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Abstract: The problem we study in this paper originated from a simple high school 
math competition (AMC 12) question on a geometric probability model: “A frog 
makes 3 jumps, each exactly 1 meter long. The directions of the jumps are chosen 
independently at random. What is the probability that the frog’s final position is no 
more than 1 meter from its starting position?” [1] From here, we changed the number 
of jumps the frog made, the length of each jump and the dimensions of the space. 
Using recursion, we obtained the recursive formula of the probability of a frog 
landing x  meters within its original spot after jumping m  1-meter jumps in an 
N -dimension space by integrating the probability distribution of the former step. We 
also suggested a concept “the intensity of the probability field” to describe the relative 
probability of each spot and gave an expression of the intensity of each spot of a 
2-dimensional space when the frog makes m  jumps. 
Keywords: probability, geometric probability model, function, N -dimensional space 
 
1. Introduction 
 The problem we study in this paper originated from a simple high school math 
competition (AMC 12) question on a geometric probability model: “A frog makes 3 
jumps, each exactly 1 meter long. The directions of the jumps are chosen 
independently at random. What is the probability that the frog’s final position is no 
more than 1 meter from its starting position?” From here, we changed the number of 
jumps the frog made, the length of each jump and the dimensions it was in of the 
space. We would like to answer the question: what is the probability of a frog landing 
x meters within its original spot after jumping m 1-meter jumps in an N-dimension 
space? 
2. Definitions  
 We denote the probability of a frog jumping m  1-meter jumps in an 
N -dimensional space and landing within x  meters from where it started as ( )NDmP x . 

(Here,  0,x m .) And we call it the probability function of m jumps in 

N -dimensional space. 
 Since the probability of a frog landing at any particular point is 0 , it’s rather 
difficult for us to compare whether the frog is more likely to land at this point or 
another. But regarding ( )NDmP x  as a function, we may calculate the probability of the 

frog landing on each circle, that is ( ) ( )NDm NDmdP x P x dx  . Thus, we can truthfully 
reflect the probability of the frog landing on each particular point using ( )NDmP x . 
So we call it the intensity of the probability field of the frog jumping m  1-meter 
jumps in an n-dimensional space of the points precisely x meters from the starting 
point. And we write it as 

0

( ) ( )( ) lim ( ),     [0, ]NDm NDm
NDm NDmx

P x x P xQ x P x x m
x 

     


. 

                                                 
1 The question was from the 18th question of the 2010th AMC 12B 
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3. The mathematic calculation of two jumps in a 2-dimensional space 
The first spot the frog landed must be on a circle with the starting spot as the 

center and a radius of 1 meter. 

 

Figure 1 
As shown in figure 1, we set the starting point as O  and the first landing spot 

A . Making a circle with A  as its center and 1meter as its radius, set its intersecting 
points with the circle with O  as its center and a radius of x  (the target circle) as 

P  and Q . The frog would be within the target circle if, and only if PAO    

0, 2arcsin
2
x    

. So the probability of the frog landing within the target circle 

is
2arcsin

2
x


 . Thus, 2 2

2arcsin
2( )D

x

P x


 (  0, 2x ). The plot of this function is as 

follows:  

 

Figure 2 
4. The computer simulation of two jumps in a 2-dimensional space 

The greatest advantage of computer simulation is that we can make simulations 
of large number. However, the precision of the statistics are not exactly high, however, 
the general tendency can be shown. 

Here, we used C++ and Excel to simulate. (The program is attached in the 
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appendix. Due to the capacity of the computer, this program is accurate to 0.001 and 
generates 10000 data each time). The plot is as follows:  

 
Figure 3 

We may see that figure 3 fits well with figure 2. 
5. The mathematic calculation of m jumps in a 2-dimensional space 

We start the discussion from three jumps. 
(i) When 30 1r  , as in figure 4, if the frog started atO  and landed at A  of 2c  

after the first two jumps, set 2OA r , here we have 3 2 31 1r r r    .  

 
Figure 4 

Here we see the probability of the frog landing at A is 2 2 2 2( )DQ r dr . So using the 

cosine law, we have: 

2 2
2 2 31 2 cosr r r   

2 2
2 3

2

1arccos
2
r r

r
  
  

Thus, we get the probability of landing with in 2c : 

2 2
2 3

2
2 2 2 2

1arccos
2( )D

r r
rQ r dr



 

  , 

and so we have: 

3

3

2 2
2 3

1
2

2 3 3 2 2 2 2 31

1arccos
2( ) ( ) , (0 1)

r

D Dr

r r
rP r Q r dr r






 

    

(ii) When 31 3r  , 

(1) if 3 21 2r r   , as shown in figure 5. Using similar methods, we may get 
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the probability of the frog landing within 3c : 

3

2 2
2 3

2
2

2 2 3 2 2 2 2 31

1arccos
2( ) ( ) , (1 3)D Dr

r r
rP r Q r dr r



 

    

 
Figure 5 

Using similar methods, we may get the probability of the frog landing within 3c : 

3

2 2
2 3

2
2

2 2 3 2 2 2 2 31

1arccos
2( ) ( ) , (1 3)D Dr

r r
rP r Q r dr r



 

    

(2) if 2 30 1r r   , as shown in figure 6, no matter with direction the third jump 

took, the frog must land within 3c : 

 

Figure 6 
Thus, the probability of the frog landing within 3c  equals the probability of the 

frog jumping to 2c : 

3

2 2
2 3

2
2

2 3 3 2 2 2 2 2 2 3 31

1arccos
2( ) ( ) ( 1), (1 3)D D Dr

r r
rP r Q r dr P r r



 

      

In summary, the probability of landing within 3r  from where the frog started 

after three jumps is: 
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In addition, the intensity of the probability field is: 

 

Similarly, we may get the probability of landing within r4 from where the frog 
started after 4 jumps: 

 

and the probability of landing within rm from where the frog started after m 
jumps: 

. 

In addition, the intensity of probability field when making m jumps is: 

. 

6. Higher dimensions 
 We start the discussion here with 2 jumps in 3-dimensional space.To start with, it 
doesn’t matter where the frog landed the first jump so we presume it landed at A1, so 
the frog must have landed on the sphere A1 as shown in figure 7: 
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Figure 7 

 As where on the sphere the frog may land is random,  

blue spherical cap

phere 
3 2

A B

A
D

OC

s

S
P

S
 . 

If the frog landed x meters from O, we may have: 

blue spherical cap 2 2 1 cos 2arccos
2A BOC
xRS h 

         
. 

Thus, the probability function here is: 

3 2

2 1 cos 2arccos 1 cos 2arccos
( ) 2

4
2

2DP x

x x



              

2
2arcco2cos

, (0 x 2)
2 4

s
2
x

x
 
 
      

Next, we’ll discuss the conditions when dimension is bigger than 3. 
Lemma 1: 

 
Proof: 

 

 

N15

Page - 290



Page 7 

 

Thus, 

1
0

0

2

0

cos sin |sin 1

sin

n
n

n

x xxdx nn
nxdx










 





. 

(i) When n is even, 

 

 
(ii) When n is odd, 
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Proof completed! 
Lemma 2: 

 
Proof: 
In lemma 1, put   , we have, 

 

Thus, if n is even,  
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   ; 

if n is odd,  

 

  . 

Proof completed! 
Lemma 3: 

The surface area of an N-dimensional sphere ( 2N  ) is  

 

Proof: 

When N=2, 2 ( ) 2S r r , lemma 3 holds true;  

when N=3, 
2

3 ( ) 4S r r , lemma 3 holds true as well; 

when N>3, as shown is figure 8: 

 

Figure 8 
Cutting the sphere with an (N-1)-dimensional space  , we may get an 

(N-1)-dimensional sphere (the part between AB in figure 8). And setting the 
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corresponding angle of that sphere as x, we may get the radius of that sphere: sinr x . 

And so the surface area of the little part (AC the figure 8) is 1( sin )NS r x rdx   . 

Thus, integrating these little parts, we get the surface area of a spherical cap: 

. 

Putting   , we have the surface area of an N-dimensional sphere: 

. 

Presuming , 

 
Using lemma 2, we have, 

 

. 
And so when N is even: 

; 

when N is odd: 
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Proof completed! 

Thus, if  

, 

we have 

, 

. 

And because the frog jumps one meter a time, 
1r  , 

 
Using lemmas 1 and 2, 
(i) When N is even, 
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(ii) When N is odd, similarly, we may have: 

. 

In summary, the probability function of 2 jumps in an N-dimensional space is  

 
Here, 

 arccos , 0,2
2
x x   . 

Using similar methods as that in 2-dimensional space, we may deduce the 
probability function of m jumps in an N-dimensional space. 

If the frog is y meters from where it started after m-1 jumps, the probability of 
that frog jumping precisely onto that sphere is: 

 

Thus, the probability of it landing within x meters from its starting point is: 

 
Knowing that , we have the probability 

function of m jumps in an N-dimensional space: 
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that is, 

. 
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Appendix 

Program1: Generating 10000 data at random 
#include <iostream> 
#include <math.h> 
#include <time.h> 
#include <stdlib.h> 
#include <stdio.h> 
const long int TIME=10000; 
const int STEP=2; 
using namespace std; 
double dis[TIME]; 
int count1=0,count2=0; 
Int main() 
{ 
 freopen("data.txt","w",stdout); 
 double angle,x,y;  
 long int i,j; 
 srand(time(0)); 

for (i=0;i<TIME;i++) 
 { 
    x=0;y=0; 
    for (j=0;j<STEP;j++) 
    { 
       angle=(rand()%6283)/pow(10,3); 
     x+=cos(angle); 
     y+=sin(angle); 
  } 
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  dis[i]=sqrt(x*x+y*y); 
  printf("%.3lf", dis[i]); 
  cout<<endl; 
 } 
 fclose(stdout); 
 return 0; 
} 
Program 2: on the probability of 2 jumps in 2-D spaces 
#include <iostream> 
#include <stdio.h> 
#include <map> 
using namespace std; 
const long int TIME=10000; 
map<float,int> a; 
int main() 
{ 
 freopen("data.txt","r",stdin); 
 freopen("result.txt","w",stdout); 
 int i,j; 
 float temp; 
 a.clear(); 
 for (i=0;i<TIME;i++) 
 { 
  cin>>temp; 
  for (j=0;j<=int(temp*1000);j++) 
   a[j]--; 
 } 
 for (i=0;i<2000;i++) 
 { 
  cout<<float(TIME+a[i])/float(TIME)<<endl; 
 } 
 fclose(stdin); 
 fclose(stdout); 
 return 0; 
} 
Program 3: on the probability of 2 jumps in 3-D spaces 
#include <iostream> 
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#include <math.h> 
#include <time.h> 
#include <stdlib.h> 
#include <stdio.h> 
const long int TIME=10000; 
const int STEP=2; 
using namespace std; 
double dis[TIME]; 
int count1=0,count2=0; 
int main() 
{ 
 freopen("data.txt","w",stdout); 
 double angle,x,y,z;  
 long int i,j; 
 srand(time(0)); 
 for (i=0;i<TIME;i++) 
 { 
  x=0;y=0;z=0; 
  for (j=0;j<STEP;j++) 
  { 
   angle=(rand()%6283)/pow(10,3); 
   //cout<<angle<<' ';  
   double a; 
   a=sin(angle); 
   x+=a; 
   angle=(rand()%6283)/pow(10,3); 
   //cout<<angle<<' ';  
   z+=sin(angle)*sqrt(1-a*a); 
   y+=cos(angle)*sqrt(1-a*a); 
  }  
  dis[i]=sqrt(x*x+y*y+z*z); 
  printf("%.3lf", dis[i]); 
  cout<<endl; 
 } 
 fclose(stdout); 
 return 0; 
} 
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