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Abstract. The transformed l1 penalty (TL1) functions are a one parameter family of bilinear
transformations composed with the absolute value function. When acting on vectors, the TL1 penalty
interpolates l0 and l1 similar to lp norm, where p is in (0,1). In our companion paper, we showed that
TL1 is a robust sparsity promoting penalty in compressed sensing (CS) problems for a broad range of
incoherent and coherent sensing matrices. Here we develop an explicit fixed point representation for
the TL1 regularized minimization problem. The TL1 thresholding functions are in closed form for all
parameter values. In contrast, the lp thresholding functions (p is in [0,1]) are in closed form only for
p= 0,1,1/2,2/3, known as hard, soft, half, and 2/3 thresholding respectively. The TL1 threshold values
differ in subcritical (supercritical) parameter regime where the TL1 threshold functions are continuous
(discontinuous) similar to soft-thresholding (half-thresholding) functions. We propose TL1 iterative
thresholding algorithms and compare them with hard and half thresholding algorithms in CS test
problems. For both incoherent and coherent sensing matrices, a proposed TL1 iterative thresholding
algorithm with adaptive subcritical and supercritical thresholds (TL1IT-s1 for short), consistently
performs the best in sparse signal recovery with and without measurement noise.
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1. Introduction Iterative thresholding (IT) algorithms merit our attention in
high dimensional settings due to their simplicity, speed and low computational costs.
In compressed sensing (CS) problems [4, 10] under lp sparsity penalty (p∈ [0,1]), the
corresponding thresholding functions are in closed form when p= 0, 12 ,

2
3 ,1. The l1 al-

gorithm is known as soft-thresholding [8, 9], and the l0 algorithm hard-thresholding
[2, 1]. IT algorithms only involve scalar thresholding and matrix multiplication. We
note that the linearized Bregman algorithm [21, 22] is similar for solving the constrained
l1 minimization (basis pursuit) problem. Recently, half and 2

3 -thesholding algorithms
have been actively studied [7, 18] as non-convex alternatives to improve on l1 (convex
relaxation) and l0 algorithms.

However, the non-convex lp penalties (p∈ (0,1)) are non-Lipschitz. There are also
some Lipschitz continuous non-convex sparse penalties, including the difference of l1
and l2 norms (DL12) [11, 20, 14], and the transformed l1 (TL1) [24]. When applied to
CS problems, the difference of convex function algorithms (DCA) of DL12 are found to
perform the best for highly coherent sensing matrices. In contrast, the DCAs of TL1 are
the most robust (consistently ranked in the top among existing algorithms) for coherent
and incoherent sensing matrices alike.

In this paper, as companion of [24], we develop robust and effective IT algorithms for
TL1 regularized minimization with evaluation on CS test problems. The TL1 penalty
is a one parameter family of bilinear transformations composed with the absolute value
function. The TL1 parameter, denoted by letter ‘a’, plays a similar role as p for lp
penalty. If ‘a’ is small (large), TL1 behaves like l0 (l1). If ‘a’ is near 1, TL1 is similar to
l1/2. However, a strikingly different phenomenon is that the TL1 thresholding function
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2 Minimization of TL1

is in closed form for all values of parameter ‘a’. Moreover, we found subcritical and
supercritical parameter regimes of TL1 thresholding functions with thresholds expressed
in different formulas. The subcritical TL1 thresholding functions are continuous, similar
to the soft-thresholding (a.k.a. shrink) function of l1 (Lasso). The supercritical TL1
thresholding functions have jump discontinuities, similar to l1/2 or l2/3.

Several common non-convex penalties in statistics are SCAD [12], MCP [26], log
penalty [16, 5], and capped l1 [27]. We refer to Mazumder, Friedman and Hastie’s paper
[16] for an overview. They appeared in the univariate regularization problem

min
x
{ 1

2
(x−y)2 +λP (x) },

and produced closed form thresholding formulas. TL1 is a smooth version of capped
l1 [27]. SCAD and MCP, corresponding to quadratic spline functions with one and
two knots, have continuous thresholding functions. Log penalty and capped l1 have
discontinuous threshold functions. The TL1 thresholding function is unique in that it
can be either continuous or discontinuous depending on parameters ‘a’ and λ. Also
similar to SCAD, TL1 satisfies unbiasedness, sparsity and continuity conditions, which
are desirable properties for variable selection [15, 12].

The solutions of TL1 regularized minimization problem satisfy a fixed point rep-
resentation involving matrix multiplication and thresholding only. Direct fixed point
iterative (DFA), semi-adaptive (TL1IT-s1) and adaptive iterative schemes (TL1IT-s2)
are proposed. The semi-adaptive scheme (TL1IT-s1) updates the sparsity regulariza-
tion parameter λ based on the sparsity estimate of the solution. The adaptive scheme
(TL1IT-s2) also updates the TL1 parameter ‘a’, however only doing the subcritical
thresholding.

We carried out extensive sparse signal recovery experiments in section 5, with three
algorithms: TL1IT-s1, Hard and Half-thresholding methods. For Gaussian sensing
matrices with positive covariance, TL1IT-s1 leads the pack and half-thresholding is the
second. For coherent over-sampled discrete cosine transform (DCT) matrices, TL1IT-s1
is again the leader and with considerable margin. The half thresholding algorithm drops
to the distinct last. In the presence of measurement noise, the results are similar, with
TL1IT-s1 maintaining its leader status in both classes of random sensing matrices. That
TL1IT-s1 fairs much better than other methods may be attributed to the two built-in
thresholding values. The early iterations are observed to go between the subcritical and
supercritical regimes frequently. Also TL1IT-s1 is stable and robust when exact sparsity
of solution is replaced by rough estimates as long as the number of linear measurements
exceeds a certain level.

The rest of the paper is organized as follows. In section 2, we overview TL1 mini-
mization. In section 3, we derive TL1 thresholding functions in closed form and show
their continuity properties with details of the proof left in the appendix. The analysis is
elementary yet delicate, and makes use of the Cardano formula on roots of cubic poly-
nomials and algebraic identities. The fixed point representation for the TL1 regularized
optimal solution follows. In section 4, we propose three TL1IT schemes and derive
the parameter update formulas for TL1IT-s1 and TL1IT-s2 based on the thresholding
functions. We analyze convergence of the fixed parameter TL1IT algorithm. In section
5, numerical experiments on CS test problems are carried out for TL1IT-s1, hard and
half thresholding algorithms on Gaussian and over-sampled DCT matrices with a broad
range of coherence. The TL1IT-s1 leads in all cases, and inherits well the robustness and
effective sparsity promoting capability of TL1 [24]. Concluding remarks are in section
6.
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(b) TL1 with a = 100
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(c) TL1 with a = 1
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(d) TL1 with a = 0.01
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Fig. 1: Level lines of TL1 with different parameters: a= 100 (figure b), a= 1 (figure c),
a= 0.01 (figure d). For large parameter a, the graph looks almost the same as l1 (figure
a). While for small value of a, it tends to the axis.

2. Overview of TL1 Minimization The transformed l1 (TL1) function ρa(x)
is defined as

ρa(x) =
(a+1)|x|
a+ |x|

, (2.1)

where parameter a∈ (0,+∞); see [15] for its unbiasedness, sparsity and continuity prop-
erties. With the change of parameter ‘a’, TL1 interpolates l0 and l1 norms:

lim
a→0+

ρa(x) = I{x 6=0}, lim
a→+∞

ρa(x) = |x|.

In Fig.1, level lines of TL1 on the plane are shown at small and large values of parameter
a, resembling those of l1 (at a= 100), l1/2 (at a= 1), and l0 (at a= 0.01).

Next, we want to expand the definition of TL1 to vector space. For vector x=
(x1,x2,·· · ,xN )T ∈<N , we define

Pa(x) =

N∑
i=1

ρa(xi). (2.2)



4 Minimization of TL1

In this paper, we will use TL1 instead of l0 norm to solve application problems
proposed from compressed sensing. The mathematical models can be generalized as
two categories: the constrained TL1 minimization:

min
x∈<N

f(x) = min
x∈<N

Pa(x) s.t. Ax=y, (2.3)

and the unconstrained TL1-regularized minimization:

min
x∈<N

f(x) = min
x∈<N

1

2
‖Ax−y‖22 +λPa(x), (2.4)

where λ is the trade-off Lagrange multiplier to control the amount of shrinkage.
The exact and stable recovery by TL1 for (2.3) under the Restricted Isometry

Property (RIP) [3, 4] conditions is established in the companion paper [24], where the
difference of convex functions algorithms (DCA) for (2.3) and (2.4) are also presented
and compared with some state-of-the-art CS algorithms on sparse signal recovery prob-
lems. In paper [24], the authors find that TL1 is always among top performers in RIP
and non-RIP categories alike. However, matrix multiplication and inverse operations
are involved at each iteration step of TL1 DC algorithms, which increases run time and
computation costs. Iterative thresholding (IT) algorithms usually are much faster, since
only matrix-vector multiplications and elementwise scalar thresholding operations are
needed. Also, due to precise threshold values, it needs fewer steps in IT to converge
to sparse solutions. In order to reduce computation time, we shall explore thresholding
property for TL1 penalty. In another paper [25], we expand TL1 thresholding and rep-
resentation theories to low rank matrix completion problems via Schatten-1 quasi-norm.

3. Thresholding Representation and Closed-Form Solutions The thresh-
olding theories and algorithms for l0 quasi-norm (hard-thresholding) [2, 1] and l1 norm
(soft-thresholding) [8, 9] are well-known and widely tested. Recently, the closed form
thresholding representation theories and algorithms for lp (p= 1/2,2/3) regularized
problems are proposed [7, 18] based on Cardano’s root formula of cubic polynomi-
als. However, these algorithms are limited to few specific values of parameter p. Here
for TL1 regularization problem, we derive the closed form representation of optimal
solution, under any positive value of parameter a.

Let us consider the unconstrained TL1 regularization model (2.4):

min
x

1

2
‖Ax−y‖22 +λPa(x),

for which the first order optimality condition is:

0 =AT (Ax−y)+λ ·∇Pa(x). (3.1)

Here ∇Pa(x) = (∂ρa(x1), ...,∂ρa(xN )), and ∂ρa(xi) =
a(a+1)SGN(xi)

(a+ |xi|)2
. SGN(·) is the

set-valued signum function with SGN(0)∈ [−1,1], instead of a single fixed value. In this
paper, we will use sgn(·) to represent the standard signum function with sgn(0) = 0.
From equation (3.1), it is easy to get

x+µAT (y−Ax) =x+λµ∇Pa(x). (3.2)

We can rewrite the above equation, via introducing two operators

Rλµ,a(x) = [I+λµ∇Pa(·)]−1(x),

Bµ(x) =x+µAT (y−Ax).
(3.3)
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From equation (3.2), we will get a representation equation for optimal solution x:

x=Rλµ,a(Bµ(x)). (3.4)

We will prove that the operator Rλµ,a is diagonal under some requirements for parame-
ters λ, µ and a. Before that, a closed form expression of proximal operator at scalar TL1
ρa(·) will be given and proved at following subsection. This optimal solution expression
will be used to prove the threshold representation theorem for model (2.4).

3.1. Proximal Point Operator for TL1 Like [17], we introduce proximal
operator proxλρa :<→< for univariate TL1 (ρa) regularization problem,

proxλρa(y) =argmin
x∈<

(
1

2
(y−x)2 +λρa(y)

)
.

Proximal operator of a convex function usually intends to solve a small convex regu-
larization problem, which often admits closed-form formula or an efficient specialized
numerical methods. However, for non-convex functions, like lp with p∈ (0.1), their re-
lated proximal operators do not have closed form solutions in general. There are many
iterative algorithms to approximate optimal solution. But they need more computing
time and sometimes only converge to local optimal or stationary point. In this subsec-
tion, we prove that for TL1 function, there indeed exists a closed-formed formula for its
optimal solution.

For the convenience of our following theorems, we want to introduce three param-
eters: 

t∗1 =
3

22/3
(λa(a+1))1/3−a

t∗2 =λa+1
a

t∗3 =
√

2λ(a+1)− a
2 .

(3.5)

It can be checked that inequality t∗1≤ t∗3≤ t∗2 holds. The equality is realized if λ= a2

2(a+1)

(Appendix A).
Lemma 3.1. For different values of scalar variable x, the roots of the following two
cubic polynomials in y satisfy properties:

1. If x>t∗1, there are 3 distinct real roots of the cubic polynomial:

y(a+y)2−x(a+y)2 +λa(a+1) = 0.

Furthermore, the largest root y0 is given by y0 =gλ(x), where

gλ(x) =sgn(x)

{
2

3
(a+ |x|)cos(ϕ(x)

3
)− 2a

3
+
|x|
3

}
(3.6)

with ϕ(x) = arccos(1− 27λa(a+1)
2(a+|x|)3 ), and |gλ(x)|≤ |x|.

2. If x<−t∗1, there are also 3 distinct real roots of cubic polynomial:

y(a−y)2−x(a−y)2−λa(a+1) = 0.

Furthermore, the smallest root denoted by y0, is given by y0 =gλ(x).
Proof.
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1.) First, we consider the roots of cubic equation:

y(a+y)2−x(a+y)2 +λa(a+1) = 0, when x>t∗1.

We apply variable substitution η=y+a in the above equation, then it becomes

η3−(a+x)η2 +λa(a+1) = 0,

whose discriminant is:

4=λ(a+1)a[4(a+x)3−27λ(a+1)a].

Since x≥ t∗ and4>0, there are three distinct real roots for this cubic equation.
Next, we change variables as η= t+ a

3 + x
3 =y+a. The relation between y and t

is: y= t− 2a
3 + x

3 . In terms of t, the cubic polynomial is turned into a depressed
cubic as:

t3 +pt+q= 0,

where p=−(a+x)2/3, and q=λa(a+1)−2(a+x)3/27. The three roots in
trigonometric form are:

t0 = 2(a+x)
3 cos(ϕ/3)

t1 = 2
3 (a+x) cos(ϕ/3+π/3)

t2 =− 2
3 (a+x) cos(π/3−ϕ/3)

(3.7)

where ϕ= arccos(1− 27λa(a+1)
2(a+x)3 ).

Then t2<0, and t0>t1>t2. By the relation y= t− 2a
3 + x

3 , the three roots in
variable y are: yi= ti− 2a

3 + x
3 , for i= 1,2,3. From these formula, we know that:

y0>y1>y2.

Also it is easy to check that y0≤x and y2<0, and the largest root y0 =gλ(x),
when x>t∗1.

2.) Next, we discuss the roots of the cubic equation:

(a−y)2y−x(a−y)2−λa(a+1) = 0, when x<−t∗1.

Here we set: η=a−y, and t=η+ x
3 −

a
3 . So y=−t+ x

3 + 2a
3 . By a similar

analysis as in part (1), there are 3 distinct roots for polynomial equation: y0<
y1<y2 with the smallest solution

y0 =−2

3
(a−x) cos(ϕ/3)+

x

3
+

2a

3
,

where ϕ= arccos(1− 27λa(a+1)
2(a−x)3 ). So we proved that the smallest solution is

y0 =gλ(x), when x<−t∗1.

Next let us define the function fλ,x(·) :<→<,

fλ,x(y) =
1

2
(y−x)2 +λρa(y). (3.8)
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So ∂fλ,x(y) =y−x+λa(a+1)SGN(y)
(a+|y|)2 .

Theorem 3.1. The optimal solution y∗λ(x) =argmin
y
fλ,x(y) is a threshold function with

threshold value t :

y∗λ(x) =

{
0, |x|≤ t
gλ(x), |x|>t (3.9)

where gλ(·) is defined in (3.6). The threshold parameter t depends on regularization
parameter λ,

1. if λ≤ a2

2(a+1) (sub-critical),

t= t∗2 =λ
a+1

a
;

2. λ> a2

2(a+1) (super-critical),

t= t∗3 =
√

2λ(a+1)− a
2
,

where parameters t∗2 and t∗3 are defined in formula (3.5).
Proof. In the following proof, we represent y∗λ(x) as y∗ for simplicity. We split the

value of x into 3 cases: x= 0, x>0 and x<0, then prove our conclusion case by case.
1.) x= 0.

In this case, optimization objective function is fλ,x(y) = 1
2y

2 +λρa(y). Here the
two factors 1

2y
2 and λρa(|y|) are both increasing for y>0, and decreasing for

y<0. Thus f(0) is the unique minimizer for function fλ,x(y). So

y∗= 0, when x= 0.

2.) x>0.
Since 1

2 (y−x)2 and λρa(y) are both decreasing for y<0, our optimal solution
will only be obtained at nonnegative values. Thus it just needs to consider all
positive stationary points for function fλ(y) and also point 0.
When y>0, we have:

f
′

λ,x(y) =y−x+λ
a(a+1)

(a+y)2
,

and

f
′′

λ,x(y) = 1−2λ
a(a+1)

(a+y)3
.

Since f
′′

λ,x(y) is increasing, f
′′

λ,x(0) = 2λ (a+1)
a2 determines the convexity for the

function f(y). In the following proof, we further discuss the value of y∗ by two

conditions: λ≤ a2

2(a+1) and λ> a2

2(a+1) .

2.1) λ≤ a2

2(a+1) .

So we have inf
y>0

f
′′

λ (y) =f
′′

λ (0+) = 1−2λ (a+1)
a2 ≥0, which means function

f
′

λ(y) is increasing for y≥0, with minimum value f
′

λ(0) =λ (a+1)
a −x=

t∗2−x.
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i) When 0≤x≤ t∗2, f
′

λ,x(y) is always positive, thus the optimal value y∗= 0.

ii) When x>t∗2, f
′

λ,x(y) is first negative then positive. Also x≥ t∗2≥ t∗1. The

unique positive stationary point y∗ of fλ,x(y) satisfies equation: f
′

λ(y∗) = 0,
which implies

y(a+y)2−x(a+y)2 +λa(a+1) = 0. (3.10)

According to Lemma 3.1, the optimal value y∗=y0 =gλ(x).
Above all, the value for y∗ is :

y∗=

{
0, 0≤x≤ t∗2;
gλ(x), x>t∗2

(3.11)

under the condition λ≤ a2

2(a+1) .

2.2) λ> a2

2(a+1) .

In this case, due to the sign of f
′′

λ (y), we know that function f
′

λ,x(y) is
decreasing at first then switches to be increasing at the domain [0,∞). Its
minimum obtained at point y= (2λa(a+1))1/3−a and

f
′

λ(y) =
3

22/3
(λ(a+1)a)1/3−a−x= t1−x.

Thus f
′

λ(y)≥ t∗1−x, for y≥0.
i) When 0≤x≤ t∗1, function fλ(y) is always increasing. Thus optimal value
y∗= 0.
ii) When t∗2≤x, f

′

λ(0+)≤0. So function fλ(y) is decreasing first, then
increasing. There is only one positive stationary point, which is also the
optimal solution. Using Lemma 3.1, we know that y∗=gλ(x).
iii) When t∗1<x<t

∗
2, f

′

λ(0+)>0. Thus function fλ(y) is first increasing,
then decreasing and finally increasing, which implies that there are two
positive stationary points and the larger one is a local minima. Using
Lemma 3.1 again, the local minimize point will be y0 =gλ(x), the largest
root of equation (3.10). But we still need to compare fλ(0) and fλ(y0)

to distinguish the global optimal y∗. Since y0−x+λ a(a+1)
(a+y0)2

= 0, which

implies λ (a+1)
a+y0

= (x−y0)(a+y0)
a , we have

fλ(y0)−fλ(0) = 1
2y

2
0−y0x+λ (a+1)y0

a+y0

=y0( 1
2y0−x+λ (a+1)

a+y0
)

=y0( 1
2y0−x+ (x−y0)(a+y0)

a )
=y20(x−y0a − 1

2 ) =y20((x−gλ(x))/a−1/2)

(3.12)

It can be proved that parameter t∗3 is the unique root of t−gλ(t)− a
2 = 0

in [t∗1,t
∗
2] (see Appendix B). For t∗1≤ t≤ t∗3, t−gλ(t)− a

2 ≥0; for t∗3≤ t≤ t∗2,
t−gλ(t)− a

2 ≤0. So in the third case: t∗1<x<t
∗
2: if t∗1<x≤ t∗3, y∗= 0; if

x>t∗3, y∗=y0 =gλ(x).

Finally we know that under the condition λ> a2

2(a+1) :

y∗=

{
0, 0≤x≤ t∗3;
gλ(x), x>t∗3,

(3.13)
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3.) x<0.
Notice that

inf
y
fλ,x(y) = inf

y
fλ,x(−y) = inf

y

1

2
(y−|x|))2 +ρa(y),

so y∗(x) =−y∗(−x), which implies that the formula obtained when x>0 above,
can extend to the case: x<0 by odd symmetry. Formula (3.9) holds.

Summarizing results from all cases, the proof is complete.

3.2. Optimal Point Representation for Regularized TL1 (2.4)
Next, we will show that the optimal solution of the TL1 regularized problem (2.4)

can be expressed by a thresholding function. Let us introduce two auxiliary objective
functions. For any given positive parameters λ, µ and vector z∈<N , define:

Cλ(x) = 1
2‖y−Ax‖

2
2 +λPa(x)

Cµ(x,z) =µ
{
Cλ(x)− 1

2‖Ax−Az‖
2
2

}
+ 1

2‖x−z‖
2
2.

(3.14)

The first function Cλ(x) comes from the objective of TL1 regularization problem (2.4).
Starting from this subsection till the end of this paper, we substitute parameter λ

in threshold value t∗i with the product of λ and µ, which are
t∗1 =

3

22/3
(λµa(a+1))1/3−a

t∗2 =λµa+1
a

t∗3 =
√

2λµ(a+1)− a
2 .

(3.15)

Lemma 3.2. If xs= (xs1, ·· · ,xsN )T is a minimizer of Cµ(x,z) with fixed parameters
{µ,a,λ,z}, then there exists a positive number t= t∗2 I

{
λµ≤ a2

2(a+1)

} + t∗3 I
{
λµ> a2

2(a+1)

}, such

that: for i= 1,·· · ,N ,

xsi = 0, when abs([Bµ(z)]i)≤ t;
xsi =gλµ([Bµ(z)]i), when abs([Bµ(z)]i)>t.

(3.16)

Here the function gλµ(·) is same as (3.6) with parameter λµ in place of λ there. Bµ(z) =
z+µAT (y−Az)∈<N , as in (3.3).

Proof. The second auxiliary objective function can be rewritten as

Cµ(x,z) = 1
2‖x− [(I−µATA)z+µAT y]‖22 +λµPa(x)
+ 1

2µ‖y‖
2
2 + 1

2‖z‖
2
2− 1

2µ‖Az‖
2
2− 1

2‖(I−µA
TA)z+µAT y‖22

= 1
2

N∑
i=1

(xi− [Bµ(z)]i)
2 +λµ

N∑
i=1

ρa(xi)

+ 1
2µ‖y‖

2
2 + 1

2‖z‖
2
2− 1

2µ‖Az‖
2
2− 1

2‖(I−µA
TA)z+µAT y‖22,

(3.17)

which implies that

xs = arg min
x∈<N

Cµ(x,z)

= arg min
x∈<N

{
1
2

N∑
i=1

(xi− [Bµ(z)]i)
2 +λµ

N∑
i=1

ρa(xi)

} (3.18)
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Since each component xi is decoupled, the above minimum can be calculated by
minimizing with respect to each xi individually. For the component-wise minimization,
the objective function is :

f(xi,z) =
1

2
(xi− [Bµ(z)]i)

2 +λµρa(|xi|). (3.19)

Then by Theorem (3.1), the proof of our Lemma is complete.

Based on Lemma 3.2, we have the following representation theorem.
Theorem 3.2. If x∗= (x∗1,x

∗
2,...,x

∗
N )T is a TL1 regularized solution of (2.4) with a

and λ being positive constants, and 0<µ<‖A‖−2, then letting t= t∗21{
λµ≤ a2

2(a+1)

} +

t∗31{
λµ> a2

2(a+1)

}, the optimal solution satisfies

x∗i =

{
gλµ([Bµ(x∗)]i), if |[Bµ(x∗)]i|>t
0, others.

(3.20)

Proof. The condition 0<µ<‖A‖−2 implies

Cµ(x,x∗) = µ{ 12‖y−Ax‖
2
2 +λPa(x)}

+ 1
2{−µ‖Ax−Ax

∗‖22 +‖x−x∗‖22}
≥ µ{ 12‖y−Ax‖

2
2 +λPa(x)}

≥ Cµ(x∗,x∗),

(3.21)

for any x∈<N . So it shows that x∗ is a minimizer of Cµ(x,x∗) as long as x∗ is a TL1
solution of (2.4). In view of Lemma (3.2), we finish the proof.

4. TL1 Thresholding Algorithms In this section, we propose 3 iterative
thresholding algorithms for regularized TL1 optimization problem (2.4), based on The-
orem 3.2.

We want to introduce a thresholding operator Gλµ,a(·) :<→< as

Gλµ,a(w) =

{
0, if |w|≤ t;
gλµ(w), if |w|>t. (4.1)

and expand it to vector space <N ,

Gλµ,a(x) = (Gλµ,a(x1),...,Gλµ,a(xN )).

According to Theorem 3.2, optimal solution of model (2.4) satisfies representation equa-
tion

x=Gλµ,a(Bµ(x)). (4.2)

4.1. Direct Fixed Point Iterative Algorithm — DFA A natural idea is to
develop an iterative algorithm based on the above fixed point representation directly,
with fixed values for parameters: λ,µ and a. We call it direct fixed point iterative
algorithm (DFA), for which the iterative scheme is

xn+1 =Gλµ,a(xn+µAT (y−Axn)) =Gλµ,a(Bµ(xn)), (4.3)
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Fig. 2: Soft/half (top left/right), TL1 (sub/super critical, lower left/right) thresholding
functions at λ= 1/2.

at (n+1)-th step. Recall that the thresholding parameter t is:

t=

{
t∗2 =λµa+1

a , if λ≤ a2

2(a+1)µ ,

t∗3 =
√

2λµ(a+1)− a
2 , if λ> a2

2(a+1)µ .
(4.4)

In DFA, we have 2 tuning parameters: product term λµ and TL1 parameter a,
which are fixed and can be determined by cross-validation based on different categories
of matrix A. Two adaptive iterative thresholding (IT) algorithms will be introduced
later.
Remark 4.1. In TL1 proximal thresholding operator Gλµ,a, the threshold value t varies
with other parameters:

t= t∗2 I
{
λµ≤ a2

2(a+1)

} + t∗3 I
{
λµ> a2

2(a+1)

}.
Since t≥ t∗3 =

√
2λµ(a+1)− a

2 , the larger the λ, the larger the threshold value t, and
therefore the sparser the solution from the thresholding algorithm.

It is interesting to compare the TL1 thresholding function with the hard/soft thresh-
olding function of l0/l1 regularization, and the half thresholding function of l1/2 regu-
larization. These three functions ([1, 8, 18]) are:

Hλ,0(x) =

{
x, |x|> (2λ)1/2

0, otherwise
(4.5)
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Hλ,1(x) =

{
x−sgn(x)λ, |x|>λ
0, otherwise

(4.6)

and

Hλ,1/2(x) =

{
f2λ,1/2(x), |x|> (54)1/3

4 (2λ)2/3

0, otherwise
(4.7)

where fλ,1/2(x) = 2
3x
(
1+cos( 2π

3 −
2
3Φλ(x))

)
and Φλ(x) = arccos(λ8 ( |x|3 )−

3
2 ).

In Fig.2, we plot the closed-form thresholding formulas (3.9) for λ≤ and λ> a2

2(a+1)

respectively. We observe and prove that when λ< a2

2(a+1) , the TL1 threshold function

is continuous (Appendix C), same as soft-thresholding function. While if λ> a2

2(a+1) ,

the TL1 thresholding function has a jump discontinuity at threshold, similar to half-
thresholding function. For different threshold scheme, it is believed that continuous
formula is more stable, while discontinuous formula separates nonzero and trivial coef-
ficients more efficiently and sometimes converges faster [16].

4.2. Convergence Theory for DFA We establish the convergence theory for
direct fixed point iterative algorithm, similar to [23, 18, 24]. Recall in (3.14), we intro-
duced two functions Cλ(x) (the objective function in TL1 regularization), and Cµ(x,z).
They will appear in the proof of:

Theorem 4.1. Let {xn} be the sequence generated by the iteration scheme (4.3) under
the condition ‖A‖2<1/µ. Then:

1) {xn} is a minimizing sequence of the function Cλ(x). If the initial vector x0 = 0

and λ> ‖y‖2
2(a+1) , the sequence {xn} is bounded.

2) {xn} is asymptotically regular, i.e. lim
n→∞

‖xn+1−xn‖= 0.

3) Any limit point x∗ of {xn} is a stationary point satisfying equation (4.2), that
is x∗=Gλµ,a(Bµ(x∗)).

Proof.
1) From the proof of Lemma (3.2), we can see that

Cµ(xn+1,xn) = min
x
Cµ(x,xn).

By the definition of function Cλ(x) and Cµ(x,z) (3.14), we have the following
equation:

Cλ(xn+1) =
1

µ

[
Cµ(xn+1,xn)− 1

2
‖xn+1−xn‖22

]
+

1

2
‖Axn+1−Axn‖22

Further since ‖A‖2<1/µ,

Cλ(xn+1) ≤ 1
µ

{
Cµ(xn,xn)− 1

2‖x
n+1−xn‖22

}
+ 1

2‖Ax
n+1−Axn‖22

=Cλ(xn)+ 1
2 (‖A(xn+1−xn)‖22− 1

µ‖x
n+1−xn‖22)

≤Cλ(xn)

(4.8)

So we know that sequence {Cλ(xn)} is decreasing monotonically.
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In DFA, if we set trivial initial vector x0 = 0 and parameter λ satisfying λ>
‖y‖2

2(a+1) , we show that {xn} is bounded. Since {Cλ(xn)} is decreasing,

Cλ(xn)≤Cλ(x0), for any n.

So we have λPa(xn)≤Cλ(x0). As ‖xn‖∞ be the largest entry in absolute value
of vector xn, λρa(‖xn‖∞)≤Cλ(x0). Due to the definition of ρa, it is easy to
check that the above inequality is equivalent to(

λ(a+1)−Cλ(x0)
)
‖xn‖∞≤aCλ(x0).

In order to bound {xn}, we need the condition λ>Cλ(x0)/(a+1). Especially
when x0 is zero, one sufficient condition for {xn} to be bounded is

λ>
‖y‖2

2(a+1)
.

2) Since ‖A‖2<1/µ, we denote ε= 1−µ‖A‖2>0. Then we have the inequality
µ‖A(xn+1−xn)‖22≤ (1−ε)‖xn+1−xn‖2, which can be rewritten as

‖xn+1−xn‖2≤ 1

ε
‖xn+1−xn‖2− µ

ε
‖A(xn+1−xn)‖22.

In the above inequality, we sum the index n from 1 to N and find:

N∑
n=1
‖xn+1−xn‖2 ≤ 1

ε

N∑
n=1
‖xn+1−xn‖2− µ

ε

N∑
n=1
‖A(xn+1−xn)‖22

≤ µ
ε

N∑
n=1

2
(
Cλ(xn)−Cλ(xn+1)

)
≤ 2µ

ε Cλ(x0),

where the last second inequality comes from (4.8) above . Thus the infinite sum
of sequence ‖xn+1−xn‖2 is convergent, which implies that

lim
n→∞

‖xn+1−xn‖= 0.

3) Denote Lλ,µ(z,x) = 1
2‖z−Bµ(x)‖2 +λµPa(z) and

Dλ,µ(x) =Lλ,µ(x,x)−min
z
Lλ,µ(z,x).

By its definition and the proof of Lemma 3.2 (especially (3.18)), we have
Dλ,µ(x)≥0 and

Dλ,µ(x) = 0 if and only if x satisfies (4.2).

Assume that x∗ is a limit point of {xn} and a subsequence of xn (still denoted
the same) converges to it. Because of DFA iterative scheme (4.3), we have
xn+1 =argminzLλ,µ(z,xn), which implies that

Dλ,µ(xn) =Lλ,µ(xn,xn)−Lλ,µ(xn+1,xn)

=λµ
(
Pa(xn)−Pa(xn+1)

)
− 1

2‖x
n+1−xn‖2 +

〈
µAt(Axn−y),xn−xn+1

〉
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Thus we know

λPa(xn)−λPa(xn+1)

= 1
2µ‖x

n+1−xn‖2 + 1
µDλ,µ(xn)+

〈
At(Axn−y),xn−xn+1

〉
,

from which we get

Cλ(xn)−Cλ(xn+1) =λPa(xn)−λPa(xn+1)+ 1
2‖Ax

n−y‖2− 1
2‖Ax

n+1−y‖2

= 1
2µ‖x

n+1−xn‖2 + 1
µDλ,µ(xn)− 1

2‖A(xn−xn+1)‖22
≥ 1
µDλ,µ(xn)+ 1

2 ( 1
µ−‖A‖

2)‖xn−xn+1‖2.

So 0≤Dλ,µ(xn)≤µ
(
Cλ(xn)−Cλ(xn+1)

)
. Also we know from part (1) of this

theorem that {Cλ(xn)} converges, so lim
n→∞

Dλ,µ(xn) = 0. Thus as the limit point

of the sequence xn, the point x∗ satisfies equation (4.2).

4.3. Semi-Adaptive Thresholding Algorithm — TL1IT-s1 In the following
2 subsections, we present two adaptive parameter TL1 algorithms. We begin with
formulating an optimality condition on the regularization parameter λ, which serves as
the basis for parameter selection and updating in the semi-adaptive algorithm.

Let us consider the so called k-sparsity problem for (2.4). The solution is k-sparse by
prior knowledge or estimation. For any µ, denote Bµ(x) =x+µAT (b−Ax) and |Bµ(x)|
is the vector from taking absolute value of each entry of Bµ(x). Suppose that x∗ is
the TL1 solution, and without loss of generality, |Bµ(x∗)|1≥|Bµ(x∗)|2≥ ...≥|Bµ(x∗)|N .
Then, the following inequalities hold:

|Bµ(x∗)|i>t ⇔ i∈{1,2,...,k},
|Bµ(x∗)|j≤ t⇔ j∈{k+1,k+2,...,N}, (4.9)

where t is our threshold value.
Recall that t∗3≤ t≤ t∗2. So

|Bµ(x∗)|k≥ t≥ t∗3 =
√

2λµ(a+1)− a
2 ;

|Bµ(x∗)|k+1≤ t≤ t∗2 =λµa+1
a .

(4.10)

It follows that

λ1≡
a|Bµ(x∗)|k+1

µ(a+1)
≤λ≤λ2≡

(a+2|Bµ(x∗)|k)2

8(a+1)µ

or λ∗∈ [λ1,λ2].
The above estimate helps to set optimal regularization parameter. A choice of λ∗

is

λ∗=

{
λ1, if λ1≤ a2

2(a+1)µ , then λ∗≤ a2

2(a+1)µ⇒ t= t∗2;

λ2, if λ1>
a2

2(a+1)µ , then λ∗> a2

2(a+1)µ⇒ t= t∗3.
(4.11)

In practice, we approximate x∗ by xn in (4.11), so

λ1 =
a|Bµ(xn)|k+1

µ(a+1)
, λ2 =

(a+2|Bµ(xn)|k)2

8(a+1)µ
,

at each iteration step. So we have an adaptive iterative algorithm without pre-setting
the regularization parameter λ. Also the TL1 parameter a is still free (to be selected),
thus this algorithm is overall semi-adaptive, which is named TL1IT-s1 for short and
summarized in Algorithm 1.
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Algorithm 1: TL1 Thresholding Algorithm — TL1IT-s1

Initialize: x0; µ0 = (1−ε)
‖A‖2 and a;

while not converged do
µ=µ0; zn :=Bµ(xn) =xn+µAT (y−Axn);

λn1 =
a|zn|k+1

µ(a+1)
; λn2 =

(a+2|zn|k)2

8(a+1)µ
;

if λn1 ≤ a2

2(a+1)µ then

λ=λn1 ; t=λµa+1
a ;

for i = 1:length(x)
if |zn(i)|>t, then xn+1(i) =gλµ(zn(i));
if |zn(i)|≤ t, then xn+1(i) = 0.

else

λ=λn2 ; t=
√

2λµ(a+1)− a
2 ;

for i = 1:length(x)
if |zn(i)|>t, then xn+1(i) =gλµ(zn(i));
if |zn(i)|≤ t, then xn+1(i) = 0.

end
n→n+1;

end

4.4. Adaptive Thresholding Algorithm — TL1IT-s2 For TL1IT-s1 algo-

rithm, at each iteration step, it is required to compare λn and a2

2(a+1)µ . Here instead,

we vary TL1 parameter ‘a’ and choose a=an in each iteration, such that the inequality

λn≤ a2n
2(an+1)µn

holds.

The thresholding scheme is now simplified to just one threshold parameter t= t∗2.

Putting λ= a2

2(a+1)µ at critical value, the parameter a is expressed as:

a=λµ+
√

(λµ)2 +2λµ. (4.12)

The threshold value is:

t= t∗2 =λµ
a+1

a
=
λµ

2
+

√
(λµ)2 +2λµ

2
. (4.13)

Let x∗ be the TL1 optimal solution. Then we have the following inequalities:

|Bµ(x∗)|i>t ⇔ i∈{1,2,...,k},
|Bµ(x∗)|j≤ t ⇔ j∈{k+1,k+2,...,N}. (4.14)

So, for parameter λ, we have:

1

µ

2|Bµ(x∗)|2k+1

1+2|Bµ(x∗)|k+1
≤λ≤ 1

µ

2|Bµ(x∗)|2k
1+2|Bµ(x∗)|k

.

Once the value of λ is determined, the parameter a is given by (4.12).
In the iterative method, we approximate the optimal solution x∗ by xn. The result-

ing parameter selection is:

λn=
1

µn

2|Bµn
(x∗)|2k+1

1+2|Bµn
(x∗)|k+1

;

an=λnµn+
√

(λnµn)2 +2λnµn.

(4.15)
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In this algorithm (TL1IT-s2 for short), only parameter µ is fixed and µ∈ (0,‖A‖−2).
The summary is below (Algorithm 2).

Algorithm 2: Adaptive TL1 Thresholding Algorithm — TL1IT-s2

Initialize: x0, µ0 = (1−ε)
‖A‖2 ;

while not converged do
µ=µ0; zn :=xn+µAT (y−Axn);

λn=
1

µ

2|znk+1|2

1+2|znk+1|
;

an=λnµ+
√

(λnµ)2 +2λnµ;

t= λnµ
2 +

√
(λnµ)2+2λnµ

2 ;

for i = 1:length(x)
if |zn(i)|>t, then xn+1(i) =gλnµ(zn(i));
if |zn(i)|≤ t, then xn+1(i) = 0.

n→n+1;

end

5. Numerical Experiments In this section, we carried out a series of numerical
experiments to demonstrate the performance of the TL1 thresholding algorithm: semi-
adaptive TL1IT-s1. All the experiments here are conducted by applying our algorithm
to sparse signal recovery in compressed sensing. Two classes of randomly generated
sensing matrices are used to compare our algorithms with the state-of-the-art iter-
ative non-convex thresholding solvers: Hard-thresholding [2], Half-thresholding
[18]. Here all these thresholding algorithms need a sparsity estimation to accelerate
convergence. Also the Hard Thresholding algorithm (AIHT) in [2] has an additional
double over-relaxation step for significant speedup in convergence. In the following run
time comparison of the three algorithms, AIHT is clearly the most efficient under the
uncorrelated Gaussian sensing matrix.

We also tested on the adaptive scheme: TL1IT-s2. However, its performance is
always no better than TL1IT-s1, and so its results are not shown here. We suggest to
use TL1IT-s1 first in CS applications. That TL1IT-s2 is not as competitive as TL1IT-
s1 may be attributed to its limited thresholding scheme. Utilizing double thresholding
schemes is helpful for TL1IT. We noticed in our computations that at the beginning of

iterations, the λn’s cross the critical value a2

2(a+1)µ frequently. Later on, they tend to

stay on one side, depending on the sensing matrix A. However, the sub-critical threshold
is used for all A’s in TL1IT-s2.

Here we compare only the non-convex iterative thresholding methods, and did not
include the soft-thresholding algorithm. The two classes of random matrices are:

1) Gaussian matrices.
2) Over-sampled discrete cosine transform (DCT) matrices with factor F .

All our tests were performed on a Lenovo desktop: 16 GB of RAM and Intel Core
processor i7−4770 with CPU at 3.40GHz×8 under 64-bit Ubuntu system.

The TL1 thresholding algorithms do not guarantee a global minimum in general,
due to nonconvexity. Indeed we observed that TL1 thresholding with random starts may
get stuck at local minima especially when the matrix A is ill-conditioned (e.g. A has
a large condition number or is highly coherent). A good initial vector x0 is important
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for thresholding algorithms. In our numerical experiments, instead of having x0 = 0
or random, we apply YALL1 (an alternating direction l1 method, [19]) a number of
times, e.g. 20 times, to produce a better initial guess x0. This procedure is similar to
algorithm DCATL1 [24] initiated at zero vector so that the first step of DCATL1 reduces
to solving an unconstrained l1 regularized problem. For all these iterative algorithms,

we implement a unified stopping criterion as ‖x
n+1−xn‖
‖xn‖ ≤10−8 or maximum iteration

step equal to 3000.
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Fig. 3: Sparse recovery success rates for selection of parameter a with 128×512 Gaussian
random matrices and TL1IT-s1 method.

5.1. Optimal Parameter Testing for TL1IT-s1 In TL1IT-s1, the parameter
‘a’ is still free. When ‘a’ tends to zero, the penalty function approaches the l0 norm.
We tested TL1IT-s1 on sparse vector recovery with different ‘a’ values, varying among
{0.001, 0.01, 0.1, 1, 100 }. In this test, matrix A is a 128×512 random matrix, generated
by multivariate normal distribution ∼N (0,Σ). Here the covariance matrix Σ ={1(i=j) +
0.2×1(i 6=j)}i,j . The true sparse vector x∗ is also randomly generated under Gaussian
distribution, with sparsity k from the set {8, 10, 12, ·· · , 32}.

For each value of ‘a’, we conducted 100 test runs with different samples of A and

ground truth vector x∗. The recovery is successful if the relative error: ‖xr−x∗‖2
‖x∗‖2 ≤10−2.

Figure (3) shows the success rate vs. sparsity using TL1IT-s1 over 100 independent
trials for various parameter a and sparsity k. We see that the algorithm with a= 1 is
the best among all tested parameter values. Thus in the subsequent computation, we
set the parameter a= 1. The parameter µ= 0.99

‖A‖2 .

5.2. Signal Recovery without Noise

Gaussian Sensing Matrix. The sensing matrix A is drawn from N (0,Σ), the
multi-variable normal distribution with covariance matrix Σ ={(1−r)1(i=j) +r}i,j ,
where r ranges from 0 to 0.8. The larger parameter r is, the more difficult it is to
recover the sparse ground truth vector. The matrix A is 128×512, and the sparsity k
varies among {5, 8, 11, ·· · , 35}.

We compare the three IT algorithms in terms of success rate averaged over 50
random trials. A success is recorded if the relative error of recovery is less than 0.001.
The success rate of each algorithm is plotted in Figure 4 with parameter r from the set:
{0, 0.1, 0.2, 0.3}.
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Fig. 4: Sparse recovery algorithm comparison for 128×512 Gaussian sensing matrices
without measurement noise at covariance parameter r= 0, 0.1, 0.2, 0.3.

We see that all three algorithms can accurately recover the signal when r and
sparsity k are both small. However, the success rates decline, along with the increase
of r and sparsity k. At r= 0, the TL1IT-s1 scheme recovers almost all testing signals
from different sparsity. Half thresholding algorithm maintains nearly the same high
success rates with a slight decrease when k≥26. At r= 0.3, TL1IT-s1 leads the half
thresholding algorithm with a small margin. In all cases, TL1IT-s1 outperforms the
other two, while the half thresholding algorithm is the second.

Comparison of time efficiency under Gaussian measurements. One inter-
esting question is about the time efficiency for different thresholding algorithms. As
seen from Figure 4, almost all the 3 algorithms, under Gaussian matrices with covari-
ance parameter r= 0 and sparsity k= 5, ·· · ,20, achieve 100 % success recovery. So we
measured the average convergent time over 20 random tests in the above situation (see
Table 1), where all the parameters are tuned to obtain relative errors around 10−5.

From the table, we know that Hard Thresholding algorithm costs the least time
among all three. So under this uncorrelated normal distribution measurement, Hard
Thresholding algorithm is the most efficient, with Half Thresholding algorithm the
second. Though TL1IT-s1 has the lowest relative error in recovery, it takes more time.
One reason is that TL1IT-s1 iterations go between two thresholding schemes, which
makes it more adaptive to data for a higher computational cost.
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sparsity 5 8 11 14 17 20

TL1IT-s1 0.031 0.054 0.047 0.055 0.053 0.059
Hard 0.003 0.003 0.005 0.006 0.007 0.007
Half 0.019 0.017 0.017 0.023 0.020 0.025

Table 1: Time efficiency (in sec) comparison for 3 algorithms under Gaussian matrices.

Over-sampled DCT Sensing Matrix. The over-sampled DCT matrices [13, 14]
are:

A= [a1,...,aN ]∈<M×N

where aj =
1√
M
cos(

2πω(j−1)

F
), j= 1,...,N,

and ω is a random vector, drawn uniformly from (0,1)M .

(5.1)

Such matrices appear as the real part of the complex discrete Fourier matrices in spectral
estimation and super-resolution problems [6, 13]. An important property is their high
coherence measured by the maximum of absolute value of cosine of the angles between
each pair of column vectors of A. For a 100×1000 over-sampled DCT matrix at F = 10,
the coherence is about 0.9981, while at F = 20 the coherence of the same size matrix is
typically 0.9999.

The sparse recovery under such matrices is possible only if the non-zero elements
of solution x are sufficiently separated. This phenomenon is characterized as minimum
separation in [6], with minimum length referred as the Rayleigh length (RL). The value
of RL for matrix A is equal to the factor F . It is closely related to the coherence in the
sense that larger F corresponds to larger coherence of a matrix. We find empirically
that at least 2RL is necessary to ensure optimal sparse recovery with spikes further
apart for more coherent matrices.

Under the assumption of sparse signal with 2RL separated spikes, we compare the
four non-convex IT algorithms in terms of success rate. The sensing matrix A is of size
100×1500. A success is recorded if the relative recovery error is less than 0.001. The
success rate is averaged over 50 random realizations.

Figure 5 shows success rates for the four algorithms with increasing factor F from 2
to 8. Along with the increasing F , the success rates for the algorithms decrease, though
at different rates of decline. In all plots, TL1IT-s1 is the best with the highest success
rates. At F = 2, both half thresholding and hard thresholding successfully recover signal
in the regime of small sparsity k. However when F becomes larger, the half thresholding
algorithm deteriorates sharply. Especially at F = 8, it lies almost flat.

5.3. Signal Recovery in Noise Let us consider recovering signal in noise based
on the model y=Ax+ε, where ε is drawn from independent Gaussian ε∈N (0,σ2) with
σ= 0.01. The non-zero entries of sparse vector x are drawn from N (0,4). In order to
recover signal with certain accuracy, the error ε can not be too large. So in our test
runs, we also limit the noise amplitude as |ε|∞≤0.01.

Gaussian Sensing Matrix. Here we use the same method in Part B to obtain
Gaussian matrix A. Parameter r and sparsity k are in the same set {0, 0.2, 0.4, 0.5}
and {5, 8, 11, ..., 35}. Due to the presence of noise, it becomes harder to accurately
recover the original signal x. So we tune down the requirement for a success to relative

error ‖x
r−x‖
‖x‖ ≤10−2.
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Fig. 5: Algorithm comparison for 100×1500 over-sampled DCT random matrices with-
out noise at different factor F .

The numerical results are shown in Figure 6. In this experiment, TL1IT-s1 again has
the best performance, with half thresholding algorithm the second. At r= 0, TL1IT-s1
scheme is robust and recovers signals successfully in almost all runs, which is the same
case under both noisy and noiseless conditions.

Over-sampled DCT Sensing Matrix. Fig.7 shows results of three algorithms
under the over-sampled DCT sensing matrices. Relative error of 0.01 or under qualifies
for a success. In this case, TL1IT-s1 is also the best numerical method, same as in
the noise free tests. It degrades most slowly under high coherence sensing matrices
(F = 6,8).

5.4. Robustness under Sparsity Estimation In the previous numerical ex-
periments, the sparsity of the problem is known and used in all thresholding algorithms.
However, in many applications, the sparsity of problem may be hard to know exactly.
Instead, one may only have a rough estimate of the sparsity. How is the performance
of the TL1IT-s1 when the exact sparsity k is replaced by a rough estimate ?

Here we perform simulations to verify the robustness of TL1IT-s1 algorithm with
respect to sparsity estimation. Different from previous examples, Figure 8 shows mean
square error (MSE), instead of relative l2 error. The sensing matrix A is generated from
Gaussian distribution with r= 0. Number of columns, M varies over several values,
while the number of rows, N , is fixed at 512. In each experiment, we change the
sparsity estimation for the algorithm from 60 to 240. The real sparsity is k= 130. This



S.Zhang, and J.Xin 21

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
s

u
c

c
e

s
s

 r
a

te
   Gaussian Matrix with noise: r = 0

TL1IT-s1

Hard Threshold

Half Threshold

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

          Gaussian Matrix with noise: r = 0.1

TL1IT-s1

Hard Threshold

Half Threshold

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

   Gaussian Matrix with noise: r = 0.2

TL1IT-s1

Hard Threshold

Half Threshold

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

          Gaussian Matrix with noise: r = 0.3

TL1IT-s1

Hard Threshold

Half Threshold

Fig. 6: Algorithm comparison in success rates for 128×512 Gaussian sensing matrices
with additive noise at different coherence r.

way, we test the robustness of the TL1IT algorithms under both underestimation and
overestimation of sparsity.

In Figure 8, we see that TL1IT-s1 scheme is robust with respect to sparsity es-
timation, especially for sparsity over-estimation. In other words, TL1IT scheme can
withstand the estimation error if given enough measurements.

5.5. Comparison among TL1 Algorithms We have proposed three TL1
thresholding algorithms: DFA with fixed parameters, semi-adaptive algorithm – TL1IT-
s1 and adaptive algorithm – TL1IT-s2. Also in [24], we presented a TL1 difference
of convex function algorithm – DCATL1. Here we compare all four TL1 algorithms,
under both Gaussian and Over-sampled DCT sensing matrices. For the fixed parameter
DFA, we tested two thresholding schemes: DFA-s1 for continuous thresholding scheme
under λµ<a2/2(a+1), and DFA-s2 for discontinuous thresholding scheme under λµ>
a2/2(a+1).

In the comparison experiments, we chose Gaussian matrices with covariance pa-
rameter r= 0 and Over-sampled DCT matrices with F = 2. The results are showed
in Figure 9. Under Gaussian sensing matrices, DCATL1 and TL1IT-s1 achieved 100
% success rate to recover ground truth sparse vector, while TL1IT-s2 failed sometimes
when sparsity is higher than 28. Also it is interesting to notice that DFA-s2 with discon-
tinuous thresholding scheme behaved better than DFA-s1, the continuous thresholding
scheme. For over-sampled DCT sensing tests, DCATL1 is clearly the best among all
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Fig. 7: Algorithm comparison for over-sampled DCT matrices with additive noise: M =
100, N = 1500 at F = 2,4,6,8.
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Fig. 8: Robustness tests (mean square error vs. sparsity) for TL1IT-s1 thresholding
algorithm under Gaussian sensing matrices: r= 0,N = 512 and number of measurements
M = 260,270,280. The real sparsity is fixed as k= 130.

TL1 algorithms, with TL1IT-s1 the second. Also the performance of TL1IT-s2 declined
sharply under this test, which is consistent with our previous numerical experiments for
thresholding algorithms. Due to this fact, we only showed TL1IT-s1 in the plots for
comparison with hard and half thresholding algorithms.

The two adaptive TL1 thresholding algorithms are far ahead of 2 DFA algorithms,
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Fig. 9: TL1 algorithms comparison. Y-axis is success rate from 20 random tests with
accepted relative error 10−3. X-axis is sparsity value k. Left: 128×512 Gaussian sensing
matrices with sparsity k= 5, ·· · ,35. Right: 100×1500 Gaussian sensing matrices with
sparsity k= 6, ·· · ,26.

which shows the advantages of adaptivity. Although DCATL1 out-performed all TL1
thresholding algorithms in the above tests, it requires two nested iterations, and an
inverse matrix operation, which is costly for a large size sensing matrix. So for large
scale CS applications, thresholding algorithms will have their advantages, including
parallel implementations.

6. Conclusion We have studied compressed sensing problems with the trans-
formed l1 penalty function for the unconstrained regularization model. We established
a precise thresholding representation theory with closed form thresholding formula, and
proposed three iterative thresholding schemes. The TL1 thresholding schemes can be
either continuous (as in soft-thresholding of l1) or discontinuous (as in half-thresholding
of l1/2), depending on whether the parameters belong to the subcritical or supercritical
regime. Correspondingly, there are two parameter setting strategies for regularization
parameter λ, when the k-sparsity problem is solved. A convergence theorem is proved
for the fixed parameter TL1 algorithm (DFA).

Numerical experiments showed that the semi-adaptive TL1It-s1 algorithm is the
best performer for sparse signal recovery under sensing matrices with a broad range
of coherence and under controlled measurement noise. TL1IT-s1 is also robust under
sparsity estimation error.

In a future work, we plan to explore TL1 thresholding algorithms for imaging science
among other higher dimensional problems.

Appendix A. Relations of three parameters: t∗1, t∗2 and t∗3.
t∗1 =

3

22/3
(λa(a+1))1/3−a;

t∗2 =λa+1
a

t∗3 =
√

2λ(a+1)− a
2 .

In this appendix, we prove that

t∗1≤ t∗3≤ t∗2,
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for all positive parameters λ and a. Also when λ= a2

2(a+1) , they are equal to a
2 .

1. t∗1≤ t∗3.
Consider the following equivalent relations:

t∗1≤ t∗3 ⇔
3

22/3
(λa(a+1))1/3≤ a

2 +
√

2λ(a+1)

⇔ 0≤ (
√

2λ(a+1))3 + a3

8 −
15
4 a(a+1)λ+ 3a2

4

√
2λ(a+1)

Denote β=
√
λ, then function P (λ) = (

√
2λ(a+1))3 + a3

8 −
15
4 a(a+1)λ+

3a2

4

√
2λ(a+1) can be rewriten as a cubic polynomial of β:

β3(2(a+1))3/2−β2 15

8
a(2(a+1))+β

3a2

4

√
2(a+1)+

a3

8
.

This polynomial can be factorized as

(2(a+1))3/2

(
β− a√

2(a+1)

)2(
β+

a

8
√

2(a+1)

)
.

Thus for nonnegative parameter λ=β2, it is always true that P (λ)≥0. There-

fore, we have t∗1≤ t∗3. They are equal to a/2 if and only if λ= a2

2(a+1) .

2. t∗3≤ t∗2.
This is because

t∗3≤ t∗2 ⇔
√

2λ(a+1)≤ a
2 +λa+1

a

⇔ 2λ(a+1)≤ a2

4 +λ(a+1)+λ2 (a+1)2

a2

⇔ 0≤
(
a
2 −λ

a+1
a

)2
.

So inequality t∗3≤ t∗2 holds. Further, t∗3 = t∗2 =a/2 if and only if λ= a2

2(a+1) .

Appendix B. Formula of optimal value y∗ when λ> a2

2(a+1) and t∗1<x<t
∗
2.

Define function w(x) =x−gλ(x)− a
2 , where

gλ(x) =sgn(x)

{
2

3
(a+ |x|) cos(

ϕ(x)

3
)− 2a

3
+
|x|
3

}
with ϕ(x) = arccos(1− 27λa(a+1)

2(a+|x|)3 ).

1. First, we need to check that x= t∗3 indeed is a solution for equation w(x) = 0.

Since λ> a2

2(a+1) , t
∗
3 =
√

2λ(a+1)− a
2 >0. Thus:

cos(ϕ(t∗3)) = 1− 27λa(a+1)

2(a+ t∗3)3

= 1− 27λa(a+1)

2(a2 +
√

2λ(a+1))3
.

Further, by using the relation cos(ϕ) = 4cos3(ϕ/3)−3cos(ϕ/3) and 0≤ϕ/3≤ π
3 ,

we have

cos

(
ϕ(t∗3)

3

)
=

√
2λ(a+1)−a/4

a/2+
√

2λ(a+1)
.

Plugging this formula into gλ(t∗3) shows that gλ(t∗3) =
√

2λ(a+1)−a= t∗3−a/2.
So t∗3 is a root for function w(t) and t∗3∈ (t∗1,t

∗
2).
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2. Second we prove that the function w(x) changes sign at x= t∗3.
Notice that according to Lemma 3.1 , gλ(x) is the largest root for cubic poly-
nomial P (t) = t(a+ t)2−x(a+ t)2 +λa(a+1), if x>t∗1.
Take t=x, we know P (x) =λa(a+1)>0. Let us consider the value of P (x−
a/2). It is easy to check that: P (x−a/2)<0⇔x>t∗3.
(a) x∈ (t∗3,t

∗
2).

We will have P (x−a/2)<0 and P (x)>0. While also the largest solution
of P (t) = 0 is t=gλ(x)<x. Thus we are sure that gλ(x)∈ (x−a/2,x), and
then x−gλ(x)<a/2⇒w(x)<0. So the optimal value is y∗=y0 =gλ(x).

(b) x∈ (t∗1,t
∗
3). We have P (x−a/2)>0 and P (x)>0. Due to the proof of

Lemma 3.1, one possible situation is that there are two roots y0 and y1
within interval (x−a/2,x). But we can exclude this case. This is because,
by formula (3.7),

y0−y1 = 2(a+x)
3 {cos(ϕ/3)−cos(ϕ/3+π/3)}

= 2(a+x)
3 {2sin(ϕ/3+π/6)sin(π/6)}

= 2(a+x)
3 sin(ϕ/3+π/6).

(2.1)

Here ϕ/3∈ [π/6,π/2]. So y0−y1≥ (a+x)
3 . Also we have x>t∗1>a/2 when

λ> a2

2(a+1) . Thus

y0−y1>a/2,

which is in contradiction with the assumption that both y0 and y1∈ (x−
a/2,x). So there are no roots for P (t) = 0 in (x−a/2,x). Then we know
y0 =gλ(x)<x−a/2. That is to say, w(x)>0, so the optimal value is y∗= 0.

Appendix C. Continuity of TL1 threshold function at t∗2 when λ≤ a2

2(a+1) .

Threshold operator Hλ,a(·) is defined as

Hλ,a(x) =

{
0, if |x|≤ t;
gλ(x), if |x|>t.

When λ≤ a2

2(a+1) , threshold value t= t∗2 =λa+1
a .

To prove continuity as shown in Fig.2, the satisfaction of condition: gλ(t∗2) =
gλ(−t∗2) = 0 is sufficient.

According to formula (3.6), we substitute x=λa+1
a into function ϕ(·), then

cos(ϕ) = 1− 27λa(a+1)

2(a+x)3

= 1− 27λa(a+1)

2(a+λa+1
a )3

.

1. Firstly, consider λ= a2

2(a+1) . Then x= t∗2 = a
2 , so ϕ= arccos(−1) =π. Thus

cos(ϕ/3) = 1
2 . By taking this into function gλ, it is easy to check that gλ(t∗2) = 0.

2. Then, suppose λ< a2

2(a+1) . In this case, x= t∗2>t
∗
1, so we have inequalities

−1<d= cos(ϕ) = 1− 27λa(a+1)

2(a+λa+1
a )3

<1.



26 Minimization of TL1

From here, we know cos(ϕ3 )∈ ( 1
2 ,1).

Due to triple angle formula: 4cos3(ϕ3 )−3cos(ϕ3 ) = cos(ϕ) =d, let us define a cu-
bic polynomial c(t) = 4t3−3t−d. Then we have: c(−1) =−1−d<0, c(−1/2) =
1−d>0, c(1/2) =−1−d<0 and c(1) = 1−d>0. So there exist three real roots
for c(t), and only one root is located in (1/2,1).

Further, we can check that t∗=
a− λ(a+1)

2a

a+ λ(a+1)
a

is a root of c(t) = 0 and also under

the condition λ< a2

2(a+1) ,
1
2 <t

∗<1. From above discussion and triple angle

formula, we can figure out that cos(ϕ3 ) =
a− λ(a+1)

2a

a+ λ(a+1)
a

. Further, it is easy to check

that gλ(t∗2) = 0.
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