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Point Source Super-resolution Via Non-convex L1 Based
Methods

Yifei Lou · Penghang Yin · Jack Xin

Abstract We study the super-resolution (SR) problem of recovering point
sources consisting of a collection of isolated and suitably separated spikes
from only the low frequency measurements. If the peak separation is above a
factor in (1, 2) of the Rayleigh length (physical resolution limit), L1 minimiza-
tion is guaranteed to recover such sparse signals. However, below such critical
length scale, especially the Rayleigh length, the L1 certificate no longer exists.
We show several local properties (local minimum, directional stationarity, and
sparsity) of the limit points of minimizing two L1 based nonconvex penalties,
the difference of L1 and L2 norms (L1−2) and capped L1 (CL1), subject to the
measurement constraints. In one and two dimensional numerical SR examples,
the local optimal solutions from difference of convex function algorithms out-
perform the global L1 solutions near or below Rayleigh length scales either in
the accuracy of ground truth recovery or in finding a sparse solution satisfying
the constraints more accurately.

Keywords Super-Resolution · Rayleigh Length · L1−2 · Capped L1 ·
Difference of Convex Algorithm (DCA)

1 Introduction

Super-resolution (SR), as its name states, aims at enhancing the resolution of a
sensing system, in which the resolution is limited by hardware such as lens and
sensors. It is closely related to interpolation [23] in the sense of filling in infor-
mation on an unknown fine grid based on what is available on the coarse grid.
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As particularly useful in imaging applications, such as high-definition televi-
sion and retina display used in Apple products, SR is often cast as an image
reconstruction problem, for which some methods are directly transplanted onto
SR, e.g., total variation [24], non-local means [31], and sparse dictionary repre-
sentation [39]. For other SR methods, please refer to two survey papers [3,26]
and references therein.

The super-resolution problem addressed in this paper is different to image
zooming or magnification, but aiming to recover a real-valued signal from its
low-frequency measurements. A mathematical model is expressed as

bk =
1√
N

N−1∑
t=0

xte
−i2πkt/N , |k| ≤ fc, (1)

where x ∈ RN is a vector of interest, and b ∈ Cn is the given low frequency
information with n = 2fc+1 (n < N). This is related to super-resolution in the
sense that the underlying signal x is defined on a fine grid with spacing 1/N ,
while we only observe the lowest n Fourier coefficients, which implies that we
can only expect to recover the signal on a coarser grid with spacing 1/n. For
simplicity, we use matrix notations to rewrite eq. (1) as b = SnFx, where Sn
is a sampling matrix by collecting the lowest n frequency coefficients, F is the
Fourier transform, and we denote Fn = SnF . The frequency cutoff induces a
resolution limit inversely proportional to fc; below we set λc = 1/fc, which is
referred to as Rayleigh length (a classical resolution limit of hardware [19]).
Hence, a super-resolution factor (SRF) can be interpreted as the ratio between
the spacing in the coarse and fine grids, i.e., SRF = N/n ≈ 0.5λcN.

We are interested in superresolving point sources. It is particularly useful in
astronomy [32], where blurred images with point sources need to be cleaned or
super-resolved. Suppose x is composed of points sources, i.e., x =

∑
tj∈T cjδtj ,

where δτ is a Dirac measure at τ , spikes of x are located at tj belonging to a
set T , and cj are coefficients. Denote K = |T | be the cardinality of the set T ,
and sparsity assumption implies that K � N . Recently, sparse recovery prob-
lem becomes popular due to rapid advances in compressive sensing (CS) [13].
The provable performance of CS methods relies on either restricted-isometry
property (RIP) [4] or incoherent measurements [35,36]. Unfortunately for SR,
the sensing matrix Fn is highly coherent [17]. Consequently, sparse SR de-
serves special attention, which may lead to a better understanding of CS. For
example, Demanet and Nguyen [11] discussed minimax recovery theory and
error bounds by analyzing restricted isometry constant (a CS concept).

In addition to sparsity, we also assume that the point sources are separated
by a critical distance, which is referred to as minimum separation (MS) [6] (cf.
Definition 1). Theoretical results based on the analysis of L1 certificate or in-
terpolating trigonometric polynomials of sparse sign patterns [6] demonstrate
that point sources can be exactly recovered in the noise-free case as long as
any two spikes are MS distance apart (cf. Theorem 1).

Definition 1 (Minimum Separation) Let T be the circle obtained by identi-
fying the endpoints on [0, 1] and Td the d−dimensional torus. For a family of
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points T ∈ Td, the minimum separation is defined as the closest warp-around
distance between any two elements from T ,

MS := 4(T ) := inf
(t,t′)∈T :t6=t′

|t− t′|, (2)

where |t− t′| is the L∞ distance (maximum deviation in any coordinate).

Theorem 1 [6, Corollary 1.4] Let T = {tj} be the support of x. If the min-
imum distance obeys

4(T ) ≥ 2λcN, (3)

then x is the unique solution to L1 minimization:

min |x|1 s.t. Fnx = y. (4)

If x is real-valued, then the minimum gap can be lowered to 1.87λcN .

We want to analyze the constant in front of λcN in eq. (3), referred to as
minimum separation factor (MSF). Theorem 1 indicates that MSF≥ 2 guar-
antees the exact recovery of L1 minimization with a recent improvement to
1.26 [18] at the cost of an additional constraint that fc ≥ 1000. This line of
research was originated from Donoho [12], who showed that MSF> 1 is suffi-
cient if the spikes are on the grid. Note that both aforementioned works [6,18]
are formulated in terms of off-grid spikes. Another article about off-grid spikes
was [1] by Aubel et al, who also arrived at MSF> 1 if windowed Fourier (or
short-time Fourier transform) measurements are available. Furthermore, there
are two works that do not require MS. De Castro and Gamboa [10] showed
that K spikes can be resolved from 2K + 1 Fourier samples; and with addi-
tional positive assumption of point sources, Donoho et al. [14] showed that
2K noiseless measurements are sufficient to yield exact recovery of K positive
spikes. In addition to these exact recovery results, errors in spike detection
and noise robustness are of great interest as well. Fernandez-Granda analyzed
error bounds of constrained L1 minimization in [18], while the unconstrained
version was addressed in [34] under a Gaussian noise model as well as in [2] for
any sampling scheme. The robustness of spike detection was discussed in [15].

1.1 Our contributions

We investigate recovery performance of two nonconvex L1 based penalties, the
difference of L1 and L2 norms (L1−2) and capped L1 (CL1). The former is re-
cently proposed in [22,40] as an alternative to L1 for CS, and the latter is often
used in statistics and machine learning [33, 41]. Numerical simulations show
that L1 minimization often fails when MSF< 1, in which case we demonstrate
that both L1−2 and CL1 outperform the classical L1 method.

During the course of simulation study, we observe that the rank property is
mostly satisfied for L1−2, i.e. the L0 norm of the reconstructed solution does
not exceed n (the rank of A). We find that exact sparse recovery is almost
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unlikely when MSF is very small, but the reconstructed solution is still sparse
with sparsity at most n. In addition, we have the following relationship: MS ·
K ≤ N , MSF=MS·fc/N , and rank(A) = n = 2 ·fc+1. Putting them together,
we get K < 0.5n/MSF. This inequality implies that we may reconstruct a
vector sparser than the ground-truth (c.f. Figure 4).

The rest of the paper is organized as follows. Section 2 reviews numeri-
cal methods for L1 minimization [6] and Lp (0 < p < 1) minimization [20].
Section 3 describes the proposed algorithms for two non-convex functionals,
L1−2 and CL1, in a unified way. We analyze the theoretical aspects of the two
methods in Section 4 including rank property, local minimizers, and station-
ary points. Experiments on both one-dimensional signals and two-dimensional
images are examined in Section 5, followed by conclusions in Section 6.

2 Review on L1 and Lp minimization

To make the paper self-contained, we briefly review two numerical algorithms:
L1 minimization via semi-definite program (SDP) in [6] and Lp minimization
via iteratively reweighted least square (IRLS) in [20], both of which will be
examined in Section 5 as a benchmark to the proposed L1−2 and CL1 methods.

2.1 L1 via SDP

To recover the optimal solution of (4), Candés and Fernandez-Granda [6] con-
sidered a dual problem, i.e.,

maxc Re〈y, c〉 s.t. ‖F∗nc‖∞ ≤ 1; (5)

the constraint says that the trigonometric polynomial F∗nc(t) =
∑
|k|≤fc cke

i2πkt

has a modulus uniformly bounded by 1 over the interval [0, 1]. As indicated
in [6, Corollary 4.1], this constraint is equivalent to the existence of a Hermi-
tian matrix Q ∈ Cn×n such that[

Q u
u∗ 1

]
� 0,

n−j∑
i=1

Qi,i+j =

{
1 j = 0
0 j = 1, 2, · · · , n− 1.

(6)

Therefore, the dual problem is equivalent to

{ĉ, Q̂} = arg max
c,Q

Re〈y, c〉 s.t. (6), (7)

which can be solved via SDP on the decision variations c ∈ Cn, Q ∈ Cn×n, in
total (n+ 1)2/2 variables. Once the optimal dual variations ĉ, Q̂ are obtained,
a root-finding technique is used to retrieve a solution to the primal problem
(4). In particular, the trigonometric polynomial,

p2n−2(ei2πt) = 1− |F∗c (t)|2 = 1−
2fc∑

k=−2fc

uke
i2πkt, uk =

∑
j

ĉj ¯̂cj−k, (8)
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is a real-valued and nonnegative trigonometric polynomials by construction;
and p2n−2(ei2πt) is either equal to zero everywhere or has at most n− 1 roots
on the unit circle. Therefore, one simply locates the roots of p2n−2 on the
unit circle in order to recover the support of the optimal solution to the L1

minimization (4); and then amplitudes can be estimated via least-squares. The
noise robustness of this algorithm was analyzed in a follow-up work [5].

2.2 Lp via IRLS

The Lp quasi-norm is often used in CS as an alternative to L1 to approximate
the L0 norm, see [7–9,20,38]. As it is nonconvex for p < 1, Lp minimization is
generally NP hard. In [20], the authors considered a smoothed Lp minimiza-
tion, which is expressed as

minλ

N∑
j=1

(|xj |2 + ε2)p/2 +
1

2
‖Ax− b‖22, (9)

for ε > 0. Taking the gradient of (9) gives the first-order optimality condition,

λ

[
pxj

(|xj |2 + ε2)1−p/2

]
1≤j≤N

+AT (Ax− b) = 0. (10)

Then an iterative scheme is formulated as


xk+1 = arg minλ

N∑
j=1

wkj |xj |2 + 1
2‖Ax− b‖

2
2

wk+1
j = p(|xk+1

j |2 + ε2)p/2−1.

(11)

Each subproblem in (11) can be solved by a weighted least-square type of
equation,

(λW k +ATA)xk+1 = AT b, (12)

where W k is a diagonal matrix with diagonal elements of {wkj , j = 1, · · · , N}.
The parameter ε should be discreetly chosen so as to avoid local minima. The
update for ε in [20] is given as εk+1 = min{εk, c ·r(xk+1)K+1}, where c ∈ (0, 1)
is a constant, r(z) is the rearrangement of absolute value of z ∈ RN , and
K is the estimated sparsity of the vector x to be constructed. This method
gives better results than the classical L1 approaches in the RIP regime and/or
incoherent scenario, but it does not work so well for highly coherent CS, as
observed in [21,22,40].
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3 Nonconvex L1 based minimization via DCA

In this section, we describe a unified approach for solving two nonconvex L1

based minimization problems via a difference of convex algorithm (DCA) [28,
29]. The unconstrained minimization problem is formulated as follows,

minF (x) := λR(x) +
1

2
‖Ax− b‖22, (13)

where R(x) is a regularization term, λ is a balancing parameter, and A = Fn.
We consider two regularization terms:

RL1−2
(x) = ‖x‖1 − ‖x‖2 (L1−2) (14)

RCL1
(x) =

∑
j

min{|xj |, α}, (CL1) (15)

where α in RCL1 is a pre-defined parameter. A variant of CL1 is of the form∑
j min{|xj |/α, 1}, referred to as a normalized capped L1 [27]. However, the

normalized CL1 is computationally stiff in the super-resolution setting, while
L1−2 is not, and parameter free.

The method of DCA decomposes F (x) = G(x) − H(x) where both G(x)
and H(x) are convex. By linearizing H, we obtain an iterative scheme that
starts with x1 6= 0,{

yk ∈ ∂H(xk)
xk+1 = arg minx∈RN G(x)−

(
H(xk) + 〈yk, x− xk〉

)
,

(16)

where yk is a subgradient of H(x) at xk. The DC decomposition is{
GL1−2

(x) = 1
2‖Ax− b‖

2
2 + λ‖x‖1

HL1−2
(x) = λ‖x‖2,

{
GCL1(x) = 1

2‖Ax− b‖
2
2 + λ‖x‖1

HCL1(x) = λ
∑
j max(|xj | − α, 0),

(17)

for L1−2 and CL1 respectively. Each subproblem in (16) amounts to an L1

regularized form

xk+1 = arg min
x∈RN

1

2
‖Ax− b‖22 + λ‖x‖1 − 〈yk, x〉, (18)

where ykL1−2
= λ xk

‖xk‖2 for L1−2, and ykCL1
= λsign(xk). ∗max(|xk| − α, 0)1 for

CL1. To solve (18), we consider the augmented Lagrangian

Lδ(x, z, u) =
1

2
xT (ATA)x+ λ‖z‖1 − 〈yk, x〉+ 〈u, x− z〉+

δ

2
‖x− z‖22,

where z is an auxiliary variable; to enforce the constraint x = z, the Lagrange
multiplier δ > 0 and dual variable u are introduced. ADMM iterates between

1 Denote .∗ be entry-wise multiplication, and | · | be entry-wise absolute value (Note ‖ · ‖1
is the standard L1 norm).
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minimizing Lδ with respect to x and z, and updating the dual variable u.
Therefore, an iterative scheme for solving the subproblem (18) goes as follows,xl+1 = (ATA+ λId)

−1(δ(zl + ul)− yk)
zl+1 = shrink(x− u, λ/δ)
ul+1 = ul + zl+1 − xl+1,

, (19)

where the subscript l indexes the inner iterations. Note that the matrix inver-
sion (ATA+λId)

−1 can be efficiently implemented by Fast Fourier Transforms,
as A is the multiplication of a sampling matrix and Fourier matrix. The sub-
problem (18) is convex, and hence it is guaranteed to have an optimal solution
x∗ via (19), and we take it to be the solution of (18), i.e., xk+1 = x∗.

For the constrained formulation,

minR(x) s.t. Ax = b, (20)

we apply a similar trick to the unconstrained version by considering the fol-
lowing iterative scheme,

xk+1 = arg min
x
{‖x‖1 − 〈yk, x〉 s.t. Ax = b}. (21)

To solve (21), we introduce two dual variables u, v and define an augmented
Lagrangian

Lδ(x, z, u, v) = ‖z‖1−〈yk, x〉+〈u, x−z〉+〈v,Ax−b〉+
δ

2
‖x−z‖2+

δ

2
‖Ax−y‖2,

where ADMM finds a saddle point (x∗, z∗, u∗, v∗) satisfying

Lδ(x∗, z∗, u, v) 6 Lδ(x∗, z∗, u∗, v∗) 6 Lδ(x, z, u∗, v∗) ∀x, z, u, v.

As a result, we take xk+1 = x∗.

4 Theoretical properties

In this section, we investigate a rank property, namely the L0 norm of the
reconstructed solution does not exceed n (the rank of A). First of all, we
examine the probability of finding the exact solution with 100 random trials
for L1−2, CL1 with α = 0.1, and Lp with p = 1/2. The left of Figure 1
illustrates that it is unlikely to find the exact solution when MSF is small
(< 0.8), which implies that multiple sparse vectors satisfying Ax = b do exist.
On the other hand, we plot the probability of rank property being satisfied
on the right of Figure 1, by counting how many times the L0 norm of the
reconstructed solution is smaller than or equal to n. The results suggest that
the rank property is true for both L1−2 and CL1 when MSF> 1 or when
L1 certificate holds. More importantly in the worse case (MSF< 0.8), L1−2
provides a sparse solution (sparsity ≤ n) while satisfying the constraint, which
is the best one can do. It seems unlikely for Lp to have the rank property.
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Fig. 1 Probability (%) of finding the exact solution (left) and of rank property being
satisfied (right) for both L1−2 and CL1 with α = 0.1. It shows over 95% chance that
the reconstructed solutions using L1−2 are n−sparse, though it does not find the exact
ground-truth solution when MSF is small (< 0.8).

One deterministic result regarding the rank property is given in [40, The-

orem 3.1] that there exists λn such that for any λ > λn := ‖A‖2‖b‖√
n+1−1 , the

stationary point of the unconstrained L1−2 minimization problem has at most
n non-zero elements. In practice, we choose a much smaller λ than λn, which
usually yields a smaller residual and better recovery. As for CL1, we can not
derive such result, as ykCL1

is not bounded a priori and hence no upper bound
of sparsity in terms of λ for CL1. For the rest of this section, we give some
theoretical analysis on the rank property that is independent of λ.

4.1 Local minimizers

It is shown in [40, Theorem 2.3-2.4] that any local minimizer of L1−2 has
the rank property, as summarized in Theorem 2. With additional assumption,
we prove the rank property for CL1 in Theorem 3. The error bounds at high
probability of a local minimizer of CL1 from the true solution are established in
[37,41] under sparse eigenvalue assumptions of the Hessian of the loss functions
(similar to RIP), which is unfortunately hard to verify.

Theorem 2 Suppose A ∈ Rn×N is of full row rank. If x∗ is a local minimizer
of L1−2 in either a unconstrained (13) or constrained (20) formulation, then
the sparsity of x∗ is at most n.

Theorem 3 Suppose A ∈ Rn×N is of full row rank. If x∗ is a local minimizer
of CL1 in either a unconstrained (13) or constrained (20) formulation and the
objective function is not flat in the neighborhood of x∗, then the sparsity of x∗

is at most n.

Proof We only provide proof for the constrained case, and the unconstrained
version is almost the same. It is sufficient to show the columns of AΛ∗ are
linearly independent. Prove by contradiction. Suppose there exists v ∈ ker(A)\
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0 such that supp(d) ⊆ Λ∗. Denote Λ∗α+ = {j : |x∗j | > α}, Λ∗α− = {j : |x∗j | < α},
and Λ∗α = {j : |x∗j | = α}. For any fixed neighborhood of x∗, we scale d so that{

|x∗j ± dj | > α j ∈ Λ∗α+
|x∗j ± dj | < α j ∈ Λ∗α−

(22)

Consider two feasible vectors in Br(x
∗), x̂ = x∗ + d and x̆ = x∗ − d. Since

supp(d) ⊆ Λ∗ and d ∈ ker(A), we have supp(x̂) ⊆ Λ∗, supp(x̆) ⊆ Λ∗, and
Ax̂ = Ax̆ = Ax∗. By analyzing RCL1(x∗) and RCL1(x∗ ± d), we get

RCL1
(x∗ + d) +RCL1

(x∗ − d)− 2RCL1
(x∗)

=
∑

j∈Λ∗α−

(
|x∗j + dj |+ |x∗j − dj | − 2|x∗j |

)
+
∑
j∈Λ∗0

(
min(|α+ dj |, |α− dj |)− α

)
.

The first term is zero for v sufficiently small, while the second term is negative
if Λ∗0 6= ∅, so we have

RCL1(x) ≥ min{RCL1(x̂), RCL1(x̆)}.

As long as RCL1
(x∗) is not flat (or constant) in Br(x

∗), the above inequality
is strict, which contradicts with the assumption that x∗ is a local minimizer
in Br(x

∗).

Remarks: It is possible that objective function for CL1 is not constant. For
example, if the set {j : −α < xj < 0} has different cardinality to the set {j :

0 < xj < α}, then RCL1
(x̂) 6= RCL1

(x̆). Or if Λ∗0 6= ∅, then
∑
j∈Λ∗0

(
min(|α+

dj |, |α− dj |)−α
)
< 0. In addition, the rank property of CL1 depends on α. If

α is small, then the set Λ∗α− may be empty, and hence rank property does not
hold. Another interpretation is that if α is too small, the problem is a small
perturbation of the least squares problem where sparsity is absent. If α is too
large, the CL1 is no longer a good approximation of the L0 norm. Empirically,
we find that an adaptive update of α during iterations works better than a
fixed value, one advantage of which is no need to tune this parameter. The
analysis of adaptive α is beyond the scope of this paper.

Applying convergence properties of general DCA studied in [29, 30] for
CL1, we know the limit point, x∗, is a local minimizer if no component of x∗

is equal to ±α. We numerically calculate the probability of the computed so-
lution not taking values ±α, which implies local minimizers. For this purpose,
we test 100 random sparse (ground-truth) vectors from Gaussian distribution
and 25 random choices of α from [0, 1] by uniform distribution, and compute
how many times that the computed solution does not take values ±α. Finally
we plot the probability of the limit points being local minimizers in Figure 2,
which is almost for sure (∼ 99.6%) at each MSF. The probabilities of having
exact recovery and rank property are also provided, which validates that local
minimizers do not imply the rank property, as indicated by Theorem 3. Com-
pared with Figure 1, rank property is more likely to occur for CL1 when α
is chosen randomly instead of a fixed value. This phenomenon again suggests
that an adaptive α may be better.
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Fig. 2 Probability (%) of the computed solution of CL1 with no elements equal to ±α.
The results are averaged over 100 random signals and 25 random choices of α drawn from
uniform distribution [0, 1] at each MSF.

4.2 Second-order optimality condition

By analyzing the second-order optimality condition, we show that either the
stationary point x∗ has at most n non-zero elements or there exists a vector
in any neighborhood of x∗ that has a smaller objective function. We will need
the following technical lemma.

Lemma 1 If λ < min{ ‖A
T b‖2√

N+‖A‖2 ,
‖AT b‖2√
N+1

}, then any first-order stationary point

x∗ ∈ RN of L1−2 unconstrained problem (13) satisfies ‖x∗‖2 > λ.

Proof First, we show that x∗ can not be zero. Suppose x∗ = 0, then by the
optimality condition,

λ(p∗ − q∗)−AT b = 0, (23)

where p∗ ∈ ∂‖x∗‖1 is the subgradient of ‖x‖1 at x∗, and q∗ ∈ ∂‖x∗‖2. It is
easy to see that when x∗ = 0, ‖p∗‖∞ ≤ 1 and ‖q∗‖2 ≤ 1. By (23), we have

‖AT b‖2 = λ‖p∗ − q∗‖2 ≤ λ(
√
N + 1),

or λ ≥ ‖A
T b‖2√
N+1

, which is a contradiction.

Therefore x∗ 6= 0, and

λ(p∗ − x∗

‖x∗‖2
) +AT (Ax∗ − b) = 0. (24)

It follows from (24) that

‖A‖2‖x∗‖2 =‖ATA‖‖x∗‖2 ≥ ‖ATAx∗‖2 = ‖ − λ(p∗ − x∗

‖x∗‖2
) +AT b‖2

≥‖AT b‖2 − λ‖p∗ −
x∗

‖x∗‖2
‖2. (25)
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Let Λ∗ be the support of x∗, then p∗i = sign(x) for i ∈ Λ∗, and |p∗i | ≤ 1
otherwise. So we have |p∗ − x∗

‖x∗‖2 |i < 1 for i ∈ Λ∗, and |p∗ − x∗

‖x∗‖2 |i ≤ 1

otherwise. Using the assumption λ ≤ ‖AT b‖2√
N+‖A‖2 , from (25) it follows that

‖A‖2‖x∗‖2 > ‖AT b‖2 − λ
√
N ≥ λ‖A‖2,

and thus ‖x∗‖2 > λ.

Theorem 4 Suppose λ < min{ ‖A
T b‖2√

N+‖A‖2 ,
‖AT b‖2√
N+1

}. Let x∗ be any limit point

of the DCA L1−2 minimizing sequence. Then we have either ‖x∗‖0 ≤ n (rank
property) or there exists d ∈ RN such that F (x∗ + d) < F (x∗) and x∗ + d is
sparser than x∗.

Proof Taking the difference of objective function values at x∗ + d and x∗, we
get

1

λ

(
F (x∗ + d)− F (x∗)

)
=

∑
j∈Λ∗
〈sign(x∗j ), dj〉+

∑
j∈Λ∗c

|dj |+ 〈
1

λ
AT (Ax− b)− x∗

‖x∗‖2
, d〉


+

1

2
dT

(
1

λ
ATA− 1

‖x∗‖2
+
x∗x∗T

‖x∗‖32

)
d+O(‖d‖32). (26)

Note that x∗ is a column vector in (26), and hence x∗x∗T is a (rank-one)
matrix. Since x∗ is the limit point of DCA sequence, it satisfies the first-
order optimality condition (24). Therefore, the first term in (26) is equal to∑
j∈Λ∗c

|dj | − 〈p∗j , dj〉, and is nonnegative, since p∗j ∈ [−1, 1] for j ∈ Λ∗c .
As for the Hessian matrix in (26), denoted as H, we have

H :=
1

λ
ATA− 1

‖x∗‖2
+
x∗x∗T

‖x∗‖32
=

1

‖x∗‖2
FT (
‖x∗‖2
λ

STn Sn − Id + yyT )F ,

where y = Fx∗/‖x∗‖2 and A = SnF (Sn is a sampling matrix and F is the
Fourier matrix). As STn Sn are a diagonal matrix taking values of either 1 or

0, the matrix D := ‖x∗‖2
λ STn Sn− Id is also diagonal, the elements of which are

β := ‖x∗‖2
λ −1 with multiplicity n, and −1 with multiplicity N−n. By Lemma

1, we have β > 0.
We want to analyze the eigenvalues of H, which is equivalent to analyz-

ing a diagonal matrix D with rank-one perturbation yyT . Suppose u is an
eigenvector of D + yyT with corresponding eigenvalue γ, then we have

(uT y) ·
[

yn
yN−n

]
+

[
(β − γ)In 0

0 (−1− γ)IN−n

] [
un

uN−n

]
= 0, (27)

where y = [yn, yN−n]T and u = [un, uN−n]T . So the eigenvalues of D + yyT

are β with multiplicity n− 1, −1 with multiplicity N − n− 1, and other two,
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denoted as γ1, γ2, satisfying ‖yn‖
2

γ−β + ‖yN−n‖
2

γ+1 = 1, or γ2−βγ−(β+1)‖yn‖2 = 0,

where we use ‖yn‖22 +‖yN−n‖22 = 1. It follows from the quadratic formula that
these eigenvalues satisfy −1 < γ1 < 0 < β < γ2 and γ1 + γ2 = β.

Now we discuss eigenvectors and diagonalization. Each eigenvector for β
has the form of [un, 0] with uTnyn = 0. Denote Un be a matrix with each col-
umn being one of the eigenvectors corresponding to β. We further assume Un
is orthonormal after Gram-Schmidt orthogonalization. Similarly, each eigen-
vectors for -1 has the form of [0, uN−n] with uTN−nyN−n = 0, and we denote
UN−n be an orthonormal matrix composed of all the corresponding eigenvec-
tors. Therefore, an orthonormal matrix, denoted as U , that diagonalizes H
can be expressed as

U =


Un 0

yn
(γ1 − β)α1

yn
(γ2 − β)α2

0 UN−n
yN−n

(γ1 + 1)α1

yN−n
(γ2 + 1)α2

 , (28)

where α1, α2 are normalizing factors.
For any d ∈ RN , we can decompose d = dk + dr, where dk ∈ ker(A) and

dr ∈ range(AT ), and hence Fdk,Fdr have the forms of [0, gN−n]T , [gn, 0]T

respectively. Denote s1 := 〈yn, gn〉, s2 := 〈yN−n, gN−n〉. We can prove that
s1, s2 are real numbers and s1 + s2 = 〈d, x∗〉. Then after tedious calculation,
(26) reduces to

F (x∗ + d)− F (x∗) = λ
∑
j∈Λ∗c

(
|dj | − 〈p∗j , dj〉

)
(29)

+β‖UTn gn‖2 − ‖UTN−ngN−n‖2 + P1s
2
1 + P2s1s2 +N0s

2
2

where P1, P2 > 0 and N0 < 0 are constant with respect to d.
If ‖x∗‖0 > n, then the columns of AΛ∗ are linearly dependent, and hence

there exists d ∈ ker(A) \ {0} such that d ∈ SΛ∗ , where SΛ∗ = {x : supp(x) ∈
Λ∗}. As d ∈ ker(A), Fd = [0, gN−n], i.e., gn = 0 and s1 = 0. Since gN−n 6= 0,
we have F (x∗ + d) − F (x∗) < 0, i.e., x∗ + d has a smaller objective function
than x∗. In addition, we can scale d to cancel one non-zero element of x∗, and
hence x∗ + d is sparser than x∗.

4.3 Stationary points

It is shown in [21, 40] that any limit point of the DCA sequence converges to
a stationary point; and in Theorem 5, we give a tighter result, which states
that the limit point is d-stationary rather than stationary. These stationarity
concepts are related as the set of local minimizers belongs to the set of d-
stationary points, which belongs to the set of stationary points. As we often
observe that limit points of DCA are sparse (see Figure 1), it is likely that any
d-stationary point may have the rank property, which will be left to a future
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work. We first give the definition of d-stationary points [16], and then prove
the DCA sequence converges to a d-stationary point in Theorem 5.

Definition 2 (D-stationary) We say that a vector x̂ ∈ X is a d(irectional) sta-
tionary point of the minimization of a function F (x), or in short, d-stationary,
if

F ′(x̂;x− x̂) ≥ 0, ∀x ∈ X,
where the directional derivative is defined as one-sided derivative

F ′(x; d) := lim
τ↘0

F (x+ τd)− F (x)

τ
. (30)

For example, directional derivatives of L1 and L2 norms at x∗ are

‖ · ‖′1(x∗; d) =
∑
j∈Λ∗
〈sign(∗xj), dj〉+

∑
j /∈Λ∗

|dj |, (31)

and

‖ · ‖′2(x∗; d) =

{
〈 x∗

‖x∗‖2 , d〉 if x∗ 6= 0

‖d‖2 if x∗ = 0.
(32)

As a result, the directional derivative of F (x) for L1−2 can be expressed as

F ′(x∗; d) = λ
∑
j∈Λ∗
〈sign(x∗j ), dj〉+ λ

∑
j∈Λ∗c

|dj | − λ〈
x∗

‖x∗‖2
, d〉+ 〈AT (Ax∗− b), d〉,

(33)
for x∗ 6= 0.

Theorem 5 Let {xk} be the sequence of iterates generated by DCA (16), or
DCA sequence in short, for L1−2, then any limit point x∗ of {xn} is a d-
stationary point of F (x), defined in (13) and R(x) = RL1−2

(x).

Proof In [40], the DCA sequence {xk} was shown to converge to a stationary
point x∗. We now prove that all the iterates (except for the first one) and the
limit point x∗ are non-zero. We assume that the initial point is x0 = 0. Then
it follows from (16) that

F (x1) = λ(||x1||1 − ||x1||2) +
1

2
||Ax1 − b||2 (34)

≤ λ||x1||1 +
1

2
‖Ax1 − b‖2 ≤ 1

2
‖b‖2 = F (0). (35)

Strict inequality holds if zero is not global minimum of L1 problem (which is
generically true). Therefore, nonzero property is maintained during descending
iterations of DCA, i.e., xk 6= 0, ∀k. In addition, x∗ 6= 0 as F (x∗) < F (0).

As x∗ satisfies the first-order optimality condition (24), we can simplify the
directional derivative of F ′(x; d), given in (33),

F ′(x; d) = λ
∑
j∈Λ∗
〈sign(x∗j ), dj〉+ λ

∑
j∈Λ∗c

|dj | − 〈p∗, d〉 (36)

= λ
∑
j∈Λ∗c

(
|dj | − 〈p∗j , dj〉

)
, (37)
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Fig. 3 Error analysis of residuals (left) and relative reconstruction errors (right) on log 10
scale. The underlying signal in this case is with N=1000 and MS=20.

where p∗ ∈ ∂‖x∗‖1. As p∗j ∈ [−1, 1] for j ∈ Λ∗c , then |dj | − 〈p∗j , dj〉 ≥ 0, and
hence F ′(x∗; d) ≥ 0 ∀d, which means x∗ 6= 0 is a d-stationary point.

5 Experimental Results

We numerically demonstrate that the proposed L1−2 and CL1 via DCA can
recover signals beyond the Rayleigh length. Two existing methods, L1 via
SDP [6] and L1/2 via IRLS [20], serve as benchmarks. For 2D image super-
resolution, it is computationally expensive to solve the L1 minimization via
SDP, so we adopt the ADMM approach instead.

5.1 One-dimensional Signal Super-resolution

We consider a sparse signal (the ground-truth) xg of 1000-dimensional with MS
= 20. We vary fc from 31 to 60, thus MSF:= ∆(T ) · fc/N :=MS·fc/N=0.62 :
0.02 : 1.2. Denoted x∗ as the reconstructed signal using any of the methods:
SDP, constrained and unconstrained L1−2. In Figure 3, we plot the residual
(‖Au∗− b‖/‖b‖) and relative reconstruction errors (‖x∗− xg‖/‖xg‖) on log 10
scale. As MSF decreases towards and passes 1, L1−2 with DCA maintains
fidelity (constraints) much better, even for the unconstrained L1−2. More im-
portantly, we observe smaller relative errors of L1−2 than SDP for MSF< 1
when unique sparse solution is not guaranteed. The L1−2 approaches pick one
among a solution pool, while errors in SDP’s root findings tend to violate the
fidelity Ax = b. For MSF> 1 where the L1 certificate holds, L1−2 seems not as
good as SDP in terms of reconstruction errors, which is due to stopping con-
ditions; on the other hand, relative errors on the order of 1e− 5 are accurate
enough.

In Figures 4-5, we examine one particular ground-truth vector and choose
fc to have MSF=0.4 and 0.8 respectively, when all the methods fail to recover
the ground-truth. Figure 4 shows that the reconstructed solutions are sparser
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Fig. 4 Reconstruction comparison for MSF=0.4, from top to bottom: ground-truth, L1 via
SDP (residual ∼ 10−1.6), L1−2 (residual ∼ 10−7.7), and CL1 (residual ∼ 10−5.0). All the
reconstruction methods yield overly sparser vectors compared to the ground-truth.

than the ground-truth when MSF=0.4, which is consistent with our intuition as
discussed in Section 4. We see in Figure 5 that the solution of CL1 is not sparse
when α = 0.1 (the result becomes sparse if we increase α to 0.25). For results
in Figure 5 (MSF=0.8), we observe “peak splitting”, i.e., all the methods miss
one single peak in the ground-truth, and instead recover two nearby peaks,
marked in blue squares. In addition, a peak shift, circled in green, is probably
attributed to both peak splitting and peak merging, as there is a tiny peak on
the left of the green in the ground-truth vector. Since there is no certificate
guarantee in this regime, there are acceptable solutions if the tolerance on
residual is satisfied. The large residual of SDP is clearly due to shifted peak
locations, and there are very few small peaks in SDP. In contrast, there are
some small peaks appearing in L1−2, which may be the cost to satisfy the
constraint. No matter how peaks split or merge, the reconstructed solutions
of L1−2 are sparse.

We now look at success rates in two tests with fixed MS and fixed fc
respectively. In the first case, we consider 100 random realizations of the same
setting as discussed above to get Figure 3, and success rates of three methods
can be computed. An incident (or a reconstructed signal x∗) is labeled as
“successful” if ‖x∗ − xg‖/‖xg‖ < 1.5e− 3 and ‖Au∗ − b‖/‖b‖ < 5e− 4. In the
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Fig. 5 Reconstruction comparison for MSF=0.8, from top to bottom: ground-truth, L1 via
SDP (residual ∼ 10−1.3), L1−2 (residual ∼ 10−7.7), and CL1 (residual ∼ 10−4.9).
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Fig. 6 Success rates (%) of fixed MS= 20 (left) and fixed fc = 20 (right) when N = 1000.

second case, we fix fc = 20, generate a sparse signal with MS = MSF*N/fc,
and repeat 100 random realizations to compute success rates. Both plots in
Figure. 6 show big advantages of L1−2 and CL1 over SDP when MSF< 1.

We examine the scability of the algorithms for N = 1000, 2000, 4000, while
keeping SRF fixed, specifically N/fc = 50. Roughly speaking, all the algo-
rithms are scalable to some extent, as illustrated in Figure 7. For SDP, the
smaller N is, the smaller MSF is observed for exact recovery. As for L1−2 and
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Fig. 7 Scability of the algorithms: N = 2000 (top) and 4000 (bottom) when fc = 20.
N = 1000 is plotted on the right of Figure 6.

CL1, the success rates diminish while N increases, which attributes to the
curse of dimension: as N is large, the iterative DCA scheme does not converge
(for both inner and outer loops) or it takes too long to converge so we have
to stop earlier to obtain less accurate results within a reasonable amount of
time.

5.2 Two-dimensional Image Super-resolution

We present the super-resolution results of 2D images. There are two types of
minimum separation. Definition 1 [6] uses L∞ norm to measure the distance,
while another definition is called Rayleigh regularity (RR) [12, 25], as given
below.

Definition 3 (Rayleigh regularity) FixN,n, and set λ = 1/fc = 2/(n−1). We
say that the set of points T ⊂ {0, 1/N, · · · , 1− 1/N} ⊂ Td is Rayleigh regular
with parameters (d, r) and write T ∈ Rd(t, r;N,n) if it may be partitioned
as T = T1 ∪ · · · ∪ Tr where the Ti’s are disjoint, and each obeys a minimum
separation constraint, that is, for all square subsets D ⊂ T d of side length
tλc/2, |Ti ∩ D| ≤ 1.

Images with these two definitions are illustrated in Figure 8, where Def. 3
(RR) produces more spikes than Def. 1, thus more challenging for image super-
resolution. The theoretical guarantee is studied in [6] for MS and in [25] for
RR with additional assumption of positive sources (the spikes have positive
values). In both papers, MSF is theoretically proven to be capped at 2.38,
while we observe empirically that an exact recovery via L1 minimization oc-
curs at MSF = 1.7. Here is the problem setting: image is of size 100 × 100,
MS = 10, and fc = 4 : 20, thus yielding MSF= 0.4 : 0.1 : 2. We examine
three regularization terms: traditional L1, L1−2, and CL1, all of which are
formulated in a constrained model. The success rates for these two cases are
present in Figure 8. When MSF is below 1.7, the success rates of MS are much
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Fig. 8 Image examples shown on the top row: positive spikes of size 100×100 and MS=10,
which is defined differently in [6] (left) and [25] (right). The corresponding success rates (%)
of L1, L1−2, and CL1, all in a constrained formulation, are plotted on the bottom. An exact
recovery via L1 minimization occurs at MSF = 1.7 for both MS definitions.

higher than that of RR. Both plots illustrate that L1−2 and CL1 (α = 0.1)
have advantages over L1 (solved by ADMM). Note that CL1 is better than
L1−2 on the right plot of Figure 8 in the 2d examples where sources only take
positive values.

Finally we show an image super-resolution example to illustrate the visual
difference. We look at a particular point source image similar to the upper
right plot of Figure 8, which reminds one of the stars in a clear night sky. The
image is of size 100 × 100 with MS=10 based on RR definition, and we only
take 15 × 15 (fc = 7) measurements from low-frequency data, thus yielding
MSF=0.7. If using the inverse FFT after the zero-padded frequency data, the
reconstruction looks very blurry as shown on the upper left of Figure 9. All
the L1 variants (L1, capped L1, and L1−2) result in much sparser and clearer
reconstructions. To have a better visual comparison, we plot the error maps of
the reconstructed result to the ground-truth for the L1 methods. All of them
can find the spikes’ location relatively well, L1 also picks up some neighboring
pixels, and L1−2 has the smallest error.
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(a) Inverse FFT (b) L1

(c) Capped L1 (d) L1−2

Fig. 9 A particular example at MSF = 0.7 using the RR definition (the top right plot of
Figure 8). (a) A reconstruction via a direct inverse FFT, and (b)-(d) are the difference of
the reconstructed solutions using L1, capped L1, and L1−2 to the ground-truth image, with
intensity window [-0.1, 0.1]. The root-means-errors for these results are 0.004 (L1), 0.001
(capped L1), and 0.0005 (L1−2).

6 Conclusions

We presented local properties (local minimum, d-stationary points, and spar-
sity upper bound) of computed solutions minimizing L1−2 and capped-L1

penalties for super-resolution of point sources. At a high probability, the limit
point of DCA-capped-L1 algorithm is a local minimum and is sparse if the
intrinsic parameter of the capped-L1 is suitably chosen. The limit point of
DCA-L1−2 algorithm is a directional stationary point, which is observed nu-
merically to have sparsity upper bounded by the rank of the sensing matrix
at a high probability. In numerical experiments in one and two dimensions,
the two non-convex penalties produced better solutions either in the relative
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accuracy of ground truth recovery or seeking a sparse solution while maintain-
ing the measurement constraints when peak distance of the sparse solutions is
below the Rayleigh length (the classical barrier).
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15. Duval, V., Peyré, G.: Exact support recovery for sparse spikes deconvolution. Found.

Comput. Math. pp. 1–41 (2015)
16. Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementar-

ity problems. Springer Science & Business Media (2007)
17. Fannjiang, A., Liao, W.: Coherence pattern-guided compressive sensing with unresolved

grids. SIAM J. Imaging Sci. 5(1), 179–202 (2012)
18. Fernandez-Granda, C.: Super-resolution of point sources via convex programming. Tech.

rep., arXiv preprint arXiv:1507.07034 (2015)
19. Goodman, J.W.: Introduction to Fourier optics. Roberts and Company Publishers

(2005)
20. Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for uncon-

strained smoothed lq minimization. SIAM J. Numer. Anal. 5(2), 927–957 (2013)



Point Source Super-resolution Via Non-convex L1 Based Methods 21

21. Lou, Y., Osher, S., Xin, J.: Computational aspects of constrained L1-L2 minimization
for compressive sensing. In: Model. Comput. & Optim. in Inf. Syst. & Manage. Sci.,
pp. 169–180. Springer (2015)

22. Lou, Y., Yin, P., He, Q., Xin, J.: Computing sparse representation in a highly coherent
dictionary based on difference of l1 and l2. J. Sci. Comput., online: Oct 2014, DOI
10.1007/s10915-014-9930-1 (2014)

23. Mallat, S., Yu, G.: Super-resolution with sparse mixing estimators. IEEE Trans. Image
Process. 19(11), 2889–2900 (2010)

24. Marquina, A., Osher, S.: Image super-resolution by TV-regularization and Bregman
iteration. J. Sci. Computing 37(3), 367–382 (2008)

25. Morgenshtern, V.I., Candès, E.J.: Super-resolution of positive sources: the discrete
setup. Tech. rep., arXiv preprint arXiv:1504.00717 (2015)

26. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical
overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

27. Peleg, D., Meir, R.: A bilinear formulation for vector sparsity optimization. Signal
Process. 88(2), 375–389 (2008)

28. Pham-Dinh, T., Le-Thi, H.A.: Convex analysis approach to d.c. programming: Theory,
algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997)

29. Pham-Dinh, T., Le-Thi, H.A.: A d.c. optimization algorithm for solving the trust-region
subproblem. SIAM J. Optim. 8(2), 476–505 (1998)

30. Pham-Dinh, T., Le-Thi, H.A.: The dc (difference of convex functions) programming and
dca revisited with dc models of real world nonconvex optimization problems. Annals of
Operations Research 133(1-4), 23–46 (2005)

31. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the non-local-means to
super-resolution reconstruction. IEEE Trans. Image Process. 18(1), 36–51 (2009)

32. Shahram, M., Milanfar, P.: Statistical and information-theoretic analysis of resolution
in imaging. IEEE trans. Inf. Theory 8(52), 3411–3437 (2006)

33. Shen, X., Pan, W., Zhu, Y.: Likelihood-based selection and sharp parameter estimation.
J. Am. Statist. Assoc. 107(497), 223–232 (2012)

34. Tang, G., Bhaskar, B.N., Recht, B.: Near minimax line spectral estimation. IEEE Trans.
Inf. Theory 61(1), 499–512 (2015)

35. Tropp, J.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans.
Inform. Theory 50, 2231–2242 (2004)

36. Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal
matching pursuit. IEEE Trans. Inform. Theory 53(12), 4655–4666 (2007)

37. Wang, Z., Liu, H., Zhang, T.: Optimal computational and statistical rates of convergence
for sparse nonconvex learning problems. Annals of statistics 42(6), 2164 (2014)

38. Xu, Z., Chang, X., Xu, F., Zhang, H.: L1/2 Regularization: A Thresholding Repre-
sentation Theory and a Fast Solver. IEEE Trans. on Neural Networks 23, 1013–1027
(2012)

39. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representa-
tion. IEEE Trans. Image Proc. 19(11), 2861–2873 (2010)

40. Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of l1 − l2 for compressed sensing. SIAM
J. Sci. Comput. 37, A536–A563 (2015)

41. Zhang, T.: Multi-stage convex relaxation for learning with sparse regularization. In:
Adv. Neural Inf. Process. Syst., pp. 1929–1936 (2009)


