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摘要 

在赌博与资产配置问题中，对数最优策略最大化的并不是整个资产，而是对数收益率的

期望。相对于其他策略，这个策略在理论上具有长期的优越性。它另外一个显著的优点是能

够实时反映市场的动态信息，从而使对数收益率得到增长。我们采用简单的方式证明了这些

性质。此外，我们考虑如何把对数最优策略应用到资产配置的问题中。因为收益的分布函数

在实际问题中一般是未知的，因此需要通过历史数据去估计。估计误差会影响到资产配置的

效果，从而犹如“蝴蝶效应”一样对资产配置造成毁灭性的灾难。因此，如何在对数最优策

略中克服“蝴蝶效应”是一个很重要的问题。我们根据收益效用得到了一个新的对数最优策

略，这个策略是对数收益率期望的二阶近似。我们证明了收益效用的偏差上界能够被投资组

合的lଵ范数和协方差矩阵估计偏差的lஶ范数所控制。这说明了我们提出的策略是稳健的。我

们将新策略应用到 NYSE 数据中，模拟结果表明了新策略使收益有很大的提高。 

关键词：资产配置效用值、资产增长对数速率、对数最优策略、稳健、资产配置 
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Abstract 

The log-optimal strategy in gambling and asset allocation problem attempts to maximize the 

expectation of the logarithmic rate of return but not the gross wealth itself. This strategy has been 

shown to have long termsuperiority overother strategies in theory. Another remarkable virtue is it 

allows updating the real-time market information quickly which could increase of the logarithmic 

rate of return. We will prove these properties ourselves in a simple way. We further consider how to 

do asset allocation by applying the log-optimal strategy in practice. The distribution function of the 

returns is usually unknown and need to be estimated from the history in a real world. The estimation 

error will affect the asset allocation directly, but such effect mayresult in a "butterfly effect" which 

could bring an investment disaster. Therefore, it is an important issue to answer whether there is log-

optimal strategy resisted "butterfly effect". We develop a new log-optimal strategy based on the 

allocation utility which is a quadratic approximation to the expectation of the logarithmic rate of 

return. We show that the upper bound of the allocation utility deviation can be controlled by the lଵ-

norm of portfolio and lஶ-norm of the bias of variance matrix estimator. This turns out that our 

proposed strategy is robust. We apply our strategy for NYSE data. The results showed that our 

strategy has high performance in return. 

Keyword: allocation utility, logarithmic rate of return, log-optimal strategy, robustness, asset 

allocation.  
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1 Introduction 

In investment portfolio，asset allocation is a primary strategythat aims to balance risk and reward 

by apportioning a portfolio's assets according to an individual's goals, risk tolerance and investment 

horizon [6]. The log-optimal strategy as one of well-known asset allocation methods attemptsto 

maximizethe expectation of the logarithmic rate of return but not the capital itself. This strategy has 

been shown to have long-termsuperiority overother strategies in theory and allows updatingthe real-

time market information quickly which could increase the logarithmic rate of return. In practice, the 

distribution function of returnsis usually unknown and need to be estimated from the history. The 

attendant estimation error will affect the asset allocation directly, but we expect that the reasonably 

small error could not affect the allocation tempestuously, in other words,we want to avoid “butterfly 

effect” which could bring an investment disaster. To take this concern into consideration,we will 

develop a proper robustlog-optimal strategywhich is not only gain reasonable return but also 

resist“butterfly effect”. 

Due to the common ground between investment and gamble:the randomness of return, we 

introduce fundamental concepts and properties of the log-optimal strategy by beginning with classic 

gambling capital allocation problem.  

 

1.1 Classic gambling capital allocation problem   

Suppose a gambler uses a part of his capital ineach game. His returnwill doublewhen he wins or 

vanishes when he loses.If the games are consecutive and the probability of winning keeps the same 

in each game, then denote this probability of winning by	݌, and let݌ ∈ [0.5,1). We are looking fora 

strategy to maximize the capital after severalconsecutivegames. Throughout the paper,the return is 

defined as the ratio of the final capital (price) to the initialcapital (price)over the overall period, 

which is different from the usualdefinition of the return. 

Analysis：In an ideal condition, there is no floor limits on bets. The gambler cannot changethe 

gambling rule but can distribute different bets in different games.Suppose the initial capital of the 

gambler isܺ଴. We consider two extreme cases: 

1) If the gambler uses up all of the capitalin each game, then the capital will become ݌௡ܺ଴ after 

݊ games. Note thatthe limit of the rate of return:	݈݅݉௡→ஶ ௡݌ = 0for ݌ ∈ [0.5,1), the capital 
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goes to zero after infinite games. 

2) If the gambler bets nothing in each game,the return is always 1, there will be no space to 

increase the capital. 

Hence, in order to get the maximallogarithmic rate of return and avoid the bankrupt,the optimal 

betproportion of the capital in each game must be in [0,1)and the same if the probability of winning 

is the same in each game. Wedenote this proportion byܾ.  

Supposethe gambler winsܵ times and loses݊ − ܵtimes in an ݊-game gambling, then the capital 

after ݊ gamesisܺ௡ = ܺ଴(1 + ܾ)ௌ(1 − ܾ)௡ିௌ. 

Let ݎ௡(ܾ) to bethe logarithmic rate of return, the average of the logarithmic returns, 

(ܾ)௡ݎ =
1
݊ ൤݈݃݋ ൬

ଵܺ

ܺ଴
൰ +⋯+ ݃݋݈ ൬

ܺ௡
ܺ௡ିଵ

൰൨ 

= ݃݋݈ ൬
ܺ௡
ܺ଴
൰
భ
೙
=
ݏ
݊ ݃݋݈

(1 + ܾ) +
݊ − ݏ
݊ 1)݃݋݈ − ܾ). 

It actually assesses the capital exponent growth rate and its expectation is 

(ܾ)ݎ = ܧ ൥݈݃݋ ൬
ܺ௡
ܺ଴
൰
భ
೙
൩ = ܧ ቂ

ݏ
݊ ݃݋݈

(1 + ܾ) +
݊ − ݏ
݊ 1)݃݋݈ − ܾ)ቃ 

= ݌ 1)݃݋݈ + ܾ) + (1 − (݌ 1)݃݋݈ − ܾ),																									 

which does not depend on ݊, the game number.  To maximize the expectationwith respect toܾ,  

(ܾ)ᇱݎ =
݌

1 + ܾ −
1 − ݌
1 − ܾ =

݌2 − 1 − ܾ
(1 + ܾ)(1 − ܾ) = 0. 

We get the solution ܾ = ݌2 − 1 ∈ [0,1) . Because (ܾ)ᇱᇱݎ = ି௣
(ଵା௕)మ

− ଵି௣
(ଵି௕)మ

< 0 ݌2)ݎ , − 1) =

2݃݋݈ + ݌݃݋݈݌ + (1 − 1)	݃݋݈(݌ − (݌  is the maximumof the expectation in [0, 1).When݌ = 1 , it 

corresponds to a bet which the gamblerwon’t fail. Thus, betting all the money in each game is the 

best strategy. 

In addition, if the condition that݌ ∈ [0.5,1) doesn’t hold, the optimal b is negative. It means that 

to sell short the ܾ proportion of the capital can increase thecapital if it allows. A gambler usually 

cannot oversell in aclassicgame, but an investor can do it in many financial markets. So we can only 

reach the optimal growth rateforܾ = 0 here.  

Through this simple example, we can find that only one fixed optimal bet proportion maximize 

the expected value of the logarithmic rate of return in a classic gambling with 
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unchangeableprobabilityof winning. 

 

1.2 Extension to multivariate assets 

We will consider the possible extension of the concepts to multivariate assets from a single capital 

in last subsection.  We meet many multivariate assets in real life. For instance, one may hold several 

stocks in a stock market, the values ofthose stocksarea kind of multivariate assets.Asset allocation is 

one of common investment managementsfor multivariate assets by creating an asset mix that will 

optimize a certain object function. The object function is often the trade-off between expected risk 

and return for a long-term investment horizon, but ours is different in that this function is the 

expectation of the logarithmic rate of return as we illustrated in the classic gambling capital 

allocation problem. Specially, supposethe ݀ -dim vector ࢄ	 = ( ଵܺ, ܺଶ, … , ܺௗ)் represents theasset 

returns in a single period, its distributionfunctionisܨ , and denote the asset allocation vector or 

portfolioby࢈ = (ܾଵ, ܾଶ, … , ܾௗ)்	. The expectation ofthe logarithmic rate of returnis defined as  

(࢈)ࢄݎ = (ࢄࢀ࢈)݃݋݈ܧ = න݈(࢞ࢀ࢈)݃݋  .(࢞)ܨ݀

The optimal portfolio࢈௑∗ in some feasible regionܤwhich constrains ࢈is 

∗௑࢈ = ݔܽ݉݃ݎܽ
஻∋࢈

 .(࢈)ࢄݎ

If the distribution of returnsis i.i.d. (independent identically distributed) over periods, then optimal 

portfoliowhich maximizes the expectationofthe logarithmic rate of returnis fixed in each period. We 

thus called this approach to asset allocationthe log-optimal strategy for convenience. 
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2 Information’sbenefit 

Some market information may help to predict the future profits and also affect the asset 

allocationdirectly. We will investigate the effect of informationon the log-optimal strategy in this 

section.  When new information comes in each period, thei.i.d. assumption of the distribution will be 

broken up, but it also brings benefit: it will increase the expectation ofthe optimal logarithmic rate of 

return in general. 

Denotethe information byܻand the conditional distribution of ࢄgiven ܻ = ܻ|ࢄ)ܨ byݕ =  at(ݕ

certain time point.Let ࢄ࢈|௒∗்  to be the optimal portfoliosuch that  

்∗௒|ࢄ࢈ = ݔܽ݉݃ݎܽ
஻∋࢈

(࢈)௒|ࢄݎ = ݔܽ݉݃ݎܽ
஻∋࢈

න ܻ|࢞)ܨ݀(்࢞࢈)݃݋݈ =  .(ݕ

The increment of the expectation of the growth rate is defined as 

∆ ௒ܸ = ்∗௒|ࢄ࢈௒൫|ࢄݎ ࢞൯ −  .(்࢞∗ࢄ࢈)௒|ࢄݎ

According to the definition of ࢄ࢈|௒∗் , we know∆ ௒ܸ ≥ 0, which explains that theoretically the 

information Y will not decrease theexpectation of theoptimal logarithmic rate of return. The result is 

summarized in the following theorem. 

Theorem 2.1∆ ௒ܸ has an upper bound. 

We prove two lemmas first. 

Lemma2.1.1݃݋݈)ܧ	(((ܺ)߮) ≤ ݃݋݈ ቀܧ൫߮(ܺ)൯ቁ,∀	r. v. ܺ ≥ 0,߮(ܺ) > 0. 

Proof:Sincethe logarithm function satisfies 

ଵݔߣ)݃݋݈	 + (1 − (ଶݔ(ߣ ≥ (ଵݔ)݃݋݈ߣ + (1 − (ߣ (ଶݔ)݃݋݈ , ߣ ∈ [0,1],  

it is a concave function. 

Letߣ = ௫మି௫
௫మି௫భ

, when	ݔ ∈ ,ଵݔ]  [ଶݔ

We have	݈(ݔ)݃݋ ≥ ௫మି௫
௫మି௫భ

(ଵݔ)݃݋݈ +
௫ି௫భ
௫మି௫భ

 (ଶݔ)݃݋݈

The inequality equivalences 

1
ݔ − ଵݔ

(ݔ)݃݋݈] − [(ଵݔ)݃݋݈ ≥
1

ଶݔ − ଵݔ
(ଶݔ)݃݋݈] −  .[(ଵݔ)݃݋݈

Let 	ݔ →   ଵ, we haveݔ
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ଶݔ) − (ଵݔ)ᇱ݃݋݈(ଵݔ 	≥ (ଶݔ)݃݋݈] −  .[(ଵݔ)݃݋݈

Let 

଴ݔ = ∑ ௜௠ߣ
௜ୀଵ ∑௜, whenݔ ௜௠ߣ

௜ୀଵ = ௜ߣ，1 > 0. 

For each݅, we have 

௜ݔ)௜ߣ − (଴ݔ)ᇱ݃݋݈(଴ݔ ≥ (௜ݔ)݃݋݈]௜ߣ −  .[(଴ݔ)݃݋݈

Thus 

෍ ௜ݔ)௜ߣ − (଴ݔ)ᇱ݃݋݈(଴ݔ
௠

௜ୀଵ
	≥෍ (௜ݔ)݃݋݈]௜ߣ − [(଴ݔ)݃݋݈

௠

௜ୀଵ
, 

that is 

݃݋݈ ൬෍ ௜ߣ
௠

௜ୀଵ
௜൰ݔ 	≥෍ ௜ߣ .(௜ݔ)݃݋݈

௠

௜ୀଵ
 

Since 

൫߮(ܺ)൯൯݃݋൫݈ܧ = න  (ݔ)ܨ൯݀(ݔ)൫߮݃݋݈

																								= ݈݅݉௡→ஶ෍ )൯(௞ݔ)൫߮݃݋݈ ܨ
ஶ

௞ୀଵ
൬
݇
݊൰ − )ܨ

݇ − 1
݊ )), 

log ቀE൫φ(X)൯ቁ = logቆනφ(ݔ)dF(ݔ)ቇ 

																																	= ௡→ஶ෍݈݉݅)	݃݋݈ (௞ݔ)߮
ஶ

௞ୀଵ
൭ܨ ൬

݇
݊൰ − ܨ ൬

݇ − 1
݊ ൰൱, 

and the logarithm function is continuous. Thus, let 

௞ߣ = ܨ ቀ௞
௡
ቁ − ௞ିଵ)ܨ

௡
)，݉ → ∞, 

weget 

∫ (ݔ)ܨ൯݀(ݔ)൫߮݃݋݈ ≤  ,((ݔ)ܨ݀(ݔ)߮∫)	݃݋݈

that is 

݋൫݈ܧ	 ݃൫߮(ܺ)൯൯ ≤ ݋݈ ݃ ቀܧ൫߮(ܺ)൯ቁ. 

Lemma 2.1.2 Ifܾ∗ is the optimalportfolioand ܧ	 ௕೅௑
௕∗೅௑

exists, we have ܧ	 ௕೅௑
௕∗೅௑

≤ 1 ,for any other 

portfolioܾ. 
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Proof:Let  

W(b஛, F) = ∫ log(b஛࢞܂) dF(࢞), ఒܾ = ܾߣ + (1 −  ∗ܾ(ߣ

whereܾ is other portfolio.Whenλ=0, we haveb଴ = b∗ .According to the definition we have the 

greatest value 

ܹ(ܾ଴, (ܨ = ܹ(ܾ∗, (ܨ = ݔܽ݉
஺∋࢈

න (࢞ࢀ࢈)݃݋݈  .(࢞)ܨ݀

That is	ܹ(ܾ଴, (ܨ ≥ ܹ(ܾ௞ , ,(ܨ ݇ ∈ [0,1]. By the definition of derivative, we know whenߣ → 0ା, 

there isௗௐ(௕ഊ,ி)
ௗఒ

≤ 0 

That is to say, 

݈݅݉
ఒ→଴శ

ܹ݀( ఒܾ, (ܨ
ߣ݀ = ݈݅݉

ఒ→଴శ

1
ߣ
[ܹ( ఒܾ, (ܨ − ܹ(ܾ଴,  [(ܨ

																																														= ݈݅݉
ఒ→଴శ

1
ߣ ܧ]

ࢄ்ܾߣ)݃݋݈) + (1 − ((ࢄ்∗ܾ(ߣ −  [((ࢄ்∗ܾ)݃݋݈)ܧ

																											= ܧ ቆ ݈݅݉
ఒ→଴శ

1
ߣ ݃݋݈ ቆߣ

ࢄ்ܾ
+ࢄ்∗ܾ 1− 												ቇቇߣ (∗) 

											= ܧ ቆ ݈݅݉
ఒ→଴శ

1
ߣ ݃݋݈ ቆ1 + )ߣ

ࢄ்ܾ
ࢄ்∗ܾ − 1)ቇቇ 

= ܧ ቆ
ࢄ்ܾ
ࢄ்∗ܾ − 1ቇ (∗∗) 

≤ 0. 

The equality(∗) can be referred to dominated convergence theorem in [5] and the equality(∗∗)is 

due to theL’Hospital’s rule 

݈݅݉
௫→଴

1)݃݋݈ + ܿ ∗ (ݔ ⁄ݔ = ܿ, 

whereܿ = ( ௕
೅ࢄ

௕∗೅ࢄ
− 1). 

Thusܧ ௕೅ࢄ
௕∗೅ࢄ

≤ 1. 

The proof of Theorem 2.1: 

																	∆ ௒ܸ = ்∗௒|ࢄ࢈௒൫|ࢄݎ ࢞൯ −  (்࢞∗ࢄ࢈)௒|ࢄݎ

= න ்∗௒|ࢄ࢈)݃݋݈ ܻ|࢞)ܨ݀(࢞ = (ݕ − න݈ܨ݀(்࢞∗ࢄ࢈)݃݋(࢞|ܻ =  (ݕ
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	= න ݃݋݈
்∗௒|ࢄ࢈ ࢞
்࢞∗ࢄ࢈

ܻ|࢞)ܨ݀ =  (ݕ

= න )	݃݋݈
்∗௒|ࢄ࢈ ࢞
்࢞∗ࢄ࢈

݂(࢞)

(࢞)௒ୀ௬|ࢄ݂
ܻ|࢞)ܨ݀( = (ݕ +න ݃݋݈ (࢞)௒ୀ௬|ࢄ݂

݂(࢞) ܻ|࢞)ܨ݀ =  (ݕ

= න )	݃݋݈
்∗௒|ࢄ࢈ ࢞
்࢞∗ࢄ࢈

݂(࢞)

(࢞)௒ୀ௬|ࢄ݂
ܻ|࢞)ܨ݀( = (ݕ +න ݃݋݈(࢞)௒ୀ௬|ࢄ݂

(࢞)௒ୀ௬|ࢄ݂
݂(࢞) ݀࢞ 

≤ න݃݋݈
்∗௒|ࢄ࢈ ࢞
்࢞∗ࢄ࢈

݂(࢞)

(࢞)௒ୀ௬|ࢄ݂
ܻ|࢞)ܨ݀ = +	(ݕ න ݃݋݈(࢞)௒ୀ௬|ࢄ݂

(࢞)௒ୀ௬|ࢄ݂
݂(࢞) ݀࢞ 

(݈݁݉݉ܽ	2.1.1) 

= න݃݋݈ fࢄ|ଢ଼ୀ୷(࢞)
்∗௒|ࢄ࢈ ࢞
்࢞∗ࢄ࢈

f(࢞)
fࢄ|ଢ଼ୀ୷(࢞)

d࢞ + නfࢄ|ଢ଼ୀ୷(࢞)log
fࢄ|ଢ଼ୀ୷(࢞)
f(࢞) d࢞ 

= න݃݋݈
்∗௒|ࢄ࢈ ࢞
்࢞∗ࢄ࢈

(࢞)ܨ݀	 + න ݃݋݈(࢞)௒ୀ௬|ࢄ݂
(࢞)௒ୀ௬|ࢄ݂
݂(࢞) ݀࢞ 

≤ 1݃݋݈ +	න ݃݋݈(࢞)௒ୀ௬|ࢄ݂
(࢞)௒ୀ௬|ࢄ݂
݂(࢞) ݀࢞(݈݁݉݉ܽ	2.1.2) 

= න ݃݋݈(࢞)௒ୀ௬|ࢄ݂
(࢞)௒ୀ௬|ࢄ݂
݂(࢞) ݀࢞.																																																																		 

Furthermore, we define ∆ܸ = ∆)ܧ ௒ܸ), the expectation of the increment ∆ ௒ܸ  with respect to ܻ, 

then ∆ܸalso has an upper bound.  Denote by(ܪ)ܩ the cumulative distribution function of ܻ	((ܺ, ܻ)), 

and	݃(ℎ)the density function of ܻ((ܺ, ܻ)), we verify that  

																																																												∆ܸ = න∆ ௒ܸୀ௬݀(ݕ)ܩ 

																								≤ නන ݃݋݈(࢞)௒ୀ௬|ࢄ݂
(࢞)௒ୀ௬|ࢄ݂
݂(࢞)  (ݕ)ܩ݀࢞݀

																																											= 	නන (࢞)௒ୀ௬|ࢄ݂ ∙ (ݕ)݃ ∙ ݃݋݈
(ݕ)݃(࢞)௒ୀ௬|ࢄ݂
(ݕ)݃(࢞)݂  ݕ݀࢞݀

														= නනℎ(࢞, (ݕ ݃݋݈
ℎ(࢞, (ݕ
(ݕ)݃(࢞)݂ ݔ݀  .ݕ݀

∆ܸ hasan upper bound ∫∫ ℎ(࢞, (ݕ ݃݋݈ ௛(࢞,௬)
௙(࢞)௚(௬)

ݕ݀࢞݀ ,that is the mutual information of ࢄ  and 

ܻ	[1].When ࢄ and ܻare independent, ∆ܸ = 0 means no increment because the information ܻ does not 

affectࢄ in any way; When ࢄis completely determined by ܻ, this upper bound is exactly the entropy 

of the information ܻ. Further exploration may be interesting but is out of the scope of this paper.  
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3 Greed characteristic and optimal property 

When thesequence of the returns ࢄ૚, ,૛ࢄ ⋯arei.i.d., the best strategy maintains a certain fixed 

portfolio. Owing to the information of investment which we discussed in section 2, the 

i.i.d.assumption becomes unrealistic. Fortunately, this assumption is not necessary, the log-optimal 

could vary the optimal portfolios over the periods but the strategy is still superior to other strategies 

asymptotically in view of gross wealth.Recall that the logarithmic return can be presented 

as ∏൫݃݋݈ ௜࢏ࢄࢀ࢏࢈ ൯ = ∑ ௜(࢏ࢄࢀ࢏࢈)	݃݋݈ . To optimize ݈݃݋൫∏ ௜࢏ࢄࢀ࢏࢈ ൯  is therefore equivalent to 

optimize݈݃݋	(࢏ࢄࢀ࢏࢈)in the݅th period. This means that the local optimaldynamic portfolios together can 

make a global optimal strategy, in other words, the log-optimal strategy hasthe greed characteristic. 

Denote the gross wealth at the end of the ݊thperiod with an sequence of portfolios{࢏࢈}byܵ௡ =

ܵ଴∏ ௡࢏ࢄࢀ࢏࢈
௜ୀଵ and thegross wealth using the log-optimal strategyܵ௡∗ = ܵ଴∏ ∗࢏࢈

௡࢏ࢄࢀ
௜ୀଵ . Nexttheorem 

indicates the optimal property of thelog-optimal strategy. 

Theorem3: S୬∗ is asymptotically superior toܵ௡. 

Proof:According to lemma 2.1.2, we have	ܧ ௌ೙
ௌ೙∗
≤ 1, and 

௡ܵ)ݎܲ > ݊ଶ ∙ ܵ௡∗) = ݎܲ ൬
ܵ௡
ܵ௡∗

> ݊ଶ൰ 

																																= න )ܨ݀
ܵ௡
ܵ௡∗
)

ାஶ

௡మ
 

																																										≤
1
݊ଶ
න

ܵ௡
ܵ௡∗
)ܨ݀

ܵ௡
ܵ௡∗
)

ାஶ

௡మ
 

																																									≤
1
݊ଶ
න

ܵ௡
ܵ௡∗
)ܨ݀

ܵ௡
ܵ௡∗
)

ାஶ

଴
 

																																≤
1
݊ଶ ܧ

ܵ௡
ܵ௡∗

≤
1
݊ଶ, 

that is 

ݎܲ ൬
1
݊ ݃݋݈

ܵ௡
ܵ௡∗

>
1
݊ ݃݋݈ 	݊

ଶ൰ ≤
1
݊ଶ，෍Pr	(

1
݊ ݃݋݈

ܵ௡
ܵ௡∗

>
݊݃݋2݈
݊ )

ஶ

௡ୀଵ

≤෍
1
݊ଶ

ஶ

௡ୀଵ

< ∞, 

and 
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ݎܲ ൬ ݈ଓ݉തതതതത
௡→ஶ

൜
1
݊ ݃݋݈

ܵ௡
ܵ௡∗

>
2 ݃݋݈ 	݊

݊
ൠ൰ 	= ݈݅݉

௞→ஶ
ݎܲ ൭ራ൜

1
݊ ݃݋݈

ܵ௡
ܵ௡∗

>
2 ݃݋݈ 	݊

݊
ൠ

ஶ

௡ୀ௞

൱ 

≤ ݈݅݉
௞→ஶ

෍ܲݎ
௡ୀ௞

൬൜
1
݊ ݃݋݈

ܵ௡
ܵ௡∗

>
2 ݃݋݈ 	݊

݊
ൠ൰ 

= 0. 

This implies,∃ܰ > 0, for ∀݊ > ܰ, we have 
ଵ
௡
݃݋݈ ௌ೙

ௌ೙∗
≤ ଶ ௟௢௚ ௡

௡
. 

Thus 

݈ଓ݉തതതതത௡→ஶ
ଵ
௡
݃݋݈ ௌ೙

ௌ೙∗
≤ 0, with probability 1. 

Hence, we have the conclusion thatܵ௡∗is asymptotically superior to ܵ௡[1]. 
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4 From theory to practice: thetrueprobability distribution is unknown 

We assume (ࢄ)ܨis knownin section 2. But in practice, (ࢄ)ܨis unknown and need to be estimated 

from the history with certain assumptions. We shall be alert for the deviation of the estimation and 

these assumptions, especially for possible “butterfly effects”. In this section, wedon’t 

estimate(ࢄ)ܨdirectly, but introduce a new object function called the allocation utility first. This 

function is a quadratic approximation to the expectation of the logarithmic rate of return, and it is 

simple enough to involving only the expectation and covariance of ࢄ.Indeed, it can be considered as 

the balance between the logarithmic returnand its squared coefficient ofvariation. We optimize the 

allocation utility with the estimations of the expectation and covariance and find the optimal 

portfolio, but not the expectation of the logarithmic rate of return with the empirical cumulative 

distribution function of ࢄ. The latter is usually so complicate specially for the high dimension of ࢄ. 

Our strategy is computationallyeffective, and what's more, it is robust in the sense that the upper 

bound of the allocation utility deviation can be controlled by the lଵ-norm of portfolioandlஶ-norm of 

the bias of variance matrix estimator.We will concern the constraint on portfolio because of limited 

knowledge on the estimationof variance matrix. 

Allocation utility  

Suppose ࢄhas itsexpectation ࣆand the covariance matrixࢳ .Then(ࢄ்࢈)ܧ = ࣆ்࢈ (ࢄ்࢈)ݎܸܽ , =

 .࢈ࢳ்࢈

The accurate logarithm optimal strategy has ࢈ = ݔܽ݉݃ݎܽ
஻∋࢈

((ࢄ்࢈)݃݋݈)ܧ . However, the 

optimization problem depends on the distribution function of ࢄand the accurate optimization needs 

complicate calculation. So we adopt Taylor expansion toapproximate((ࢄ்࢈)݃݋݈)ܧ: 

 ((ࢄ்࢈)݃݋݈)ܧ				

≈ ܧ ൭݈(ࢄ்࢈)ܧ݃݋ +
ࢄ்࢈ − (ࢄ்࢈)ܧ

(ࢄ்࢈)ܧ −
൫ࢄ்࢈ − ൯(ࢄ்࢈)ܧ

ଶ

2൫(ࢄ்࢈)ܧ൯
ଶ ൱ 

= ((ࣆ்࢈)݃݋݈)ܧ +
ࢄ்࢈)ܧ − (ࣆ்࢈

(ࢄ்࢈)ܧ −
−ࢄ்࢈))ܧ (ଶ(ࣆ்࢈

2൫(ࢄ்࢈)ܧ൯
ଶ  

= (ࣆ்࢈)݃݋݈ + 0 −
1

ଶ(ࣆ்࢈)2 ࢈
ࢄ)]ܧ் − ࢄ)(ࣆ −  																																࢈[்(ࣆ

= (ࣆ்࢈)݃݋݈ −
1

ଶ(ࣆ்࢈)2 ࢈
 																																																									.࢈ࢳ்
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Define the Allocation utilityfunction as  

,ࣆ,࢈)ܯ (ࢳ = (ࣆ்࢈)݃݋݈ −
1

ଶ(ࣆ்ܾ)2 ࢈
 .࢈ࢳ்

So the log-optimal strategy can be approximately by the optimization of the Allocation utility:  

,࢈)ܯݔܽ݉ ,ࣆ .ݏ ,(ࢳ ࢈		.ݐ ∈  ܤ

 

Optimal portfolio࢚࢖࢕࢈ 

If the region ܤis simple, we can solve ࢈directly.For example, we takeܤ = ࢋ்࢈|࢈} = ்࢈，1 ࣆ	 ≥

ܿ} and analyze the optimal requirements. We can easily see that the first constraint is natural and the 

second constraint accounts for the requirements of minimum rate of return. Because there are both 

equality constraint and inequality constraint, we apply Karush-Kuhn-Tucker condition to solve this 

optimization problem. 

Let 

,࢈)ࡲ ,ߙ (ߚ = − (ࣆࢀ࢈)ࢍ࢕࢒ +
૚

૛(ࣆࢀ࢈)૛ ࢈
࢈ࢳࢀ + ࢋࢀ࢈)ߙ − ૚) + ܿ)ߚ −  ,(ࣆ	ࢀ࢈

whereߚ ≥ ૙. 

Take ,࢈)ܨ߲ ,ߙ (ߚ ⁄࢈߲ = ૙ , and substitute ܿ)ߚ − ்࢈ (ࣆ	 = ߚ，0 ≥ ࢋ்࢈，0 − 1 = 0  into 

simultaneous equalities and inequalities，we have 

⎩
⎪
⎨

⎪
⎧−

ࣆ
−ࣆ்࢈

࢈ࢳ்࢈ࣆ
ଷ(ࣆ்࢈) +

࢈ࢳ
ଶ(ࣆ்࢈) + ࢋߙ − ࣆߚ = ૙																																(4.1)				

ܿ)ߚ − ்࢈ (ࣆ	 = 0																																																																															(4.2)		
ߚ	 ≥ 0																																																																																																			(4.3)			
ࢋ்࢈ − 1 = 0																																																																																							(4.4)			

� 

Next we shallconsider how to solve the above equation systems. 

Multiply ்࢈ in both sides of equality (4.1), we have 

૙ = ࢀ࢈ ቈ−
ࣆ
ࣆࢀ࢈ −

࢈ࢳࢀ࢈ࣆ
૜(ࣆࢀ࢈) +

࢈ࢳ
૛(ࣆࢀ࢈) + ࢋߙ −  ቉ࣆߚ

= −
ࣆࢀ࢈
−ࣆࢀ࢈

࢈ࢳࢀ࢈ࣆࢀ࢈
૜(ࣆࢀ࢈) +

࢈ࢳࢀ࢈
૛(ࣆࢀ࢈) + ࢋࢀ࢈ߙ −  ࣆࢀ࢈ߚ

= −૚ −
࢈ࢳࢀ࢈
૛(ࣆࢀ࢈) +

࢈ࢳࢀ࢈
૛(ࣆࢀ࢈) + ߙ ∙ ૚ −  						ࣆࢀ࢈ߚ
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= −૚ + ߙ −  																																																			ࣆࢀ࢈ߚ

(1) Ifߚ = 0, we are able to find0 = −1 + ߙ − 0, which refers toߙ = 1. 

Then we substituteߙ = 1, ߚ = 0 into equality (4.1), we have 

−
ࣆ
ࣆ்࢈ −

࢈ࢳ்࢈ࣆ
ଷ(ࣆ்࢈) +

࢈ࢳ
ଶ(ࣆ்࢈) + ࢋ = ૙																				(4.5) 

We can get the value of optimal portfolio ࢈෡௢௣௧ by solving equality(4.5). 

(2) If ߚ > 0, According to equality (4.2), we	can	seeࢀ࢈	ࣆ = ܿ. 

So we have0 = −1 + ߙ − ߙ that is ,ܿߚ = 1 +  .ܿߚ

Thus we can get following equation system: 

⎩
⎪
⎨

⎪
⎧−

ࣆ
−ࣆࢀ࢈

࢈ࢳࢀ࢈ࣆ
૜(ࣆࢀ࢈) +

࢈ࢳ
૛(ࣆࢀ࢈) + ࢋߙ − ࣆߚ = ૙																																							

ࣆ	ࢀ࢈ = ܿ																																																																																(4.6)
ߙ = ૚ + 																																																																																																			ࢉߚ

� 

After solving equation system(4.6), we can get the value of optimal portfolio࢈෡௢௣௧. 

From equality(4.5)and equation system(4.6), we can find that the solution of ࢈෡௢௣௧depends on the 

value of ࣆand ࢳIf the estimation of ࢳ,ࣆdeviates from the true value, it may lead to deviation of 

estimationof optimal return. So we need to control our estimation process in order to reduce 

deviation. Next, we will find whether the deviation of estimation could affect the utility function 

seriously. 

 

Analysis of Robustness 

Suppose that࢈෡࢚࢖࢕is the optimal portfolio estimator by replacing ࣆand ࢳwith theirestimators:ࣆෝandࢳ෡ 

in the optimization.Theestimation error of ࣆ and ࢳmay have a serious influence on estimated utility 

value of ࢈෡௢௣௧ accuracy.we need to know the optimal allocation vector࢈෡௢௣௧ utility function accurately. 

Thus we need toinvestigatewhether the bias of the optimal utility function following theestimation of 

   .can be controlled and how ࢳ and ࣆ

We first need to make an assumption for the model. 

(A1) Suppose ࡱ(ࣆෝ) =  .unbiased estimation ࣆෝisࣆ which refers to，ࣆ

From (A1), we can knowܧ ቀ࢈෡௢௣௧்ࣆෝቁ =  According to law of large number, we can know .ࣆ෡௢௣௧்࢈

ߝ∀ > 0  when sample sizen → ∞ , we haveܲ ቀቚ࢈෡௢௣௧்ࣆෝ − ቚࣆ෡௢௣௧்࢈ > ቁߝ → 0 . For ∀߳ > 0 , ∃݊଴ ∈
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ܰାsuch thatࣆෝsatisfiesቚ࢈෡௢௣௧்ࣆෝ − ቚࣆ෡௢௣௧்࢈ ≤  .݊଴	when sample size is more than ߝ

In addition, we need the following lemma. 

Lemma 4.1：∀݌, ,ݍ ,ଵݍ ଶݍ ∈ ℝ, satisfy	ݍଵ ≤ ݍ ≤  ଶ,We haveݍ

݌| − |ݍ ≤ ݌}ݔܽ݉ − ,ଵݍ ଶݍ −  {݌

Proof：If ݌ ≥ ݌，ݍ − ଵݍ ≥ ݌ − ݍ ≥ 0，which refers to ݌ − ଵݍ > ݌| −  .|ݍ

 If݌ < ଶݍ，ݍ − ݌ ≥ ݍ − p > 0，which refers to ݍଶ − ݌ > ݌| −  .|ݍ

So we have |݌ − |ݍ ≤ ݌|}ݔܽ݉ − ,|ଵݍ ଶݍ| −  {|݌

Next we will study the deviation between ܯ൫࢈෡௢௣௧ , ,ෝࣆ ,෡௢௣௧࢈൫ܯ෡൯ andࢳ ,ࣆ  .൯ࢳ

หܯ൫࢈෡௢௣௧ , ,ෝࣆ ෡൯ࢳ ,෡௢௣௧࢈൫ܯ− ,ࣆ  ൯หࢳ

= ቮ݈݃݋(࢈෡௢௣௧்ࣆෝ) −
1

2 ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
෡௢௣௧࢈෡ࢳ෡௢௣௧்࢈ − (ࣆ෡௢௣௧்࢈)݃݋݈ +

1

2 ቀ࢈෡௢௣௧்ࣆቁ
ଶ
 ෡௢௣௧ቮ࢈ࢳ෡௢௣௧்࢈

= ቮቀ݈݃݋(࢈෡௢௣௧்ࣆෝ) − ቁ(ࣆ෡௢௣௧்࢈)݃݋݈ + ቌ
1

2 ቀ࢈෡௢௣௧்ࣆቁ
ଶ
෡௢௣௧࢈ࢳ෡௢௣௧்࢈ −

1

2 ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
 ෡௢௣௧ቍቮ࢈෡ࢳ෡௢௣௧்࢈

≤ ቚ݈݃݋(࢈෡௢௣௧்ࣆෝ) − ቚ(ࣆ෡௢௣௧்࢈)݃݋݈ + ቮ
1

2 ቀ࢈෡௢௣௧்ࣆቁ
ଶ
෡௢௣௧࢈ࢳ෡௢௣௧்࢈ −

1

2 ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
 ෡௢௣௧ቮ࢈෡ࢳ෡௢௣௧்࢈

	= อ݈݃݋൭
ࣆ෡௢௣௧்࢈
ෝࣆ෡௢௣௧்࢈

൱อ +
1
2 ቮ

1

ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
෡௢௣௧࢈෡ࢳ෡௢௣௧்࢈ −

1

ቀ࢈෡௢௣௧்ࣆቁ
ଶ
 ෡௢௣௧ቮ࢈ࢳ෡௢௣௧்࢈

≤ อ݈݃݋൭
ෝࣆ෡௢௣௧்࢈ + ߝ
ෝࣆ෡௢௣௧்࢈

൱อ +
1
2 ቮ

1

ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
෡௢௣௧࢈෡ࢳ෡௢௣௧்࢈ −

1

ቀ࢈෡௢௣௧்ࣆቁ
ଶ
 ෡௢௣௧ቮ࢈ࢳ෡௢௣௧்࢈

= อ݈݃݋ቆ1 +
ߝ

ෝࣆ෡௢௣௧்࢈
ቇอ +

1
2 ቮ

1

ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
෡௢௣௧࢈෡ࢳ෡௢௣௧்࢈ −

1

ቀ࢈෡௢௣௧்ࣆቁ
ଶ
 		.	෡௢௣௧ቮ࢈ࢳ෡௢௣௧்࢈

For the first element of inequality left side, due to ࢈෡௢௣௧்ࣆෝ ≥ ܿ，we have 

ฬ݈݃݋ ൬1 + ఌ
ෝࣆ෡೚೛೟೅࢈

൰ฬ ≤ ݃݋݈ ቀ1 + ఌ
௖
ቁ. 

S05

Page - 343



A Robust Log-Optimal Strategy and its application in NYSE 

16 
 

For the second element of inequality right side, according to lemma 4.1， 

Since 

1

ቀ࢈෡௢௣௧்ࣆෝ + ቁߝ
ଶ
෡௢௣௧࢈ࢳ෡௢௣௧்࢈ <

1

ቀ࢈෡௢௣௧்ࣆቁ
ଶ
෡௢௣௧࢈ࢳ෡௢௣௧்࢈ <

1

ቀ࢈෡௢௣௧்ࣆෝ − ቁߝ
ଶ
෡௢௣௧࢈ࢳ෡௢௣௧்࢈ , 

we have 

1

ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
෡௢௣௧࢈෡ࢳ෡௢௣௧்࢈ −

1

ቀ࢈෡௢௣௧்ࣆቁ
ଶ
 ෡௢௣௧࢈ࢳ෡௢௣௧்࢈

≤ ݔܽ݉

⎩
⎪
⎨

⎪
⎧ ଵ

ቀ࢈෡೚೛೟೅ࣆෝቁ
మ ෡௢௣௧࢈

෡௢௣௧࢈෡ࢳ் − ଵ

ቀ࢈෡೚೛೟೅ࣆෝାࢿቁ
మ ෡௢௣௧࢈

෡௢௣௧࢈ࢳ் ,

ଵ

ቀ࢈෡೚೛೟೅ࣆෝቁ
మ ෡௢௣௧࢈

෡௢௣௧࢈෡ࢳ் − ଵ

ቀ࢈෡೚೛೟೅ࣆෝିఌቁ
మ ෡௢௣௧࢈

෡௢௣௧࢈ࢳ்

⎭
⎪
⎬

⎪
⎫

. 

Since−ߝ ≤ ෝࣆ෡௢௣௧்࢈ − ࣆ෡௢௣௧்࢈ ≤  ,ߝ

on one hand, 

1

ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
෡௢௣௧࢈෡ࢳ෡௢௣௧்࢈ −

1

ቀ࢈෡௢௣௧்ࣆෝ + ቁߝ
ଶ
 ෡௢௣௧࢈ࢳ෡௢௣௧்࢈

=
1

ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
෡௢௣௧்࢈ ቎ࢳ෡ − ൭

ෝࣆ෡௢௣௧்࢈
ෝࣆ෡௢௣௧்࢈ + ߝ

൱
ଶ

቏ࢳ  ෡௢௣௧࢈

≤
1
ܿଶ
ቌ࢈෡௢௣௧் ቌࢳ෡ − ൭

ෝࣆ෡௢௣௧்࢈
ෝࣆ෡௢௣௧்࢈ + ߝ

൱
ଶ

ቍࢳ  																														,෡௢௣௧ቍ࢈

on the other hand， 

1

ቀ࢈෡௢௣௧்ࣆෝ − ቁߝ
ଶ
෡௢௣௧࢈ࢳ෡௢௣௧்࢈ −

1

ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
 ෡௢௣௧࢈෡ࢳ෡௢௣௧்࢈

≤
1

ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
෡௢௣௧்࢈ ቎൭

ෝࣆ෡௢௣௧்࢈
ෝࣆ෡௢௣௧்࢈ − ߝ

൱
ଶ

ࢳ − ෡቏ࢳ  ෡௢௣௧࢈

≤
1
ܿଶ
ቌ࢈෡௢௣௧் ቌ൭

ෝࣆ෡௢௣௧்࢈
ෝࣆ෡௢௣௧்࢈ − ߝ

൱
ଶ

ࢳ − ෡ቍࢳ  																						.෡௢௣௧ቍ࢈
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Hence 

ቮ
1

ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
෡௢௣௧࢈෡௢௣௧்઱෡࢈ −

1

ቀ࢈෡௢௣௧்ૄቁ
ଶ
 ෡௢௣௧ቮ࢈෡௢௣௧்઱࢈

≤ ݔܽ݉

⎩
⎪⎪
⎨

⎪⎪
⎧ 1
ܿଶ
ቌ࢈෡௢௣௧் ቌࢳ෡ − ൭

ෝࣆ෡௢௣௧்࢈
ෝࣆ෡௢௣௧்࢈ + ߝ

൱
ଶ

ቍࢳ ，෡௢௣௧ቍ࢈

1
ܿଶ
ቌ࢈෡௢௣௧் ቌ൭

ෝࣆ෡௢௣௧்࢈
ෝࣆ෡௢௣௧்࢈ − ߝ

൱
ଶ

ࢳ − ෡ቍࢳ ෡௢௣௧ቍ࢈
⎭
⎪⎪
⎬

⎪⎪
⎫

 

≈
1
ܿଶ
ቚ࢈෡௢௣௧்൫ࢳ −  									.	෡௢௣௧ቚ࢈෡൯ࢳ

Let࢈෡௢௣௧ = ൫෠ܾଵ, …… , ෠ܾ௡൯
்
，the݅୲୦row	and݆୲୦column	element	is	ߪ௜௝of		ࢳ −  .෡ࢳ

Hence 

ቚ࢈෡ࢀ࢚࢖࢕൫ࢳ − ቚ࢚࢖࢕෡࢈෡൯ࢳ = ቮ෍ ෠ܾ௜ ቌ෍ ෠ܾ௝ߪ௜௝

௡

௝ୀଵ

ቍ
௡

௜ୀଵ

ቮ 

≤෍ห෠ܾ௜ห ቮ෍ ෠ܾ௝ߪ௜௝

௡

௝ୀଵ

ቮ
௡

௜ୀଵ

 

≤෍ห෠ܾ௜ห෍ห෠ܾ௝หหߪ௜௝ห
௡

௝ୀଵ

௡

௜ୀଵ

 

≤෍ห෠ܾ௜ห ቌ෍ห෠ܾ௝ห෍หߪ௜௝ห
௡

௜ୀଵ

௡

௝ୀଵ

ቍ
௡

௜ୀଵ

 

≤෍ห෠ܾ௜หmax௜ ቌ෍ห෠ܾ௝ห෍หߪ௜௝ห
௡

௝ୀଵ

௡

௝ୀଵ

ቍ
௡

௜ୀଵ

 

= ൭෍ห෠ܾ௜ห
௡

௜ୀଵ

൱
ଶ

max
௜
෍หߪ௜௝ห
௡

௝ୀଵ

	.													 

So we have 

หM൫࢈෡௢௣௧ , ෝૄ, ઱෡൯ − M൫࢈෡௢௣௧ , ૄ, ઱൯ห 

≤ อlogቆ1 +
ε

ෝࣆ෡௢௣௧்࢈
ቇอ +

1
2 ቮ

1

ቀ࢈෡௢௣௧்ࣆෝቁ
ଶ
෡௢௣௧࢈෡௢௣௧்઱෡࢈ −

1

ቀ࢈෡௢௣௧்ૄቁ
ଶ
 ෡௢௣௧ቮ࢈෡௢௣௧்઱࢈
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≤ logቀ1 +
ε
ܿቁ +

1
2ܿଶ

൭෍ห෠ܾ௜ห
௡

௜ୀଵ

൱
ଶ

max
௜
෍หߪ௜௝ห
௡

௝ୀଵ

 

≈
1
2ܿଶ

൭෍ห෠ܾ௜ห
௡

௜ୀଵ

൱
ଶ

max
௜
෍หߪ௜௝ห
௡

௝ୀଵ

.																																																																																													 

Thus if we choose a suitable constantܿ଴ > 0, and control ∑ ห෠ܾ௜ห ≤௡
௜ୀଵ ܿ଴ , we can sure that the 

estimation error is under control (݉ܽݔ௜ ∑ หߪ௜௝ห௡
௝ୀଵ  is supposed to be small enough). 

Therefore, toachieve a robust optimization effect and make the error of optimal utilitycontrolled 

by an upper bound, we add an extra ∑ | ௜ܾ|௡
௜ୀଵ ≤ ܿ଴ constraint in the optimizationprocedure. 
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5 Simulation studies in financial market 

5.1 Simulation purpose, assumption and statistics introduction  
 
Simulation purpose 

In this section, we use NYSEdata to illustrate our strategy. We are going to develop a set of 

strategies which can search for the mode of stock price, select asset continuously, and achieve the 

growth of capital from historical stock prices. 

 

Simulation assumption 
We will simplify the influence of transaction cost. The simulation involves the portfolio balance 

and reselect on a daily basis whose operation corresponds to unknown transaction cost. So we adopt 

the linear transaction costsmodel [2] to simplify the unknown transaction cost involved in the 

simulation. 

We also assume a market with a strong fluidity, which means transactions happen according to our 

needs.  

 
Data introduction 

The data comes from 36 stocks in NYSE(New York Stock Exchange), from 3rd June 1962 to 31st 

December 1984 and from 1st January 1985 to 31st December 2007. 

 

5.2 Model 

Extracting information from markets with similar backgrounds 

We use the data of stock prices in this simulation, and we predict future stock price referencing 

similar price mode in the historical data. We denoteݔ(݅, ݇)as the price ratio of the ݅௧௛ stock on the 

݇௧௛day.	ܺ(݇)is the price ratios on the ݇௧௛ day. 

	ܺ(݇: ݈) = ൥
ଵ௞ݔ ⋯ ଵ௟ݔ
⋮ ⋱ ⋮
௣௞ݔ ⋯ ௣௟ݔ

൩is the statistics of the price ratio of all stocks from day ݇ to day ݈, which 

can be regarded as ݈ − ݇ + 1 day’s market background environment before the (݇ + 1)௧௛ day. 

For trading day ݐ, when we fix its thelength of market background, it is possible to find trading 

day with similar market background in history, whose data is valuable for the prediction of the price 

of the (ݐ + 1)௧௛ day. 
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Define the similarity of market background 

ݎ݈ܽ݅݉݅ܵ ቀܺ൫݇：݈൯, ܺ(݇ + ݉: ݈ + ݉)ቁ = :݇)൫ܺ∗ݎݎ݋ܿ ݈), ܺ(݇ + ݉: ݈ + ݉)൯, 

corr∗ is the Pearson correlation between the vectorization of the matrixes	ܺ൫݇：݈൯ and ܺ(݇ +

݉: ݈ + ݉). 

 

Find the trading day with similar market background 

If we set the value of the length of the market background ݊ and the threshold value of market 

similarityߩ , we can define the index set of datescorresponding to the trading days with similar 

market background as: 

,݇)ܥ ݊, (ߩ = ቄ݊ < ݅ < ݎ݈ܽ݅݉݅ܵ|݇ ቀܺ൫݅ − ݊：݅ − 1൯, ܺ(݇ − ݊: ݇ − 1)ቁ >  ቅߩ

 

5.3 Allocate the optimization model 
Before selecting asset on the (݇ + 1)௧௛ trading day, we need to find the set of similar trading days. 

The empirical cumulative distribution function of the profit ratio on similar trading days serves as the 

estimation of the profit ratio on the (݇ + 1)௧௛ trading day. The selection of the similar trading day is 

influenced by the length of the market background ݊ and the threshold value of market similarityߩ. 

The most suitable(݊,  cannot be acquired in advance, and the cross validation is not suitable for this(ߩ

problem due to the nature of time seriesin stocks data. In the meantime, using the whole data set as 

the training set may cause the problem of over-fitting.  

To solve the problems above, and to make asset selection more robust, we consider 

several(݊,  groups as several “experts”. We take all the experts’advice into consideration in the(ߩ

final decision. The method to select “experts” in this passage follows as below: select a ܰ  as the 

upper bound of ݊, and consider all the integers between 2 and ܰ as the values of ݊. Select a ܲ as the 

upper bound of ߩ, extract 10 values equidistantly as the values of ߩ. The selecting ܰ and ܲ is more 

moderate than selecting(݊,  .group when measuring the influence on the simulation result(ߩ

For a single expert(݊, ݇)the optimal allocation model of the ,(ߩ + 1)௧௛ day is: 

,݊)୩ାଵ܊ ρ) = argmax
஺∋࢈

ෑ ࢈) ∙ (࢏ࢄ
௜∈େ(௞,௡,஡)

 

 is the region of possible portfolios. According to the robust results in section 4, we add theܣ
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constraint of ܮଵ norm not great than 1 in order to control the estimation deviation’s upper bound, 

which concords with the principle that forbids short sell.The self-adapted dynamic weight combines 

the experts’ advice with each other through the formula below. 

௞ାଵ࢈ =
∑ ,݊)ݏ ,݊)௞ାଵ࢈(ߩ ௡,ఘ(ߩ

∑ ,݊)ݏ ௡,ఘ(ߩ
(∗∗∗), 

where ,݊)ݏ (ߩ is the total profit on the trading days in the set 	ܥ(݇, ݊,  with the allocation(ߩ

,݊)௞ାଵ࢈  .The formula(∗∗∗) can be referred to [3].(ߩ

 

5.4 Influence of the transaction cost 

Transaction cost is an important factor of assessing the strategy. We can explore the influence of 

transaction cost by considering simple transaction cost model in the simulation of the transaction 

process, but only in the real market can we calculate the accurate transaction cost. This passage 

adopts the linear transaction costs model. The (k + 1)୲୦ day’s transaction cost is: 

α ∙ ‖b୩ାଵ − b୩‖ଵ 

When considering the profit, we need to minus the cost with the corresponding ratio.ߙis an 

adjustment coefficient. If valued 0, it means that there is no transaction cost; the larger ߙ	is, the more 

transaction cost will be. This passage explores the result of the strategy with differentߙ. 

 

5.5 Simulation results 

Cumulative capital 

We setܰ = 10, ߩ = 0, ߙ = 0. After the implementation of the strategy for the NYSE data, the 

condition of the cumulative growth of capital is showed in Figure 1 and Figure 2. 

S05

Page - 349



A Robust Log-Optimal Strategy and its application in NYSE 

22 
 

 
Fig. 1.NYSE data accumulated asset（3rd June 1962 to 31st December 1984） 

 
Fig. 2.NYSE data accumulated asset（1st January 1985 to 31st December 2007） 

 

Figure 1 and Figure 2 indicate that if we don’t consider transaction costs, our investment strategy 
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makes asset increase robustly at each stage in 2 period of more than 5000 trading days. What’s more, 

its order of magnitude has never decreased sharply. It shows robustness of our strategy. The reason 

why it has such a satisfactory performance is that the law of large number ensures the stability of the 

logarithmicrateof return. According to similarity of market background, the prediction accords to 

market principle. That’s why the expectation of the gross wealth can increase. 

Transaction cost influence 

    In practice, we need to analyze how transaction costs have influence on our cumulative wealth. 

From linear cost model in section 5.2, we consider deducting ratio of different ߙ position capital after 

adjusting asset portfolio. We take the data from 3rd June 1962 to 31st December 1984as an example 

here. ߙtakes the degree of deduction of capital from 0 to 0.01. It corresponds to cumulative wealth 

inFigure 3. 

    As Figure 3 shows, we can find that the logarithm of cumulative wealth and α subject a linear 

relationship under the linear costs model. It’s easy to see that whenߙ = 0.0045, the logarithm of 

wealth is 0,which means our asset in balance. So when ߙ isless than 0.0045, cumulative wealth is can 

increase exponentially as time flies. In American stock market, transaction costs are usually less than 

0.001.  Thus the robust log-optimal strategy is significance in practice. 

 

 

Fig. 3. Transaction cost effect analysis 
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Parameter sensitivity analysis (date from 3rd June 1962 to 31st December 1984) 

We set largest length of market background as 10 in this paper. To analyze if parameter setting has 

a sensitive influence on result, we adopt integers range from 0 to 25 and get corresponding ultimately 

accumulated asset situation in figure 4. 

Figure 4 shows that if the length of market window parameter is from 0 to 5, the larger the 

parameter, the better the result. If it is from 5 to 25, the result remains stable. In practice, we can 

choose optimal length of market background by the training set. Because of its stability, it can be 

utilized in the other fields of data mining apart from the stock market.We analyze the sensitivity of 

parameter ߩ  as well. Let ݊=10 and {0.05，0，0.05，0.1，0.15-，0.15-}=ߩ, and get ultimately 

different accumulated asset as shown in Figure 5. if0=ߩ, we can get the best effect. If 0>ߩ, similar 

trading days which we extract will have negative effect. So it’s normal not to get an optimal result. If 

 is so large that there is not enough trading days which meet the requirements,we cannot get an ߩ

optimal result. 

 
Fig.4. Largest market window length sensitivity analysis 
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Fig. 5. Correlated threshold sensitivity analysis 

6. Conclusion 

We develops a new robust log-optimal strategy, many virtues meet in it: 
1) an extremely explanation in theory: the balance between the logarithmic returnand its 

squared coefficient ofvariation; 
2) computationaleffectiveness; 
3) resistanceto“butterfly effect”: the upper bound of the allocation utility deviation can be 

controlled by the lଵ-norm of asset allocation vector and lஶ-norm of the bias of variance 
matrix estimator; 

4) highperformance in return: application on NYSE data. 
This log-optimal strategy is for general cases, we still have many problems under consideration for 

further exploration. For instance, How to adjust our strategy to special asset class such as bonds, 
Insurance products,derivatives, foreign currency and etc.?  How to select assets in our strategy? How 
to use information effectively? How to improve the accuracy of the estimations?  
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