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Research on some particular simple groups

with elementary methods

[ABSTRACT]

It is well known that group is a set with an algebra operation, which is often denoted by G . A
simple group is the group which has only the 2 trivial normal subgroups. The importance of the
simple groups may analogue to the prime numbers in the number theory. The classification of the

finite simple groups was the central problem of 20% century’s’ algebra. In this research report, we
use Sylow theorem, Burnside theorem, group action and some other elementally group theory

methods to obtain some criteria of simple group . By using these criteria we determine the
possible simple groups whose order less than 700. Generalizes the results in the reference [1], [2],
[3], [4].We conclude that

Theorem A group G of order less or equal than 700 could not be simple except for

|G| €{60,168,360,504,660 and all primes} .

[KEYWORDS]

finite group ~ subgroup  normal subgroup  simple group Sylowtheorem  group action

normalizer  centralizer transitive permutation presentation N/ C theorem
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Group is one of the most important and fundamental concepts in the modern algebra. It was
widely used in many fields in mathematics and scientific technology nowadays [5]. The study of
the group theory dates back to the end of 18th century. Galois (1811~1832), the mathematician,
created an algebraic system of “group” and “field” during his research on “whether the quintic
equation can be solved by using radical or not”. Finite groups are studied and used extensively.
Among the theories of finite group, the Classification of finite simple groups’ theorem is the key
problem. It had been over 150 years for hundreds of mathematicians to work on the study to this
theorem and it was not proved to be correct until 1981. There are 18 infinite families and 26
sporadic simple groups which are not in the infinite families. Many complex methods was used in
proving the Classification of finite simple groups theorem such as methods in the abstract group
theory, the representation theory, geometry, combinatory and the graph theory. In this paper, we
used Sylow theorem, Burnside theorem and other elementary theorems like group action to
discuss finite simple groups of order less than or equal to 700. All possible simple groups are
found out and specific examples are given.

§ 1 Definitions and lemmas

Definition 2.1
Define o a binary operation in a nonempty set. If it satisfies the condition:

()(aob)oc=ao(boc)Va,b,ceG;
2Q)Vae G,de€ G, suchthat ace=eca=a;
3)VaeG,Abe G, suchthat acb=boa=e.

Then we call (G,O) a group, or G for short. Hereinto, we define e the unit element or the identity.

Element b, satisfiesa o b = boa = e, is called the inverse of a , denoteda™" . We call the number
of G ’s elements order, denoted|G| . When G satisfies |G| <00, we call G finite group, otherwise

we call G infinite group. In this paper, all groups are finite groups unless otherwise specified.
Operational symbol “o” is left out when no confusion can arise.

Definition 2.2
If the multiplication of G satisfies communicative law that

ab=ba,Va,beG

Then we define G by communicative group or Abelian group.

Definition 2.3
For ae G, neN,, wedefine

~ -1
a"=acao-oa, a’=e, a" :(a")
-
n
Follow the definition, for m,n € Z , we have
aman — am+n

If G is a communicative group, we also have(ab)n =a"b".

Definition 2.4
Let H be a nonempty subset of G . If H is a group on the same operation of G , then we call
H the subgroup of G, denoted H < G . It’s obviously that any group G has two subgroups,

{e} and G , what we call trivial subgroup. If subgroup H # G, then we call H the proper
subgroup of G , denoted by H < G .

Definition 2.5
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Let G be a group, H,K be the subsets of G, define the product of H,K to
HK ={hk|heH keK}

IfK = {a} , then denoted H{a} = Ha for short, so we also have{a} H=aH .
We also define that
H'={h"|heH}., H"={hh-h|heH}neN,

Definition 2.6
Let G be a group, S < G, we define the intersection of all the subgroups of G that containing S to
be the subgroup generated by S, denoted by (S), that is

(5)- 1 #

H<G
ScH

It’s not hard to prove that,

<S>:{e,a1a2---an |a, ESUS_l,I’l=1,2,...}.
Similarly, let S,,S,,...,S. € G, then we define the intersection of all the subgroups of G
containing S§,,S,,...,8 to be the subgroup generated by S,,S,,...,S, , denoted
by(S,,S,,...,S, ), that s

Definition 2.7
Let G be a group, element a € G, and then we define the subgroup H = <a> , generated only by

a to be a cyclic group. For element a in G, we define <a> to be the order of a , denoted
by O(a ) , that is O(a) = ‘<a>‘ . From this definition we know that O(a) is the minimum integer

n that satisfies " = e . If integer 1 does not exist, then we call the order of a is infinite,
denoted O(a) =00.

Definition 2.8
Let G be a group, subgroup H <G , element a€ G , we call those subsets shaped as
aH (accordingly, Ha ) to be one of the left cosets of H (accordingly, right cosets). Now, we
can define a relation ~ in group G making any a,be G,

a~b<>existsan he H, suchthat a=>bh
So it’s easily to know ~ is a equivalence equation on group G , the equivalence class where a is

in is[a] = aH , so we have

G=U aH

acG
So group G can be divided into the union of several left cosets, we defined the number of all the

different left cosets of H in G to be the index of H in G ,denoted |G:H | . Consider
that|aH| = |H

,Va e G, we have
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Lemma 2.9 (Lagrange theorem)[6]
Let G be a group, H < G then |G| =|G:H||H|

Deduction 2.10
Let G be a group, then the order of any element is divisible by the order of G , that is

O(a) | |G|,sowehave a“'=e.

Deduction 2.11

Let G beagroup, H,K <G, then we have
4]

Definition 2.12
Let G beagroup, H <G, if

gH=HgNgeG,or gHg' =H,VgeG
then we call that A is a normal subgroup or invariant subgroup of G , denoted by H < G .
According to the definition of normal subgroup, any group G has two trivial normal subgroups:

{e} and G . We define the finite group which only has these two trivial normal subgroups to be a
simple group.
Definition 2.13
Let G to be a group, H < G, we define
NG(H):{geG|gHg_1 =H} and CG(H)z{geG|gh=hg,VheH}
to be the normalizer and the centralizer of H in G respectively. By the definition, we have

H<G< N;(H)=G, and C;(H)<N,(H)

Lemma 2.14 [6]
LetG to be a group, H < G, and|G:H| =2 thenH < G.

Definition 2.15
Let G to be a group, H,K <G, a € G, we define the subset shaped as HaK of H,K to be a

double cosets on G .

Lemma 2.16 [2]
Define all double cosets of H, K on G to be a partition, that is
G= U HaK , HaK YHbK =&

aeG

Lemma 2.17[2]
Let one of the double cosets of H, K on G to be HaK , so HaK can be expressed as the union of

several right cosets of H (or the left cosets of K ). The number of containing right cosets of H is
‘K KN aHa’l‘
The number of containing left cosets of K is
‘aHa_1 caHa™ ﬂK‘

Lemma 2.18 [6]
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Let G be a group, H < G, then all left cosets of H make up a group on the multiplication

(aH )(bH ) =(ab) H
We define it to be the quotient group of G on H , denoted by G/ H , hereinto the unit element
is H , the inverse ofaH isa ' H .

Definition 2.19
Let G , G' be groups. We define mapping @:G—>G' to be a homomorphism

from G to G' where ¢ maintains operation. That is for any a,b € G, we have

p(ab) = p(a)p(b)
If @ is a injection (surjection), we call that ¢ is a monomorphism (epimorphism). Under the
condition of the morphism is injective and subjective, group G is isomorphic to G', denoted

by G = G'. Call that @ is an automorphism if G'= G . All automorphisms of G form a group,
we define the group to be the group of automorphisms of G , denoted Aut (G) .

Definition 2.20
Let G , G'be groups, mapping ¢ : G — G ' be the homomorphism. Define
Kerp={gecG|p(g)=e}
to be the kernel of the homomorphism. We also define
Imp={p(g)| g € G}
to be the image of the homomorphism. It is easy to see that Kerp <G, Imp < G'.

Lemma 2.21 (The fundamental homomorphism theorem)[6]
Let G, G'be groups, mapping @ : G — G' be the homomorphism, then we have

G/ Kergp=Img

Lemma 2.22 (N/C theorem)[2]
Let G be a group, H < G, then

N (H) /C, (H) is isomorphic to a subgroup ofAut(H)

Definition 2.23
Let G be a group, for any a € G, define mapping
La):G—>G , g ag
Then we are easily to know that L(a) is a bijection on G , and L(G) = {L(a) |ae G} forms a
group.

Lemma 2.24 [6]
Let M be a set, then all the bijections on M forms a group on the multiplication (compound) of

the mapping. We define it to be the symmetric group of M , denoted by S (M ) . Any subgroup
of § (M ) is defined to be the transformation group on M .

Lemma 2.25[6]
Let M be a finite set. We define the element in S (M ) to be permutation, with the properties

below:

® Any permutation in M can be expressed as the product of disjoint cycles. The decomposition is
unique with loss of the order.

@ Any permutation in M can be expressed as the product of several transpositions. The odevity of

5
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the different decomposition of a certain permutation is assured. We define the permutation which
has odd transpositions to be odd permutation, which has even transpositions to be even
permutation.

Lemma 2.26 (Cayley theorem)[6]
Any group G is isomorphic to a transformation group on a certain set, practically:

G=L(G)<5(G)

Lemma 2.27[6]

Infinite cyclic group must be isomorphic to integer additive group Z . Finite cyclic group must be
isomorphic to a certain quotient group Z / nZ of integer additive group (denoted Z, for short).
Lemma 2.28[6]

The subgroups of a cyclic group G = <a> are still cyclic group. All the subgroups of a certain

infinite cyclic group Z are <as>, Vs € N . All the subgroups of a certain finite cyclic group Z, of

ordernis<as>,VS eN,s|n.

Lemma 2.29[2]
The automorphism group of cyclic group G is a transformation group. Infinite cyclic group Z only

has two automorphism, Aut (Z ) = Z, . Finite cyclic Z, group of order 1 has ¢(n) automorphism
(@ is Euler’s function), Aut (Zn ) =U (n) :

Definition 2.30
Let G be a group, 4 be a non-empty set. If there exists a mapping:
p:GxA—> A
(g.a) > ga
Satisfies:

(Dea=a,Vae A

(2)g.(g.a)= (g8, )a.Vac 4.g,.8, €G
Then we call it group G actions on set 4 .The kernel of action Ker¢ = {g eG|ga=a,Vace A} :
If Kergp = {e} , then we call group G acts faithfully on set A4 .

Lemma 2.31[2]
Let group G actions on set A , then set A has a bijection between the set formed by all

homomorphisms of group G on S (A) :

Definition 2.32
Let group G actions on set A . Foranya € 4, we define.

G, ={geG|ga=a}and0a :{ga|geG}
to be the stabilizer and the orbit of @ in G respectively. According to the definition, it’s easily to
know that G, <G . If there is only one orbit when group G actions on set 4 , then for
any a,b € A, there exists g € G, such thata = gb . We call this action transitive.

Lemma 2.33[7]
Let group G actions on set A . Define a relation ~ in set A , satisfying: for anya,b € 4,

a ~ b < there exists a g € G ,such thata = gb

6
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So it’s easily to know that ~ is an equivalence relation on set 4 . The equivalence classes

where a is in is [a] =0, ,s0

A4=Uo,

acA

That means set 4 can be divided into the union of several orbits, and the action of G on 00 is

transitive, |Oa| = |G :G, | SO

l4=>|o,|=>|G:G,
Lemma 2.34[7]
Let G be a group, H < G,A:{aH|a € G}.Deﬁneamapping:
p:GxA—> A
(g,aH)H(ga)H

Then we have
(1) This is a group action.
(2) This action is transitive.

(3) The kernel of this action is Kergp = (| gHg ™" ;

geG

@) Kerp =N gHg_1 is the largest normal subgroup of G in H .

geG
[ Remark ] According to this lemma and the simplicity of 4, (n >5 ) , we know that any simple

group G must not contain subgroups of index< 4 .

Lemma 2.35[7]
Let G be a group. Define a mapping:
9:GxG—>G

(g.a)> gag™
Then
(1) This is a group action.
(2) The kernel of this action is Kerp={geG|ga=ag,VaeG}=Z(G) ( the center of

group G )
(3) Foranya € G, we have
G, ={geG|gag_1 =a}={geG|ga=ag}=CG(a)
0, = {ga g e G} is defined to be the conjugate class where a is in.

Then we have the class equation:

G|=3|0.]=|z(G)|+ 3 |G:C,(a).
aéZ(G)
Lemma 2.36[7]
Let G be a group, A = {H | H < G} . Define a mapping:
@p:GxA— A
(g.H)r> gHg
Then

(1) This is a group action. (by conjugation)
(2)For any H € A, we have
G, ={geG|gHg" =H}=N,(H).and|0,|=|G: N, (H)|.

7
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Lemma 2.37[7] (Cauchy theorem)
Suppose G a finite group, p is a prime satisfied p || G| , then G must have subgroups of order p .

Lemma 2.38[2] (Sylow theorem the first)
Suppose G a finite group, p is a prime. If |G |= p"m,(p,m) =1, then group G must have a

subgroup P of order p”, called Sylow p — subgroup of G .

Lemma 2.39[7] (Sylow theorem the second)
Any two of the Sylow p— subgroup B ,P, are conjugate in G , that is 3g € G , such

that P, = gP,g "

Lemma 2.40[2] (Sylow theorem the third)
Suppose the number of Sylow p — subgroup of G isn,,, thenn,, |m and n,= l(mod p) :

Lemma 2.41[2]
If the number of Sylow p — subgroups of group G is n, # 1 (mod p’) , then there must exist

two Sylow p — subgroups F, , P, , such that|F; B ﬂ]’2| =p(i=12).

Lemma 2.42[2]
Let G be a finite group. B isa p —subgroup butnota Sylow p —subgroup of G. P isthe

Sylow p — subgroup of G . Then there must exist ¢ € G, such that
R <gPg"

Lemma 2.43[2]
Let G be a finite group, P is a p— subgroup of G but not a Sylow p— subgroup.

then P < N (P)

Definition 2.44
Let G be a group. P is aSylow p — subgroup of G . If there exists N < G satisfied

foprt

Then we define N to be the normal p —complement of G .

Lemma 2.45[2]
Let G be a finite group, P is the Sylow p — subgroup. If C, (P) =N, (P) ,then G have a

normal p —complement V .

Definition 2.46
Let G be a group, Vx,y € G, deﬁne[x, y] = x"'y"'xy to be the commutator of x, ).

Definition 2.47
Let G be a group, define

G':<[x,y]|x,yeG>

to be the commentator subgroup of G , then G <1 G . So we can develop a definition: G =G,
8
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G™ = (G('H))' , and we have
GG >G> >G>
Definition 2.48
Let G be a group. If there exists n € N, , such that G = {e} , then we define G to be a solvable
group.
Lemma 2.49 (Burnside theorem)[2]
Let G be a finite group, satisfied |G| = p°q” and p,q are prime, a,b € N, , then G is a solvable
group.
Lemma 2.50 [2]
Let G be a finite group, satisfied |G| = pm, (p,m) =1 and p is a prime, P is
the Sylow p— group of G . Then for any xe€ N.(P)\C.(P) , x can normalize up

np—l

tok =1+ Sylow p — subgroups..

§ 2 the Induction of the non simple groups

In this part, some given conclusions are used to exclude the majority of non-simple groups.
We used VB to find out the order less or equal than 700 of groups that satisfy those theorems.

Theorem 1 [2] If the order of G satisfies |G| =p° (a €N, and a2 2) , pis odd prime.

Then G must not be a simple group.
The numbers satisfy theorems 1 within 700 are:

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361,
512, 529, 625

Group of orders above can’t be a simple group.

Theorem 2 [2] If the order of G can be expressed in |G| = pq , hereinto p, q are different prime

numbers. Then G must not be a simple group.
The numbers satisfy theorem 2 within 700 are:

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69,
74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129,
133, 134, 141, 142, 143, 145, 146,, 155, 158, 159, 161, 166, 177, 178, 183, 185,
187, 194, 201, 202, 203, 205, 206, 209, 213, 214, 215, 217, 218, 219, 221, 226,
235, 237, 247, 249, 253, 259, 262, 265, 267, 274, 278, 287, 291, 295, 298, 299,
301, 302, 303, 305, 307, 309, 314, 319, 321, 323, 326, 327, 329, 334, 335, 339,
341, 346, 355, 358, 362, 365, 371, 377, 381, 382, 386, 391, 393, 394, 395, 398,
403, 407, 411, 413, 415, 417, 422, 427, 437, 445, 446, 447, 451, 453, 454, 458,
466, 469, 471, 473, 478, 481, 482, 485, 489, 493, 497, 501, 502, 505, 511, 512,
515, 517, 519, 526, 527, 533, 535, 537, 538, 542, 543, 545, 551, 553, 554, 559,
565, 566, 573, 579, 581, 583, 586, 589, 591, 597, 611, 614, 622, 623, 626, 629,
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633, 634, 635, 649, 655, 662, 667, 671, 674, 679, 681, 685, 687, 689, 694, 695,
697, 698, 699.

Group of orders above can’t be a simple group.

Theorem 3 Let the order of G be |G| = p“q, p,q are different prime numbers,

aeN,,az2,s0 G can’tbe asimple group.

The numbers satisfy theorem 3 within 700 are:

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 75, 76, 80, 88, 92,
96, 98, 99, 104, 112, 116, 117, 124, 135, 136, 147, 148, 152, 153, 160, 162, 164,
171, 172, 175, 176, 184, 188, 189, 192, 207, 208, 212, 224, 232, 236, 242, 244,
245, 248, 250, 261, 268, 272, 275, 279, 284, 292, 296, 297, 304, 316, 320, 325,
328, 332, 333, 338, 344, 351, 352, 356, 363, 368, 369, 375, 376, 384, 387, 388,
404, 405, 412, 416, 423, 424, 425, 428, 436, 448, 452, 459, 464, 472, 475, 477,
486, 488, 496, 507, 508, 513, 524, 531, 536, 539, 544, 548, 549, 556, 567, 568,
575, 578, 584, 592, 596, 603, 604, 605, 608, 621, 628, 632, 637, 639, 640, 652,
656, 657, 664, 668, 686, 688, 692

Group of orders above can’t be a simple group.
Theorem 4 Suppose that the order of G can be expressed as |G| = p2q2 , D,q are different prime

numbers, then G can’t be simple group.
The numbers satisfy theorem 4 within 700 are:
36, 100, 196, 225, 441, 484, 676

Group of orders above can’t be a simple group.

Theorem 5 Suppose the order of G can be expressed as |G| = pqr , satisfying p > g > rto be

different primes, then G must not be a simple group.
The numbers satisfy theorem 5 within 700 are:

30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186,
190, 195, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310,
318, 322, 345, 354, 357, 370, 374, 385, 399, 402, 406, 410, 418, 426, 429, 430,
434, 435, 438, 442, 455, 465, 470, 474, 483, 494, 498, 506, 530, 534, 555, 561,
574, 582, 590, 595, 598, 602, 606, 609, 610, 615, 618, 627, 638, 642, 645, 646,
651, 654, 658, 663, 665, 670, 678, 682

Group of orders above can’t be a simple group.

Theorem 6 Suppose the order of G can be expressed as |G| = 2n in the condition of 7 is odd,

then G must not be a simple group.
The numbers satisfy theorem 6 within 700 are:
90, 126, 150, 210, 234, 270, 294, 306, 330, 342, 350, 378, 390, 414, 450, 462,

10
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490, 510, 518, 522, 546, 550, 558, 562, 570, 594, 630, 650, 666, 690

Group of orders above can’t be a simple group.

Theorem 7 By |G| denote the order of G, hereinto p is a prime, and p | |G| . If G has the only
one Sylow p — subgroup, then G must not be simple group.

The numbers satisfy theorem 7 within 700 are:

84(n; =1).140(n, =1).156(n,; =1).200(n5 =1).204(n,, =1).220(n,, =1).228(n,y =1).
252(n; =1), 260(n;=1). 276(ny, =1). 308(n, =1). 312(n;=1). 315(n, =1),
340(n, =1). 348(ny =1). 364(n, =1). 372(n,, =1). 408(n, =1). 440(n, =1).
444(ny, =1). 456(n,, =1). 460(n,, =1). 468(n,=1). 476(n, =1). 492(n, =1).
516(n,; =1). 525(n, =1). 532(ny=1). 564(n,, =1). 572(n;=1). 580(ny, =1).
585(n;, =1). 588(nm, =1). 620(n,, =1). 624(n,;=1). 636(n, =1). 644(n, =1).
680(n,, =1). 684(n, =1) 693(n,, =1). 696(n,, =1). 700(n, =1).

Group of orders above can’t be a simple group.

Theorem 8 Suppose the order of G can be expressed as |G| = paqb , hereinto p, g are different

prime, a,b € N, .ThenG must not be a simple group.

The numbers satisfy theorem 8 within 700 are:
72, 108, 144, 216, 288, 324, 392, 400, 432, 500, 576, 648, 675

Group of orders above can’t be a simple group.
Theorem 9 If the order of G is a prime number, then G must be a simple group.
The numbers satisfy theorem 9 within 700 are:

2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353,
359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 439, 443, 449, 457,
461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569,
571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659,
661, 673, 677, 683, 691

Group of orders above can’t be a simple group.

11
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§ 3 Main Result

By using the theorems above, here we have 27 numbers below to discuss. (They cannot be
solved by theorem 1~9):
|GI={ 60, 72, 108, 120, 132, 144, 168, 180, 216, 240, 264, 270, 280, 288, 300, 324,
336, 360, 380, 392, 396, 420, 432, 480, 495, 500, 504, 520, 528, 540, 552, 560,
576, 600, 612, 616, 648, 660, 672, 675}
We can divided them into these part by recognizing their main method.

I . The situations solved by embedding.

(1)|G|=72=2"x3?, then
n,=1(mod2) [n, =1(mod3)
{nz |9 , {n3 |8
n,=13,9, n, =1,4
Suppose G is a simple group, then n; = 4, we haveG = L(G) = 5,. However |G| = 721 4! =24,
This is a contradiction!
(2)|G| =108 =2 x3*, then
n,=1(mod2) [n, =1(mod3)
{n2 17 ’ {m 4
n, =14
According to the process above, we have G = L =5,, |G|=108+4!=24_ This is a

contradiction!

3) |G| =120=2’-3-5, according to lemma 2.40,
n; =1(mod5)
{ns | 24
So ng=1or n; =6. Suppose G is a simple group, thenn; = 6 . For any Sylow 5 — subgroup
P of G, according to lemma 2.36, we have ‘G :N, (P )‘ = 6 . Consider the left multiplication

of G on the left coset space of N (P ) . This action induces the homomorphism¢ onG to.S;.

According to lemma 2.34, we have
G/Kerp=p(G)< S,
G is a simple group, therefore Kergp =1, so
G= (p(G) <3S
According to the proof of the theorem 6, gz)(G) doesn’t contain odd permutation, so
G=9(G)< 4
So ‘A() : (D(G)‘ =3 . According to the remark of lemma 2.34, this is impossible. So G is not a
simple group.

@)|G| =144 =2 x3* | then

12
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n, =1(mod?2) n, =1(mod3)

{nz 9 ’ {n3 16
n,=1,3,9, n,=1,4,16

Suppose G is a simple group, thenny; = 16. For any two Sylow3-subgroups, if their intersection

is{e}, then 16 Sylow3-subgroups havel6 x (9 — 1) = 128 non-unit element.

~ There left144 — 128 = 16 element.

~n; =1, Gisnotasimple group.

- There must have 3R, P, € Syl, (G), such that [P, nP;| =3

Pyllp;| _ oo
[PyllPa] _ — 27

~(P,nPB)=<aPand (P,nF)=aP, Let N=Ng(P,nPk), IN| = |[(P,P)]| = Pnpl =3

~.|N|=9e(e>3,e]16) ,e=4816

~ |G: N| = 4. That means G subgroups with index less than 4. So G is not a simple group.

(5)|G|=180=2"x3? x5, then
ng=1(mod5) [n,=1(mod3)
n, |36 " m 120
ns=1,6,36 n, =1,4,10
Suppose G is a simple group, then ns = 6,G < A;. According to |Az: G|=2, there is subgroups
with index 2. So Agis not a simple group. This is a contradiction! So ns = 36, ny; =10,
Suppose ¥P..P; € 5yl5(G) , P, n P, = {e}, then there are 36 % (5 — 1) =144 non-unit elements
in Sylow5-subgroup , 10 x (9 — 1} =80 non-unit elements in Sylow3-subgroup.
w144+ 80 = 180
Therefore 3P, n B, = {e}.
~3|P,nP| =3, P.P, € Syl;(G)
~ P =B =32
=~ Sylow3-subgroups are all Abelian groups.

~P, NP aP(i=12)

#“N2Ng® nP,)=P.P,, N =|PP] =|'§11—!—§—: =2=27

~.|N|=9%k(k = 3,k| 20)
~k=451020

According to G is a simple group, we have|G:N| =5

G/{Kercp = A5. That means we can embed G in a permutation group of order 5. In simple group

G, kerp= {e}, so G = A.. However |G| = 180, |A;| = 60. That means we cannot embed G
in a permutation group of order 5. This is a contradiction! So G is not a simple group.
(6)|G| =216=2°x3", then

n, = 1(m0d3)
n, |8
13
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n,=14

Suppose G is a simple group, thenn; = 4, |G:N| = 4. This is a contradiction!

@) When|G| =240 =2".3.5 according to lemma 2.40,
n; =1(mod5)
{”5 | 48
Suppose G is a simple group, then there must be n, =6 . For any Sylow 5 — subgroup P of G ,
according to lemma 2.36, we have ‘G :Ng (P)‘ =6 . We can deduce that G = ¢(G) < A, as the

proof in situation I (3). But |G| =240 can’t be divided by |A6| =360 . This is a contradiction!

So G is not a simple group.

8)|G| =264 =2°x3x11, then
n, =1(mod11)
{”u | 24
n, =112
Suppose G is a simple group, then n., =12, Ng(P)= 22, So G = A,,.

v Al = %X 12!, Hereinto the power of 11 is 1.

~We can regard the Sylow11-subgroups of G as the Sylow11-subgroups of A,.

At}

However there are Sylow11-subgroups in Siz

1110
N,.(P) =%‘NS]2 (P) =%XL_1{ _ss
11x10

Since Ng(P)t Ny, (P) is false, G is not a simple group.

9 When|G| =300=2%-3-5%, according to lemma 2.40,
ns =1(mod5)
{ns |12
Suppose G is a simple group, there must have n; = 6 . For any Sylow 5 — subgroup P of G ,
according to lemma 2.36 we know that ‘G :Ng (P)‘ =6 We can deduce that G = qo(G) < A4 as
the proof in situation(3). But |G| =300 can’t be divided by |A6| =360 . This is a contradiction!

So G is not a simple group.

(10)|G| =324 =2 x3* then

{ns = 1(mod3)
ng|4

n, =14

Suppose G is a simple group, thenn; =4, |G:N| = 4. This is a contradiction!

14
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(11)|G| =336 =2*x3x7, then

{n; = 1(mod7)
n, |48

Suppose G is a simple group, then n. =8, |[Ng(P)|= 42 G = A,.
Since the power of 7 in|Ag| is 1, we can regard the Sylow7-subgroup P as the Sylow7- subgroup

of Ag. The number of Sylow7-subgroup in g is i—: = 960,

3
|N55{P}| = El/g(,@ =42

N5, (P)[14s]

However 2|Ag| = |Sg| = |N55{P}Ag| = m,

N, (P)| = 2 N5, (P)] = 21,

And 42 = |NG(P)|||NA3 (P)| = 21. This is a contradiction!

So G is not a simple group.

(12)|G| =392 =2"x 7", then

{n,-. = 1(mod7)
n-| &
n.=18

Suppose G is a simple group, then n; =8 . If ¥YBNB ={e}, then 8 Sylow7-subgroup
haved % (72 — 1) = 354 non-unit elements in all. So there left392 — 384 = 8 elements.

~n, =1 Thisis a contradiction.

If 3|P,nP,|=7 then , NP, «aB(i=12) Let N=Ng(B nE,)

B|IP; 7iw7? -
then |N| = |P,F;| — IPallPg] _ 7%x7% 73
i 2 !

=Nl =72k (k|8,k>7)

~|G:N| =1

= P, n P; = G_That means G has nontrivial normal subgroup, so G is a simple group.
_ A4 g2

(13)|G| =400 =2* x5, then (1o = 1(mod$)

[ ngl16

n; =116
Suppose G is a simple group, then 15 = 16, The order of Sylow5-subgroup P is 52.
~ 3PP, €Syl5(G), I[P, nP;|=5
~(P.nP,)=Pand (P.NF,) 2P,

let N=Ng(B.nP), IN|lz|(RP)l=22=22=125
= |N|=25k(k =5 H k|16) k=8 or 16

~ |G:N| = 2. That means G has a subgroup with index equal to 2, so G is not a simple group.

(14) When|G| =560=2".5.7, according to lemma 2.40,

15
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n, =1(mod7)
{n7 |80

Suppose G is a simple group, thenng = 6 . For any Sylow 7 — subgroup P of G , according to

lemma 2.36, we have ‘G :Ng (P )‘ = 8. Considering the premultiplication effect of G on the left

coset space of N, (P ) , this effect leads to the morphism ¢ from G to S; . According to lemma

2.34, we have
G/Kerp=p(G)< S,

But G is a simple group, therefore Kerg =1, so
Gzg (G) <5
According to the proof of the theorem 6, (D(G) doesn’t contain odd permutation, so

G=p(G)< 4

1
Because 7° can’t divide |Ax| :E-S! , so we can regard the Sylow 7 — subgroup P of G as

1N

I

the Sylow 7 — subgroup of 4, . The number of Sylow 7 — subgroups in S is

7
5 960
7-6

So ‘NS8 (P)‘ = |S8|/960 =42 . But ‘NG (P)‘ =70 . This is a contradiction! So G is not a simple
group.

15) When|G| =600=2"-3-5%, according to lemma 2.40,
ns =1(mod5)
{”5 | 24
Suppose G is a simple group, then 1, =6 . For any Sylow 5 — subgroup P of G , according to
lemma 2.36, we have ‘G :Ng (P)‘ =6 . We can deduce that G = (p(G)S A, as the proof in
situation(3). But |G| = 600 can’t be divided by |A6| =360 . This is a contradiction! So G is not a
simple group.
(16)|G| = 648 = 2" x3*, then
ny =1(mod3)
{n3 |8
n,=14

Suppose G is a simple group, thenn; = 4, |G: N| = 4. This is a contradiction!

an When|G| =672=2"-3-7, according to lemma 2.40,
n, =1(mod7)
{n7 |96
Suppose G is a simple group, then n, =8 . For any Sylow 7 — subgroup P of G, according to
lemma 2.36, we have ‘G N (P )‘ = 8. Considering the premultiplication effect of G on the left

16
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coset space of N (P ) , this effect leads to the morphism ¢ from G to S, . According to lemma

2.34, we have
G/Kerp=p(G)< S,

G is a simple group, therefore Kergp =1, so
G= ¢(G) <S

According to the proof of the theorem 6, ¢)(G) doesn’t contain odd permutation, so
G=p(G)< 4

Because 7° can’t divide |Ag| = % -8!', we can regard the Sylow 7 — subgroup P of G as the

Sylow T — group of A4, . The number of Sylow 7 — subgroup of is
Pg7
—— =960
7-6
Therefore ‘NSS (P)‘ = |S8| /960 =42 . But ‘NG (P)‘ =906 . This is a contradiction! So G is not a

simple group.

II. The situations solved by using cyclic group.
(1) When |G|=288=2°x3?,
n,=1(mod2) [n,=1(mod3)
{%|9 ’ {ngsz
Suppose G is a simple group, then n; =9, n; = 16 £ 1(med3?)
.". There exist Sylow3-subgroup P., P, satisfying|P:P, nP;| =3,(i=12)

Let N = Ng(P, nP,), then|N| = |P, P, =|'§1'T'§: = 2227

& N| =9k(k|32, k= 3)
|N| > 36 . According to N/C theorem. N/ICG(Pi nE) TAut(P.nPF)

~Ce(P,nP;)l =18
.". There exists an element % € Cg (P, N P;)of order 6
=9
~GZ A;. We can regard x as a permutation on Ag. For any Q € Syl, (G) , we have
[Ns(0) = 6l/n, =0 =32
~x€Ng(Q) (6+32)
.". There is no fixed point of x in Ag. Suppose x can be expressed by the sum of m 2-cycle, n
3-cycle and y 6-cycle, then9=2m+3n+6y.
m=0 [m=0 [(m=3
.=><n=lorin=3orin=1
y=1L |y=0 [y=0
According to 3 solutions above we can infer that x is an odd permutation. This is a contradiction!
= G is not a simple group.

(2) When |G|:420><22><3><5><7

17
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n, =1(mod7)
n, |60
Suppose G is a simple group, then n. =15, G = A.;. ¥wP € 8Syl.-(G), then |N:(P)| = 28,

Then HG{PJ:"‘EG;’p" = Aut(P) (6 order)
! LS

If |Cc(P)| = INg(P)| = 28, then G has normal 7-complement. So G is not a simple group.
If |Cz(P)}l =14 (a cyclic group) , fetch x € Cg(P), then x* €P, o(x*) =7. So x can only
normalize one Sylow7-subgroup P . G = A, 5, so we can regard x as an element of order 14 with

only one fixed point in A.s. Therefore x must be a 14-cycle, an odd permutation. This is a
contradiction!

(3) When |G| =576x2°x3?,
n, =1(mod2) [n,=1(mod3)
{nz 19 ’ {n3 |64
n,=1,3,9 ., n,=14,16,64
Suppose G is a simple group, then n, = 9. If 3P, F, € 5ly; (G), then [P, nP,| =3.

[Py B :r:
Let N=Ng(B.nP,), then IN| = 20 =22=27

# Nl =9k (k>3,k|26)

. _a/s Ng(P.nP) _
«INI= 36, [C(B R =9¢), "¢ b oy S lautRn Bl =2

~Ce(PonPB) =18

Then Cg(P.n P;) has a subgroup R of order 2, R(P, N P,) is a cyclic group of order 6.

s~ 3z € Cg(P.nP,) of order 6, then x & Ng(P, NnP,). G~ A, and L(x) has no fixed point.
However there is no L{x} (even permutation) in A5. Suppose L(x) is expressed by m 2-cycle,
and n 3-cycle. Then Zm+3n =9 m=3,n=1,

So L{x) is an odd permutation. This is a contradiction!

For any Sylow3-subgroup, there intersection is {e}. Suppose n; = 16 £ 1(mod3?), then must
have two Sylow3-subgroups which intersection isn’t {e}. This is a contradiction! So any two

Sylow3-subgroup’s intersection is {€}.
Suppose nz; £ 1(mod3?), then there must exists F; N F, # {e},. This contradicts with the

conclusion above.

~Lng, =64

~Sylow3-subgroups have 64 x (3% —1) = 512 non-unit elements in all.
~There left 576 — 512 = 64 elements.

=~ ny; = 1. So G is not a simple group.

@ When|G| =612 =2%-3%-17, according to lemma 2.40,

18
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ny=1(mod3) |n, =1(mod17)
{n3|68 ' {n”]36
Suppose G is a simple group, then n,=34 and n,=18 . For any Sylowl7-—
subgroup P of G , according to lemma 2.36, we have ‘G:NG (P)‘ =18, ‘NG (P)‘=34 :
According to lemma 222, N, (P)/CG (P) = Aut(P) ’s one certain subgroup.
| dut(P)| =17-1=16, s0|C,, (P)| =17 or|C,, (P)| = 34 . 1f|C, (P)| = 34. then according to
lemma 2.45, group G has a normal 17— complement,. So it’s not a simple group. This is a
contradiction! If ‘CG (P)‘ =17, because n, =34 # l(mod 3? ), and according to lemma 2.41,

there must exists two Sylow 3 — subgroups O, , 0, , such that|Ql. 0N Q2| =3(i=12).S0
0NQ,<0,0N0, <0,

Therefore

0,0, <N;(0,NQY,)
So

_laliel _

[No(0N0,)| 2[00y = N0,
Suppose that 9 | |NG on Q2)| | |G| =2°.3%.17, then 36 | |NG on Q2)| . According to lemma
2.22,

N (Q1 no, ) /Cy (Q1 N Qz) =~ Aut(Q, (1 Q,) ’s one certain subgroup

|Aut(Q1 no, )| =3-1=2,s0 |CG ©,No, )| contains a factor 2. consider
the Sylow 2 — subgroup R of C. (O, 0, ) , then R (Q, no, ) < G is a cyclic group of order 6.
So G has an element x of order 6. According to lemma 2.9, x ¢ N, (P) , that means x can’t
normalize any Sy/low 17 — subgroup P . Considering the premultiplication effect of G on the left
coset space of N, (P) , this effect leads to the morphism @ from G to S; . According to lemma

2.34 and the proof of theorem 6, we can deduce that go(G) doesn’t contain odd permutation, so
G= (D(G) < Aq

Therefore we can regard X as an element of order 6 of 4,4, and there is no fixed point. If x’s

cyclic decomposition has a transformation, then x” is an elements of order 3 and there are at least

two fixed points. So x* can normalize a certain Sylow 17 — subgroup P'. So x° € N (P') ,

but ‘N G (P ')‘ =34 . Therefore, this is impossible! So x ’s cyclic decomposition can only contains

odd( 22 ) 6— cycles and several 3— cycle. Suppose there are 2k(ke N,) 6— cycle

and/ 3 — cycle in x ’s cyclic decomposition. From
2kx6+3[=18

we know that only kK =1,/ =2 is possible. That means the cyclic decomposition of x contains
2 6— cycle and 2 3— cycle. In this condition X’ is an element of order 2 with exactly 6 fixed
points. That is x° normalized 6 Sylow 17 — subgroups. x° € N (P) \C, (P) , but according to

lemma 2.50, we know that, x° can normalize up to

k:1+n'7_1 :1+18—1
17 17

19

=2 Sylow 17 — subgroups.
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This is a contradiction! Hence G is not a simple group
IMI. The situations solved by induction.

(1)) When|G| =132 =2%-3-11, according to lemma 2.40,
n, =1(mod11) |n, =1(mod3)
{n” 12 ’ {n3|44
Suppose G is a simple group, then there must have 7,, =12and n, =4, 22 . According to the
remark of lemma 2.34, there must have 7n; =22 . So G contains
(l 1- 1) x12 =120 elements of order 11

(3 — l) x 22 = 44 elements of order 3
But 120+44 =164 >132. This is a contradiction. So G is not a simple group.

Q) When|G| =280=2"-5-7, according to lemma 2.40,
ng=1(mod5) [n, =1(mod7)
{n5|56 ’ {n7|40
Suppose G is a simple group, then n, =56 and n, =8. So G has
(5 - 1) x 56 = 224 elements of order 5

(7 — 1) x & = 48 elements of order 7

Therefore left
280 —224 — 48 = 8 elements

But G has Sylow 2 — subgroups, so 1, =1. According to theorem 7, G is not a simple group.

3) When|G| =380=2%-5-19, according to lemma 2.40,
n,=1(mod19) [n;=1(mod5)
{nw|20 ’ {n5|76
Suppose G is a simple group, then 1,y =20and n, =76.So G has
(19 - l) x 20 =360 elements of order 19

(5 — 1) x 76 =304 elements of order 5
But360 + 304 = 664 > 380 . This is a contradiction! So G is not a simple group.

@ When|G| =495 =3".5-11, according to lemma 2.40,

n, =1(mod11) |n, =1(mod3)
{nn|45 ’ {n3|55
Suppose G is a simple group, then 7,, =45and n, =55.SoG has
(1 1- 1) x 45 =450 elements of order 11
(3 - 1) %55 =110 elements of order 3
But 450+110=1560 > 495 . This is a contradiction! So G is not a simple group.

20

Page - 378



S09

5) When|G| =520=2"-5-13, according to lemma 2.40,
n,=1(mod13) [n;=1(mod5)
{nm|40 ’ {n5|104
Suppose G is a simple group, there must have 7,; =40and 1, =26. SoG has
(13 — 1) x40 =480 elements of order 13

(5 — 1) x 26 =104 elements of order 5
But480+104 =584 > 520. This is a contradiction! So G is not a simple group.

(6) When|G| =616=2"-7-11, according to lemma 2.40,
n, =1(mod7) [n, =1(modl1l)
{n7|88 ’ {nn|56
Suppose G is a simple group, there must have 7, =8and n,, =56. So G have
(7 —l) x 8 = 48 elements of order 7

(1 1- 1) x 56 = 560 elements of order 11

So there left
616 —48—560 = 8 elements

But group G has Sylow 2 — subgroup, son, =1. According to theorem?7, we know that G is not a

simple group.
IV. The situations solved by normal p-complement

(1) When |G| =396 = 2% x3% x11

{nn = 1(mod11)
n,, |36

n,, =112
Suppose G is a simple group, then n,, = 12, ¥P € Syl,.(G), then |[Ng(P)|= 33.

N-(P
Mol @< au)

_:|NG(P)LﬂCG(P)|”AUt(p)|= 10

= Ng(P) = Cc(P). That means G has a normal 11-complement. So G is not a simple group. This
is a contradiction!

Q) When|G| =528 =2%.3-11, according to lemma 2.40,
n, =1(mod3)
{n3 [176
Suppose G is a simple group, then 7, =16 . For any Sylow 3 — subgroup P of G , according to

lemma 2.36, we have ‘G:NG(P)‘=16 , ‘NG (P)‘:33 . According to lemma 2.22,
21
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Ng (P)/CG (P) is isomorphic to a subgroup of Aut(P) . According to lemma 2.9,
[N, (P)/ Cy (P)|I|Aut(P)|=7-1=6. So N, (P)=C,(P) . According to lemma 2.45,

G has a normal 3 — complement and it is not a simple group.

&) When|G| =540=2%-3"-5, according to lemma 2.40,
n; =1(mod5)
ns | 108

Suppose G is a simple group, then n, =6 orn, =26 . If n, =6, then we have a contradiction.

If ny=26 , for any Sylow5— subgroup P of G , according to lemma 2.36, we
have |G: N, (P)|=26 . [N, (P)|=15 . According to lemma 2.2, N, (P)/C,(P) is
isomorphic  to a  subgroup of Aut(P) . According to lemma 2.9,
[N, (P)/ Cy (P)|I|Aut(P)|=5-1=4.So N, (P)=C,(P) . According to lemma 2.45,

G has a normal 5 — complement and it is not a simple group.

@ When|G| =552=27.3.23 according to lemma 2.40,
{nB =1(mod23)
n,, | 24
Suppose G is a simple group, then n,; = 24 . For any Sylow 23 — subgroup P of G , according to
lemma 2.36, we have ‘G :Ng (P)‘ =24 | ‘NG (P)‘ =23 . According to lemma 2.22,
N (P) /C, (P) is isomorphic to a subgroup of Aut(P) . According to lemma 2.9,
N, (P)/ C, (P)|I|Aut(P)|=23-1=22.50 N, (P)=C,(P). According to lemma 2.45,

G has a normal 23 — complement and it is not a simple group.

V. The situations solved by using 7, # l(mod pz)

(1) When |G| =432 =2 x3,
n, =1(mod3)
{n3 |16
ny=1,4,16

Suppose G is a simple group, then n; = 16,
- Ny E 1(mod3?)
. There must exists Sylow3-subgroup, |P.:P; NP, =3P nP,=9N £ Nc(P.nP,) =P.F,

27x27 [Py lIP,|
- :_-; | = = —_— -
|N| = |P1P‘_| o |piﬂP:| 81

= |G: N| = 4, that means G must not be a simple group. This is a contradiction!

(2) When |G| =480=2°x3x5
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n, =1(mod?2)
{nz |15
n, =1,3,5,15
Suppose G is a simple group, then n, = 5,15
Suppose N, =5, then G = A;. However |G| = 480t [A;| = 60,
If ng =15 £ 1(mod2?), then there must be 2 Sylow2-subgroup P;.P; satisfied|F;: P, NP, |=2.

That meansP, N Py < B,(i = 1,2). LetN = Ng (P, 1 Py), then|N| = [P, By| = BallPal _ 3232 _ ¢4

T PynPy| T 16
& |G:N| =5,s0 G A:. This is a contradiction!
VI. The situations which may be a simple group
(1) When |G| =060, ifG=Z,, then G is not a simple group. If G = A4, , then G is a simple
group.

Q) |G| =168=2"x3x7, The order of the simple group PSL(F7)[2]is

|PSL, (F,)| = 53_1;2(277:3 =168

However when G 2 Z. 44, it isn’t a simple group. So group G of order 168 may be a simple group

or may not.
(3) |G| =360 =2%x3% x 5. Since |4;| =§ |Sg] =360 and Agis a simple group.

However when G 2 Zz4, it isn’t a simple group. So group G of order 360 may be a simple group
or may not.

@ When|G| =504 =2’ -3%.7 . The order of the simple group PSL, (F;g ) [2]is

P g

However when G =Z,, , it isn’t a simple group. So group G of order 504 may be a simple

group or may not.
5) When|G| =660=2"-3-5-7. The order of the simple group PSL, (E | ) [2]is

IPSL(F )‘:(112—1)(112—11) _

(11-1)(2,11-1)

it isn’t a simple group. So group G of order 504 may be a simple

However when G=Z, ,

group or may not.

Considering all the above, here we come to the conclusion.

Theorem 9 A group G of order less or equal than 700 could not be simple except for

|G| €{60,168,360,504,660} and all prime numbers.
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§ 4 Ending and the questions left
Basing on Sylow theorem, Burnside theorem and elementary group theories like group action,
we got a series of conditions to judge whether the group is simple or not.

Theorem A group G of order less or equal than 700 could not be simple except for
|G| €{60,168,360,504,660 and all primes} .

The distribution of simple group of low-order is discussed. But we can’t make a discussion to
simple groups of order more than 700. Above the whole paper, research on numbers of particular
Sylow subgroups is the main work. Sometimes we can judge it directly by exact division, while
sometimes some methods like group action or some properties of permutation group. All in all,
analyzing should be directed against specific conditions and methods are not fixed.

Here G is a finite group and P is its subgroup, |G|= p"m,(p,m)=1, According to Lagrange
theorem, we have
G: P|=|G: N, (P)|Ns(P): P
That i
(611G N, (P (P): P17
Thereinto

G: N, (P)|=n,=1+kp=1(mod p). |P|=p’
With the notation‘NG (P) : P‘ =v, we have

|G|=+kp)-v-p"

If an unified restrictive condition of the three parameter (k, v, r) above can be found, we are
able to judge whether the group of high order is simple or not. This is an important question left to
be studied.

24
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