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Abstract

This article applies functional knowledge and computer software to
describe the relation between people distribution and evacuation
efficiency and safety in high-rise buildings. The people distribution
contains two parts: the allocation of people in different storeys and

the distribution of people in a certain storey.

Through this mathematical model, we attempt to find the optimum

plan of people distribution and use it to guide the distribution of

different functional areas in high-rise buildings.

Key Words: functional; people distribution; evacuation efficiency

and safety; high-rise buildings
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Chapter | Introduction

From the 2008 Wenchuan Earthquake to the mud-rock flow in Zhouqu in 2010,
natural disasters have repeatedly occurred in our country in recent years,
including the Ya’an Earthquake this year which gave rise to heavy injuries and
deaths. In order to better react to possible disasters, our school organized a
mimic evacuation last autumn, and it was in this evacuation that an idea struck
us to put forward a brand-new perspective in countermeasures against potential
emergencies.

After some research, we have found that the academia puts major emphasis on
the following four aspects to decrease casualties:

1. Ensuring the security of the buildings

2. Optimizing the layout of the structures

3. Designing the optimum evacuation route

4. Arranging rescue plans and medical treatment

However, we noticed another factor that might also exert a strong influence on
the efficiency and security during the evacuation. That is, the distribution of
people among different areas, including people allocation in different storeys
and people distribution in a specific storey.

In reality, high-rise buildings are multi-functioned. There may be places of office
work, commerce, accommodation, catering, etc. There will be different people
densities according to the specific function of each storey. Therefore, we can
modify the functions of each storey to regulate the people allocation. Take
shopping malls, for instance, we can modify the distribution of clothing stores,
restaurants and depositories to change the number of customers in each storey
and their possible distribution in a certain storey. In this manner, the overall
economic benefits can be retained while the evacuation will be more successful.

Confirming the feasibility of this method, we set out to construct a quantitative
model from the simplest form of a three-storey building. Based on the premise
that people from the first floor need not go by the stairway to evacuate, we
attempt to come up with an equation that can describe the evacuation efficiency
at every stairway exit. During the process, we need the relation between the
average velocity and the people density. After consulting some data and
documents, we find that this equation often appears in the form of negative
exponent function. But we realize, after on-site measurement, that this equation
is not quite consistent with our model. Thus, we optimize the original one and
adopt a more reasonable curve to describe the relation between the average
velocity and the people density in a certain stairway. Ultimately we obtain a
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relatively precise set of equations.

With the assistance of mathematical tools, we obtain, in quantitative terms, the
influence of people distribution on the evacuation efficiency and are therefore
able to find out the best people distribution method. Meanwhile, considering the
possible impact of large number of rush-into people at the stairway exit, we
describe it with the disturbance of each locale to observe and analyze its effect
on the final outcome. Then we come up with the relation between the people
distribution and the evacuation risk.

To conclude, we can modify, according to their significance, the weights of the
two factors (evacuation efficiency and security) to obtain the best people
distribution pattern in a manner that can meet the needs of both, so as to guide
the inner layout of the building and further guarantee the life security of the
people when disasters occur.
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Chapter Il Related Knowledge

2.1 Partial Derivative

In mathematics, a partial derivative of a function of several variables is its
derivative with respect to one of those variables, with the others held constant
(as opposed to the total derivative, in which all variables are allowed to vary).
The partial-derivative symbol is d.

2.2 Ordinary Differential Equation(ODE)

In mathematics, an ordinary differential equation or ODE is an equation
containing a function of one independent variable and its derivatives.

2.3 Calculus of Variations

Calculus of variations is a field of mathematical analysis that deals with
maximizing or minimizing functionals, which are mappings from a set of
functions to the real numbers. Functionals are often expressed as definite
integrals involving functions and their derivatives. The interest is in extremal
functions that make the functional attain a maximum or minimum value - or
stationary functions - those where the rate of change of the functional is zero.

2.4 Linear algebra

Linear algebra is the branch of mathematics concerning vector spaces, often
finite or countably infinite dimensional, as well as linear mappings between such
spaces. Such an investigation is initially motivated by a system of linear
equations containing several unknowns. Such equations are naturally
represented using the formalism of matrices and vectors.
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Chapter III Model Building

3.1 Function Description of evacuation efficiency in stairways

3.1.1 Process of Model Building

When a stairway is short enough, the lag effect caused by the rush-into crowd
can be ignored, so we can consider that there is a certain function relation
between the velocity of circulation and the people density. Obviously, this
function must satisfy the following requirements:

1. As x increases on the positive semi axis, the function value must increase
at first, and then decreases.

2.When x is 0, the function value mustbe 0.

3.When x is on the positive semi axis, the function value is always positive.

4.The function must always have value in real number domain for the
convenience in our later calculation.

Generally, the academia studies on the circulation velocity and people density in
a crowded condition by means of on-site observation and picture recording. Up
to now, a large number of data has been accumulated. Among the experts
studying on it, American scholars Fruin, Maclennan, Nelson, English scholar
Smith, Japanese scholar Ando and Canadian scholar Paul are very representative.
These experts have obtained quite distinct function relations between the
circulation velocity and people density in a certain short stairway, such as linear
functions, circular functions, logarithm functions and negative exponent
functions. [1I Negative exponent functions are most widely used.

However, on the basis of our observation in our school’s stairways, we find that
when x tends to be very large, the function still has a small value. It's quite
different from the negative exponent functions’ prediction, which says the value
will tend to approach 0 rapidly.

Thus, we attempt to adopt truncated normal transformation to fit this relation:
suppose s(x) is the target function,

kzx

X 2
$@) = vy + vy als) - (v + vk~ 5

x is the independent variable unit, which means the aggregate number of people
in a certain stairway. S is the area of the stairway. The third term is the penalty
function, which can make the function value 0 when x is 0. Moreover, this
term’s existence ensures that the optimum solution will not go beyond the
domain in reality application.

Page - 38



E10

3.1.2 Practical Test

According to our on-site measure and calculation in our school’s stairways, we
have obtained enough data to fit the relation and draw the fitting curve, which is:

O <
25+ =
2L _
1.5 —
1} -
0.5 _:'( .-\“-\ =1
f T~ =
||I
f
1} = -
_05 1 1 1 1 1 1 1 1 1
0 20 40 60 a0 100 120 140 160 180 200

The fitting result is:
5§=26.77 (obtained by measure) p;=1.760
k,=0.6519 k,=5.1020 v,=0.2752 v,=2.2079

3.1.3 Comparison with Other Results in Academia

On the basis of the form of our function, we can know:
Vimax = Vo + 11 =2.4831

Plo=vma, = P1 = 1.760

The effective circulation velocity at per unit of width is about 1.6020.

American scholar Fruin’s result, which is obtained by statistics, is [2]:

Plo=vynr = 2:0

The effective circulation velocity at per unit of width is about 1.18.

The national key fire science laboratory in University of Science and Technology
of China obtains its result by the means of camera shooting, which is [3I:

Plo=vynq, ~ 1.8
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3.2 Model in Weak Conditions

3.2.1 Process of Model building

Suppose that each building has a corresponding time and we call it safe time ¢,.
During this period of time after emergencies, we can ensure the building’s safety.
After the safe time, the building’s safety cannot be guaranteed. Therefore, our
purpose is to achieve the most successful evacuation in the safe time.

Firstly, we discuss in the conditions that we can only modify the allocation of
people in different storeys, but can’t modify people’s distribution in a certain
storey. So we temporarily assume that the relation between the time and the
number of rush-into people in per unit of time can be described as negative
exponent function (will be optimized in 3.3). Thus, to each stairway, we can use a
corresponding equation to describe the variation of people’s quantity in this
stairway.

Generally, we suppose s(x) is the evacuation velocity when the number of
people in the stairway is x. And y;(t) is, as time goes by, the change of the
quantity of rush-into people in per unit of time from the storey i. Thus, we can
obtain this equation:

dxi

— = —s(x;) + s(x;_1) +y;(t)

Regard evacuation efficiency as:
ey (B=p. ) _kegxt
s(x) = v + e ta(5=pn) _ (v + vye 1P )e ™75
Therefore, we can take the simplest three-storey building for instance and
assume that people from the first floor can evacuate without going by stairways.
Then we obtain this equation system:

dxq ot
- fi =—s(x1) +ae

dx,

2= fy = —s(w) +s(x) + (A— e ™
dxs
o == s(xz)

x5 is the quantity of people who has already successfully evacuated. A is
determined by aggregate number of people, while a is determined by allocation
plan, so we need to modify a to find the optimum allocation plan.
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3.2.2 Mathematical Proof

To a first order ordinary differential equation system, which has n fixed

initial-values and a fixed parameter a,

dx; .

— = fi(xy, v, xpt,ba) i=12..1n

dt

x;(0) = x;|¢=o

Its image is a curve in (n + 1)-dimensional space. Leading the (n + 2)
dimension a into the system, we will get a certain curve surface corresponding
to a certain value of a. All these curves make up a curved surface in (n +
2)-dimensional space.

Considering a as a variable quantity and change all the derivatives to t into
partial derivatives to t, we will therefore obtain a partial differential system. The
boundary condition is that all initial-values should be known when t equals O:
0x;(t, a) )
0 =fi(xy .x,t,a) i=12..n
x;(0, @) = xi|¢=0
To a certain equation system, the solution is unique.

We do the partial derivative to ¢, and obtain n equations:

0%x;(t,a) ( La)i=12
FYEp = fi(xg ..xp,t,a) i=12..n
As a can’tinfluence initial-values, we can say:
0x;(0,a) _o
Jda
According to that, we can build up n auxiliary equations:
d ox;(t,a) . 12
i aa =fi(xg ..xpt,a) i=12..n
0x; (0, a) _ 0
Jda

0x;(0,a)
Jda
the direction of a (partial derivative) atan arbitrary moment.

means, on the curved surface in (n + 2)-dimensional space, the slope in

From the angle of function, there is a certain value corresponding to a certain

(t, @). Thus, we can regard the system as a binary function to (t, a). Then the

problem of seeking x;’s extreme value has been transformed into the problem of
. 0x;(ty,a) . . .

enabling By 0. The latter is a two-point boundary value problem, which

we can easily solve and therefore obtain the optimum a and extreme value of

X;.
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3.2.3 Application in This Model

According to basic properties of partial derivatives, we can know:

ox

%Qa _9
dt oa
o,
Jda _ %
dt oo
9x3

% %a _93
dt oo

vaxi(O)—oax3(t)—o
da T e YT

It requires the application of numerical technique of ordinary differential

6x3
Pa 9%x
equation and Newton Iteration «a; = a;_; — azgg. If we want to calculate Py
a2
0%x;

we should formally try partial derivative to obtain . When it comes to

da?
higher-rise buildings, there will be more variables related to the allocation of

people, where we can use Jacobian Transformation of the equation system to

achieve Newton Iteration:
A=A — ] Y E)XE

The problem is almost solved now with this tool. With the help of computer
software, we can obtain the optimum s(x) we want, and boundary values can
be found by shooting method or cutting method.

In last autumn’s mimic evacuation in our school, we regard safe time t, as 60
seconds. The teaching buildings in our school are three-storey buildings.
Students in the first floor can quickly evacuate without going by any stairways,
and the actual number of participators in the second and third floor is about 450.
Therefore, we suppose A ~ 10; m = 0.09.

Assume that we can modify the allocation of students in the second and third
floor, and we can obtain the results like that (Here we define step as 1 to do
difference, and in the image, @« = 0 means all the students are in the second
floor, while @ = 10 means all the students are in the third floor):
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Through the above-mentioned method, we can find the optimum «, and
corresponding x4 (t), x,(t). However, we have realized that it requires a large
quantity of calculation to draw an accurate phase diagram of x3(ty, @), for it means
calculating every solution corresponding to a different a.(Computer code @)

As for buildings higher than three storeys, we can use the same method to build
up our model and obtain the optimum specific values of people allocation in
different storeys. The only difference is the number of equations and unknown
numbers.

Through this method, we have already got the conclusion, which can guide the
people allocation in different storeys in high-rise buildings. In reality, we can
apply this conclusion to construction devisal and space distribution.

If we want to describe the evacuation while the people distribution in the storey
can be modified, the y(t), which has a certain form in our model before, must be
transformed into an unknown function in our new model, which only has the
fixed boundary value. If we obtain the y(t) corresponding to the optimum
evacuation plan, we can demarcate the area in the storey corresponding to the
interval [t;,t,]. Ittakes t € [t;,t,] for people in this area to reach the stairway
entrances, and the aggregate number of people in this area should be arranged to

approach fttlz y(t)dt.Take shopping malls, for instance, as people densities in
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different shops are quite different, we can encourage shopkeepers to choose
shop locations and therefore make the regular people distribution approach our
suggested number.

In the following model, we attempt to find the optimum evacuation plan in
strong conditions, which means we can modify the people distribution in a
specific storey. As the boundary conditions of calculus of variations will be
involved, in the following model, we use y(t) to represent the number of people
who are already in the stairways, and use y’(t) to represent the number of
rush-into people in per unit of time:

3.3 Model in Strong Conditions

To make some further discussions, we consider about the situation that we can
modify both the allocation of people in different storeys and the number of
people rushing into the stairway at a certain time, which makes it a more
complicated question requiring to be solved step by step. Take a common
three-storey building, for example, the evacuation can be described by the
following equation system:

dx;

dt

dx,
= —s(xz) +5(x1) + y2(t)

dt
dx;
dt
This equation system can give us a direct vision that, to each defined pair of

= —s(x1) +», (1)

= s(xz)

y1(t) and y,(t), thereisa certain corresponding x;(ty) = foto s(x,)dt. We can

define % = s(x,), with a condition of x3(0) = 0, to replace the integral form.

However, both forms establish a mapping [y, (t), y,(t)] — x3. According to the
definition of functional, this mapping is a binary functional. And what we need is
the extreme value of the functional.

A simple case of this kind of problems can be expressed as:
Define y(t) — x(t,):

dx_ -
P fley,y',t)

x(0) = x0;¥(0) = yo; ¥(t1) = y1
Find the y(f) which can make x(t;) an extreme value in its neighborhood.

To solve this question, we need to do the following steps:
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3.3.1 A Single Perturbation’s Influence on ODE

Firstly we discuss about the influence on the ordinary differential equation
caused by a single perturbation at the initial time. Define F(x,, ty):

dx _ .
=[50
x(0) = x4
F(x,to) = x(to)
Solve:
. F(xo +Aa,ty) — F(x0,t5)
lim
Aa—0 Aa

To solve it, we discuss the influence on a caused by a perturbation at the same
order as x:
Define x = x’ 4+ a, the original equation can therefore be written as:

dix"+a) ,
T = f(x + a, t)
x'(0) = x,

Same as the above-mentioned discussion, both sides of the equation can be
partial derived and we can obtain:
dox'+a) dox'

e T PR P
of (x’ +a,t) o(x' +«a of (x' + a,t) 0x’
Righe L Y@ H@D 0+ W ran o
ox' +a oa o(x' +a) oa

Thus,
dox'" of(x'+a,t) ox'
—_— M — 1)
dt oa o(x' +a) oa
Take the definition of F(x,,t,) into consideration, we have:
F(xo + AO(, to) - F(xo, to) _ ax(to)

Aa—0 Aa Jdo

Therefore, the influence on x’ and x caused by a first order perturbation Aa
atarbitrary moment can be expressed as:

, 0x

Ax(ty) = A(x'(t) + a) = (Z_;(W + DA

d
Define f§ = 6—9;, + 1, we have:

df _of (X" + Aa,t) =~ Of (x,t)
dt a(x' +Aa) T ox
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Bto) =1
We name S as amplify factor, and the change of x atany moment can be
expressed as:

Ax = fAa

Now we can extrapolate the influence caused by the perturbation at an arbitrary
moment from its counterpart at the initial moment. Define F(x, ty, t,, @):

du

— =)
u(0) = x,
x; = u(ty)
U =x+a

dv

—=fwD
v(ty) = uy

F(xq,t1,t5,a) = v(t;)
Solve:

F(xg,t1, b5, a) — F(xp,t4,t,0)
m

a-0 (44

According to the above-mentioned discussion, we define:

dx 2 (0) =
E—f(x:t);x( )_xO

df _df(x,t)
— = BiB(t) = 1
When a — 0,
du’ .
— =@, 0)
u'(0) = x, + ?
B(t1)
We have:

u'(ty) =x,+a
According to uniqueness theorem:
u' =v u,v € [ty, +x)
Thus,
Bt
B(t1)

v(ty) —u(ty) = u'(ty) —u(ty) =

d
Speaking of d_f = f(x,t), when x(t,) = xo + Aa, where Aa is a first order

perturbation, the influence on the equation is linear. Thus, a perturbation of Aa
t
attime t; will be amplified to B(ta) Aa atmoment t,, by which we are able to

B(t1)

calculate the influence at arbitrary moment caused by a perturbation at another

Page - 47



E10

arbitrary moment, with a single B (t).
Extrapolate it to equation system:

dx _ .
== [y.D

dy
-E—g@%D

Same as the above-mentioned discussion, we define the perturbation on two
directions are Aay, Aay:
ap, of of
dt - &:Bx + @yxy
dYey 09 ag
dt - aﬂx + @yxy
d 0 d
dt 0x dy
dpy, _of of
Tt — gt @.By
£(0)=1y(0)=0
The influences on two directions at an arbitrary moment are:
Ax = B Aay, + vy Aa,
Ay = yyylay + By Aa,,

By

Similarly, we can also calculate Ac,, Aa,, from certain Ax, Ay.The discussion

above has proved that a perturbation at an arbitrary moment can be replaced by
a perturbation at the initial time. Define y;; = ;> and use the language of linear

algebra:
Yii. o Y
I = ( : : )
Yin = VYan

y:j means the perturbation on the direction of i’s influence on the direction of j.
Thus, the perturbation vector at the initial time will be amplified to:

Yin. o Var Aay
( S ." S ) X ( S )
Yin = Van A(Xn
The perturbation at the moment t; will be amplified to what we show below at

the moment ¢t,:
Aay
F(tz)xf-l(tl)x( : )

Aa,

Assume that there are two perturbations Aa;, Aa,, which occur at different time.
Keeping the generality, we make Aoy occur at the initial time, and the equation
influenced by Aa, should be:
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d
—(x = Aa) = f(x - Ay, )

Treat it like the equations before. When Aa; — 0, the equation of amplify factor
will degenerate to:

df  0f(x,t)
dt Ox’B

In another word, the two perturbations’ influences on each other are second
order perturbations, or you can say that the two perturbations can be
superimposed linearly. Also, we can find that the amplifying parts of the
perturbations only depend on the constant parts, and are independent of the
perturbations. Since all perturbations’ contribution is still a first order
perturbation, they have no influence on the next perturbation. Thus, as for the
continuous second order perturbations, we can integrate them.

3.3.2 Continuous Second Order Perturbations’ Influence on ODE

The second order perturbation mentioned here is produced by the variation of y,
whose integration is a first order perturbation independent of the coming
perturbations. If the second order perturbation is a explicit expression, we have:
tr
B(tz)

Ax = WAZ a(t)dt

dx I
As for i f(x,y,y,t),the arbitrary variation of y(t) atan arbitrary

moment will cause a perturbation in dt, which is:

af af
(a_y 6_’)/ + 5= ayr

Since the equation has explicit x, such a perturbation will be amplified to:

plta) of . . Of
G ( 6y + 6y’6 yhdt

Sy")dt

whose integral is: [

2 B(t2) Of of

. B By T oy Y
B OF L of
. B Gy T oy Y
(B of Bt of
L BN Bw oy Y
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LBy T Bm oy

:ftzﬁ(tz)af(s pe) of |;;+ft25

. B(tz) Of
1 8y (ty) = 8y(ty) = 0, S E=5 6yl

2 p(ty) Of of ftz <ﬁ(tz) of

B Gy oy Y=

- the arbitrariness of 4y,
B(to) 9f  d B(to) Of
() oy  dt B(t) oy’

B(t) oy dt B(t) dy’

d (B(t) of
E(ﬂ(t) W) at

d B(tz) 0f>6ydt

= 0 isthe requirement of the extreme value of x(t,).

We can reduce f(t,) here. However, we'd better keep it for formality since the

transposed matrix I' can’t be reduced.

In conclusion, when y(t) is definite, we have:

dx ,
PriapACH AL
g _ of (x,y,y't) 8
dt 0x
dy
a7V
whose variation is:

. B oy “d p@ oy

When x(t,) comes to extreme, we have:

Po Of d Py Of _

B()dy dtB(t)dy’

2 B(t,)0f  d B(ty) Of 5y

. . . . dy’ L
From this, we can obtain the explicit expression of d_ji’ whose restrictive

conditions are:

x(tx) = Xo, y(tx) = Yo, Y(to) =Y ,B(tx) =

1,80 = B(to)

All these make up another two-point boundary value problem.

3.3.3 Process of Model Building

According to the discussion in 3.1, we can obtain the following function:

2
s(x) = vo + V1e_k1(%_p1) - (vo + vle‘kl(pl)z)e_
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As our model can control the change of the quantity of rush-into people in per
unit of time with the passage of time after emergencies, we should consider not
only the evacuation efficiency, but also the security of our evacuation plan.
Otherwise we can make all the people gather around the stairway entrance, to
ensure they can rush into the stairway just after emergencies happen, ignoring
the risk this action may bring about. That's why the model in 3.1, which satisfies
mathematical requirement, is not actually reasonable.

In most public places, stairways have obstacles such as corners and fire
prevention doors. Even for stairways directly connected to passageways, the
people flow width will be cut down by a half while rushing into stairways, which
may also lead to high possibility of the risk.

Consulting a treatise called Microscopic Modeling and Simulation Analysis of
Crowd Stampede Accident Consequences, written by Qingsong Zhang and Jinlan
Liu, we adopted this definition formula from this treatise to describe the risk
Rer:
Ny

Rer =49 (E) Fy
In this formula, A, isa parameter. N; is the detained people’s quantity at
moment t. N, isthe aggregate number of people. Fy is the number of people
who experience the risk (including pushing, slip, tumble etc.). 5]

Limited by our ability of calculating and investigating, we roughly consider Fy,
Ng both in direct ratio to y’ (the number of rush-into people in per unit of time):

y" o Ny

Fy o Ngo
Therefore, Ry isin directratio to y'2.Its integral to time is the expected risk
during the whole evacuation.

To better evaluate an evacuation plan, in the angle of both efficiency and security,
we set up an evaluation function x, (x; is used to describe people’s quantity in
the stairway):

to

-k (ﬂ—p )2 k 2 _% 2
X, = (vo +ve WSTPY — (py + e RPN e TS — A(y") ) dt

0

Change itinto the form of differential:

dx ey (B2, ) _kaxy
dx _ X1 2 _kaxy
d_t2 = vy +v,€ ke (vo + vie™a @)™ s — 21y’

x1(0) =x,(0) =0
y(0) =0,y(to) = yo
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Thus, what we need to do is to find the y(t) which enables x,(t,) to getthe
extreme value. This y(t) is the optimum evacuation plan we need and can be
used to guide the people distribution in a specific storey.

3.3.4 Mathematical Processing and Realization at Matlab

According to the discussion in 3.3.1, each perturbation at the initial time
(Aa1>
Aa,

(Ax1> _ (Vn V21)
Ax, Yi2 V22
Thus, the perturbation at the moment ¢

Aay (1)

(Aa2 (t))
is equivalent to a perturbationat t =0

(o) = (T x (D)

will be amplified to

whose variation is

fi ofr .,
to -1 — 68y + =46y
f (Vn(to) V21(to)>x(l’11 V21) y ay oy it
o Yi2(to)  V22(to) Yiz Va2 %6 +%6 ,
dy Y ay’ y
2 9h
ftOE (Vn(to) V21(to)> y (Vn V21)_1 y oy
0o & Y12(to)  V22(to) Yiz Va2 %
dy
9h
d [ (vi1(to) v21(to) Yir Yar\ oy’
dt (V12(t0) sz(t0)>x(V12 VZZ) % Ou; dt
oy’

Because the arbitrariness of du;, to make x,(t,) come to extreme, we have:
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o
(Vn(to) Vzl(to))x(}’n V21)_1 ay
Y12(to)  V22(to) Yiz V22 %
dy

of

_d (Vn(to) V21(to)>X(V11 }’21)_1>< ay’

dt| \yiz2(to) v22(to) Yiz V22 %

oy’

whose second line equals 0.

Here we take a short passageway for instance, with s = 10; v, = 0.182; v, =
1.46. Assume it can control people distribution in the radius of 80 and the target
time is 50. The aggregate number of people is 80.

The solution is:

90 : : : . : : : : :
80} e
70t _ﬂ,*”" l
60| /,~”J |
50 | ’ |
- 40} |
30+ ,,“/ q
20} _

10 7 |
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The initial part of the solution oscillates fiercely, which is mainly caused by the
error of programming. During modifying the initial value of iteration, the
amplitude and direction of oscillation changes while the main part of the solution
keeps steady. The third graph can partly instruct the allocation of people in the
compass of competence in a certain exit passageway.

Like other methods based on iteration, whether it can be successfully achieved
largely depends on whether the initial-value can make the iteration converge in
the right direction. In addition, the parameter we need to guess includes the
elements of the transposed matrix, which are difficult to estimate, so it makes a
higher requirement to guessing than average iteration problems.

If an improper initial value is fixed, the solution may be like this:

1.8 I T I T T T I Ll L]

16+ ]
14} ! 4

e .

dy/dt

08 !

T
1

06 ;

04}

T
1

0.2

(computer code @)

The circumstance of our school is that there are four sets of stairways standing
symmetrically on the four corners of the rectangle-shape building. It is obvious
that the optimum solution must satisfy the symmetry of stairways. Assume that
the stairways between the second floor and the third floor have much less
pressure, thus we mainly considerate the pressure of the stairways between the
first floor and the second floor. Therefore, the quantity of people rushing into the
stairways between the first and second floor in a certain period of time can also
be solved by variation problem defined by the above-mentioned equation
system.
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Substitute the parameter values we have obtained in 3.1:
k,=0.6519 k,=5.1020 p,=1.760 s=26.77 (obtained by measure)
v3=0.2752 v,=2.2079

The solution is:

yt)
200 T Ll T ] Ll T

1680

160

140

120

= 100 |}

80

60 |

40 |

20 +

x1(t)
60 T T T T T T T

70

50+

40 +

30+

#1

0 10 20 30 40 50 60 70
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dydt

35F §

dyidt

25} o

0 10 20 30 40 50 60 70

(computer code®)

If we take the pressure of stairways between the second and third floor into
consideration, we should add equations. Actually, as for more-than-three-store
buildings, we can also use the variation theorem to obtain the solution, like the
model in 3.2. The only difference is that we should add equations and unknown
numbers and lead the functional modifying boundary method into our model. As
for the three-storey building problem, we can list all equations and restrictive
conditions:

dx i (*1op. ) _kaxq
d_tl = —v, —vye ta(§=pa) 4 (vo + vye 1PV )e ™5 4y,

dx —ki(*2-5. ) _kaxp ko (B2, )’
_dt2 = —p, — vye ka(F-pe) 4 (vo + e 1P )e ™5 + v, + vy ta(§e)
_koxy

_ (UO + vle—k1(P1)2)e S + y2'
dx ki (*2—05. ) _kax
d_t3 = v, + vy ka(F-p1) (vo + e @™ )e™™ 5 — A((1 )% + (1,)2)

x1(0) = x2(0) = x3(0) =0
¥1(0) = y2(0) = 0; 1 (L) + y2(t0) = Yo
Solve y;,y, when x3(t,) comes to extreme.(To write down 3X3 transposed
matrix [, we can use the same method as 3.3.1. We don’t repeat it here.)

The corresponding Euler Equation is:
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9% 9%
0y, oy;'
f | d f2
F)XI Y (Ox| =— |—=| F't)xI ' (O)x| == | |.i=12
ofs ofs
0y, oy;'
The third line of the expression is 0, which means two more equations. With
dy; .
% = yi', [ = 1,2 added itbecomes a dynamic system. We have 16 equations

and 16 unknown functions. 9 elements, which are final values exactly, need to be
assumed. The original equation system provides 6 boundary values. The
transposed matrix ’ initial value equaling to the unit matrix and the matrix’s final
value equaling to its assumed value provide 9 boundary values each. Now there
are 24 boundary conditions in all. And the last one is determined by the
functional modifying boundary value. Since there is a restrictive condition that
y1(to) + ¥2(ty) = y,, the two variation at the final value are dependent by each
other. We have:

df df

X dy,’ ay,’

! 1 afz 1 afz
(X2 | =T ()X (@) | 5= |6y (to) + ') XTI ™H(E) ; [ 6y2(to)

X3 ayl 63’2

df3 df3

dy,’ ay,’

The third line equals 0.
Considering y,(ty) + y2(ty) = yo» oryou can saydy;(ty) + 6y, (t,) = 0, we can
say that the last boundary condition is:

0f1 0f1

dy;’ ay,’

af, af,

F)XI' 1) | == | —T'te)xI'1(t) -
° %) ° dy,
0fs 0fs

dy;’ ay,’

The third line equals 0.(The two matrixes here are reciprocal. We keep them for
formality in case we meet modifying initial value problems next time.)

In a word, to obtain the optimum plan by variation theorem is theoretically
practicable. Like the model in 3.2, when more variable quantities and functions
are added, variable difference method needs to difference at each dimension and
the error will grow geometrically. Our method can make up the problem. Though
it still involves much compute, it will be much better than variable-difference
method or trying functions without destinations.
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Chapter IV Project Summary

We expect to seek a universal solution to this kind of problems, and attempt to
explore new ways of quantitative research on evacuation by building this model.
In terms of that, we have achieved our goal.

This model can guide the action to arrange a reasonable quantity of people in a
certain area, from which it will take people a certain period of time to reach
stairway entrances. Therefore, it can be used to direct the distribution of
functional areas in high-rise buildings, which can, to a great extent, relieve the
evacuation command pressure and lessen the danger caused by potential
command mistakes.

However, we must admit that this model has some insufficiencies. For instance,
limited by ability of data acquisition, parameters’ values are quite rough,
especially in terms of risk evaluation. If this model can be combined with a more
precise risk estimation model, the result can be much more accurate.

As for our prospect, the safe time £, can be described more precisely. As the safe
time of a building cannot be estimated accurately, we once think of using
probability function to describe its possible value. However, because of the lack
of time, we don’t achieve it, so we expect optimization in this term. Moreover,
combination of our model and functional modifying boundary method can
determine the people allocation in different storeys and the people distribution
is a certain storey at the same time. We have made some attempt, which is
mentioned at the end of our article.
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Appendix

Computer Code:
®Model of People Allocation of The Second and Third Floor in Three-storey
Buildings:

function r = bf3

k1l = 0.6519;
roul = 1.7600;

s = 26.7728;
v0 = 0.2752;
vl = 2.2079;
t0 = 60;

m = 0.09;

A = 10;

lambda = 0:.1:1;

a = A*lambda;

function x3t0 = ff(alpha)
%%

sfun = @(x) v0 + vl.*exp(-kl.*(x./s - roul)."2);

figure(l);
plot(0:100,sfun(0:100), 'k:"');
xlabel('$\mathrm{x}$', 'fontsize',15, 'interpreter',6 'latex');

ylabel('$\mathrm{s}$', 'fontsize',15, 'interpreter', 'latex');

title('$S\mathrm{s}{(x)}$', 'interpreter', 'latex', 'fontsize',15);

function dx1 = Dx1DtSubFun(t, x1)
dxl = -sfun(xl) + alpha.*exp(-m*t);

end

tspan = 0:60;

%tspan = [0 60];

options = odeset('RelTol', 0.0001);
ode45(@Dx1DtSubFun, tspan, 0, options);

sol

t45 = sol.x;
x45

sol.y;

Page - 61



E10

figure(2);clf; hl = axes; %$hold on;
plot(hl, t45, x45, 'r:');
xlabel('\itt'); ylabel('\itx 1'); title('$x 1(t)s',

'interpreter', 'latex', 'fontsize', 15);

h = .1;step
tneed = 0:h:t0;

[valxl,derxl] = deval(sol, tneed);

g = derxl + A*exp(-m*tneed);
SR-K

x2 = zeros(length(tneed),1);
for i = l:length(tneed)-1

K1 = h*(-sfun(x2(i)) + g(i));

K2 = h*(-sfun(x2(i)+ K1/2) + (g(i)+g(i+l1))/2 );
K3 = h*(-sfun(x2(i)+ K2/2) + (g(i)+g(i+l))/2 );
K4 = h*(-sfun(x2(i)+ K3) + g(i+l));

x2(i+1) = x2(i) + 1/6*(K1 + 2*K2 + 2*K3 + K4);
end

figure(3);
plot(tneed, x2, 'r:');
xlabel('\itt'); ylabel('\itx 2'"); title('$x 2(t)$',

'interpreter', 'latex', 'fontsize', 15);

$integralx3|t0

figure(5)

plot(tneed, sfun(x2));

x3t0 = h*sum( sfun(x2(l:end-1))+0.5*diff(sfun(x2)) );
end

x3 = arrayfun(@ff,a);

figure(4);

plot(a, x3,'r*-");

xlabel('\ita'); ylabel('\itx 3'); title('$x_3(t0,a)$’,
'interpreter', 'latex', 'fontsize', 15);

end

@Test of Model in Strong Conditions:

function r = bf
lambda = 0.015;
kl = 0.6519;

k = 5.1020;
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roul = 1.76;

s = 26.7728;
vo = 0.6137;
vl = 4.9234;
%%

t0 = 70;

yt0 = 300;

step = 0.1;%integral step
Num = 3;%

$%initial value;

x10 = 0;
x20 = 0;
y0 = 0;
%%

ml = 2*kl*vl/s;

m2 k/s*(v0+vl*exp(-kl*roul”"2));

$Df = dfl/dxl (partial derivative)

Df = @(x1l)ml.*(xl./s-roul).*exp(-kl.*(xl./s-roul)."2) -
m2.*exp(-k./s.*x1l);

figure(3);

plot(0:100,Df(0:100), 'k:");xlabel('x1l"'); ylabel('Df');
title('dfl/dx1"');

%%
function dx1 = Dx1DtSubFun(t, x1)

dxl =
-v0-vl*exp(-kl*(xl/s-roul)."2)+(v0+vli*exp(-kl*roul”2))*exp(-k*xl/s);

dy = zeros(size(t));

if length(t)>1

for j = l:length(t)
if t(3) < 1

dy(j) = —-(beta(t0)*exp(-t(j)*DE(0.5*t(j))) + c2) /
(2*lambda) ;
else
dy(j) = —-(beta(t0) /beta(t(j))+c2)/(2*lambda);
end
end
else
if t <1
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dy = -(beta(t0)*exp(-t*Df(0.5*t)) + c2) / (2*lambda);
else
2 if isnan(beta(t)) && ~isnan(beta(t0))
% disp(['t:',num2str(t)]);
% disp([ 'beta(t):',num2str(beta(t)),"’
beta(t0):',num2str(beta(t0))]);
% end
dy = —-(beta(t0) /beta(t)+c2)/(2*lambda);
end
end

dxl = dx1 + dy;

end

epsilon = 10" (-3);
beta = @(t)exp(-0.003*t);%iteration
betafirst = beta;

tspan = [0, t0+10];
x10 = 0;

for kk = 1:2

for k = 1:Num

tao = O:step:t0;

tmp = 0;

for i = l:length(tao)-1

if tao(i)<1l%to get rid of warning
tmp = tmp + step*exp(-tao(i)*Df(0.5*tao(i)));
else

tmp tmp + step*l/beta(tao(i));
end
end

integ = tmp;%integral

c2 = (-beta(t0) * integ - 2*lambda*yt0 )/tO0;
gc2 = c2 -1

dy0 -1/(2*lambda) * (beta(t0)+c2);
dyt0 = -(1l+c2)/(2*lambda);
dx1t0 = dyt0 - lambda*dyt0"2;
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options = odeset('RelTol', 0.001);

sol = ode45(@Dx1DtSubFun, tspan, x10, options);
t45 = sol.x;

x45 = sol.y;

figure(l);clf; hl axes; %hold on;

figure(2);clf; gl axes; %hold on;

plot(hl, t45, x45, 'r:'); xlabel(hl, 't'); ylabel(hl, 'x1"); title(hl,
'x1(t)");

plot(gl, x45, Dx1DtSubFun(t45, x45), 'b-'); xlabel(gl, 'I»OExl');

ylabel(gl, 'EUYEdx1'); title(gl, 'x1puAlaE%A=z');

[x45t0,dx45t0] = deval(sol, t0);

%%
dy = @(tt)-(beta(t0)/beta(tt) + c2) / (2*lambda);
O:step:t0;

4

y zeros(size(z));
dydt = zeros(size(z));

l:1length(z)

for i
if z(i)<.5%to get rid ofwaring
dydt(i) = -(beta(t0)*exp(-z(i)*Df(0.5*%z(i))) + c2) /
(2*lambda);
else
dydt (i)

dy(z(i));
end

if i==
y(l) = 0;
continue;
end
y(i) = y(i-1)+ step*0.5*(dydt(i)+dydt(i-1));%integral

end

gshow y(t)

figure(4);

plot(z, y, 'b:');xlabel('t'); ylabel('y'); title('y(t)');

gshow y'(t)

figure(5);

plot(z, dydt, 'b:');xlabel('t'); ylabel('dy/dt'); title('dydt');
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%%
if kk ==
dydtsquare = dydt."2;
x2t0tmp = -x45t0 + yt0 - lambda * step * sum(dydtsquare(l:end-1)
+ 0.5*diff (dydtsquare))

if k ==
x2t0 = x2t0tmp;
bestnum = k;

end

if x2t0 < x2t0tmp & x2tO0tmp > 0
x2t0 = x2t0tmp;
bestnum = k;
end
end
%%
betatmp = @(t)Df(deval(sol, t));
beta = @(tt)exp(quadl(betatmp, 0, tt));

end

if kk ==
Num = bestnum;
disp([ 'bestnum:',num2str(bestnum)]);
beta = betafirst;$%

end

end

end

®Model in Strong Conditions’ Functional Method’s Application Test in Our
school

function r = bf2

lambda = 0.04;

kl = 0.6519;
k = 5.1020;
roul = 1.76;
s = 26.7728;
v0 = 0.2752;
vl = 2.2079;
$%guess
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t0 = 70;
yto = 191;
step = 0.1l;%integral step

Num = 3;%iteration number

%$%initial value;

x10 = 0;
x20 = 0;
y0 = 0;
%%

ml = 2*kl*vl/s;
k/s*(v0+vl*exp(-kl*roul”2));

m2

$Df = dfl/dxl (partial derivative)

Df = @(x1l)ml.*(x1l./s-roul).*exp(-kl.*(xl./s-roul)."2) -
m2.*exp(-k./s.*x1l);

figure(3);

plot(0:100,Df(0:100), 'k:");xlabel('x1l'); ylabel('Df');
title('dfl/dx1"');

%%
function dx1 = Dx1DtSubFun(t, x1)

dxl =
-v0-vl*exp(-kl*(xl/s-roul)."2)+(v0+vli*exp(-kl*roul”2))*exp(-k*xl/s);

dy = zeros(size(t));

if length(t)>1

for j = l:length(t)
if t(3) < 1

dy(j) = -(beta(t0)*exp(-t(j)*DE£(0.5*t(j))) + c2) /
(2*lambda) ;
else
dy(j) = -(beta(t0) /beta(t(j))+c2)/(2*lambda);
end
end
else
if t <1
dy = -(beta(t0)*exp(-t*Df(0.5*%t)) + c2) / (2*lambda);
else
% if isnan(beta(t)) && ~isnan(beta(t0))
% disp(['t:',num2str(t)]);
% disp([ 'beta(t):',num2str(beta(t)),"

beta(t0):',num2str(beta(t0))]);
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% end
dy = —-(beta(t0) /beta(t)+c2)/(2*lambda);
end
end
dxl = dx1 + dy;

end

epsilon = 10" (-3);
beta = @(t)exp(-0.003*t);%guess initial value as -0.0001;iteration
betafirst = beta;

tspan = [0, t0+10];
x10 = 0;

for kk = 1:2

for k = 1:Num

tao = O:step:t0;
tmp = 0;
for i = l:length(tao)-1
if tao(i)<1l%to get rid of warning
tmp = tmp + step*exp(-tao(i)*Df(0.5*tao(i)));
else

tmp tmp + step*l/beta(tao(i));
end
end

integ = tmp;%integral

c2 = (-beta(t0) * integ - 2*lambda*yt0 )/tO0;
gc2 = c2 -1

dy0 = -1/(2*lambda)*(beta(t0)+c2);
dyt0 = -(1l+c2)/(2*lambda);
dx1t0 = dyt0 - lambda*dyt0"2;

options = odeset('RelTol', 0.001);

sol = ode45(@Dx1DtSubFun, tspan, x10, options);
t45
x45

sol.x;

sol.y;

figure(l);clf; hl

axes; %hold on;

figure(2);clf; gl axes; %hold on;
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plot(hl, t45, x45, 'r:'); xlabel(hl, 't'); ylabel(hl, 'x1'); title(hl,
'x1(t)');

plot(gl, x45, Dx1DtSubFun(t45, x45), 'b-'); xlabel(gl, 'I»OExl');
ylabel(gl, 'EUYEdx1'); title(gl, 'x1puAlaE%A=');

[x45t0,dx45t0] = deval(sol, t0);
%%

dy = @(tt)-(beta(t0)/beta(tt) + c2) / (2*lambda);
O:step:t0;

z

y zeros(size(z));
dydt = zeros(size(z));
for i = l:length(z)
if z(i)<.5%get rid ofwaring
dydt (i) —-(beta(t0)*exp(-z(i)*Df(0.5*z(1))) + c2) /
(2*lambda) ;
else
dydt (i)

end

dy(z(1i));

if i==
y(l) = 0;
continue;

end

y(i) = y(i-1)+ step*0.5*(dydt(i)+dydt(i-1)) ;s

end

gshowy (t)

figure(4);

plot(z, y, 'b:');xlabel('t'); ylabel('y'); title('y(t)');
gshowy' (t)

figure(5);

plot(z, dydt, 'b:');xlabel('t'); ylabel('dy/dt'); title('dydt');

%%
if kk ==
dydtsquare = dydt."2;
x2t0tmp = -x45t0 + yt0 - lambda * step * sum(dydtsquare(l:end-1)
+ 0.5*diff (dydtsquare))

if k ==
x2t0 = x2t0tmp;
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bestnum = k;

end

if x2t0 < x2t0tmp & x2tO0tmp > 0
x2t0 = x2t0tmp;
bestnum = k;
end
end
%%

betatmp = @(t)Df(deval(sol, t));

beta = @(tt)exp(quadl(betatmp, 0, tt));
end

if kk ==
Num = bestnum;

disp([ 'bestnum:',num2str(bestnum)]);
beta = betafirst;
end

end

end
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