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Abstract

Starting from the roots of the equation 3x + 4x = 5x discussed in

the Tenth Grade, we utilized the method, the algebraic extension of

the rational number field, to produce the ways to judge whether the

roots of the basic exponential equation with a form as ax+ bx = cx

are rational or not. For equations with more than two terms on the

left side, as is the equation ax1 + ax2 + · · ·+ axn = dx, the determina-

tion of whether the root was irrational was comparatively difficult.

Therefore, we provided a prevalent method for the examination of

the root of a three-term equation as well as a conclusion that if the

equation doesn’t have integer roots, the roots won’t be a rational

number with a denominator of two. Finally, based on the method,

the algebraic extension of the rational number field, we concluded

that under special occasions, the root of the equation can’t be some

rational numbers with certain denominators.

Keywords:exponential equation, algebraic extension, unit

root
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Chapter 1 Introduction

During the Maths class in the sophomore year, we used the

monotone of the indicator function to analyze and prove

that the only integral root of function 3x+4x = 5x is x = 2

and that of function 3x + 4x + 5x = 6x is x = 3. Apply-

ing the same method can show that function 3x + 4x = 6x

doesn’t have integral roots. After class, we made a further

assumption that such equation doesn’t have rational roots.

Therefore, we did a investigation into simple indicator func-

tions as ax + bx = cx along with the similar ones, proving

that this function doesn’t have rational root and acquire

some consequences over the ones with more terms.
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Chapter 2 Investigation into simple indicator func-

tions with forms asax + bx = cx

Preliminaries

Lemma 1. The necessary and sufficient condition of the

rational factorization of the polynomialyx − d is the exis-

tence of m(m ∈ Z+\{1}), allowing d = dm1 and x = x1m.

Both d1,x1 are positive integers.

Proof : Adequacy: When such m exits, (y1
x1)m = dm1 can

be derived from the original function. Obviously, whenyx1
1 =

d1 , the original function is true. Therefore, there at least

exists a factor as y1
x1 − d1 that can be factorized.

Necessity:Considering its x factors that are factorized within

the range of complex number.

yx − d = (y − x
√
dξ1)(y − x

√
dξ2) · · · (y − x

√
dξx)

ξ1, ξ2 · · · ξxare xth roots of unity of 1. If yx − d has the

factor h(y), with the degree of a, then the numerical size

of its absolute term is x
√
da, a rational number. Due to the

fact that d is an integer, x
√
da must also be an integer.Letd =
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d
p
0 and p be the largest integer allowing d0 to also be an

integer. x
√
da is an integer,then x | ap.a < x,x doesn’t

divide a exactly, so we can let x = hq, with h | a and

q | p,alsoa = a1h,p = p1q. Suppose m = q. We now turn

to the demonstration of the claim that when d = dm1 x =

mx1,d1,x1 are both integers.

d = dm0 = d
m1q
0 = (d0

m1)q = d1
q,

d1 = dm1
0 ∈ Z, x1 =

x

q
= h ∈ Z.

This completes the proof of Lemma 1.

Lemma 2. Suppose K/F is a random extension and

α ∈ K, then the following statements are equivalentµ

(1)F (α)/F is a algebraic expension

(2)α is algebraical in F

(3)F (α)/F is a finite extension.

When one of the conditions is matched,[F (α) : F ] equals

the degree of α.

For a specific proof of this Lemma the reader is referred to
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[1]P211Theorom3.

Main Results:

By representing functions similar to 3x+4x = 6x with ax+

bx = cx(a, b, c ∈ Q+), we reached a few simple conclusions.

Assuming a < b, then

(1)If x exists, then :

when x < 0, a, b are both bigger than c;

when x > 0, a, b are both smaller than c

when x = 0, no such a, b, c exist

(2)If the function have integral root, the root is unique.

(3)If a + b < c, x doesn’t exist.

(4)If a < b < c, the range of x is

max{log(ac )
1

2
, 0} < x < log

(bc)

1

2
.

If c < a < b, the range of x is

− log(cb)
1

2
< x < min{− log( ca)

1

2
, 0}.

Proof: // Utilizing the monotony of the indicator func-
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tion, the proof of (1),(2) and (3) is trivial. By dividing both

sides with cx and transforming the function into (
a

c
)x +

(
b

c
)x = 1, some tedious manipulation yields to conclusions

(1) to (3). Applying the same method, a system of inequal-

ities can be provided. Based on the later form , and due to

the fact that (
a

c
)x < (

b

c
)x when a < b < c, therefore

(
a

c
)x <

1

2
,

(
b

c
)x >

1

2
.

By solving the system of inequalities, the first part of con-

clusion (4) can be proved. As the remainder of the argument

is analogous to that of the first part, it is left to the reader.

In order to simplify the problem, we started with the situ-

ation when b = 1.

If the function has rational root, then there must exists p, q

(p and q are mutually prime, p,q∈ Z+, p 6= 1) that allows

c
q
p − a

q
p = 1,
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Let m = cq = (1 + a
q
p)p, n = aq = (c

q
p − 1)p, then the

function is represented by x
√
m = 1 + x

√
n. By studying the

simplified equation, we attained Proposition1.

Proposition 1. Functions with forms as x
√
m − x

√
n =

1(m,n ∈ Z+) doesn’t have positive integral roots which

satisfies x
√
m ∈ Q.

Proof : Assume that there exists such root x, then x
√
m =

1 + x
√
n.

m = (1+ x
√
n)x = 1+C1

x
x
√
n+C2

x( x
√
n)2+· · ·+Cx−1

x ( x
√
n)x−1+n,

So x
√
n is the root of a x−1-degree polynomial with integral

coefficient.As it is also the root of function yx − n = 0, its

minimal polynomial is the common factor of the mentioned

polynomials.

The following argument is split into two parts:

1bIf yx−n is the minimal polynomial of x
√
n: the fact that

yx − n is also the root of a x − 1-degree polynomial with
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integral coefficient leads to a contradiction. 2bIf yx − n

isn’t the minimal polynomial of x
√
n:

According to Lemma 1, there exists such d > 1 that al-

lows n = nd1 and x = x1d. By taking the largest d, dmax,

function (1) can be transformed into

x
√
m = 1 + x1

√
n1,

so Q( x
√
m) = Q( x1

√
n1)

According to Lemma 2, Q( x
√
m)’s degree of extension

is also x1. Therefore, the degree of the minimal polynomial

of Q( x
√
m) is x1. Because x

√
m is the root of function yx−m,

its minimal polynomial is a factor of yx−m. Consulting the

proof of Lemma 1, we factorized yx −m within the range

of the complex number as follows:

yx −m = (y − x
√
mξ1)(y − x

√
mξ2) · · · (y − x

√
mξx),

ξ1, ξ2 · · · ξx are the xth roots of unity of 1. The minimal

polynomial of x
√
m is the product of x1 terms selected from
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above. The numerical size of its absolute term is x
√
mx1, a

rational number. So x
√
m = x1

√
m1. As d is the largest num-

ber available, the minimal polynomial of x1
√
n1 is yx1− n1.

The repetition of the argument from 1bcan lead to a con-

tradiction. The proof is completed.

Extension 1.1. Functions with forms as x
√
m − x

√
n =

k(m,n ∈ Z+, k ∈ Q) doesn’t have positive integral root

which satisfies x
√
m ∈ Q.

Proof : By replacing the 1 in the proving process of Propo-

sition1 with k=
q

p
, an argument similar to the one used in

Proposition1 shows that Extension1.1 is true.

Extension 1.2. Functions with forms as x
√
m − y

√
n =

k(m,n ∈ Z+, k ∈ Q) doesn’t have positive integral root

which satisfies x
√
m ∈ Q.

Proof :This function can be transformed into xy
√
my− xy

√
nx =

k, and thus been proved by Extension1.1.
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By consulting the proving skills of Proposition1, we tried

to discuss about the irrationality of the root under general

conditions. First, we handle the original function ax+ bx =

cx as follows:

Represent a,b,c in such forms that have the smallest integer

as base number with a integer as exponent.

a = aka1 , b = b
kb
1 , c = ckc1 .

Let k = (ka, kb, kc) and y = kx.

So the final form of function is a
y
0 + b

y
0 = c

y
0. If k 6= 1, we

only discussed the final form and acquired Proposition2.

Proposition 2. When a,b,c are changed into forms that

have the smallest base numbers and integral exponents that

have no common factor other than 1, if functions as ax +

bx = cx,(a, b, c ∈ Q) don’t have integral roots, they don’t

have rational roots.

Proof :Both sides of the function divide cx,
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(
a

c
)x − (

b

c
)x = 1.

Applying the reduction to absurdity:

If the original function have rational root, let it be q
p(p, q

are mutually prime, p,q∈ Z+). Markaq, bq, cq respectively

as m,n, k.So,

p

√
m

k
− p

√
n

k
= 1

As a,b,c are changed into forms that have the smallest base

numbers and integral exponents that have no common factor

other than 1, the minimal polynomial of p
√

n
k is yp− n

k = 0.

Using the same argument from 1bin Proposition1 can lead

to contradictory.

Using Proposition2 and the monotony of indicator function,

we can quickly tell whether the root of the mentioned indi-

cator function is rational or not.

Example 1.Function27x + 64x = 216x.

(1)Changing every term of the function into forms with the
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smallest base number and a integral exponent

33x + 43x = 63x.

Let y = 3x, 3y + 4y = 6y.

(2)Replacing the original function with (
1

2
)y + (

2

3
)y = 1.

Because the function on the left side is monotone decreas-

ing, the root is unique.

(3)When y = 1, the left side of the function is larger than

the right side and when y = 2,it is the opposite. Therefore,

there is no integral root.

The root of the original function is irrational.

Example 2.Function1x + 4x = 9x.

(1)Changing every term of the function into forms with the

smallest base number and a integral exponent

12x + 22x = 32x.

(2)Let y = 2x, yielding function 1y + 2y = 3y with the
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integral root y = 1.

Thus original function have the rational root
1

2
.

By summarizing the mentioned propositions and examples,

we yield the following theorem:

Theorem 1 When discuss functions with forms as ax +

bx = cx£a, b, c ∈ Q+¤, find the largest positive integer k

that allows

ax = akx1 , bx = bkx1 , cx = ckx1 , a1, b1, c1 ∈ Z

Lety = kx, and simplify the equation into forms as a
y
1+b

y
1 =

c
y
1.

If a
y
1 +b

y
1 = c

y
1 doesn’t have integral roots, then the original

function doesn’t have rational root;

If a
y
1 + b

y
1 = c

y
1 have integral roots but not satisfying k | y,

the original function have rational yet non-integral root

If a
y
1 + b

y
1 = c

y
1 have integral roots and k | y, the original

function have integral root.
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Chapter 3 Study of Three-term Equations

Repeating the simplification and change of variable intro-

duced in chapter one, the equation turns into x
√
a + x
√
b =

1 − x
√
c.To find contradictions in degree of extensions, we

have to prove [Q( x
√
a + x
√
b) : Q] 6= [Q( x

√
c) : Q]

(All the0q
p0s stand for rational numbers are fractions in

lowest terms, and the equations have all been simplified. )

Lemma 3 LetK ⊃ E ⊃ F be extension fields over F , and

[K : F ] is finite. Then

[K : F ] = [K : E][E : F ].

For a rigid proof of this Lemma reader is referred to [1]P211

Theorem4.

Based on those conclusions,we can prove proposition 3:

Proposition 3 Simquations like ax1+ax2+ax3 = dx, (a, b, c, d ∈
Q) without integer solutions don’t have radical solutions, ei-

ther.
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ProofµLet
q

2
= x(q∈ Z, (q, 2) = 1),mi = (

ai
d

)q(i =

1, 2, 3),

the equation turns into
√
m1+

√
m2 = 1−√m3, soQ(

√
m1+

√
m2) = Q(

√
m3).

ConsiderQ(
√
m1,
√
m2). It contains

√
m1 +

√
m2,

soQ(
√
m1,
√
m2) ⊇ Q(

√
m1 +

√
m2), Also,

m1 −m2√
m1 +

√
m2

=
√
m1 −

√
m2,

1

2
[(
√
m1 +

√
m2) + (

√
m1 −

√
m2)] =

√
m1,

1

2
[(
√
m1 +

√
m2)− (

√
m1 −

√
m2)] =

√
m2,

Q(
√
m1,
√
m2) ⊆ Q(

√
m1 +

√
m2), Q(

√
m1,
√
m2) =

Q(
√
m1+

√
m2) Then we will turn to prove [Q(

√
m1,
√
m2) :

Q] 6= [Q(
√
m3) : Q].

Now that[Q(
√
m1) : Q] = [Q(

√
m3) : Q] = 2,if[Q(

√
m1,
√
m2) :

Q] = [Q(
√
m3) : Q], then according to Lemma 5, we haveµ

[Q(
√
m1,
√
m2) : Q] = [Q(

√
m1) : Q][Q(

√
m2,
√
m1) : Q(

√
m1)]

∴ [Q(
√
m2) : Q(

√
m1)] = 1,

√
m2 ∈ Q(

√
m1).
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∵ Q( 2
√
m1) = a0 + a1

2
√
m1(a0, a1 ∈ Q).

√
m2 = a0 + a1

√
m1 m2 = a2

0 + a2
1m1 + 2a0a1

√
m1 ∵

m2Q, a2
0+a2

1m1+2a0a1 2
√
m1 is irrational ∴ [Q(

√
m1,
√
m2) :

Q] 6= [Q(
√
m3) : Q]

,which is contradictory with the assume Q(
√
m1 +

√
m2) =

Q(
√
m3) .

The proof is completed.

Lemma 4. If a,b∈ Q+,
x√a
x√b

/∈ Q, thenQ( x
√
a) 6= Q( x

√
b).

The proof of this Lemma is postponed to the Appendix.

Lemma 5.Suppose α,β are n-degree algebraic number,all

zero points of their minimum polynomials are

α1, α2, · · · , αn; β1, β2, · · · , βn,

respectively. Then for each h 6= βi−βj
αk−αl (1 6 k, l, i, j 6

n),we have Q(hα + β) = Q(α, β)

For a specific proof of this Lemma the reader is referred
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to [2]P9Theorem15

According to Lemma 4,if
βi−βj
αk−αl 6= 1as k,l,i,j values from

1 to n, let h be 1,we get Q(α + β) = Q(α, β).

According to Lemma3,[Q( x
√
a, x
√
b) : Q] 6= 1, so[Q( x

√
a, x
√
b) :

Q] > [Q( x
√
c) : Q] = x, The degrees of extensions of each

side of the equation are different, which is contradictory.

Inspect the possible values of h. All zero points of the

minimum polynomial of x
√
a, x
√
b can be projected onto the

complex plane as apexes of the inscribed regular polygons

of two circles centering around origin. Their radiuses are

α, β respectively and their ratio of similitude is n
√
a, n
√
bIf

there exists k,l,i,j satisfyingβi − βj = αk − αl,there exists

two diagonal of these two polygons which are both parallel

and equal in length to each other.

Since we can calculate the length of each diagonal with the
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formula

Lm = L
sin mπ

n

sin π
n

m stands for the number of edges between the end points of

the diagonal, the equation

sin pπ
n

sin qπ
n =

n√a
n√b

(p, q = 1, 2, · · · , b)

can be used to give out impossible values of n. Take n=5 as

an example(as shown in Picture 3.1).

ã 1: Picture 3.1

If EC=A’B’,ABEC = AB
A′B′ ,

sin π
5

sin 2π
5

=
√

5+1
2 . For a,b ∈ Q,

and (
√

5+1
2 )5 is not in Q, we can conclude :If equation

ax + bx + cx = dx doesn’t have integer solution ,it doesn’t
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have rational solution with 5 as denominator, either.

When n=6,
sin π

6

sin 3π
6

= 1
2 ∈ Q. If ab = 1

64, considerbc,
c
a.At

least one of them can’t be 64 or 1
64,we suggest it bebc. Then

we have [Q( n
√
c + n
√
b) : Q] 6= [Q( n

√
a) : Q], so fraction in

lowest terms with 6 as denominator also can’t be solution

of equation ax + bx + cx = dx.

ã 2: pentagon

The ratio of sines of different angles and their integer

powers are mostly irrational, and the method also works

when there’s only one rational ratio. Even when there are
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more than one rational ratio,we can still get contradiction

by calculating the concrete value of ratio of similitude, so

this method can be widely and effectively used in proving

the impossibility of a 3-term exponential equation having

solution with appointed denominator.
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Chapter 4 Discussion on equations with multiple

terms

We tried to popularize Theorem 1 in Chapter 2 to more

terms.Namely,we conjecture that equations without integer

solutions like

ax1 + ax2 + . . . + axn = dx, (a1, a2, · · · , an ∈ Q)

also doesn’t have rational solutions. In this chapter, we give

out several situations that we can prove the impossibility of

solution with appointed denominator.

Lemma 6 Ifα is an n-degree algebraic element of Q, β is

an m-degree algebraic element of Q, and (m,n) = 1, then

α + β is an (n+m)-degree algebraic element of Q.

Proof :Consider the field Q(α) ∩Q(β),

[Q(α) ∩ Q(β) : Q]
∣∣[Q(α) : Q], [Q(α) ∩ Q(β) : Q]

∣∣[Q(β) :

Q],

∴ [Q(α) ∩Q(β) : Q]
∣∣m, [Q(α) ∩Q(β) : Q]

∣∣n,
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∵ (m,n) = 1,∴ [Q(α) ∩Q(β) : Q] = 1,Q(α) ∩Q(β) = Q.

Let all zero points of α’s minimum polynomials be α1 =

α, α2, α3, . . . , αn; all zero points of β’s minimum polyno-

mials be β1 = β, β2, β3, . . . , βn;

If αi + βj = αk + βl, then αi − αk = βl − βj,
For Q(α) ∩Q(β) = Q, we can infer i = k, l = j.

f (α1 + β1 − x) and g(x) have the only common factor

x− β1, and the coefficients of f (α1 + β1 − x), g(x) are all

in Q(α1 + β1).

There exist polynomials u(x), v(x) in Q(α1 + β1)[x] that

satisfy f (α1 + β1 − x)u(x) + g(x)v(x) = x− β1.

∴ β1 ∈ Q(α1 + β1), α1 ∈ Q(α1 + β1).

Q(α1, β1) ⊆ Q(α1 + β1), Q(α1 + β1) ⊆ Q(α1, β1),

∴ Q(α1, β1) = Q(α1 + β1),

∵ [Q(α1) : Q]
∣∣[Q(α1, β1) : Q], [Q(β1) : Q]

∣∣[Q(α1, β1) : Q],

m
∣∣[Q(α1, β1) : Q], n

∣∣[Q(α1, β1) : Q], ∵ (m,n) = 1,

∴ mn
∣∣[Q(α1, β1) : Q],

∵ [Q(α1, β1) : Q] = mn,
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∴ [Q(α1 + β1) : Q] = mn.

∴ α1 +β1(α+β) is an n+m-degree algebraic element ofQ.

Using the conclusions above, we found several situa-

tions in which we can get impossible values of denominators

of the solution.

For equations like ax1 + ax2 + . . . + axn = dx, let x =q
p.

Using the method mentioned in Proposition 2, we turn it to

m
qx1
p

1 +m
qx2
p

2 + · · ·+m
qxn
p
n = 1 (mx1

i = axi , x1 is the biggest

integer whenmi ∈ Z. By studying the relationship among

xi(i = 1, 2, . . . , n), we can get some impossible values of p.

Two examples below:

Example 3.16x + 25x + 27x = 64x.

Let x be q
p, we can get that p 6= 6. If p=6, 3

√(
1
2

)q
+

3

√(
5
8

)q
+ 2

√(
3
4

)q
= 1.

[Q( 3

√(
1
2

)q
+ 3

√(
5
8

)q
) : Q] mod 9, while [Q( 2

√(
3
4

)q
) :

Q] = 2 does not. So p 6= 6. As well, we can infer that
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p 6= 30: [Q( 15

√(
1
2

)q
+ 15

√(
5
8

)q
) : Q] mod 225, while

[Q( 10

√(
3
4

)q
) : Q] = 10 does not. Namely, p 6= 6k, (k, 6) =

1

Example 4.2x + 54x + 100x = 65536x.

Lex x be
q

30
,

2

√(
1
2

)q
+ 10

√(
3
32

)q
+ 15

√(
5

128

)q
= 1

[Q( 2

√(
1
2

)q
+ 10

√(
3
32

)q
) : Q]

so p6= 30.

Now we come to conclusion:

For each term in the equation

m
qx1
p

1 + m
qx2
p

2 + · · · + m
qxn
p
n = 1((x1, x2, · · · , xi) = 1),

Pay attention to βi = p
(p,xi)

,which stands for the degree of

extension of each term. If (βk1, βk2, · · · , βkj) = 1 £put

into Group A¤,and they have at least one factor not had by
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any of the remaining βkj+1
to βkn(k1, . . . , kj, kj+1, . . . , kn

is a permutation of 1, 2, · · · , n)(put into Group B), then

the equation doesn’t have a fractional solution with p as its

denominator.

Show the equation with βi as β1
√
m1 + β2

√
m2 + · · ·+

βk
√
mk = 1.If its terms can be put into two groups accord-

ing to the law above, the extension degree of Group A is

IA =
k∏
i=1

βki, and that of Group B must be a factor of lA

can,t exactly divide
n∏

i=j+1
βki,so lA 6= lB. With Proposi-

tion 5, we can infer a series of impossible values of p from

one:

Proposition 5 For equations like ax1 + ax2 + , + axn =

dx§If it doesn’t have a fractional solution with p as its

denominator§it also can’t have a fractional solution with

hp as its denominator(£h, i = 1,i = 1, 2,n 6= k¤.

Sketch of the proofµContinue the discussion above.
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∵ (IA, q) = 1,∴ I
′
A = IAq, I

′
B mod IBq

n−j. Let IA
(IA,IB)

be c,c can’t divide IBq
2 exactly,so IAq can’t divide IBq

n−j

exactly.We getl
′
A 6= l

′
B,which is contradictory to our as-

sume.

In chapter three, we have solved the problem in most

situations,but can’t give out the proof when the ratios of

the base numbers are integer powers of integers. Discussion

in this chapter is complement to it in some ways. So far,

our discussion on exponential equations with multiple terms

remains tentative and initial. We mainly aim to provide a

train of thought, and we hope our brick will attract a jade-

stone.
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