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Analysis and Comparison between the Algorithm Time 

Efficiency of Dijkstra and SPFA 

Abstract: 

Dijkstra and Bellman-ford are the two basic methods to solve Single-source shortest 

paths problem，and SPFA is the optimized version of Bellman-ford. However, since 

the algorithm time complexity is 0 (kn), SPFA’s time efficiency has some instabilities. 

This paper will compare the time efficiency between Dijkstra optimized with heap and 

three kinds of SPFA in different density graphs. Meanwhile, random data is created to 

test optimized Dijkstra and 3 types of SPFA. Finally, according to the calculation result 

of two methods’ time efficiency, some suggestion is given for their application under 

different situation. 
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摘要 

Dijkstra和 Bellman-ford算法是解决单源最短路问题的两

个基本算法，SPFA 算法是 Bellman-ford 的优化版本，但因为算

法时间复杂度为 O(kn)，所以该算法具有时间效率上的不稳定性。

本文就 Dijkstra 在堆优化后与 SPFA 算法在稠密程度不同的图

上的时间效率进行讨论对比，并通过制造随机数据对堆优化后

Dijkstra 算法与 3 种 SPFA 算法进行测试。最后得出关于两个算

法时间效率的结论，并针对不同层面的运用问题，提出了参考建

议。 

 

关键词：Dijkstra  SPFA  算法时间效率  最短路算法应用 
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Introduction: 

Invented by Edsger Wybe Dijkstra, an outstanding computer scientist in the 

Netherlands, Dijkstra algorithm was used to solve Single-source shortest paths problem 

with an algorithm time complexity of O(n2). If optimized by data structure heap, its 

algorithm time complexity can reach O(nlog2n+m). However, Dijkstra algorithm has a 

great defect that its correctness is false in negative weight graph (counter examples are 

easily accessible).  

Bellman-Ford algorithm was co-founded by Lester Ford and Richard Bellman, who is 

a famous American mathematician and the founder of dynamic programming. It is 

supposed to solve Single-source shortest paths problem with negative edge weight. 

Meanwhile, you can determine whether the FIG contains negative weight ring and its 

time complexity is O(nm).  

Because of the low efficiency of Bellman-Ford algorithm, Duan Fanding of China 

Southwest Jiaotong University proposed SPFA algorithm in 1994 (full name: Shortest 

Path Faster Algorithm). As relaxation operation tends to happen only in the shortest 

path leading node succeeded slack, you can avoid the redundant computation with a 

rank to record the slack off need. Its algorithm time complexity is O (kn). And k is a 

number determined by the FIG. 

The author is interested in the uncertainty of SPFA. Which algorithm is better, SPFA or 

Dijkstra? In other words, under what circumstance can Dijkstra be better? And under 

what circumstance can SPFA be better? What kind of choice should be made when it 

comes to application? These are the main issues to be discussed here. 

This paper contains five sector as followed: 

Sector One  Basic Theory: a brief introduction to Dijkstra and SPFA.  

Sector Two  Algorithm Optimization: introduce the methods to optimize Dijkstra 

with heap, optimize SPFA with sort edge set group and deque. Thus four procedures 

are set: Dijkstra，SPFA-1，SPFA-2，SPFA-3. 

Sector Three  Algorithm Efficiency Analysis: analysis of time complexity of 

Dijkstra and three kinds of SPFA in theory. 

Sector Four  Experimental Data and Analysis: list out the experimental data of this 

research, some conclusion reached and their reasons as well. 

Sector Five  Application of SPFA in Sparse Graph: the efficiency and one application 

of SPFA in some graph will be proposed here. 

The fourth and fifth sectors are the core part of this paper, aiming to solve problems 

proposed.  

In Appendix four procedures used in the experiment are listed, which are written in 
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C++ language. 

In this paper "n" represents the number of points of the FIG; m represents the number 

of edges of the FIG. Figures here refer to the undirected graph and edge weights are 

positive. "k" is a random number, determined by the extent of the dense graph. "o" is 

an asymptotic symbol used to measure time complexity. Refer to "Introduction to 

Algorithm" in reference bibliography for strict definition.  

 

 

 

 

 

 

 

Sector One - Basic Theory: a brief introduction to Dijkstra and SPFA 

1.1 Introduction to Dijkstra algorithm 

In a graph with n, single-source shortest paths is supposed to be solved. Suppose we 

want to figure out the length of shortest paths from each point to node 1. Let the length 

of shortest paths from node i to node 1 be dis[i]. If there is no node 1 to node i, then let 

dis[i]= +∞. Vertex are divided into two states: one is with the length of shortest paths 

uncertain; the other certain. Each time choose one node without certain length of 

shortest paths with min dis[i], and name ti node s. And then mark node s as node with 

certain length of shortest paths. And search all its adjacent points, and name them node 

t. If dis[s]+d[s][t]<dis[t], then dis[t]=dis[s]+d[s][t]. (d[s][t] means the distance from 

node s to node t). Repeat these procedures until all the points are marked points with 

certain length of shortest paths.  

1.2 Introduction to SPFA 

In a graph with n, single-source shortest paths is supposed to be solved. Suppose we 

want to figure out the length of shortest paths from each point to node 1. Let the length 

of shortest paths from node i to node 1 be dis[i]. If there is no node 1 to node i, then let 

dis[i]= +∞. Build a deque with node 1 included. Each time choose a "s" from the top 

the deque, and search all its adjacent points, and name them node t. If 

dis[s]+d[s][t]<dis[t], then dis[t]=dis[s]+d[s][t]. (d[s][t] means the distance from node s 

to node t). Then check whether "t" is included in the deque. If not, put "t" at the end of 

the deque ; If yes, then no operation is applied. Continue the former procedures till the 
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deque comes to empty.  

Sector Two - Algorithm Optimization 

2.1 Optimization of Dijkstra 

In the process of finding the min dis, there is a simple and direct way of going through 

the dis array to find the min value. This approach is very straightforward, but also very 

time consuming. Given that each time we are supposed to find the min dis of the nodes 

with uncertain length of shortest paths, we tend to establish a heap. Put all the nodes in 

the heap initially, and remove the top element of the heap each time. By doing these, 

we have three advantages: first, each time we can choose the min value of the element; 

second, elements in the heap are all nodes with uncertain shortest paths; third, the 

efficiency of heap is higher than linear form. The use of heap is a great optimization of 

Dijkstra. Its algorithm efficiency will be analyzed later in this paper.  

No redundant details about data structure heap will be listed here in this paper. Its time 

complexity of up down operation conclusion is directed used in this paper. Refer to 

"Introduction to Algorithms" for detailed introduction and certification. 

2.2 Optimization of SPFA 

2.2.1 Sorting of edge set group 

A storage of graphs by adjacency list is built according to the edge information read-in. 

In fact, it can be ensure that edge with minimum weight will be in front of group if we 

insert sorting during the read-in procedure. What can be efit from this optimization 

process? Suppose vi is ahead of vj in the adjacency list, and we keep 

dis[s]+d[s][vi]<dis[s]+d[s][vj] during the algorithm process, therefore if both two 

nodes are relaxation operated and enqueue, then vi is ahead of vj. If it turns out to be 

dis[vi]+d[vi][vj]<dis[vj], and vj is in the deque, then the relaxation operation is applied 

but it’s no necessary to put the node in the deque. However without sorting, vj will be 

ahead of vi if we put both two nodes in the deque when dis[s]+d[s][vi]<dis[s]+d[s][vj]. 

Then vj will dequeue but enqueue again after relaxation operated by vi，and search all 

its adjacent points and name them t, all the point t which have been relaxation operated 

shall meet following formula: dis[vj]+v[vj][t]<dis[t]. This formula is valid even vj 

enqueue again after relaxation operation, and t will be relaxation operated again which 

is the repetition of vj’s move and can be avoid. Theoretically, it can be concluded that 

sorting of edge set group can optimize SPFA algorithm (Attention! here we only 

consider the situation theoretically, however, the experimental data will surprise all of 

us, which we will discuss later). 
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2.2.2 Change deque to double-end deque 

Traditional deque structure is FIFO （First Input First Output）.Using double-end deque 

instead of FIFO in SPFA means that elements can enqueue from both side of deque but 

dequeue only from the top side. Additional judgment is applied when considering the 

enqueue of an element vi: if dis[vi]<dis[vj] (here vj is the top element of the deque), 

then make vi the top element, otherwise put vj in the end of the deque. Double-end 

deque can help to avoid redundant procedures. After the dequeue of vi, if 

dis[vi]+d[vi][vj]<dis[vj],then no need to make vj enqueue again after relaxation 

operating dis[vj]. However if vj enqueue according to traditional method, then it will be 

relaxation operated by vi after dequeue, and search all its adjacent points, which will 

result in that all the points which could have had been relaxation operated are still being 

relaxation operated. And this is the repetition of vj’s move when it dequeue first time.  

Since the original Dijkstra algorithm time complexity is O(n2), it is meaningless to 

compare SPFA with original Dijkstra. 

Dijkstra stands for Optimize Dijkstra with heap; 

SPFA-1 stands for the original SPFA; 

SPFA-2 stands for Optimize SPFA with double-end deque; 

SPFA-3 stands for optimize SPFA with double-end deque and sorting of edge set group. 

Following paragraphs are the efficiency analysis and data test of these four procedures. 

Sector Three - Algorithm efficiency analysis 

3.1 Dijkstra 

Time complexity became to be O(log2n) in choosing node after heap optimization. And 

it became to be O(log2n) in raising the heap after each relaxation operation (because 

weight decrease after relaxation operation, only up-regulation is applicable.) Choosing 

points shall be processed n times while raising the heap. In a word, algorithm time 

complexity become O(nlog2n+m) after optimization.  

3.2 SPFA-1 

O(kn) 

3.3 SPFA-2 

If the Insert sorting process is applied during read-in edge to build adjacency list, then 

sorting time complexity is O(mlog2m). Time complexity will remain O(kn) when 
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processing enqueue, dequeue and relaxation operation procedures.(k is underage). In a 

word, algorithm time complexity is O(kn+mlog2m). 

3.4 SPFA-3 

Compare to the original SPFA, Double-end deque is a method with slight optimization. 

The value of K is reduce, but algorithm time complexity will remain O(kn). 

Name k as ki in SPFA-i，then it is easy to come to following conclusion； k1>k2, 

k1>k3。 

Sector Four - Experiment data analysis 

Four programs (Dijkstra，SPFA-1，SPFA-2，SPFA-3) are wrote, and generated random 

data with n=1000 and different value of m. Each value of m contains 10 data. 

Followings are the experiment results which are the arithmetic mean value of these 10 

data’s running time. 

 Dijkstra SPFA-1 SPFA-2 SPFA-3 

m=50000 267ms 282ms 251ms 296ms 

m=100000 378ms 414ms 480ms 573ms 

m=150000 487ms 544ms 503ms 876ms 

m=200000 586ms 678ms 636ms 1179ms 

m=250000 679ms 781ms 744ms 1497ms 

m=300000 776ms 896ms 849ms 1817ms 

m=500000 1159ms 1338ms 1297ms 3105ms 

m=600000 1344ms 1577ms 1504ms 3761ms 

m=800000 1734ms 2006ms 1954ms 5134ms 

m=1000000 2090ms 2384ms 2551ms 6566ms 

 (Testing with CPU 1.99GHz computer) 

With above data, following conclusion are arrived； 

Conclusion 1: ki>13 in the graphs of m/n≥5 

Reason: For time efficiency, Dijkstra algorithm has a node coefficient of log2n while 

SPFA has a node coefficient k. During the experiment, it can be easily noticed that 
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k>log210000= 13.2877 under the situation of m/n≥5. 

Conclusion 1 can naturally lead to following deduction: 

Deduction 1: SPFA is no better than Dijkstra when dv=d/n≥10. 

Reason: m/n≥5 means d≥2*m≥10*n=100000 in the whole graph, therefore dv=d/n

≥10 for each node. 

 

Conclusion 2: Edge changes’ affection is bigger in SPFA than in Dijkstra, and it is 

biggest for SPFA-3 with lowest efficiency,  

Reason: It can be seen from conclusion 1 that when m/n≥5, k is bigger. And graph’s 

density indirectly affects algorithm’s efficiency through k, which means SPFA can be 

easier affected by edge than Dijkstra. Why SPFA-3 has lowest efficiency: Sorting of 

edge set group has a certain effect on algorithm optimization. However it requires 

preprocess (edge set group sorting), and sorting algorithm has a time complexity of 

O(mlog2m). Compare to O(m), SPFA-3 can be strongly affected with the increasing of 

m. 

 

Conclusion 3: There is an uncertainty in double-end deque. 

Reason: This conclusion can be seen by comparing two group data of m=100000 and 

m=1000000 with SPFA-1. Actually, during testing, it can be found that the range and 

variance of ten data from double-end deque used to calculate arithmetic mean value are 

rather big .Enqueue judgment testing of double-end deque consumes time. Besides, 

different graphs require different times of optimization and are impacted by distribution 

of edge weight. However, time-consuming of testing is rather small compare to sorting, 

therefore, even though it doesn’t produce effects to the optimization, it doesn’t’ produce 

much effects to the program either. 

Sector Five - Application of SPFA in Sparse Graph 

The fact is that SPFA has higher time efficiency in Sparse Graph than in Dijkstra. 

Two factors such as m/n，dv=d/n are brought to draw graph’s density. And when dv=d/n

≥10 SPFA’s efficiency is no higher than Dijkstra’s. The author believes that dv=d/n≥

10 is not qualified to be called as sparse. Since there is still 10 relevant points left for 

each node, multiple enqueue has a rather high possibility.  

Based on above discussion we define sparse as dv=d/n≤5. 

The author considers that urban street map is a typical sparse graph, what’s its m/n? 

In the urban street map, each intersection is a node, and each road is an edge, edge 

weight is the quantity（time or distance）we focus on. Than all the intersection can be 
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divided into following types: three fork, four fork and five fork (most of them shall be 

three of four fork).Suppose that number of three fork, four fork and five fork is n1, n2 

and n3, In addition suppose that the map is big enough which means there is road to 

suburb from the nearest fork. Even though these roads maybe just a few, but we still 

count them in, Therefore we have below calculation: 

𝑚 =
3𝑛1 + 4𝑛2 + 5𝑛3

2
 

𝑚

𝑛
=

3𝑛1 + 4𝑛2 + 5𝑛3

2𝑛1 + 2𝑛2 + 2𝑛3
=

3

2
+

1
2 𝑛2 + 𝑛3

𝑛1 + 𝑛2 + 𝑛3
 

Because n1, n2, n3 are nature numbers (including zero), so 

1

2
𝑛2 + 𝑛3 ≤ 𝑛1 + 𝑛2 + 𝑛3 

𝑚

𝑛
=  

3

2
+

1
2 𝑛2 + 𝑛3

𝑛1 + 𝑛2 + 𝑛3
 ≤ 2.5 

The experimental data shows that, when n=10000, m=50000, SPFA-2 has the highest 

speed, and all the four algorithms consumes same running time. But what the results 

will be with a much sparser graph? What if m/n=2.5? 

To answer above questions, we add another group of data with n=10000，m=25000, 

here is the calculation result: 

 Dijkstra SPFA-1 SPFA-2 SPFA-3 

m=25000 207ms 203ms 172ms 198ms 

(same as above data) 

Based on all the results, it can be concluded that, in a sparse such as urban street map, 

SPFA has a large advantage in running time, even for SPFA-3, which cost time in edge 

set group sorting(because there is less edge in sparse graph, so less time is used in 

preprocessing). It can also be concluded that SPFA will perform much better in a large 

scale graph such as country traffic map. 

Taking all the data into account, the author define sparse graph as a graph with m/n≤

2.5. It has been certified that in the sparse graph a SPFA will be faster under the densest 

situation. In addition, m/n≤2.5 equals to dv=d/n≤5. All these information lead us to 

the definition of sparse graph. 

With a clear description of sparse, we have following suggestion: 

In the application aspect: 
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It would be better use Dijkstra algorithm to solve sing-source shortest paths problem in 

density graph.  

SPFA-1，SPFA-2，SPFA-3 play almost same role in solving single-source shortest-

paths problem in sparse graph. However SPFA-2 would be a better choice when the 

graph has a large scale of edges which result from a large scale of nodes. In addition, 

SPFA-1 is much reliable when high efficiency is required. 

Conclusion:  

According to all the analysis of the comparisons between Dijkstra and SPFA, it can be 

seen that different algorithm is suitable for different graph, and the reliability of Dijkstra 

and the efficiency of SPAF are the factors should be taken into account. Between the 

two most useful methods (Dijkstra and SPFA) in solving sing-source path problem, 

people tend to select SPFA in computer information competition considering the 

complexity of writing program. The author was quite curiosity about the k in SPFA with 

a efficiency of O(kn). In this paper, the author discussing the problem and testing the 

data, which lead him to a satisfy result. In program writing, Dijkstra will be much 

complex and much difficult in recording data during optimizing with heap (See four 

programs in the attachment), but much reliable than SPFA. However, the author would 

like to know if there is a better mathematics formula to describe the density of a graph. 

In this paper, it is simply described by m/n and dv=d/n, which also helpful in arriving 

the research result. Due to the limited of data testing and data analyzing, this paper 

hasn’t completely discuss the issue. The author believes that in the college there will be 

more and more opportunities to finish this subject. Thanks to this paper, the author 

learns the importance of the attitude toward the experiments and how to design a control 

experiment, as well as how to deeply analysis a familiar algorithm and how to write a 

paper. All of those experiences will be a treasury for the author on his way to a success 

of science!  

Reference: 

Introduction to Algorithms    wrote by Cormen,T.H. 

Attachment: 

Dijkstra + optimized with heap 

#include<fstream> 

#include<vector> 
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using namespace std; 

 

const int maxn = 100001; 

vector<int> vec[maxn],graph[maxn]; 

int heap[maxn] , dis[maxn], d_to_h[maxn] ,h_to_d[maxn]; 

int len; 

 

void swap(int& a, int& b){ 

       int t; 

       t=a; a=b; b=t; 

     } 

 

void heap_up(int x){ 

       if (x == 1) return; 

       int k; 

       do{  k = (x >> 1); 

            if (heap[k] > heap[x]){ 

                       swap(heap[k],heap[x]); 

                       swap(d_to_h[h_to_d[k]],d_to_h[h_to_d[x]]); 

                       swap(h_to_d[k],h_to_d[x]); 

                     } 

            else return; 

            x = k;      

       }while (x > 1); 

       return; 

     } 

 

void heap_down(int x){ 

       if ((x << 1)>len) return; 

       int k; 

S04

Page - 314



 

       do{  k = (x << 1); 

            if (k<len && heap[k]>heap[k+1]) ++k; 

            if (heap[k]<heap[x]){   

swap(heap[k],heap[x]); 

                    swap(d_to_h[h_to_d[k]],d_to_h[h_to_d[x]]); 

                     swap(h_to_d[k],h_to_d[x]); 

                  } 

            else return; 

            x = k; 

       } while ((x << 1)<=len); 

       return; 

     } 

 

int n,m,dx,dy,val; 

void init(){ 

       ifstream infile;  infile.open("data.in"); 

       infile >> n >> m ; 

       for (int i=1; i<=m; ++i){ 

           infile >> dx >> dy >> val; 

           graph[dx].push_back(dy); 

           vec[dx].push_back(val); 

           graph[dy].push_back(dx); 

           vec[dy].push_back(val); 

         } 

       infile.close(); 

     } 

 

const int inf=100000000; 

int s,tmp; 

bool flag[maxn]; 
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int re=1, rs=n; 

 

void dijistra(){ 

       len = 0; 

       for (int i=1; i<=n; ++i){ 

         ++len; 

         if (i == re) heap[i]=0; 

           else heap[i]=inf; 

         h_to_d[i] = i; 

         d_to_h[i] = i; 

         heap_up(len); 

         flag[i] = true; 

       } 

       for (int i=1; i<=n; ++i){ 

         s = h_to_d[1]; 

         dis[s] = heap[1]; 

         flag[s] = false; 

          

         heap[1] = heap[len]; 

         d_to_h[h_to_d[len]] = 1; 

         h_to_d[1] = h_to_d[len];     

         --len; 

         heap_down(1); 

          

         for (int j=0; j<graph[s].size(); ++j){ 

           tmp = graph[s][j]; val = vec[s][j]; 

           if (flag[tmp]) 

             if ((dis[s]+val)<heap[d_to_h[tmp]]){  

heap[d_to_h[tmp]]= dis[s]+val; 

                  heap_up(d_to_h[tmp]); 
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                  } 

         }  

       } 

     } 

 

void outit(){ 

       ofstream outfile; outfile.open("data.out"); 

       outfile << dis[rs]; 

       outfile.close(); 

     } 

int main(){ 

  init(); 

  dijistra(); 

  outit(); 

  return 0; 

} 

SPFA-1 

#include<vector> 

#include<queue> 

#include<cstring> 

#include<string> 

#include<fstream> 

using namespace std; 

 

const int maxn=100001, inf=1000000000; 

vector<int>  map[maxn],val[maxn]; 

int dis[maxn]; 

bool flag[maxn]; 

queue<int> q; 

int n,m,x,y,v; 
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void init(){ 

     ifstream infile;  infile.open("data.in"); 

     infile >> n >> m ; 

     for (int i=1; i<=m; ++i){ 

            infile >> x >> y >> v; 

            map[x].push_back(y); 

            val[x].push_back(v); 

            map[y].push_back(x); 

            val[y].push_back(v); 

         } 

     infile.close(); 

     return;  

     } 

 

int re=1,rs=n; 

 

void spfa(){ 

     for (int i=1; i<=n; ++i){ 

           dis[i] = inf; flag[i] = false;      

         } 

     int s,t,tmp; 

     s=re; 

     dis[s] = 0; flag[s] = true; 

     q.push(s); 

     while (!q.empty()){ 

             s=q.front(); 

             q.pop(); 

             flag[s]=false; 

             for (int i=0; i<map[s].size(); ++i){ 
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                 t = map[s][i] ; tmp= dis[s]+ val[s][i]; 

                 if (tmp < dis[t]){ 

                           dis[t] = tmp; 

                           if (! flag[t]){ 

                                q.push(t); 

                                flag[t]= true; 

                              } 

                         } 

               } 

           } 

     return;     

     } 

 

void outit(){ 

     ofstream outfile; outfile.open("data.out"); 

     outfile << dis[rs]; 

     outfile.close(); 

     return; 

     }    

       

int main(){ 

  init(); 

  spfa(); 

  outit(); 

  return 0; 

} 

SPFA-2 

#include<vector> 

#include<deque> 

#include<cstring> 
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#include<string> 

#include<fstream> 

using namespace std; 

 

const int maxn=10000, inf=1000000000; 

vector<int>  map[maxn],val[maxn]; 

int dis[maxn]; 

bool flag[maxn]; 

deque<int> q; 

int n,m,x,y,v; 

 

void init(){ 

     ifstream infile;  infile.open("data.in"); 

     infile >> n >> m ; 

     for (int i=1; i<=m; ++i){ 

            infile >> x >> y >> v; 

            map[x].push_back(y); 

            val[x].push_back(v); 

            map[y].push_back(x); 

            val[y].push_back(v); 

         } 

     infile.close(); 

     return;  

     } 

 

int re=1,rs=n; 

int s,t,tmp; 

      

void inq(int x){ 

       flag[x] = true; 
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       if (q.empty()){  q.push_back(x); 

                        return;                       

                      } 

       tmp = q.front(); 

       if (dis[x]<dis[tmp])  

         q.push_front(x); 

       else 

         q.push_back(x); 

     } 

      

void spfa(){ 

     for (int i=1; i<=n; ++i){ 

           dis[i] = inf; flag[i] = false;      

         } 

     s=re; 

     dis[s] = 0; flag[s] = true; 

     q.push_back(s); 

     while (!q.empty()){ 

             s=q.front(); 

             q.pop_front(); 

             flag[s]=false; 

             for (int i=0; i<map[s].size(); ++i){ 

                 t = map[s][i] ; tmp= dis[s]+ val[s][i]; 

                 if (tmp < dis[t]){ 

                           dis[t] = tmp; 

                           if (! flag[t]) inq(t);  

                         } 

               } 

           } 

     return;     
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     } 

 

void outit(){ 

     ofstream outfile; outfile.open("data.out"); 

     outfile << dis[rs]; 

     outfile.close(); 

     return; 

     }    

       

int main(){ 

  init(); 

  spfa(); 

  outit(); 

  return 0; 

} 

SPFA-3 

#include<fstream> 

#include<map> 

#include<deque> 

using namespace std; 

 

const int maxn=100001; 

int n,m,dx,dy,val; 

int dis[maxn]; 

multimap<int,int> graph[maxn]; 

bool flag[maxn]; 

 

void init(){ 

         ifstream infile; infile.open("data.in"); 

         infile >> n >> m; 
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         for (int i=1; i<=m; ++i){ 

                 infile >> dx >> dy >>val; 

                 graph[dx].insert(make_pair(val,dy)); 

                 graph[dy].insert(make_pair(val,dx)); 

             } 

         infile.close(); 

         return; 

     } 

 

const int inf=100000000; 

deque<int> q; 

int s,t,tmp; 

int re=1, rs=n; 

 

void inq(int x){ 

       flag[x] = true; 

       if (q.empty()){  q.push_back(x); 

                        return;                       

                      } 

       tmp = q.front(); 

       if (dis[x]<dis[tmp])  

         q.push_front(x); 

       else 

         q.push_back(x); 

     } 

 

void spfa(){ 

         for (int i=1; i<=n; ++i) {  dis[i] = inf; 

                                     flag[i] = false; 

                                   } 
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         s=re; dis[s]=0; flag[s] = true; 

         q.push_back(s); 

         while (!q.empty()){ 

                   s = q.front(); 

                   q.pop_front(); 

                   flag[s] = false; 

                   for (map<int,int>::iterator iter= graph[s].begin(); 

iter != graph[s].end(); ++iter){ 

                       t= iter->second;  val= iter->first; 

                       if ((dis[s]+val)<dis[t]){  dis[t] = dis[s]+val; 

                                                  if (!flag[t]) inq(t); 

                                                } 

                     } 

               }      

         return; 

     } 

      

void outit(){ 

         ofstream outfile; outfile.open("data.out"); 

         outfile << dis[rs]; 

         outfile.close(); 

         return; 

     } 

int main(){ 

  init(); 

  spfa(); 

  outit(); 

  return 0; 

} 
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