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Research on some particular simple groups

with elementary methods

【ABSTRACT】

It is well known that group is a set with an algebra operation, which is often denoted byG . A
simple group is the group which has only the 2 trivial normal subgroups. The importance of the
simple groups may analogue to the prime numbers in the number theory. The classification of the
finite simple groups was the central problem of 20th century’s’ algebra. In this research report, we

use Sylow theorem, Burnside theorem, group action and some other elementally group theory

methods to obtain some criteria of simple group . By using these criteria we determine the
possible simple groups whose order less than 700. Generalizes the results in the reference [1]，[2]，
[3]，[4].We conclude that
Theorem A groupG of order less or equal than700 could not be simple except for

 60,168,360,504,660G and all primes .

【KEYWORDS】

finite group subgroup normal subgroup simple group Sylow theorem group action
normalizer centralizer transitive permutation presentation CN / theorem
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Group is one of the most important and fundamental concepts in the modern algebra. It was
widely used in many fields in mathematics and scientific technology nowadays [5]. The study of
the group theory dates back to the end of 18th century. Galois (1811~1832), the mathematician,
created an algebraic system of “group” and “field” during his research on “whether the quintic
equation can be solved by using radical or not”. Finite groups are studied and used extensively.
Among the theories of finite group, the Classification of finite simple groups’ theorem is the key
problem. It had been over 150 years for hundreds of mathematicians to work on the study to this
theorem and it was not proved to be correct until 1981. There are 18 infinite families and 26
sporadic simple groups which are not in the infinite families. Many complex methods was used in
proving the Classification of finite simple groups theorem such as methods in the abstract group
theory, the representation theory, geometry, combinatory and the graph theory. In this paper, we
used Sylow theorem, Burnside theorem and other elementary theorems like group action to
discuss finite simple groups of order less than or equal to 700. All possible simple groups are
found out and specific examples are given.

§1 Definitions and lemmas

Definition 2.1
Define  a binary operation in a nonempty set. If it satisfies the condition：
(1)     Gcbacbacba  ,,oooo ；

(2) GeGa  , ，such that aaeea   ；

(3) GbGa  , ，such that eabba   .
Then we call  ,G a group，orG for short. Hereinto, we define e the unit element or the identity.
Element b, satisfies eabba   , is called the inverse of a，denoted 1a . We call the number
ofG ’s elements order, denoted G . When G satisfies G , we call G finite group, otherwise
we call G infinite group. In this paper, all groups are finite groups unless otherwise specified.
Operational symbol “  ” is left out when no confusion can arise.

Definition 2.2
If the multiplication of G satisfies communicative law that

Gbabaab  ,,
Then we defineG by communicative group or Abelian group.

Definition 2.3
For Ga ， Nn  , we define

n

n

a a a a  ，
0a e ，   1n na a

 

Follow the definition, for , Zm n , we have
m n m na a a 

If G is a communicative group, we also have  n n nab a b .

Definition 2.4
Let H be a nonempty subset ofG . If H is a group on the same operation of G , then we call
H the subgroup of G , denoted GH  . It’s obviously that any group G has two subgroups,
 e and G , what we call trivial subgroup. If subgroup H G , then we call H the proper

subgroup ofG , denoted byH G .

Definition 2.5
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LetG be a group, ,H K be the subsets ofG , define the product of ,H K to

 | ,HK hk h H k K  

If  K a , then denoted  H a Ha for short, so we also have a H aH .
We also define that

 1 1 |H h h H   ，  1 2 +| , Nn
n iH h h h h H n  

Definition 2.6
LetG be a group, S G , we define the intersection of all the subgroups ofG that containing S to
be the subgroup generated by S , denoted by S , that is

H G
S H

S H



 

It’s not hard to prove that,

 1
1 2, | , 1, 2,n iS e a a a a S S n     .

Similarly, let 1 2, , , rS S S G , then we define the intersection of all the subgroups of G
containing 1 2, , , rS S S to be the subgroup generated by 1 2, , , rS S S , denoted

by 1 2, , , rS S S , that is

1 2

1 2

, , ,

, , ,
r

r
H G

S S S H

S S S H







 

It’s not hard to prove that,

 11 2 1 2
1

, , , , | , 1, 2,
r

r n i j j
j

S S S e a a a a S S n



     
  

    .

Definition 2.7
LetG be a group, element a G , and then we define the subgroup H a , generated only by

a to be a cyclic group. For element a in G , we define a to be the order of a , denoted

by  o a , that is  o a a . From this definition we know that  o a is the minimum integer

n that satisfies na e . If integer n does not exist, then we call the order of a is infinite,
denoted  o a   .

Definition 2.8
Let G be a group, subgroup GH  , element a G , we call those subsets shaped as
aH (accordingly, Ha ) to be one of the left cosets of H (accordingly, right cosets). Now，we
can define a relation ~ in group G making any ,a b G ,

a ~b exists an h H ，such that a bh
So it’s easily to know ~ is a equivalence equation on groupG , the equivalence class where a is
in is a  aH , so we have

a G
G aH


 

So groupG can be divided into the union of several left cosets, we defined the number of all the
different left cosets of H in G to be the index of H in G ,denoted :G H . Consider

that ,aH H a G   , we have
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Lemma 2.9 (Lagrange theorem)[6]
LetG be a group, GH  then :G G H H

Deduction 2.10
Let G be a group, then the order of any element is divisible by the order of G , that is
  | |o a G , so we have | |Ga e .

Deduction 2.11
Let G be a group, GKH , , then we have

KH
KH

HK




Definition 2.12
Let G be a group, GH  , if

,gH H g g G   , or GgHgHg  ,1

then we call that H is a normal subgroup or invariant subgroup of G , denoted by GH  .
According to the definition of normal subgroup, any group G has two trivial normal subgroups:
 e andG . We define the finite group which only has these two trivial normal subgroups to be a
simple group.

Definition 2.13
LetG to be a group, GH  , we define

   1|GN H g G gHg H   and    | ,GC H g G gh hg h H    

to be the normalizer and the centralizer ofH inG respectively. By the definition, we have
 GH G N H G  ，and    G GC H N H

Lemma 2.14 [6]
LetG to be a group, GH  , and : 2G H  ,then GH  .

Definition 2.15
LetG to be a group, GKH , , a G , we define the subset shaped as HaK of ,H K to be a
double cosets onG .

Lemma 2.16 [2]
Define all double cosets of ,H K onG to be a partition, that is

,
a G

G HaK HaK HbK


  

Lemma 2.17[2]
Let one of the double cosets of ,H K onG to beHaK , so HaK can be expressed as the union of
several right cosets ofH (or the left cosets ofK ). The number of containing right cosets ofH is

1:K K aHa
The number of containing left cosets ofK is

1 1:aHa aHa K  

Lemma 2.18 [6]
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LetG be a group, GH  , then all left cosets ofH make up a group on the multiplication
    aH bH ab H

We define it to be the quotient group ofG on H , denoted by /G H , hereinto the unit element
isH , the inverse ofaH is 1a H .

Definition 2.19
Let G , 'G be groups. We define mapping : 'G G  to be a homomorphism
fromG to 'G where maintains operation. That is for any ,a b G , we have

( ) ( ) ( )ab a b  
If  is a injection (surjection), we call that  is a monomorphism (epimorphism). Under the
condition of the morphism is injective and subjective, group G is isomorphic to 'G , denoted
by 'G G . Call that is an automorphism if 'G G . All automorphisms ofG form a group,

we define the group to be the group of automorphisms ofG , denoted  Aut G .

Definition 2.20
LetG , 'G be groups, mapping : 'G G  be the homomorphism. Define

 | ( ) 'Ker g G g e   
to be the kernel of the homomorphism. We also define

 Im ( ) |g g G  
to be the image of the homomorphism. It is easy to see thatKer G  , Im 'G  .

Lemma 2.21 (The fundamental homomorphism theorem)[6]
LetG , 'G be groups, mapping : 'G G  be the homomorphism, then we have

/ ImG Ker 

Lemma 2.22 (N/C theorem)[2]
LetG be a group, GH  ，then

   /G GN H C H is isomorphic to a subgroup of  Aut H

Definition 2.23
LetG be a group, for anya G , define mapping

( ) : ,L a G G g ag 
Then we are easily to know that ( )L a is a bijection onG , and   ( ) |L G L a a G  forms a
group.

Lemma 2.24 [6]
Let M be a set, then all the bijections onM forms a group on the multiplication (compound) of
the mapping. We define it to be the symmetric group of M , denoted by  S M . Any subgroup

of  S M is defined to be the transformation group onM .

Lemma 2.25[6]
Let M be a finite set. We define the element in  S M to be permutation, with the properties
below:

Any permutation inM can be expressed as the product of disjoint cycles. The decomposition is
unique with loss of the order.

 Any permutation inM can be expressed as the product of several transpositions. The odevity of
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the different decomposition of a certain permutation is assured. We define the permutation which
has odd transpositions to be odd permutation, which has even transpositions to be even
permutation.

Lemma 2.26 (Cayley theorem)[6]
Any groupG is isomorphic to a transformation group on a certain set, practically:

   G L G S G 

Lemma 2.27[6]
Infinite cyclic group must be isomorphic to integer additive group Z . Finite cyclic group must be
isomorphic to a certain quotient group /Z nZ of integer additive group (denoted nZ for short).
Lemma 2.28[6]
The subgroups of a cyclic group G a are still cyclic group. All the subgroups of a certain

infinite cyclic group Z are , Nsa s  . All the subgroups of a certain finite cyclic group nZ of

ordern is , N, |sa s s n  .

Lemma 2.29[2]
The automorphism group of cyclic groupG is a transformation group. Infinite cyclic group Z only
has two automorphism,   2Aut ZZ  . Finite cyclic Zn group of order n has ( )n automorphism

( is Euler’s function),    Aut UnZ n .

Definition 2.30
LetG be a group, A be a non-empty set. If there exists a mapping:

:
( , )
G A A
g a ga

  


Satisfies:

    GggAaaggagg
Aaaea




212121 ,,,)2(
,)1(

Then we call it groupG actions on set A .The kernel of action  | ,Ker g G ga a a A      .

If  Ker e  , then we call groupG acts faithfully on set A .

Lemma 2.31[2]
Let group G actions on set A , then set A has a bijection between the set formed by all
homomorphisms of group G on  S A .

Definition 2.32
Let groupG actions on set A . For any a A , we define.

 |aG g G ga a   and  |aO ga g G 
to be the stabilizer and the orbit of a inG respectively. According to the definition, it’s easily to
know that aG G . If there is only one orbit when group G actions on set A , then for
any ,a b A , there exists g G , such that a gb . We call this action transitive.

Lemma 2.33[7]
Let groupG actions on set A . Define a relation  in set A , satisfying: for any ,a b A ,

a b  there exists a g G ,such that a gb
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So it’s easily to know that  is an equivalence relation on set A . The equivalence classes
where a is in is a  aO , so

a
a A

A O


 

That means set A can be divided into the union of several orbits, and the action of G on aO is

transitive, :a aO G G so

:a aA O G G  
Lemma 2.34[7]
Let G be a group,H G ,  |A aH a G  . Define a mapping:

   
:
,
G A A
g aH ga H

  


Then we have

(1) This is a group action.
(2) This action is transitive.
(3) The kernel of this action is 1

g G
Ker gHg 


  ；

(4) 1

g G
Ker gHg 


  is the largest normal subgroup ofG inH .

【Remark】According to this lemma and the simplicity of  5nA n  , we know that any simple

groupG must not contain subgroups of index 4 .

Lemma 2.35[7]
LetG be a group. Define a mapping:

  1

:
,
G G G
g a gag




 


Then

(1) This is a group action.
(2） The kernel of this action is    | ,Ker g G ga ag a G Z G       ( the center of

groupG )
(3) For anya G , we have

     1| |a GG g G gag a g G ga ag C a      

 |aO ga g G  is defined to be the conjugate class wherea is in.
Then we have the class equation:

   
 

:a G
a Z G

G O Z G G C a


    .

Lemma 2.36[7]
LetG be a group,  |A H H G  . Define a mapping:

  1

:
,
G A A
g H gHg




 


Then

(1) This is a group action. (by conjugation)
(2)For anyH A , we have

   1|H GG g G gHg H N H    , and  :H GO G N H .
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Lemma 2.37[7] (Cauchy theorem)
SupposeG a finite group, p is a prime satisfied | | |p G , thenG must have subgroups of order p .

Lemma 2.38[2] (Sylow theorem the first)
SupposeG a finite group, p is a prime. If | | , ( , ) 1nG p m p m  , then groupG must have a

subgroupP of order np , called Sylow p  subgroup ofG .

Lemma 2.39[7] (Sylow theorem the second)
Any two of the Sylow p  subgroup 1 2,P P are conjugate in G , that is g G  , such

that 1
1 2= gP P g  .

Lemma 2.40[2] (Sylow theorem the third)
Suppose the number of Sylow p  subgroup ofG is pn , then |pn m and  1 modpn p .

Lemma 2.41[2]
If the number of Sylow p  subgroups of group G is 21 (mod )pn p , then there must exist

two Sylow p  subgroups 1 2,P P , such that 1 2: ( 1, 2)iP P P p i  .

Lemma 2.42[2]
Let G be a finite group. 1P is a p  subgroup but not a Sylow p  subgroup of G . P is the
Sylow p  subgroup of G . Then there must exist g G , such that

1
1P gPg 

Lemma 2.43[2]
Let G be a finite group, P is a p  subgroup of G but not a Sylow p  subgroup.

then  GP N P .

Definition 2.44
LetG be a group. P is a Sylow p  subgroup ofG . If there exists N G satisfied

 N P e
NP G








Then we define N to be the normal p  complement ofG .

Lemma 2.45[2]
LetG be a finite group, P is the Sylow p  subgroup. If    G GC P N P , then G have a

normal p  complementN .

Definition 2.46
LetG be a group, ,x y G  , define  1 1,x y x y xy  to be the commutator of ,x y .

Definition 2.47
LetG be a group, define

 ' , | ,G x y x y G 

to be the commentator subgroup ofG , then 'G G . So we can develop a definition: (1) 'G G ，
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 ( ) ( 1) 'n nG G  , and we have
(2) ( )' nG G G G   

Definition 2.48
LetG be a group. If there exists n N , such that  ( )nG e , then we defineG to be a solvable
group.

Lemma 2.49 (Burnside theorem)[2]
LetG be a finite group, satisfied a bG p q and ,p q are prime, ,a b N , thenG is a solvable
group.

Lemma 2.50 [2]
Let G be a finite group, satisfied  , , 1G pm p m  and p is a prime, P is

the Sylow p  group of G . Then for any ( ) \ ( )G Gx N P C P , x can normalize up

to
1

1 pnk
p


  Sylow p  subgroups..

§2 the Induction of the non simple groups

In this part, some given conclusions are used to exclude the majority of non-simple groups.
We used VB to find out the order less or equal than 700 of groups that satisfy those theorems.

Theorem 1 [2] If the order of G satisfies  2aG p a N and a   , p is odd prime.
ThenG must not be a simple group.

The numbers satisfy theorems 1 within 700 are:

4，8，9，16，25，27，32，49，64，81，121，125，128，169，243，256，289，343，361，
512，529，625

Group of orders above can’t be a simple group.

Theorem 2 [2] If the order of G can be expressed in G pq , hereinto ,p q are different prime
numbers. ThenG must not be a simple group.

The numbers satisfy theorem 2 within 700 are:

6，10，14，15，21，22，26，33，34，35，38，39，46，51，55，57，58，62，65，69，
74，77，82，85，86，87，91，93，94，95，106，111，115，118，119，122，123，129，
133，134，141，142，143，145，146，，155，158，159，161，166，177，178，183，185，
187，194，201，202，203，205，206，209，213，214，215，217，218，219，221，226，
235，237，247，249，253，259，262，265，267，274，278，287，291，295，298，299，
301，302，303，305，307，309，314，319，321，323，326，327，329，334，335，339，
341，346，355，358，362，365，371，377，381，382，386，391，393，394，395，398，
403，407，411，413，415，417，422，427，437，445，446，447，451，453，454，458，
466，469，471，473，478，481，482，485，489，493，497，501，502，505，511，512，
515，517，519，526，527，533，535，537，538，542，543，545，551，553，554，559，
565，566，573，579，581，583，586，589，591，597，611，614，622，623，626，629，
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633，634，635，649，655，662，667，671，674，679，681，685，687，689，694，695，
697，698，699.

Group of orders above can’t be a simple group.

Theorem 3 Let the order of G be aG p q , ,p q are different prime numbers,
, 2a N a  , so G can’t be a simple group.

The numbers satisfy theorem 3 within 700 are:

12，18，20，24，28，40，44，45，48，50，52，54，56，63，68，75，76，80，88，92，
96，98，99，104，112，116，117，124，135，136，147，148，152，153，160，162，164，
171，172，175，176，184，188，189，192，207，208，212，224，232，236，242，244，
245，248，250，261，268，272，275，279，284，292，296，297，304，316，320，325，
328，332，333，338，344，351，352，356，363，368，369，375，376，384，387，388，
404，405，412，416，423，424，425，428，436，448，452，459，464，472，475，477，
486，488，496，507，508，513，524，531，536，539，544，548，549，556，567，568，
575，578，584，592，596，603，604，605，608，621，628，632，637，639，640，652，
656，657，664，668，686，688，692

Group of orders above can’t be a simple group.
Theorem 4 Suppose that the order ofG can be expressed as 2 2G p q , ,p q are different prime
numbers, thenG can’t be simple group.

The numbers satisfy theorem 4 within 700 are:

36，100，196，225，441，484，676

Group of orders above can’t be a simple group.

Theorem 5 Suppose the order ofG can be expressed as G pqr , satisfying p q r  to be

different primes, thenG must not be a simple group.

The numbers satisfy theorem 5 within 700 are:

30，42，66，70，78，102，105，110，114，130，138，154，165，170，174，182，186，
190，195，222，230，231，238，246，255，258，266，273，282，285，286，290，310，
318，322，345，354，357，370，374，385，399，402，406，410，418，426，429，430，
434，435，438，442，455，465，470，474，483，494，498，506，530，534，555，561，
574，582，590，595，598，602，606，609，610，615，618，627，638，642，645，646，
651，654，658，663，665，670，678，682

Group of orders above can’t be a simple group.

Theorem 6 Suppose the order ofG can be expressed as 2G n in the condition of n is odd,
thenG must not be a simple group.

The numbers satisfy theorem 6 within 700 are:

90，126，150，210，234，270，294，306，330，342，350，378，390，414，450，462，
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490，510，518，522，546，550，558，562，570，594，630，650，666，690

Group of orders above can’t be a simple group.

Theorem 7 By |G| denote the order of G, hereinto p is a prime, and |p G . IfG has the only

one Sylow p  subgroup, thenG must not be simple group.

The numbers satisfy theorem 7 within 700 are:

84( 7 1n  )、140( 7 1n  )、156( 13 1n  )、200( 5 1n  )、204( 17 1n  )、220( 11 1n  )、228( 19 1n  )、

252( 7 1n  )、260( 13 1n  )、276( 23 1n  )、308( 11 1n  )、312( 13 1n  )、315( 7 1n  )、

340( 17 1n  )、348( 29 1n  )、364( 7 1n  )、372( 31 1n  )、408( 17 1n  )、440( 11 1n  )、

444( 37 1n  )、456( 19 1n  )、460( 23 1n  )、468( 13 1n  )、476( 17 1n  )、492( 41 1n  )、

516( 43 1n  )、525( 7 1n  )、532( 19 1n  )、564( 47 1n  )、572( 13 1n  )、580( 29 1n  )、

585( 13 1n  )、588( 7 1n  )、620( 31 1n  )、624( 13 1n  )、636( 53 1n  )、644( 23 1n  )、

680( 17 1n  )、684( 19 1n  )、693( 11 1n  )、696( 29 1n  )、700( 5 1n  ).

Group of orders above can’t be a simple group.

Theorem 8 Suppose the order ofG can be expressed as a bG p q , hereinto ,p q are different
prime, ,a b N . ThenG must not be a simple group.

The numbers satisfy theorem 8 within 700 are:

72，108，144，216，288，324，392，400，432，500，576，648，675

Group of orders above can’t be a simple group.

Theorem 9 If the order of G is a prime number, then G must be a simple group.

The numbers satisfy theorem 9 within 700 are:

2，3，5，7，11，13，17，19，23，29，31，37，41，43，47，53，59，61，67，71，73，
79，83，89，97，101，103，107，109，113，127，131，137，139，149，151，157，163，
167，173，179，181，191，193，197，199，211，223，227，229，233，239，241，251，
263，269，271，277，281，283，293，307，311，313，317，331，337，347，349，353，
359，367，373，379，383，389，397，401，409，419，421，431，439，443，449，457，
461，463，467，479，487，491，499，503，509，521，523，541，547，557，563，569，
571，577，587，593，599，601，607，613，617，619，631，641，643，647，653，659，
661，673，677，683，691

Group of orders above can’t be a simple group.
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§3 Main Result

By using the theorems above, here we have 27 numbers below to discuss. (They cannot be
solved by theorem 1~9)：
|G|={ 60，72，108，120，132，144，168，180，216，240，264，270，280，288，300，324，

336，360，380，392，396，420，432，480，495，500，504，520，528，540，552，560，
576，600，612，616，648，660，672，675}
We can divided them into these part by recognizing their main method.

Ⅰ. The situations solved by embedding.

(1) 3 272 2 3G    , then

 2

2

1 mod 2
| 9

n
n
 



,
 3

3

1 mod3
| 8

n
n





2 1,3,9n  ， 3 1,4n 
Suppose G is a simple group, then , we have . However .
This is a contradiction!

(2) 2 3108 2 3G    , then

 2

2

1 mod 2
| 7

n
n
 



，
 3

3

1 mod3
| 4

n
n





3 1,4n 
According to the process above, we have , . This is a
contradiction!

(3) 3120 2 3 5G     , according to lemma 2.40,

 5

5

1 mod5
| 24

n
n





So 5 1n  or 5 6n  . SupposeG is a simple group, then 5 6n  . For any 5Sylow  subgroup

P ofG , according to lemma 2.36, we have  : 6GG N P  . Consider the left multiplication

ofG on the left coset space of  GN P . This action induces the homomorphism onG to 6S .

According to lemma 2.34，we have
  6/G Ker G S  

G is a simple group, therefore 1Ker  , so

  6G G S 

According to the proof of the theorem 6,  G doesn’t contain odd permutation, so

  6G G A 

So  6 : 3A G  . According to the remark of lemma 2.34, this is impossible. SoG is not a

simple group.

(4) 4 2144 2 3G    , then
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 2

2

1 mod 2
| 9

n
n
 



，
 3

3

1 mod3
|16

n
n





2 1,3,9n  , 3 1,4,16n 
Suppose G is a simple group, then . For any two Sylow3-subgroups, if their intersection
is , then 16 Sylow3-subgroups have non-unit element.
There left element.

，G is not a simple group.
There must have  1 2 3,P P Syl G  , such that

and . Let ,

)|e,e(eN 1639  , 1684 ,,e 
. That means G subgroups with index less than 4. So G is not a simple group.

(5) 2 2180 2 3 5G     , then

 5

5

1 mod5
| 36

n
n





，
 3

3

1 mod3
| 20

n
n





5 1,6,36n  3 1,4,10n 
Suppose G is a simple group, then , . According to =2, there is subgroups
with index 2. So is not a simple group. This is a contradiction! So ， .
Suppose , , then there are 144 non-unit elements
in Sylow5-subgroup , 80 non-unit elements in Sylow3-subgroup.

Therefore .

-subgroups are all Abelian groups.

，

 2039 |k,kkN 

According to G is a simple group, we have

. That means we can embed G in a permutation group of order 5. In simple group

G中,  eker , so . However . That means we cannot embed G
in a permutation group of order 5. This is a contradiction! So G is not a simple group.

(6) 3 3216 2 3G    , then

 3

3

1 mod3
| 8

n
n




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3 1,4n 
Suppose G is a simple group, then . This is a contradiction!

(7)When 4240 2 3 5G     , according to lemma 2.40,

 5

5

1 mod5
| 48

n
n





SupposeG is a simple group, then there must be 5 6n  . For any 5Sylow  subgroup P ofG ,

according to lemma 2.36, we have  : 6GG N P  . We can deduce that   6G G A  as the

proof in situationⅠ (3). But 240G  can’t be divided by 6 360A  . This is a contradiction!

SoG is not a simple group.

(8) 3264 2 3 11G     , then

 11

11

1 mod11
| 24

n
n
 



11 1,12n 
Suppose G is a simple group, then , . So .

. Hereinto the power of 11 is 1.

We can regard the Sylow11-subgroups of G as the Sylow11-subgroups of .

However there are Sylow11-subgroups in

55

1011

12
2
1

2
1

11
12

1212





A
!)P(N)P(N SA

Since is false, G is not a simple group.

(9)When 2 2300 2 3 5G     , according to lemma 2.40，

 5

5

1 mod5
|12

n
n





Suppose G is a simple group, there must have 5 6n  . For any 5Sylow  subgroup P of G ,

according to lemma 2.36 we know that  : 6GG N P  We can deduce that   6G G A  as

the proof in situation(3). But 300G  can’t be divided by 6 360A  . This is a contradiction!

SoG is not a simple group.

(10) 2 4324 2 3G    , then

Suppose G is a simple group, then . This is a contradiction!
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(11) 4336 2 3 7G     , then

Suppose G is a simple group, then , , .
Since the power of 7 in is 1, we can regard the Sylow7-subgroup P as the Sylow7- subgroup

of . The number of Sylow7-subgroup in is .

However , .

And . This is a contradiction!

So G is not a simple group.

(12) 3 2392 2 7G    , then

Suppose G is a simple group, then . If , then 8 Sylow7-subgroup
have non-unit elements in all. So there left elements.

. This is a contradiction.
If , then . Let

then

 78 k,|k

.That means G has nontrivial normal subgroup, so G is a simple group.

(13) 4 2400 2 5G    , then

Suppose G is a simple group, then . The order of Sylow5-subgroup P is 52.
,

and

let ，

k=8 or 16
. That means G has a subgroup with index equal to 2, so G is not a simple group.

(14)When 4560 2 5 7G     , according to lemma 2.40，
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 7

7

1 mod7
| 80

n
n





Suppose G is a simple group, then 5 6n  . For any 7Sylow  subgroup P ofG , according to

lemma 2.36, we have  : 8GG N P  . Considering the premultiplication effect ofG on the left

coset space of  GN P , this effect leads to the morphism fromG to 8S . According to lemma
2.34, we have

  8/G Ker G S  
ButG is a simple group, therefore 1Ker  , so

  8G G S 

According to the proof of the theorem 6,  G doesn’t contain odd permutation, so

  8G G A 

Because 27 can’t divide 8
1 8!
2

A   , so we can regard the 7Sylow  subgroup P of G as

the 7Sylow  subgroup of 8A . The number of 7Sylow  subgroups in 8S is
7
8 960
7 6
P




So  
8 8 / 960 42SN P S  . But   70GN P  . This is a contradiction! SoG is not a simple

group.

(15)When 3 2600 2 3 5G     , according to lemma 2.40，

 5

5

1 mod5
| 24

n
n





Suppose G is a simple group, then 5 6n  . For any 5Sylow  subgroup P of G , according to

lemma 2.36, we have  : 6GG N P  . We can deduce that   6G G A  as the proof in

situation(3). But 600G  can’t be divided by 6 360A  . This is a contradiction! SoG is not a
simple group.

(16) 3 4648 2 3G    , then

 3

3

1 mod3
| 8

n
n





3 1,4n 
Suppose G is a simple group, then . This is a contradiction!

(17)When 5672 2 3 7G     , according to lemma 2.40，

 7

7

1 mod7
| 96

n
n





SupposeG is a simple group, then 7 8n  . For any 7Sylow  subgroup P ofG , according to

lemma 2.36, we have  : 8GG N P  . Considering the premultiplication effect ofG on the left
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coset space of  GN P , this effect leads to the morphism fromG to 6S . According to lemma
2.34, we have

  8/G Ker G S  
G is a simple group, therefore 1Ker  , so

  8G G S 

According to the proof of the theorem 6,  G doesn’t contain odd permutation, so

  8G G A 

Because 27 can’t divide 8
1 8!
2

A   , we can regard the 7Sylow  subgroup P of G as the

7Sylow  group of 8A . The number of 7Sylow  subgroup of is
7
8 960
7 6
P




Therefore  
8 8 / 960 42SN P S  . But   96GN P  . This is a contradiction! SoG is not a

simple group.

Ⅱ．The situations solved by using cyclic group.
(1)When 5 2288 2 3G    ,

 2

2

1 mod 2
| 9

n
n
 



,
 3

3

1 mod3
| 32

n
n





Suppose G is a simple group, then
There exist Sylow3-subgroup , satisfying

Let , then

36 N . According to theorem.

There exists an element of order 6

. We can regard x as a permutation on . For any  GSylQ 2 , we have

  322  QnGQNG

There is no fixed point of x in . Suppose x can be expressed by the sum of m 2-cycle，n
3-cycle and y 6-cycle, then9=2m+3n+6y.

.





































0
1
3

0
3
0

1
1
0

y
n
m

or
y
n
m

or
y
n
m

According to 3 solutions above we can infer that x is an odd permutation. This is a contradiction!
is not a simple group.

(2)When 2420 2 3 5 7G     
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 7

7

1 mod7
| 60

n
n





Suppose G is a simple group, then , . , then ,

Then (6 order)

If , then G has normal 7-complement. So G is not a simple group.
If （a cyclic group） , fetch , then , . So x can only
normalize one Sylow7-subgroup P . , so we can regard x as an element of order 14 with
only one fixed point in . Therefore x must be a 14-cycle, an odd permutation. This is a
contradiction!

(3)When 6 2576 2 3G    ,

 2

2

1 mod 2
| 9

n
n
 



,
 3

3

1 mod3
| 64

n
n





2 1,3,9n  , 3 1,4,16,64n 
Suppose G is a simple group, then . If , then .

Let , then

 263 |k,k 

， ，

Then has a subgroup R of order 2, is a cyclic group of order 6.
of order 6, then . , and has no fixed point.

However there is no (even permutation) in . Suppose is expressed by m 2-cycle,
and n 3-cycle. Then , m .
So is an odd permutation. This is a contradiction!
For any Sylow3-subgroup, there intersection is . Suppose , then must
have two Sylow3-subgroups which intersection isn’t . This is a contradiction! So any two
Sylow3-subgroup’s intersection is .

Suppose , then there must exists ,. This contradicts with the

conclusion above.

Sylow3-subgroups have non-unit elements in all.
There left elements.

. So G is not a simple group.

(4)When 2 2612 2 3 17G     , according to lemma 2.40，
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 3

3

1 mod3
| 68

n
n





，
 17

17

1 mod17
| 36

n
n





Suppose G is a simple group, then 3 34n  and 17 18n  . For any 17Sylow 

subgroup P of G , according to lemma 2.36, we have  : 18GG N P  ,   34GN P  .

According to lemma 2.22,    / ( )G GN P C P Aut P ’s one certain subgroup.

( ) 17 1 16Aut P    , so   17GC P  or   34GC P  . If   34GC P  , then according to

lemma 2.45, group G has a normal 17  complement,. So it’s not a simple group. This is a
contradiction! If   17GC P  , because  23 34 1 mod3n   , and according to lemma 2.41,

there must exists two 3Sylow  subgroups 1 2,Q Q , such that 1 2: 3 ( 1,2)iQ Q Q i  . So

1 2 1 1 2 2,Q Q Q Q Q Q   
Therefore

1 2 1 2, ( )GQ Q N Q Q 
So

1 2
1 2 1 2

1 2

( ) 27G

Q Q
N Q Q Q Q

Q Q
   


Suppose that 2 2

1 29 | ( ) | 2 3 17GN Q Q G    , then 1 236 | ( )GN Q Q . According to lemma
2.22,

   1 2 1 2 1 2/ ( )G GN Q Q C Q Q Aut Q Q   ’s one certain subgroup

1 2( ) 3 1 2Aut Q Q    , so 1 2( )GC Q Q contains a factor 2. consider

the 2Sylow  subgroup R of 1 2( )GC Q Q , then  1 2R Q Q G is a cyclic group of order 6.

SoG has an element x of order 6. According to lemma 2.9，  Gx N P , that means x can’t
normalize any 17Sylow  subgroupP . Considering the premultiplication effect ofG on the left

coset space of  GN P , this effect leads to the morphism fromG to 8S . According to lemma

2.34 and the proof of theorem 6, we can deduce that  G doesn’t contain odd permutation, so

  18G G A 

Therefore we can regard x as an element of order 6 of 18A , and there is no fixed point. If x ’s
cyclic decomposition has a transformation, then 2x is an elements of order 3 and there are at least
two fixed points. So 2x can normalize a certain 17Sylow  subgroup 'P . So  2 'Gx N P ,

but  ' 34GN P  . Therefore, this is impossible! So x ’s cyclic decomposition can only contains

odd( 2 ) 6 cycles and several 3 cycle. Suppose there are 2 ( )k k N 6 cycle
and l 3 cycle in x ’s cyclic decomposition. From

2 6 3 18k l  
we know that only 1, 2k l  is possible. That means the cyclic decomposition of x contains
2 6 cycle and 2 3 cycle. In this condition 3x is an element of order 2 with exactly 6 fixed
points. That is 3x normalized 6 17Sylow  subgroups.    3 \G Gx N P C P , but according to

lemma 2.50, we know that, 3x can normalize up to
17 1 18 11 1 2
17 17
nk  

     17Sylow  subgroups.
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This is a contradiction! Hence G is not a simple group

Ⅲ．The situations solved by induction.

(1)When 2132 2 3 11G     , according to lemma 2.40，

 11

11

1 mod11
|12

n
n
 



，
 3

3

1 mod3
| 44

n
n





Suppose G is a simple group, then there must have 11 12n  and 3 4 22n  , . According to the

remark of lemma 2.34, there must have 3 22n  . SoG contains

 11 1 12 120   elements of order 11

 3 1 22 44   elements of order 3

But 120 44 164 132   . This is a contradiction. SoG is not a simple group.

(2)When 3280 2 5 7G     , according to lemma 2.40，

 5

5

1 mod5
| 56

n
n





，
 7

7

1 mod7
| 40

n
n





SupposeG is a simple group, then 5 56n  and 7 8n  . SoG has

 5 1 56 224   elements of order 5

 7 1 8 48   elements of order 7
Therefore left

280 224 48 8   elements
But G has 2Sylow  subgroups, so 2 1n  . According to theorem 7, G is not a simple group.

(3)When 2380 2 5 19G     , according to lemma 2.40，

 19

19

1 mod19
| 20

n
n





，
 5

5

1 mod5
| 76

n
n





SupposeG is a simple group, then 19 20n  and 5 76n  . SoG has

 19 1 20 360   elements of order 19

 5 1 76 304   elements of order 5

But360 304 664 380   . This is a contradiction! SoG is not a simple group.

(4)When 2495 3 5 11G     , according to lemma 2.40，

 11

11

1 mod11
| 45

n
n
 



，
 3

3

1 mod3
| 55

n
n





Suppose G is a simple group, then 11 45n  and 3 55n  . SoG has

 11 1 45 450   elements of order 11

 3 1 55 110   elements of order 3

But 450 110 560 495   . This is a contradiction! SoG is not a simple group.
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(5)When 3520 2 5 13G     , according to lemma 2.40，

 13

13

1 mod13
| 40

n
n





，
 5

5

1 mod5
|104

n
n





Suppose G is a simple group, there must have 13 40n  and 5 26n  . SoG has

 13 1 40 480   elements of order 13

 5 1 26 104   elements of order 5

But 480 104 584 520   . This is a contradiction! SoG is not a simple group.

(6)When 3616 2 7 11G     , according to lemma 2.40，

 7

7

1 mod7
| 88

n
n





，
 11

11

1 mod11
| 56

n
n
 



Suppose G is a simple group, there must have 7 8n  and 11 56n  . SoG have

 7 1 8 48   elements of order 7

 11 1 56 560   elements of order 11
So there left

616 48 560 8   elements
But groupG has 2Sylow  subgroup, so 2 1n  . According to theorem7, we know thatG is not a
simple group.

Ⅳ．The situations solved by normal p-complement

(1)When 2 2396 2 3 11G    

Suppose G is a simple group, then , , then .

. That means G has a normal 11-complement. So G is not a simple group. This
is a contradiction!

(2)When 4528 2 3 11G     , according to lemma 2.40,

 3

3

1 mod3
|176

n
n





Suppose G is a simple group, then 3 16n  . For any 3Sylow  subgroup P ofG , according to

lemma 2.36, we have  : 16GG N P  ,   33GN P  . According to lemma 2.22,
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   /G GN P C P is isomorphic to a subgroup of  Aut P . According to lemma 2.9,

     / | Aut 7 1 6G GN P C P P    . So    G GN P C P . According to lemma 2.45,

G has a normal3 complement and it is not a simple group.

(3)When 2 3540 2 3 5G     , according to lemma 2.40,

 5

5

1 mod5
|108

n
n





SupposeG is a simple group, then 5 6n  or 5 26n  . If 5 6n  , then we have a contradiction.

If 5 26n  , for any 5Sylow  subgroup P of G , according to lemma 2.36, we

have  : 26GG N P  ,   15GN P  . According to lemma 2.22,    /G GN P C P is

isomorphic to a subgroup of  Aut P . According to lemma 2.9,

     / | Aut 5 1 4G GN P C P P    . So    G GN P C P . According to lemma 2.45,

G has a normal5 complement and it is not a simple group.

(4)When 3552 2 3 23G     , according to lemma 2.40，

 23

23

1 mod 23
| 24

n
n





Suppose G is a simple group, then 23 24n  . For any 23Sylow  subgroup P ofG , according to

lemma 2.36, we have  : 24GG N P  ,   23GN P  . According to lemma 2.22,

   /G GN P C P is isomorphic to a subgroup of  Aut P . According to lemma 2.9,

     / | Aut 23 1 22G GN P C P P    . So    G GN P C P . According to lemma 2.45,

G has a normal 23 complement and it is not a simple group.

Ⅴ．The situations solved by using  2mod1 pnp 

(1)When 4 3432 2 3G    ,

 3

3

1 mod3
|16

n
n





3 1,4,16n 

Suppose G is a simple group, then .

There must exists Sylow3-subgroup, , ,

, that means G must not be a simple group. This is a contradiction!

(2)When 5480 2 3 5G    
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 2

2

1 mod 2
|15

n
n
 



2 1,3,5,15n 
Suppose G is a simple group, then 2 5,15n 
Suppose , then . However .
If , then there must be 2 Sylow2-subgroup satisfied .

That means . Let , then

, so . This is a contradiction!

Ⅵ．The situations which may be a simple group
(1) When 60G  , if 60G Z , then G is not a simple group. If 5G A , then G is a simple
group.

(2) 3168 2 3 7G     ，The order of the simple group PSL2(F7)[2]is

    
  

2 7

2 7

7 1 7 1
168

7 1 2,7 1
PSL F

 
 

 
However when , it isn’t a simple group. So groupG of order 168 may be a simple group
or may not.

(3) . Since and is a simple group.

However when , it isn’t a simple group. So groupG of order 360 may be a simple group
or may not.

(4)When 3 2504 2 3 7G     . The order of the simple group  2 8PSL F [2]is

    
  

2 2

2 8

8 1 8 8
504

8 1 2,8 1
PSL F

 
 

 

However when 504G Z , it isn’t a simple group. So group G of order 504 may be a simple
group or may not.

(5)When 2660 2 3 5 7G      . The order of the simple group  2 11PSL F [2]is

    
  

2 2

2 11

11 1 11 11
660

11 1 2,11 1
PSL F

 
 

 
However when 660G Z , it isn’t a simple group. So group G of order 504 may be a simple
group or may not.

Considering all the above, here we come to the conclusion.

Theorem 9A groupG of order less or equal than700 could not be simple except for

 60,168,360,504, 660G  and all prime numbers.
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§4 Ending and the questions left
Basing on Sylow theorem, Burnside theorem and elementary group theories like group action,

we got a series of conditions to judge whether the group is simple or not.

Theorem A groupG of order less or equal than700 could not be simple except for

 60,168,360,504,660G and all primes .

The distribution of simple group of low-order is discussed. But we can’t make a discussion to
simple groups of order more than 700. Above the whole paper, research on numbers of particular
Sylow subgroups is the main work. Sometimes we can judge it directly by exact division, while
sometimes some methods like group action or some properties of permutation group. All in all,
analyzing should be directed against specific conditions and methods are not fixed.

Here G is a finite group and P is its subgroup, , ( , ) 1rG p m p m  ，According to Lagrange

theorem, we have

   : : :G GG P G N P N P P 

That is

   : :G GG G N P N P P P  

Thereinto

   : 1 1 modG pG N P n kp p    ，
rP p

With the notation   :GN P P v , we have

(1 ) rG kp v p   

If an unified restrictive condition of the three parameter (k, v, r) above can be found, we are
able to judge whether the group of high order is simple or not. This is an important question left to
be studied.
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