz G
+00
Sn .. Sn
== | )
2 n Sn Sn
tes S.
<), SR
0 n n
1.5, 1
<—F2L
- nZ Sy*l - pn2’
that is
1 S, 1 & 1 Sn  2logn
Pr (Elogs—; > Elog nz) <= Z Pr (—logs—;z
n=1
and
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— (1 Sn 2log n} . ” {1 Sn 2log n}
_ -n — P Z -n
Pr(llm {n logsr*l > - ) lim Pr nlog 5 >
n

n—-oo k—oo n
=k

S, 2log n})

1
<lim ) P ({—l s
im r no‘gS;;

k— oo
n=k

=0.

This implies,aN > 0, for Vn > N, we have

1

;log

21
< ogn.

Sn
S, n

Thus

[0~ log 22 < 0, with probability 1.

Hence, we have the conclusion thatS;;is asymptotically superior to S,,'".
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4 From theory to practice: thetrueprobability distribution is unknown

We assume F(X)is knownin section 2. But in practice, F (X)is unknown and need to be estimated
from the history with certain assumptions. We shall be alert for the deviation of the estimation and
these assumptions, especially for possible “butterfly effects”. In this section, wedon’t
estimateF (X)directly, but introduce a new object function called the allocation utility first. This
function is a quadratic approximation to the expectation of the logarithmic rate of return, and it is
simple enough to involving only the expectation and covariance of X.Indeed, it can be considered as
the balance between the logarithmic returnand its squared coefficient ofvariation. We optimize the
allocation utility with the estimations of the expectation and covariance and find the optimal
portfolio, but not the expectation of the logarithmic rate of return with the empirical cumulative
distribution function of X. The latter is usually so complicate specially for the high dimension of X.
Our strategy is computationallyeffective, and what's more, it is robust in the sense that the upper
bound of the allocation utility deviation can be controlled by the 1;-norm of portfolioandl,,-norm of
the bias of variance matrix estimator.We will concern the constraint on portfolio because of limited
knowledge on the estimationof variance matrix.

Allocation utility

Suppose Xhas itsexpectation gand the covariance matrixX.ThenE(b"X) = bTu, Var(b™X) =
b Xb.

The accurate logarithm optimal strategy has b = argmaxE(log(b"X)) . However, the
beB

optimization problem depends on the distribution function of Xand the accurate optimization needs

complicate calculation. So we adopt Taylor expansion toapproximateE (log(b” X)):

E(log(b"X))
~ . b’X —E(b"X) (b"X - E(bTX))2
=~ F (log E(b™X) + E(bTX) - Z(E(bTX))Z )
~ . E(b™X —b"u) E((b"X — b"n)?)
= EgEI TG T s ar)
=wmwm+m76%ﬁﬂﬂw—mw—MWb

1
= log(b"p) — ———— b" Zb.
2(b"p)?

12
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Define the Allocation utilityfunction as

M(b,u,2) = log(b™u) — _1 b"Xb
Y 2(b" p)? '
So the log-optimal strategy can be approximately by the optimization of the Allocation utility:

maxM(b,u,X), s.t. b€ B

Optimal portfoliob°P!

If the region Bis simple, we can solve bdirectly.For example, we takeB = {b|bTe =1, bT u =
c} and analyze the optimal requirements. We can easily see that the first constraint is natural and the
second constraint accounts for the requirements of minimum rate of return. Because there are both
equality constraint and inequality constraint, we apply Karush-Kuhn-Tucker condition to solve this
optimization problem.

Let

F(b,a,p) = —log(b™u) + b"Eb+ a(bTe —1) + B(c — b" p),

2(b"p)?
wherefS > 0.
Take 0F(b,a,)/0b =0 , and substitute f(c —b" u) =0, f =0, bTe—1=0 into

simultaneous equalities and inequalities, we have

( n pb"2b zb

| _bTy — b )’ + b )2 +ae—pfu=0 (4.1)

Blc—b"pm)=0 (4.2)
| =0 (4.3)
\bTe—1=0 (4.4)

Next we shallconsider how to solve the above equation systems.

Multiply b” in both sides of equality (4.1), we have

u  ub™Xb b

— pT | — _ _
0=»b bT” (bT”)S + (bT”)Z +ae ,B[l

b"u bTub’Eb  b'Zh

T Tbh T T (bR

+ abTe — BbTu

. b'Zb  b'Ib
(b"w? ~ (b"p)?

+a-1-pbTp

13
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=—-1+a—-pbTu
(1) Ifg = 0, we are able to find0 = —1 + a — 0, which refers toa = 1.

Then we substitutea = 1, f = 0 into equality (4.1), we have
u  ub™:hb zb

G s

We can get the value of optimal portfolio b°P! by solving equality(4.5).

+e=0 (4.5)

(2) If B > 0, According to equality (4.2), we can seeb” u = c.
So we have0) = —1 + a — fic, thatisa = 1 + fSc.

Thus we can get following equation system:

T CIDECITE "=
| bTu=c (4.6)
la=1+8c

After solving equation system(4.6), we can get the value of optimal portfoliob®Pt.

From equality(4.5)and equation system(4.6), we can find that the solution of h°P*depends on the
value of pand X'If the estimation of u, ¥deviates from the true value, it may lead to deviation of
estimationof optimal return. So we need to control our estimation process in order to reduce
deviation. Next, we will find whether the deviation of estimation could affect the utility function

seriously.

Analysis of Robustness

Suppose thath?Ptis the optimal portfolio estimator by replacing pand Zwith theirestimators: flandZ
in the optimization. Theestimation error of g and X'may have a serious influence on estimated utility
value of b°P! accuracy.we need to know the optimal allocation vectorb®P! utility function accurately.
Thus we need toinvestigatewhether the bias of the optimal utility function following theestimation of
p and X can be controlled and how.

We first need to make an assumption for the model.

(A1) Suppose E(ft) = u, which refers to fiisy unbiased estimation.

From (Al), we can knowE (BOptTﬁ) = BOPtTu. According to law of large number, we can know

. -~ T o~ T
Ve > 0 when sample sizen - o, we haveP( b°Pt i — port u| > E) - 0. For Ve >0, 3n, €

14

Page - 342



S05

A Robust Log-Optimal Strategy and its application in NYSE

N, such thatfisatisfies BOPtTﬁ - BOPtTu| < & when sample size is more than n,.
In addition, we need the following lemma.
Lemma4.1: Vp,q,q4,q, € R, satisfy q; < q < q,,We have
lp — ql < max{p — q1,q, — p}
Proof: Ifp>q, p—q, =2p—q =0, whichreferstop —q, > |p —ql.
Ifp<q, g—p=q—p>0, whichreferstog, —p > |p — ql.
So we have |p — q| < max{|lp — q.l,19;, — p|}

Next we will study the deviation between M (BOpt, 1) ) andM (BOpt, wx )

[M(B°7", 1, 2) — M(b¥, . X

_ 1 _ 1
log(B*P* 1) — —————— bP* TP — 1og(bP*' ) + —————— b°P*' £boP*
2 (bopt ﬁ) 2 (bopt ﬂ)

~ ~ 1 o7 1 g
= |(1og (""" @) — 1og ("' w)) + | —————b*P* EBP* — ———— boP*' THoP*
Z(Bopt ﬂ) Z(Bopt ﬁ)

_ _ 1 1 g
< |10g®" @) — 1og (B )| + | ——— bt £bP - ———— boPt" TPt
Z(bopt ﬂ) Z(bopt ﬁ)

+ 1 %BoptTf’Bopt — %Bopth’Bopt
2 ('BOPtTﬁ) (BOPtT”)

IA

— T
b°Pt i+ ¢ 1 1 - — 1 - -
o (—‘lT) 5 | B BB - —— B Zb
(b’ R) (b7 )

T ~~

£ 1 1 - 1 B P
= |lo 1+ 4+ —|——— —povt yport ________phopt’ ypovt|
(bopt ﬁ) (bopt ﬂ)

. . . =opt! ~
For the first element of inequality left side, due to b°P* i > ¢, we have

& &
log (1 + BoptTﬁ)| < log (1 + E)'
15
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For the second element of inequality right side, according to lemma 4.1,

—~ T ~
t t
> boPt xpovt,

Since
1 "optT Topt 1 "optT Topt
S zb b <A—T2b b < S
C (5 (-
we have
’Bopth-’Bopt _ 1 ’BoptTE’Bopt
- tT 2 R tT 2
o v o
(') G
IIA;TAZ’BOWTE-’BOM_ - ;A Z’BoptTE’Bopt’\l
< max |7 (Bor ) |
R e e
Bopt il Bopt fi—e

. - T o~ T
Since—e < b°Pt i — b°PY pu < ¢,

on one hand,

— ’Bopth-’Bopt _ T1 - ’BoptTE’Bopt
(bopt ﬁ) (bopt i+ E)
—~ T 2
opt’ =5
= 1 bOPtT E' — b [ ¥ ’Bopt
~ T _\2 ZoptT
(bOPt ﬁ) bort i+ ¢

= T
opt’ %
< 1 ’BoPtT 2_(Abr o )E port )
bort i+ ¢

on the other hand,

> ’BoptTE’Bopt _ 1 - ’Bopth-’Bopt
o~ T N T
(bopt i — E) (bopt ﬁ)
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Hence
— 1T - ’BoptT’f:’Bopt —— 1T - ’Bopth’Bopt
O
( ~ T_. \2 )
o () )
¢ bort i+ ¢
< max < 5 >
"optTA
L gore™ [ (2 55| pow
\ c? BoptTﬁ —¢ )
1 "optT 3\ hopt
=~ C_z b (2 - E)b
Letb°Pt = (by, ... ...,Bn)T, thei*"row andj™column element is g;;0f X — Z.
Hence
n n
B"ptT(Z - E)Bol’t = Z Bi Z B]O-U
i=1 j=1
n n
= Z|Bi| Z bja;
i=1 j=1
n
AP
i=1 j=1
n n n
<> Ia ( |@-|Z|ou|>
i=1 j=1 i=1
n
< > (B max( >[5 > oy
i=1 j=1  j=1
n 2 n
SNEDY
i=1 j=1
So we have

IM(BoPt, 1, ) — M(B°Pt, p, X))

<

- — 1 - -
- bopthbopt _ - bopthbopt
T .

_|_1
2 (Bopt ﬂ) ('BoptTu)

log (1 +

BW”Tﬁ>

17
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c 1 n 2 n
< log(l +E) + Z—CZ(Z|61|> rniaXZ|aij|
1 n 2 n
*z—cz(zwz") max ) Joi

i=1 j=1

=1 j=1

Thus if we choose a suitable constantc, > 0, and control Z?=1|Bi| <cy, we can sure that the

estimation error is under control (max; Z?=1|ai j| is supposed to be small enough).

Therefore, toachieve a robust optimization effect and make the error of optimal utilitycontrolled

by an upper bound, we add an extra ), |b;| < ¢, constraint in the optimizationprocedure.
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5 Simulation studies in financial market

5.1 Simulation purpose, assumption and statistics introduction

Simulation purpose

In this section, we use NYSEdata to illustrate our strategy. We are going to develop a set of
strategies which can search for the mode of stock price, select asset continuously, and achieve the

growth of capital from historical stock prices.

Simulation assumption

We will simplify the influence of transaction cost. The simulation involves the portfolio balance
and reselect on a daily basis whose operation corresponds to unknown transaction cost. So we adopt

the linear transaction costsmodel '

to simplify the unknown transaction cost involved in the
simulation.
We also assume a market with a strong fluidity, which means transactions happen according to our

needs.

Data introduction
The data comes from 36 stocks in NYSE(New York Stock Exchange), from 3™ June 1962 to 31%

December 1984 and from 1* January 1985 to 31* December 2007.

5.2 Model
Extracting information from markets with similar backgrounds

We use the data of stock prices in this simulation, and we predict future stock price referencing
similar price mode in the historical data. We denotex (i, k)as the price ratio of the i*" stock on the

kt"day. X (k)is the price ratios on the k" day.

X1k T Xu
X(k:l) = [ : oo ]is the statistics of the price ratio of all stocks from day k to day [, which
xpk see xpl

can be regarded as | — k + 1 day’s market background environment before the (k + 1) day.
For trading day t, when we fix its thelength of market background, it is possible to find trading
day with similar market background in history, whose data is valuable for the prediction of the price

of the (t + 1) day.
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Define the similarity of market background

Similar (X(k.- l),X(k +m:l+ m)) = corr*(X(k: D,X(k+m:l+ m)),

corr* is the Pearson correlation between the vectorization of the matrixes X(k: 1) and X (k +

m:l +m).

Find the trading day with similar market background
If we set the value of the length of the market background n and the threshold value of market
similarityp, we can define the index set of datescorresponding to the trading days with similar

market background as:

Clk,n,p) = {n < i < k|Similar (X(i —n: i —1),X(k —n:k = 1)) > p}

5.3 Allocate the optimization model

Before selecting asset on the (k + 1) trading day, we need to find the set of similar trading days.
The empirical cumulative distribution function of the profit ratio on similar trading days serves as the
estimation of the profit ratio on the (k + 1)%" trading day. The selection of the similar trading day is
influenced by the length of the market background n and the threshold value of market similarityp.
The most suitable(n, p)cannot be acquired in advance, and the cross validation is not suitable for this
problem due to the nature of time seriesin stocks data. In the meantime, using the whole data set as
the training set may cause the problem of over-fitting.

To solve the problems above, and to make asset selection more robust, we consider
several(n, p)groups as several “experts”. We take all the experts’advice into consideration in the
final decision. The method to select “experts” in this passage follows as below: select a N as the
upper bound of n, and consider all the integers between 2 and N as the values of n. Select a P as the
upper bound of p, extract 10 values equidistantly as the values of p. The selecting N and P is more
moderate than selecting(n, p)group when measuring the influence on the simulation result.

For a single expert(n, p), the optimal allocation model of the(k + 1)%" day is:

bss (np) =argmax | | (b-X)
beA icctenp)

Ais the region of possible portfolios. According to the robust results in section 4, we add the
20

Page - 348



S05

A Robust Log-Optimal Strategy and its application in NYSE

constraint of L; norm not great than 1 in order to control the estimation deviation’s upper bound,
which concords with the principle that forbids short sell. The self-adapted dynamic weight combines

the experts’ advice with each other through the formula below.

_ Zn,p S(Tl, p)bk+1(n' p)
P == Sy O

where s(n, p) is the total profit on the trading days in the set C(k,n,p)with the allocation

by .1 (n, p).The formula(**x) can be referred to [3].

5.4 Influence of the transaction cost

Transaction cost is an important factor of assessing the strategy. We can explore the influence of
transaction cost by considering simple transaction cost model in the simulation of the transaction
process, but only in the real market can we calculate the accurate transaction cost. This passage
adopts the linear transaction costs model. The (k + 1)™ day’s transaction cost is:

- ||bk+1 - bk”l

When considering the profit, we need to minus the cost with the corresponding ratio.ais an

adjustment coefficient. If valued 0, it means that there is no transaction cost; the larger « is, the more

transaction cost will be. This passage explores the result of the strategy with differenta.

5.5 Simulation results
Cumulative capital
We setN = 10,p = 0,a = 0. After the implementation of the strategy for the NYSE data, the

condition of the cumulative growth of capital is showed in Figure 1 and Figure 2.
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NYSE data cumulative wealth
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Fig. 1.NYSE data accumulated asset (3™ June 1962 to 31% December 1984)

NYSE data cumulative wealth 1985-2007
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Fig. 2.NYSE data accumulated asset (1* January 1985 to 31* December 2007)

Figure 1 and Figure 2 indicate that if we don’t consider transaction costs, our investment strategy
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makes asset increase robustly at each stage in 2 period of more than 5000 trading days. What’s more,
its order of magnitude has never decreased sharply. It shows robustness of our strategy. The reason
why it has such a satisfactory performance is that the law of large number ensures the stability of the
logarithmicrateof return. According to similarity of market background, the prediction accords to
market principle. That’s why the expectation of the gross wealth can increase.

Transaction cost influence

In practice, we need to analyze how transaction costs have influence on our cumulative wealth.
From linear cost model in section 5.2, we consider deducting ratio of different a position capital after
adjusting asset portfolio. We take the data from 3" June 1962 to 31* December 1984as an example
here. atakes the degree of deduction of capital from 0 to 0.01. It corresponds to cumulative wealth
inFigure 3.

As Figure 3 shows, we can find that the logarithm of cumulative wealth and a subject a linear
relationship under the linear costs model. It’s easy to see that whena = 0.0045, the logarithm of
wealth is 0,which means our asset in balance. So when « isless than 0.0045, cumulative wealth is can
increase exponentially as time flies. In American stock market, transaction costs are usually less than

0.001. Thus the robust log-optimal strategy is significance in practice.

NYSE data linear cost model alpha VS cumulative wealth
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0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
linear cost coefficient

Fig. 3. Transaction cost effect analysis
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Parameter sensitivity analysis (date from 3™ June 1962 to 31° December 1984)

We set largest length of market background as 10 in this paper. To analyze if parameter setting has
a sensitive influence on result, we adopt integers range from 0 to 25 and get corresponding ultimately
accumulated asset situation in figure 4.

Figure 4 shows that if the length of market window parameter is from 0 to 5, the larger the
parameter, the better the result. If it is from 5 to 25, the result remains stable. In practice, we can
choose optimal length of market background by the training set. Because of its stability, it can be
utilized in the other fields of data mining apart from the stock market.We analyze the sensitivity of
parameter p as well. Let n=10 and p={-0.15, -0.05, 0, 0.05, 0.1, 0.15}, and get ultimately
different accumulated asset as shown in Figure 5. ifp=0, we can get the best effect. If p<0, similar
trading days which we extract will have negative effect. So it’s normal not to get an optimal result. If
p is so large that there is not enough trading days which meet the requirements,we cannot get an
optimal result.

cumulative wealth vs market windows length
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2|
|

log10 cumulative wealth
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0 5 10 15 20 25
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Fig.4. Largest market window length sensitivity analysis
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cumulative wealth vs rho
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Fig. 5. Correlated threshold sensitivity analysis

6. Conclusion

We develops a new robust log-optimal strategy, many virtues meet in it:

1) an extremely explanation in theory: the balance between the logarithmic returnand its
squared coefficient ofvariation;

2) computationaleffectiveness;

3) resistanceto‘“butterfly effect”: the upper bound of the allocation utility deviation can be
controlled by the 1;-norm of asset allocation vector and l,-norm of the bias of variance
matrix estimator;

4) highperformance in return: application on NYSE data.

This log-optimal strategy is for general cases, we still have many problems under consideration for
further exploration. For instance, How to adjust our strategy to special asset class such as bonds,
Insurance products,derivatives, foreign currency and etc.? How to select assets in our strategy? How
to use information effectively? How to improve the accuracy of the estimations?
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