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Abstract 

Pell equation is an important research object in elementary number theory of indefinite equation. 

its form is simple, but it is rich in nature. Many number theory problems can be transformed into 

the problem of Pell equation’s solvability. However, the previous methods in determining the Pell 

equation’s solvability are sophisticated for calculation, which leads to the lack of efficiency. This 

paper gives new and more widely used methods to determine the solvability of Pell equation, 

including several necessary conditions, sufficient conditions and necessary and sufficient 

conditions. 
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1. Introduction 

1.1 Background and Motivation 

In studying the theory of continued fraction expansions, we noticed the expansion 

of D -type of irrational numbers were periodic, with its parity of period closely related to the 

solvability of negative Pell equation. Its period is odd if and only if negative Pell equation 
2 2 1Dx y  is solvable.  

It is well known that the positive Pell equation, 

(1.1) 
                         

2 2 1x Dy  , 

has infinitely many solutions ( , )x y whereas the negative Pell equation,  

(1.2) 
                         

2 2 1Dx y  , 

does not always have a solution. 

Henceforth, D will denote a positive square-free integer, and solution refer to a positive 

integral solution. 

The Pell equation is one of the oldest Diophantine equation that has interested 

mathematicians all over the world for more than 1000 years. The most essential problem of these 

two Pell equations is determining their solvability and how to find out the solution to the Pell 

equations as quickly and concisely as possible. Archimedes’ famous “cattle problem” was actually 

a problem about the solvability of the positive Pell equation.  

The solution to positive Pell equation is said to be given by the Indian mathematician 

Braghmagupta in 6th century. Then, in the 17th century, Lagrange advanced his predecessor’s 

theorem and gave the solution to positive Pell equation by continued fraction expansion theory. 

His result was that the positive Pell equation is solvable for any given D , and, the solvability of 

the negative Pell equation is determined by the parity of the period of D ’s continued fraction 

expansion. The equation is solvable if and only if the period is an odd number. The continued 

fraction expansion is a way to construct solutions.  

Not only for huge D may it becomes extremely time consuming, even for some small Ds, the 

solution to the Pell equation is huge. For example, for D=61, we have ( , ) (29718,3805)x y  for 

negative Pell equation. The solutions of which would have huge time expense. According to [10] 

and [11], its running time is approaching  O D . Besides Lagrange, as [7] shows, many other 

mathematicians have made minor contributions to the problem relating the solvability of the Pell 

equation.  

The most popular method that has made great progress today is relating the solvability of 

negative Pell equation to the solvability of other Diophantine equations.  

In 1986, Kenneth Hardy and Kenneth.S.Williams proved that 
2 2 1Dx y  is solvable if 

and only if D is the sum of 
2a and 

2b , where
*,a b ,and a  is an odd number such that the 

Diophantine equation 
2 22 1bV aVW bW   of V,W is solvable.  

The method above is put into use on [15], which means that for any given D we can 

determine whether 
2 2 1Dx y  is solvable or not. Of course, the calculation must be within the 

limitation of computational power.  

A.Grytczuk, F. Luca and M. W ójtowicz [1] proved that the negative Pell equation 
2 2 1Dx y  is solvable if and only if there exist a primitive Pythagorean triple ( , , )A B C (i.e. 

, ,A B C are positive integers satisfying 
2 2 2A B C   and gcd  ( , ) 1A B  ) and positive 

integers ,a b such that 
2 2D a b   and | | 1aA bB  . 
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Of greatest value here is the reduction of the coefficient of the negative Pell equation, which 

may reduce the time complexity in determining the solvability.  

Another approach to this problem involves placing conditions on the modular residues of D 

which guarantee that (1.2) is solvable or unsolvable. This approach was initiated by Legendre in 

1785. Dirichlet[13] observed that if D pq  with 1(mod4)p q  and 

4 4

= 1
p q

q p

   
    

   
(where

4

p

q

 
 
 

means that p is the power 4 residue modulo q ), then (1.2) is 

solvable. For 1 2 3 ND p p p p  , Tano[8] obtained quadratic residue criteria among the ip , which 

when they held would guarantee (1.2) is solvable. Explicit modular residue conditions for 

particular classes of D are still being found, e.g. Kaplan[6], Pumplün[14]. 

However, for some huge D s, the previous results are lack of efficiency.  

This motivates us to promote the previous results and give a quicker algorithm to determine 

the solvability of (1.2). 

 All the methods discussed in this essay are not only capable of determining the solvability of 

negative Pell equation
2 2 1Dx y  , but can also be used to solve many problems relevant to the 

general Pell equation. For instance, they can be used to determine the parity of the period of the 

continued fraction expansion of the irrational number D  etc.  

1.2 The content  

 In section 2, we give the preliminaries, including several important Lemmas in Pell equation 

and the properties of quadratic residue. We also give some notations that are used in the proof.  

In section 3.1, we give a necessary condition for 
2 2 1Dx y  to be solvable. 

In section 3.2, we give some sufficient conditions for the solvability of
2 2 1Dx y  . We 

give an algorithm to determine the solvability of 
2 2 1Dx y  for some particular D s. Then, we 

define a function, which can be used to present a sufficient condition to the solvability 

of
2 2 1Dx y  base on the algorithm. We also give a series of corollaries.  

In section 3.3, we first arrive at a necessary and sufficient condition for determining the 

solvability of
2 2 1Dx y  and we give several D s by the condition for which

2 2 1Dx y  is 

solvable. It forms theorem 6. By theorem 6, we give out several examples to show that there are 

many types of solvable negative Pell equation with quadratic form D. 

Secondly, theorem 7 gives a sufficient and necessary condition for determining the solvability 

of 
2 2 1Dx y  when D Y . 

In section 4, we look back on our research, do some numerical experiments and give several 

types of solvable negative Pell equations. 

In the end, we give several comparisons with the previous results.  

In section 5, we give the conclusion.  

In section 6, we give our plans for future work.  

2. Preliminary 

Lemma1.Assume that p is an odd prime number, -1 is the quadratic residue of p if and only 

if 1  (mod4)p  . 

Take an odd prime p , we define the function with the integer variable d  
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1, when  is the quadratic residue modulo ,

1,  when  isn't the quadratic residue modulo ,

0, when | .

d p
d

d p
p

d p


  

  
  



 

We call 
d

p

 
 
 

 the Legendre symbol of d modulo p . 

Therefore, Lemma1 can be rewritten as 

1
1(mod 4) 1p

p

 
   

 
. 

Lemma2.Assume that D is a positive square-free integer, 
2 2 1x Dy  is solvable. Its general 

solution ( , )n nx y can be given by its least positive solution 0 0( , )x y through  

(2.1)                      
1 *

0 0( ) ,n

n nx y D x y D n    . 

The following recursion formula can be proven by (2.1) 

2 1 0

2

1 0

2

2 1

n n nx x x x

x x

  


 

*n . 

Lemma3.Assume that D is a positive square-free integer, if 
2 2 1Dx y  is solvable, then its 

general solution ( , )n nx y can be given by its least positive solution 0 0( , )x y through 

2 1 *

0 0( ) ,n

n nDx y Dx y n    . 

Lemma4.Assume that p is an odd prime number, If 1
m

p

 
 

 
, 

2   (mod )r m p has only two 

solutions 1 2,r r 1 2(0 )r r p   , with 1 2r r p  .  

Lemma5.Assume that , ,m n z 2( , ) 1,m n mn z  , then there exist ,u v , such that  

2

2

,

,

m u

n v

 



, 

where ( , ) 1u v  . 

The proof of the above lemmas is available in [2]. 

3. Main Work  

3.1 Necessary conditions 

Theorem 1.If 
2 2 1Dx y  is solvable, then D is not divisible by 4 and D doesn’t have a 

prime factor congruent to 3modulo 4. 

Proof. If prime p such that 3  (mod4)p   and |p D , taking
2 2 1Dx y  modulo p gives 

2 1  (mod )y p  . 

This means that 1  is the quadratic residue of p , contradicting lemma 1.  

If 4 | D , taking
2 2 1Dx y  modulo 4 gives 
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2 1  (mod 4)y   . 

However,
2 0,1  (mod 4)y  , leading to a contradiction. 

To conclude, it is a necessary condition for D if
2 2 1Dx y  is solvable. 

We give the following definition of three sets for simplicity 

Definition 1 

: | 1  (mod4)  p is a prime number}sY p p  ， , we call it set of excellent prime numbers. 

*

1 1

: | , , , , 2 | ( 1)i

n n
a

i i s i i

i i

Y x x p p Y a n a
 

 
     
 

  , we call it set of excellent odd 

numbers. 

*

1

: | 2 , , ,i

n
a

i i s i

i

U x x p p Y a n


 
      
 

   , we call it set of excellent even numbers. 

By definition 1, theorem 1 can be rewritten as 

If 
2 2 1Dx y  is solvable, then D Y or D U . 

Remark. The necessary condition on D given in [12] is equivalent to theorem 1, by Fermat’s 

theorem on sum of two squares. 

3.2 Sufficient conditions 

Theorem 2.If D Y or D U , then the general solution ( , )n nx y to
2 2 1x Dy  satisfies 

2 | ,2 |n nx y . 

Proof. Because ( , )n nx y is a solution to
2 2 1x Dy  , we obtain 

(3.1)                                
2 2 1n nx Dy  . 

If D Y , taking(3.1) modulo 4 gives
 

2 2 2 2 1  (mod4)n n n nx Dy x y    . 

Since for any integer m ,
2 0,1(mod 4)m  , we obtain 

2 | ,2 |n nx y . 

If D U taking (3.1) modulo 4 gives 
2 2 2 22 1  (mod 4)n n n nx Dy x y     

Since for any integer m ,
2 0,1(mod 4)m  , we obtain 

2 | ,2 |n nx y . 

Theorem 3.
2 2 1Dx y   is solvable if 

(i) 2D  ; 

(ii) , ,2 |a

sD p p Y a   ; 

(iii) , , ,2 | , 1a b

s

p
D p q p q Y a

q

 
     

 
; 

(iv)
*2 , 5  (mod8),aD p p a   , where p is a prime.  

Proof. (i)For the Pell equation
2 22 1x y  , it’s easy to verify that , ) (1,1)x y （ is a solution to 
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the equation. 

(ii) Applying Theorem2, we obtain the least positive solution 0 0( , )x y to
2 2 1x Dy  satisfying 

0 02 | ,2 |x y . 

Assuming
*

0 2 ,y k k  , we rewrite 
2 2

0 0 1x Dy  as 

(3.2)                           
20 01 1

2 2

x x
Dk

   
  

  
. 

Let 0 1

2

x
m


 , 0 1

2

x
n


 , from 02 | x , we obtain

*0 01 1
,

2 2

x x
N

 
 . 

Because 0 01 1
= +1

2 2

x x 
, we obtain 

0 01 1
, =1

2 2

x x 
（ ） . 

Namely, 

( , ) 1m n  . 

Then (3.2)is equivalent to  
2amn p k . 

Since ( , ) 1m n  , p is a prime number, by lemma 5, we can get two possible cases for ,m n  

(1)

2

2

,

,a

m u

n p v

 



(2)

2

2

,

,

am p u

n v

 



. 

In both cases, ( , ) 1u v  . In case (1), |p u . Incase (2), |p v . 

In case (1), as 0 01 1
1

2 2

x x
m n

 
    , we obtain 

2 2 1au p v  . 

Namely, ( , )u v  is a solution to
2 2 1ax p y  . 

Recalling
2 2

0 0 1x Dy  , we obtain
2 2

0 0 1 1x Dy   , therefore 0 1x  .Because 02 | x , we 

obtain 0 3x  . 

Therefore, 

0 0 0
0 0

1

2 2

x x x
u m x x

 
     . 

Hence, ( , )u v is a solution to 
2 2 1ax p y  and 0u x . 

However, 0 0,x y( )is the least positive solution to
2 2 1ax p y  , leading to a contradiction. 

Therefore, case (2) holds, which means that

2

2

,

,

am p u

n v

 



, then  

2 2 1ap u v m n    . 

It shows we find a solution ( , )u v to
2 2 1ap x y  , here, 

0

0

1
,

2

1
,

2

a

x
u

p

x
v

 










. 
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(iii)Applying Theorem2, we obtain the least positive solution 0 0( , )x y to
2 2 1x Dy  satisfying 

0 02 | ,2 |x y . 

Assume that
*

0 2 ,y k k  , we rewrite 
2 2

0 0 1x Dy  as 

(3.3)                           
20 01 1

2 2

x x
Dk

   
  

  
. 

Let 0 1

2

x
m


 , 0 1

2

x
n


 , from 02 | x , we obtain

*0 01 1
,

2 2

x x 
 . 

Because 0 01 1
= +1

2 2

x x 
, we obtain 

0 01 1
, =1

2 2

x x 
（ ） . 

Namely, 

( , ) 1m n  . 

Then (3.3)is equivalent to  
2a bmn p q k . 

Because ( , ) 1m n  , ,p q are prime numbers, by lemma 5,we can get 4 possible cases 

for ,m n  

(1)

2

2

,

,

a bm p q u

n v

 



(2)

2

2

,

,

a

b

m p u

n q v

 



(3)

2

2

,

,

b

a

m q u

n p v

 



(4)

2

2

,

,a b

m u

n p q v

 



. 

( , ) 1u v   holds in all cases. | , |p v q v   holds in case (1); | , |p v q u   holds in case (2); 

| , |p u q v   holds in case (3); | , |p u q u   holds in case(4).  

Since 2 | a , we obtain 

1

1 2 22( )
a

ap u p u


  . 

In case (2), from
2 2 1a bp u q v m n    , we obtain 

(3.4)                          
1 2 2a bp u pq v p   . 

Taking (3.4)  modulo q gives 1
p

q

 
 

 
. However, 1

p

q

 
  

 
, leading to a contradiction. 

Incase (3),
2 2 1b aq u p v m n    , we obtain 

(3.5)                           
2 1 2b apq u p v p  . 

Since 2 | a , we obtain 

1

1 2 22( )
a

ap v p v


  . 

Taking (3.5) modulo q gives 1
p

q

 
 

 
. 

However, 

1
1 ( 1) 1

p p

q q q

      
           

     
, 

leading to a contradiction. 

In case (4),
2 2 1a bu p q v  .Namely, we obtain a solution , )u v（ to

2 2 1a bx p q y  , 
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and 0
0

1

2

x
u m x


   , which means that , )u v（ is a smaller solution 

than 0 0( , )x y .However, 0 0( , )x y is the least positive solution to
2 2 1x Dy  , contradiction. 

In conclusion, case(1) holds, which means that

2

2

,

,

a bm p q u

n v

 



. Therefore, 

2 2 1a bp q u v  . 

So we have found a solution , )u v（ to
2 2 1a bp q x y  . 

0 01 1
( , ) ( , ) ( , )

2 2a b a bp q p

x xm
u v n

q

 
  . 

(iv)Applying Theorem2, we obtain the least positive solution 0 0( , )x y to
2 2 1x Dy  satisfying 

0 02 | ,2 |x y . 

Assume that
*

0 2 ,y k k  , we rewrite 
2 2

0 0 1x Dy   as 

(3.6)                           
20 01 1

2 2

x x
Dk

   
  

  
. 

Let 0 1

2

x
m


 , 0 1

2

x
n


 , from 02 | x , we obtain

*0 01 1
,

2 2

x x 
 . 

Because 0 01 1
= +1

2 2

x x 
, we obtain 

0 01 1
, =1

2 2

x x 
（ ） . 

Namely 

( , ) 1m n  . 

Then (3.6) is equivalent to 
22 amn p k . 

Because ( , =1m n） , by lemma 5, we obtain four possible cases 

(1)

2

2

2 ,

,

am p u

n v

 



(2)

2

2

,

2 ,

am p u

n v

 



(3)

2

2

2 ,

,a

m u

n p v

 



(4)

2

2

,

2 ,a

m u

n p v

 



. 

In all cases, ( , ) 1u v  . In case(1) | ,2 |p v v  .In case(2), | ,2 |p v u  . In case(3), | ,2 |p u v  . In 

case (4), | ,2 |p u u  . 

The same procedure in the proof of theorem 1.3 can be adapted to eliminate case 

(2),(3),(4).To conclude, case (1) holds, namely 
2

2

2 ,

,

am p u

n v

 



. 

Therefore,  
2 22 1ap u v  . 

So we have a solution ( , )u v to
2 22 1ap x y  , and 

0 01 1
( , ) ( , ) ( , )

4 22 a a

x xm
u v

p p
n

 
  . 

We hope to generalize Theorem 3 to case in which D has more prime factors. By considering 

the similarities in the treatment of different cases in theorem 3, we look for a function to determine 
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the solvability of
2 2 1Dx y  , where D Y . 

For example, let 
2 25 13 17D    , we first break D  into A , B , such that   

( , ) 1, , ,A B AB D A D B D   
. There are the following three cases totally.

 

Case (1):
2 25, 13 17A B   , 

We know that 
5 13 3

1
13 5 5

     
        

     
 

Implying for case 

2

2 2 2

5 ,

13 17 ,

m u

n v

 


 
, 

we have 

2 2 2 25 13 17 1u v   . 

Multiplying the above equation by 5, we obtain 

2 2 2 2 25 5 13 17 5u v    . 

Taking the previous equation modulo 13 gives, 

5
1

13

 
 

 
. 

However,  

5
1

13

 
  

 
, 

leading to a contradiction. 

Case (2): 
2 217 , 5 13A B    

We know that 
5 17 2

1
17 5 5

     
        

     
; 

Case (3): 
2 213 , 5 17A B    

We know that 
5 13 3

1
13 5 5

     
        

     
; 

In case (2) and (3), we can adapt the same procedure in case (1).  

Therefore, 
2 2 2 25 13 17 1x y    is solvable, we check D on [15], it 

shows
2 2 2 25 13 17 1x y    is solvable. 

Definition 2.   *: \ 0,1g   , 
*1, ,x x  

1

i

n
a

i

i

x p


 . 

 
2|

  if there exists an  such that2 | ,
( )

1   if  is a square,

i

i

n
a

i i

a

p i a
g x

x






 



 . 

Theorem 4. For any x  in  \ 0,1 , ( )g x x is a square. 
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Proof.  If x  is a square, then 

( ) 1g x x x x  . 

Therefore, ( )g x x is a square. 

 If x is not a square, assuming that
1 1

ji

m k
ba

i j

i j

x p q
 

   , 

where
*,i ja b  ,

*,m k   , 2 | ia , 2 | jb . Then 

2

1 1 1 1 1

( ) j ji i i

m m k m k
b ba a a

i i j i j

i i j i j

g x x p p q p q
    

        （ ） . 

Since for any i , 2 ia is an even integer, ( )g x x is a square. 

For D Y , we can try to determine the solvability of 
2 2 1Dx y  by the following algorithm 

Definition 3.    : \ 0,1 0,1f N  , ( )f D is the output of W.C.J algorithm. 

---------------------------------------------------------------------------------------------------------------------- 

W.C.J algorithm 

---------------------------------------------------------------------------------------------------------------------- 

1:    Input D Y ; ( ) 0f D  ; 

2:    for each ( , ) 1, , ,A B AB D A D B D    { 

3:  possible = true; 

4:  for each prime factor p of B { 

5:   if
( )

1
g A

p

 
  

 
{ 

6:      possible = false; 

7:            break; 

8:          } 

9:       } 

10:      If possible == true 

11:      Return; 

12:   } 

13:   return ( ) 1f D  ; 

-------------------------------------------------------------------------------------------------------------------- 

Expressing the result by the function, we obtain theorem 5. 

Theorem 5. If D Y and ( )f D =1, then
2 2 1Dx y  is solvable. 

Proof.  For D Y , assume that its prime factorization is
1

i

n
a

i

i

D p


 .  

Therefore, there are 2 2n  kinds of ways to break D into ,A B , such 

that ( , ) 1,A B AB D  ， ,A D B D  . 

For every ( , )A B , examine indefinite equation 

2 2 1Ax By  . 

Multiplying the above equation by ( )g A , we obtain 

2 2( ( ) ) ( )g A A x By g A  . 

By Theorem 4, we obtain ( )g A A is a square. Therefore, for any prime factor p of D , we obtain 
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2( ( ) ) ( )  (mod )g A A x g A p . 

Namely, 

( )
=1

g A

p

 
 
 

. 

For every prime factor p of B , we calculate the value of
( )g A

p

 
 
 

. If one of the 
( )g A

p

 
 
 

s equals 

to 1 , then 
2 2 1Ax By  is unsolvable.  

Since ( )f D = 1 means that all the 2 2n  kinds of ways to break D into ,A B , ( , ) 1A B  , 

,A D B D  , 
2 2 1Ax By  is unsolvable. 

If ( , ) (1, )A B D , adapt the same procedure in the proof of theorem 3, we will find 

contradiction. Therefore, the final case holds, it derives that
2 2 1Dx y  is solvable. 

Remark1. This method may not eliminate some cases for a given D Y . 

E.g. 2 25 13 17D    , we get three possible cases  

Case (1)
2 213 , 5 17A B   , 

2
17 4 2

1
13 13 13

     
       

     
; 

Case (2)
2 217, 5 13A B   ; 

Case (3)
2 25 , 13 17A B   ; 

In case (1), none of the value of the Legendre symbols is 1 . Therefore, ( ) 0f D  . 

However, we can check 2 25 13 17D    on [15] and actually 
2 2 2 25 13 17 1x y    is 

solvable. 

Remark2. The parity of the power of each prime factor p of D is the only important factor in the 

algorithm. Therefore, we can reduce the power of enormous D to 1or2. This means that we can 

construct huge possible D from small D  with ( ) 1f D  . 

By the main idea of the algorithm, we can give the following corollaries: 

Corollary 1. Given 
1 1

ji

m k
ba

i j

i j

D p q
 

   , where
*,i ja b  ,

*,m k   , 2 | ia , 2 | jb , and 

( ) 1f D  , then for any 
*,i jc d  ,

*,m k   , 2 | ic , 2 | jd , 
1 1

ji

m k
dc

i j

i j

E p q
 

   , we 

have ( ) 1f E  . Namely, 
2 2 1Ex y   is solvable. 

Corollary 2.Assume that , , 1s

p
p q Y

q

 
   

 
. { | (mod4 ), }A x x q p x is a prime  . 

1, , np p A  , 
2 2

1 2 1npp p p x y  is solvable.  

N06

Page - 249



 

13 / 24 
 

Corollary 3.Assume that 1 2, , , np p p  are primes which congruent to 13 modulo 20, a is an odd 

number, then 
2 2

1 25 1a

np p p x y   is solvable. 

Corollary 4.Assume that 1 2, , , np p p are primes which congruent to 17 modulo 20, a is an odd 

number, then 
2 2

1 25 1a

np p p x y    is solvable. 

Corollary 5.Assume that 1 2, , , np p p are primes which congruent to 5 modulo 52, a is an odd 

number, then 
2 2

1 25 1a

np p p x y    is solvable. 

Corollary 6.Assume that 1 2, , , np p p are primes which congruent to 21 modulo 52, a is an odd 

number, then 
2 2

1 25 1a

np p p x y    is solvable. 

Corollary 7.Assume that 1 2, , , np p p are primes which congruent to 33 modulo 52, a is an odd 

number, then 
2 2

1 25 1a

np p p x y    is solvable. 

Corollary 8.Assume that 1 2, , , np p p are primes which congruent to 37 modulo 52, a is an odd 

number, then 
2 2

1 25 1a

np p p x y    is solvable. 

Corollary 9.Assume that 1 2, , , np p p are primes which congruent to 41 modulo 52, a is an odd 

number, then 
2 2

1 25 1a

np p p x y    is solvable. 

Corollary 10.Assume that 1 2, , , np p p are primes which congruent to 45 modulo52, a is an odd 

number, then 
2 2

1 25 1a

np p p x y    is solvable. 

Corollary 11.Assume that 1 2 1 2, , , , , , , , ,m kp q r r r s s s  are all excellent prime 

numbers, 1
p

q

 
  

 
 , 1

i

p

r

 
  

 
, 1

j

q

s

 
   

 

1,2, ,i m  , 1,2, ,j k  , a and b are both 

odd numbers, then
2 2

1 2 1 2 1a b

m kp q rr r s s s x y    is solvable. 

Corollary 12. Assume that 
1 21 2 1,1 1,2 1, 2,1 2,2 2,, , , , , , , , , ,n m mp p p p p p p p p     

,1 ,2 ,, ,
nn n n mp p p are all excellent prime numbers, 
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1i

j

p

p

 
   

 

, , {1,2,3, , }i j n i j  ， ,

,1 ,2 ,

= 1

i

i i i

i i i m

p p p

p p p

    
             

     

, 1,2, ,i n  , 

1 2, , , na a a are odd numbers, then 

1 2

2 2

1, 2, ,

1 1 1 1

1
n

i

mm mn
a

i i i n i

i i i i

p p p p x y
   

         

is solvable. 

3.3 Sufficient and necessary conditions  

We observe that for a given solution ( , )x y to negative Pell equation, we can find a D  for 

which
2 2 1Dx y  is solvable. Therefore, by going through all solutions ( , )x y  

to
2 2 1Dx y  , we can obtain every D that for which

2 2 1Dx y  is solvable.  

Assume that x is an integer and for any prime factor p of x , sp Y .The solutions to the 

congruence equation  
2 21  (mod )r x    are  

2

,1 ,2 ,, , ,   (mod )
xx x x nr r r r x  ,(

2

,1 ,2 ,0 ...
xx x x nr r r x    ).  

By lemma 4, we can obtain 2xn  .Denote 

2

,

2

1x ir

x


by ,x iM , 1,2, , xi n  , then 

*

,x iM  . 

Theorem6. 
2 2 1Dx y  is solvable if and only if ( x   , such that for any prime factor p  

of x , we have 1  (mod4)p  , and D =
2 2

, ,2 x i x ix k r k M   is suitable for 

an {1,2, , }xi n   and a natural number k ) or (there is a k , such 

that *k N and 2 1D k  ). 

Proof.  Because 
2 2 1Dx y  is solvable, assume that 0 0( , )x y is a solution to

2 2 1Dx y  , 

then 
2 2

0 0 1Dx y  . 

It can be rewritten as

2

0

2

0

1y
D

x


 .Since

*D ,
2 2

0 0| 1x y  , by lemma1, all prime factors of 

x congruent to 1 modulo 4. 

If 0 1x  , assume that the solutions to the congruence equation are  

0 0 0 0

2 2

,1 ,2 , 0 ,1 ,2 ,, , ,   (mod ),0 ...
x xx x x n x x x nr r r r x r r r x     . 

By lemma 4 and the Chinese remainder theorem, we can obtain 2xn  . 

Then there exist  1,2, , xi n  , and k , such that 
0

2

, 0 0x ir kx y  . Denote 0

2

,

2

0

1x ir

x



 

N06

Page - 251



 

15 / 24 
 

by 
0 ,x iM . 

Then  

0

0 0

2 22
, 0 2 20

0 , ,2 2

0 0

) 11
2

x i

x i x i

r kxy
D x k r k M

x x

 
    

（
. 

If 0 1x  , then
2

0 1D y  . There is a
*k , such that

2 1D k  . 

Conversely, when
0 0

2 2

0 , ,2 x i x iD x k r k M   , denote

0

0

2

0 ,

,

,x i

x x

y kx r




 

and substitute it 

into
2 2 1Dx y  . Then 

0

0 0 0

0

0 0 0

2 2 2 2 2

0 0 ,

2 2 2 2 2

0 , , 0 0 ,

2

,2 2 2 2

, 0 , 0 ,2

0

    = ( )

( 2 ) ( )

1

1

x i

x i x i x i

x i

x i x i x i

Dx y Dx kx r

x k r k M x kx r

r
M x r x r

x

  

    


   



 

Hence, 
2 2 1Dx y  is solvable. 

When
2 1D k  , let

1,

,

x

y k





and substitute it to

2 2 1Dx y  , 

2 2 2 2 2 21 1Dx y D k k k       . 

Therefore,
2 2 1Dx y  is solvable. 

By theorem 6, we can construct infinite sequences of numbers such that all terms, represents 

a D for which
2 2 1Dx y   solvable. 

For example, 

2x  
1 2,r r  1 2,M M  

25  7,18 2,13 

213  70,99 29,58 

217  38,251 5,218 

229  41,800 2,701 

… … … 

Table 1. the quadratic form D by theorem 6 

2 2(5 ;7; ) 25 14 2G k k k   ,
2 2(5 ;18; ) 25 36 13G k k k   , 

2 2(13 ;70; ) 169 140 29G k k k   ,
2 2(13 ;99; ) 169 198 58G k k k   , 

2 2(17 ;38; ) 289 76 5G k k k   ,
2 2(17 ;251; ) 361 502 218G k k k   , 

2 2(29 ;41; ) 841 82 2G k k k   ,
2 2(29 ;800; ) 841 1600 701G k k k   . 

In the above formulae, when k N , we can find infinitely many D  such that 

2 2 1Dx y   is solvable.  
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Namely, 

2 2 2(25 14 2) 1k k x y    ,   
2 2 2(25 36 13) 1k k x y    , 

2 2 2(169 140 29) 1k k x y    ,
2 2 2(169 198 58) 1k k x y    , 

2 2 2(289 76 5) 1k k x y    ,
2 2 2(361 502 218) 1k k x y    , 

2 2 2(841 82 2) 1k k x y    ,
2 2 2(841 1600 701) 1k k x y    , 

are solvable for any natural number k. 

When x  is a positive odd integer containing a prime factor p which belongs to sY  

or 1x  , by going through the domain of k , we obtain the union of infinite sequences. For every 

term in the sequences, the Pell equation 
2 2 1Dx y  is solvable and all solvable D are 

contained in these sequences. That is why this theorem is a necessary and sufficient condition for 

determining the solvability of
2 2 1Dx y  . It also gives a way to construct D in quadratic 

form. 

Theorem7. Assume that D Y , the least positive solution to 
2 2 1x Dy   is 0 0( , )x y , then  

2 2 1Dx y  is solvable sp Y  and |p D , 0| 1p x   

Proof.  (proof by contradiction) If sp Y   and |p D , such that 0| 1p x  . 

Since 
2 2 1Dx y  is solvable, suppose ( , )n nx y  is a solution to it, note that 

2 2 2 2

2 2 2 2 2

2 4 4 2 2

2 2 2

   (2( ) 1) 4

( ) 4

2

( )

1

n n n

n n n n

n n n n

n n

y Dx y

Dx y Dx y

D x y Dx y

Dx y

   

     

     

  



. 

Then
2(2( ) 1,2 )n n ny x y    is a solution to

2 2 1x Dy  . 

By lemma 3, for the solutions of
2 2 1Dx y  , we have 

2 1 0

2

1 0

2

2 1

n n nx x x x

x x

  


 
. 

Because sp Y  and |p D , such that 0| 1p x  , according to our recursion formula, we can 

obtain 

1  (mod )nx p , n . 

Denote 
22 1ny  by mx , then 1  (mod )mx p , which means that | 1mp x  . 
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Because
2 1

0  (mod )
2

m
n

x
y p


   , we obtain 

2 2 0  (mod )n nDx y p   . 

However,
2 2 1 1  (mod )n nDx y p    , leading to a contradiction. 

Conversely, If sp Y  and |p D , 0| 1p x  .Then, by theorem 2, 0 02 | ,2 |x y , so 

2

0 0 01 1

2 2 2

x x y
D

      
      

     
. 

We obtain 

0 1
|

2

x
p


. 

Because 0 01 1
( , ) 1

2 2

x x 
 , by lemma 5, there are two integers ,u v such that ( , ) 1u v  , 

and 

20

20

1
,

2

1
,

2

x
Du

x
v





 



. 

Therefore, 

2 2 0 01 1
1

2 2

x x
Du v

 
    . 

It means that ( , )u v  is a solution to
2 2 1Dx y  .                                       

By theorem 1, if 
2 2 1Dx y  is solvable, then D Y or D U .when D U , the 

solvability of 
2 2 1Dx y   is still unknown. Theorem7 gives a sufficient and necessary 

condition for 
2 2 1Dx y   to be solvable when D Y . 

However, this theorem is not suitable for determining the solvability, if 
2 2 1Dx y  is 

solvable, assume that the least positive solution to 
2 2 1Dx y  is 0 0( , )x y  and the least 

positive solution to
2 2 1x Dy  is 0 0( , )x y . They satisfy the inequalities 

0 0 0 0,x x y y   . 

(We will give further illustration in the proof of theorem 8). 

If we use this theorem for determining the solvability, we have to find the least positive 

solution to
2 2 1x Dy  . However, as the least positive solution to

2 2 1x Dy  is greater than 

the least positive solution to
2 2 1Dx y  , time complexity of solving 

2 2 1x Dy  is greater 

than solving 
2 2 1Dx y  directly. 

Despite this, the theorem actually serves as a bridge between the two problems herein, 
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namely the solvability of 
2 2 1Dx y  and the determination of a solution of

2 2 1x Dy  . It is 

also a practical method if the least positive solution 0 0( , )x y to 
2 2 1x Dy  is obvious since one 

merely needs to verify whether 0| 1p x  to determine whether or not the negative Pell equation 

is solvable. 

Theorem 8.Assume that D Y , and 
2 2 1Dx y   is solvable, by lemma 3 its general solution 

( , )n nx y  can be given by its least positive solution 0 0( , )x y  through  

2 1 *

0 0( ) ,n

n nDx y Dx y n       . 

Let DN  be the set of these solutions ( , )n nx y  . Similarly, by lemma2, let DP  be the set of 

general evenly indexed solutions 2 2( , )n nx y to
2 2 1x Dy  . 

We can obtain a one-to-one mapping : D Dg P N .Namely, 

2

2

1
,

2

1
,

2

i
i

i
i

x
x

D

y
y

 
 




  


. 

Proof. Assume that D Y , the least positive solution to 
2 2 1x Dy   is 0 0( , )x y , then 

(3.14)                          
2 2

0 0 1x Dy  . 

Assume that p is a prime factor of D . Taking (3.14) modulo p , we obtain 

(3.15)                          
2

0 1  (mod )x p . 

(3.15) is equivalent to  

0 1  (mod )x p  . 

If 0 1  (mod )x p , apply the recurrence relation of the solution to 
2 2 1x Dy  by 

lemma 2, we obtain  

(3.16)                          1  (mod ),nx p n   . 

If 
2 2 1Dx y   is solvable, assume that ( , )n nx y  is a solution. Note that  

2 2 2 2

2 2 2 2 2

2 4 4 2 2

2 2 2

   (2( ) 1) 4

( ) 4

2

( )

1

n n n

n n n n

n n n n

n n

y Dx y

Dx y Dx y

D x y Dx y

Dx y

   

     

     

  



 

Then
2(2( ) 1,2 )n n ny x y    is a solution to

2 2 1x Dy  . 

Denote 
22 1ny  by mx , then by (3.16), 1  (mod )mx p . 

Therefore,  
22( ) 1 1(mod )ny p   . 

Hence, 

0 (mod )ny p  . 
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Taking 
2 2 1n nDx y    modulo p , we obtain 

2 2 2 21 0 0 0 (mod )n n nDx y x p        . 

Contradiction. 

Therefore, for any prime factor p  of D , we have, 0 1  (mod )x p  . 

By lemma2, we obtain 

2 2 11  (mod ), 1  (mod ),   i ix p x p i      

i  , we have
2 2

2 2 1i ix Dy  , by theorem 2, we have 2 22 | ,2 |i ix y . 

Therefore 
2

2 2 21 1

2 2 2

i i ix x y
D

      
      

     
. 

Since 2 1(mod )ix p  , 22 | ix , ( ,2) 1p  , we obtain  

2 1
|

2

ix
p


 

holds for any prime factor p  of D . 

Therefore, by lemma 5, 
*,i iu v  , such that 

22

22

1
,

2

1
,

2

i
i

i
i

x
Du

x
v





 



. 

Implying 
2 2 1i iDu v  . 

Namely, ( , )i iu v is a solution to
2 2 1Dx y  . 

Here,  

2

2

1
,

2

1
,

2

i
i

i
i

x
u

D

y
v

 










. 

We obtain a mapping g from DP to DN , namely, 

2 2
2 2

1 1
: ( , ) ( , )

2 2

i i
i i

x x
g x y

D

 
 . 

Note that, i j   , by lemma2, we obtain 

2 2 2 2,i j i jx x y y  . 

Therefore 

2 22 2
1 11 1

,
2 2 2 2

j ji i
x xx x

D D

  
  . 

This shows that g is an injection. 

i  , assume that ( , )i ix y  is a solution to
2 2 1Dx y  .Note that  
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2 2 2

2 2 2 2 2

2 4 4 2 2

2 2 2

   (2 1) (2 )

( ) 4

2

( )

1.

i i i

i i i i

i i i i

i i

y D x y

Dx y Dx y

D x y Dx y

Dx y

   

     

     

  



 

Therefore 
2(2( ) 1,2 )i i iy x y    

is a solution to
2 2 1x Dy  . 

Since 

2 2 22( ) 1 1 1

2

i i i
i

y y Dx
x

D D D

    
   ,

221

2 2

i
i

yu
y


  , 

holds for every ( , )i ix y  belonging to DN , there is an inverse image belonging to DP . 

Therefore, g is a surjection.  

To conclude, g is a one-to-one mapping. 

4. Related work and experiments 
[3][4][5] proved that the following negative Pell equations are solvable: 

(4.1)
2 25(5 2) 1( 1(mod4))x n y n      , where 5 2n is a prime number; 

(4.2)
2 25 1x py   , where p is a Fermat prime and 3,5p  ; 

(4.3)
2 2( 2) 1x p pn y    , where 1(mod4)n   is a prime, 3(mod8)p   is a prime. 

Actually, the solvability of these three negative Pell equations are straightforward from 

theorem 3, because the given D in the three papers follows from theorem 3. The proofs are shown 

below. 

For
2 25(5 2) 1( 1(mod4))x n y n      , where 5 2n is a prime number, 

since 1(mod4)n   , we obtain5 2 2 1(mod4)n n    . Since 5 2n is a prime number, 

5 2n belongs to sY . Because 5 belongs to sY , substitute p  into 5, q  into5 2n , we obtain 

5 5 2 2 2
1

5 2 5 5 5

p n

q n

          
              

        
. 

Applying theorem 3(ii), the above negative Pell equation (4.1) is solvable.  

For
2 25 1x py   , where p is a Fermat prime and 3,5p  . Denote 

22 1
n

 by p . 

Because 3,5p  , 2n  . Therefore,
22 1 1(mod 4)

n

p    , namely, p belongs to sY . Also,  

1 12 2 22 1 4 1 ( 1) 1 2(mod5)
n n n

p
 

        . 

Hence, 

22 1 2
1

5 5

n

p

q

     
             

. 

Applying  theorem3(iii), the above negative Pell equation(4.2)is solvable. 
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For
2 2( 2) 1x p pn y    , where 1(mod4)n   is a prime, 3(mod8)p   is a prime. 

Denote 2pn by q , because 1(mod4)n   , 3(mod8)p   , we obtain 

2 ( 3)( 1) 2 1(mod4)q pn       . 

Implying q belongs to sY . 

Therefore, 

2 2 2q pn

p p p p

        
         

       
. 

Since 3(mod8)p   , we obtain 

2
1

q

p p

   
     

   
. 

Applying theorem 3(iv), the above negative Pell equation (4.3) is solvable.  

[9] discussed the solvability of  
2 2(4 2) 1x n y    . 

Actually, the theorems in the paper are straightforward from Theorem 1, Theorem 3 etc.  

For
2 2(4 2) 1x n y    in paper [9], the theorem 1 of the paper showed that when n is an 

odd number and 2 1n is a prime, the above negative Pell equation is unsolvable.  

Here, 2(2 1)D n  and 2 1 3(mod4)n  . Applying theorem1, the above negative Pell 

equation is unsolvable.  

In [12], the theorem revealed that D is solvable if and only if it’s the sum of two squares. 

However, applying Fermat’s theorem on sums of two squares, we obtain that the above condition 

is equivalent to,  

D Y or D U . 

When using the continued fraction expansion to calculate the parity of the period, we cannot 

reduce the power of the prime factors of D to a smaller one, because it may change the parity of its 

continued fraction expansion, which will affect the solvability. However, our method can reduce 

the power of each prime factor to 1 or 2. This means that the result can be generalized.  

 

The prime numbers which congruent to 1 modulo4 and smaller than 100 are listed below 

5,13,17,29,37,41,53,61,73,89,97 

The values of Legendre symbols for all possible pairing of these numbers are listed below. 
         p 

p

q

 
 
 

 

q 
5 13 17 29 37 41 53 61 73 89 97 

5 0           

13 -1 0          

17 -1 1 0         

29 1 1 -1 0        

37 -1 -1 -1 -1 0       

41 1 -1 -1 -1 1 0      

53 -1 1 1 1 1 -1 0     

61 1 1 -1 -1 -1 1 -1 0    

73 -1 -1 -1 -1 1 1 -1 1 0   

89 1 -1 1 -1 -1 -1 1 -1 1 0  

97 -1 -1 -1 -1 -1 -1 1 1 1 1 0 

Table 2. the values of Legendre symbols 

Here are all the D s by (iii) of theorem 3 which have two distinct prime factors and both 

prime factor congruent to 1 modulo 4.(and smaller than 100) 

There is at least one odd positive integer in a  and b .  
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5 13a b  5 17a b  5 37a b  

5 53a b  5 73a b  5 97a b  

13 37a b  13 41a b  13 73a b  

13 89a b  13 97a b  17 29a b  

17 37a b  17 41a b  17 61a b  

17 73a b  17 97a b  29 37a b  

29 41a b  29 61a b  29 73a b  

29 89a b  29 97a b  37 61a b  

37 89a b  37 97a b  41 53a b  

41 89a b  41 97a b  53 61a b  

53 73a b  53 97a b  61 89a b  
Table 3. all the Ds by (iii) of theorem 3 which have two distinct prime factors and both prime factor congruent to 

1 modulo 4.(and smaller than 100) 

Here are all the Ds by (iv) of theorem3 which have two distinct prime factors where one of 

the factor is 2 and another prime number congruent to 1 modulo 4 (and smaller than 250). 

Here, a  is a positive integer. 

2 5a  2 13a  2 29a  

2 37a  2 53a  2 61a  

2 101a  2 109a  2 149a  

2 157a  2 173a  2 181a  

2 197a  2 229a   
Table 4. all the Ds by (iv) of theorem3 which have two distinct prime factors where one of the factor is 2 and 

another prime number congruent to 1 modulo 4 (and smaller than 250) 

Here are some Ds by theorem 4 with more than two distinct prime factors where the prime 

factors of these Ds congruent to 1 modulo 4. 

Here, a  is an odd positive integer. 

5 13 17a b c   5 13 37a b c   5 13 53a b c   

5 13 73a b c   5 13 97a b c   5 17 37a b c   

5 17 53a b c   5 17 73a b c   5 17 97a b c   

13 37 41a b c   13 37 73a b c   13 37 89a b c   

5 13 17 37a b c d    5 13 17 53a b c d    5 13 17 73a b c d    

5 13 17 37 53a b c d e     5 13 17 37 73a b c d e     5 13 17 37 97a b c d e     

5 13 17 37 53 73a b c d e f      5 13 17 37 53 97a b c d e f      5 13 17 37 73 97a b c d e f      

5 13 17 37 53 73 97a b c d e f g
 17 29 37 41 61 73 89a b c d e f g

 17 29 37 41 61 73 89 97a b c d e f g f
 

Table 5. Ds by theorem 4 with more than two distinct prime factors where the prime factors of these Ds 

congruent to 1 modulo 4. 

All the numbers in the above 4 tables are D s for which 
2 2 1Dx y  is solvable. 
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5. Conclusion 

In section 3.1, by observing the residue of D , we give a necessary condition 

for
2 2 1Dx y  to be solvable.  

Therefore, in section 3.2 we aim to find the prime factorization of D . Probing deeper, we 

continued our research and proved theorem 3 and theorem 5. In the procedure, we used lemma 5 

to sort out the finite cases, and then we used the properties of quadratic residue to eliminate all the 

cases except two cases. Moreover, we used the minimality of the solutions 0 0( , )x y to the positive 

Pell equation to eliminate one of two cases remaining. Finally, we construct the solution to the 

negative Pell equation in the last remaining case. 

In section 3.3, we firstly show that for a given solution ( , )x y to negative Pell equation, we 

can find a D  for which
2 2 1Dx y  is solvable. Therefore, by going through all solutions 

( , )x y  to
2 2 1Dx y  , we can obtain every D that for which

2 2 1Dx y  is solvable. First, 

with the property of quadratic residue, we obtain x is an odd number without the prime factors 

congruent to 3 modulo 4; secondly, when 1x  , we obtain
2 1D k  ; thirdly, we can use the 

quadratic congruence equation to find the least positive integer y  for every given x such 

that ( , )x y satisfy
2 2 1Dx y  ; finally, we determine all possible D for which

2 2 1Dx y  is 

solvable.  

When D Y , we have the least positive solution 0 0( , )x y to
2 2 1x Dy  , namely 

(5.1)                            
2 2

0 0 1x Dy  . 

Assuming p is a prime factor of D , taking (5.1) modulo p , gives 

2

0 1  (mod )x p . 

Namely, 

0| 1p x   or 0| 1p x  . 

By lemma 2, we obtain a residue property for every solution to
2 2 1x Dy  . This leads to 

contradiction when 0| 1p x  . Therefore, we obtain Theorem 7. 

In theorem 8, we build a one-to-one mapping from a subset of the set of solutions of positive 
Pell equation to the set of solutions of negative Pell equation. 

6. Future work 

When D U , the solvability of
2 2 1Dx y  is not completely work out. However, we’ve 

got results. Such as, theorem3 indicate that, when D U , if 2 , ,a

sD p p Y a   , then 

2 , ,a

sD p p Y a   is solvable. 

On the basis of these results, we hope to find a concise theorem to determine the solvability 

of
2 2 1Dx y  , which is a sufficient and necessary condition for 

2 2 1Dx y  to be solvable.  

Because the solvability of
2 2 1Dx y  can be used to determine the parity of the continued 

fraction expansion cycle of D  type, we plan to find out a method to determine the parity of the 

period of the continued fraction expansion for the positive integer D ’s n times square root. 

Also, we plan to write a program of W.C.J algorithm to determine the solvability of negative 

Pell equation automatically.  
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