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Abstract

A weighted and convex regularized nuclear norm model is introduced to con-
struct a rank constrained linear transform on feature vectors of deep neural net-
works. The feature vectors of each class are modeled by a subspace, and the linear
transform aims to enlarge the pairwise angles of the subspaces. The weight and
convex regularization resolve the rank degeneracy of the linear transform. The
model is computed by a difference of convex function algorithm whose descent
and convergence properties are analyzed. Numerical experiments are carried out
in convolutional neural networks on CAFFE platform for 10 class handwritten
digit images (MNIST) and small object color images (CIFAR-10) in the public
domain. The transformed feature vectors improve the accuracy of the network in
the regime of low dimensional features subsequent to principal component anal-
ysis. The feature transform is independent of the network structure, and can be
applied without retraining the feature extraction layers of the network.
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1 Introduction

Deep neural networks (DNN, [6, 4, 11]) are the state of the art methods in object
classification tasks in computer vision [8] among other fields [16]. The basic form of
DNN is convolutional neural networks (CNN) [1, 2]. An open source platform to study
CNN on handwritten digits (MNIST [7]) and image classification (CIFAR [5]) is CAFFE
[3]. Typically, a large number of multi-scale features arise from DNN [4, 5, 6, 11]. On
the other hand, learning a rank-constrained transformation to group the features into
clusters on the order of the number of classes has been shown recently to increase the
performance of classifiers [9]. Each cluster or class is modeled as a subspace. The
learned linear transformation aims to restore a low-rank structure for data from the
same subspace, while enforcing a maximally separated structure for data from different
subspaces.

Figure 1: An illustration of DNN for image classification. From left to right: multi-
layers of feature extractions involve convolution and nonlinearities, the last layer is fully
connected and sends output to a classifier.

In this paper, we study such a geometrically motivated linear feature transform
(LFT) at the output of the last fully connected layer of DNN before the classifer, see
Fig. 1 for an illustration. We shall work with the existing LeNet and cuda-convnet [1]
on CAFFE for the MNIST and CIFAR-10 data sets respectively. It is well-known that
there is a lot of redundancy in DNN features, hence performing standard dimensional
reduction such as the principal component analysis (PCA) on the DNN features to
certain threshold low dimension will nearly maintain the accuracy. Below the threshold,
DNN performance will downgrade significantly. Our main finding is that performing
rank constrained LFT helps to bring up the accuracy in the low dimensional feature
regime. This can be done without retraining the network where the original features
come from. Moreover, the LFT model and algorithm can be applied to most DNNs and
be used as a low dimensional proxy.

The major assumption of LFT is that the feature vectors approximately lie in a
subspace and thus have low dimensional structure. Therefore, we can find a linear
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transform T ∈ Rm×n, such that dimension of the transformed features TY is greatly
reduced (i.e. m � n), and meanwhile the classification performance is maintained.
The advantages of having low dimensional features include speed up of computation
during inference stage of network, as well as low memory and low energy consumption
demand on mobile devices.

The paper is organized as follows. In section 2, we revisit the LFT model of [9] and
observe a possible rank deficiency. The norm constraint of the model [9] prevents the
iterations from approaching zero but may not exclude rank degeneracy of the transform.
We also note that the LFT algorithm of [9] is not descending in general. To fix these
issues, we propose a weighted difference of convex function (DC) model augmented with
a convex regularization. In section 3, we present the associated DC algorithm (DCA)
and show that it is descending under certain conditions on the weighting and penalty
parameters. In section 4, numerical experiments show that our proposed algorithm
indeed computes LFT to enhance the accuracy on CIFAR-10 and MNIST data when
feature dimension is reduced via PCA by a factor of 32 while the accuracy is nearly
maintained. The lower the dimension, the higher the enhancement. Concluding remarks
are in section 5.

Notations. Throughout the paper, for any matrix X ∈ Rm×n of rank r, we refer
to the singular value decomposition (SVD) of X by the form UΣV T, where Σ ∈ Rr×r is

diagonal. ‖X‖F :=
√∑

i,j X
2
ij denotes the Frobenius norm of X. Let σi(X) be the i-th

largest singular value of X. ‖X‖ := σ1(X) denotes the spectral norm of X, whereas
‖X‖∗ :=

∑r
i=1 σi(X) denotes the nuclear norm of X. The subdifferential of ‖X‖∗ is

given by [13]

∂‖X‖∗ = {UV T +W : UTW = 0, WV = 0, ‖W‖ ≤ 1}.

2 LFT and Nuclear Norm Models

In this section, we review the LFT nuclear norm model of [9], point out the rank defects
and propose our weighted-regularized model for DNN experiments in section 4.

In [9], the authors propose to learn a global linear transformation on subspaces that
preserves the low-rank structure for data within the same subspace, and, meanwhile
introduces a maximally separated structure for data from different subspaces. More
precisely, for the task of classification, they propose to solve the following minimization
problem for the transformation matrix T̂ :

T̂ = arg min
T

c∑
i=1

‖TYi‖∗ − ‖TY ‖∗ s.t. ‖T‖ = 1, (2.1)

where c is the total number of classes, Yi is the matrix of training data for the i-th
class, Y is the concatenation of all Yi’s containing the whole training data. The norm
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constraint ‖T‖ = 1 simply prevents the trivial solution T̂ = 0. The nuclear norm serves
as a convex relaxation of rank functional. Beyond that, it is shown in [9] that the
objective function in (2.1) satisfies

c∑
i=1

‖TYi‖∗ − ‖TY ‖∗ ≥ 0,

with equality when all transformed data from different classes are orthogonal to each
other, i.e., (TYi)

TTYj = 0, ∀ i 6= j. When feature vectors of each class belong to

a proper subspace of Rn, the transform T̂ tends to align feature vectors in each sub-
space while enlarge angles between subspaces, thus intuitively promoting accuracy of
classification.

On the computational side, since the objective is a difference of two convex functions,
the non-convex minimization problem (2.1) can be solved by the so-called difference of
convex function algorithm (DCA) [12, 14, 15] via the iteration:

T k+1 = arg min
T

c∑
i=1

‖TYi‖∗ − 〈Sk, TY 〉 s.t. ‖T‖ = 1. (2.2)

where Sk ∈ ∂‖T kY ‖∗ is a subgradient of ‖·‖∗ at T kY . Note that although the objective
function is convex, (2.2) is still a non-convex program because of the constraint.

It is easy to see that a necessary condition for the transformed feature subspaces
being pairwise orthogonal is

c∑
i=1

di ≤ n, (2.3)

where di is the dimension of the subspace of the i-th class. However, this condition is
somewhat restrictive and often violated in real-world examples such as CIFAR-10 in
our experiments. When subspace dimensions are relatively large, the pairwise orthogo-
nality between transformed subspaces is clearly unachievable. In this case, we observed
numerically that T̂ tends to be rank deficient, in particular rank-1 which aligns all the
feature vectors along a line. The norm constraint ‖T‖ = 1 in (2.1) does not prevent
such a rank-1 defect solution from occurring. Moreover, since the subproblem (2.2) of
DCA is non-convex due to the norm constraint which is implemented by normalization
in [9], the iteration sequences from (2.2) can be non-descending.

To fix the issues aforementioned, we introduce a weight w > 1 to the second term
‖TY ‖∗ to enforce enlargement of angles between subspaces. We also replace the con-
straint ‖T‖ = 1 with a convex penalty term. Our new model is the following uncon-
strained minimization problem:

min
T

Ψ(T ) :=
c∑
i=1

‖TYi‖∗ − w‖TY ‖∗ +
λ

2
‖T − P‖2F . (2.4)
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In this new model, we search for T̂ in the neighborhood of a candidate P whose size is
controlled by the parameter λ > 0. For m = n, we may simply take P as the identity
matrix In ∈ Rn×n. If m < n, we choose P via principal component analysis (PCA).
Let the SVD of Y be Y = UΣV T, then P = UT

·,1:m ∈ Rm×n with U·,1:m consisting of left
singular vectors of Y associated with the m largest singular values.

3 Algorithms

In this secton, we present DCA algorithm and its convergence property of our model.
Let us consider a general objective function Φ(X) = Φ1(X) − Φ2(X), where Φ1 and
Φ2 are convex functions. DCA deals with the minimization of Φ(X) and takes the
following form{

W k ∈ ∂Φ2(X
k)

Xk+1 = arg minX Φ1(X)− (Φ2(X
k) + 〈W k, X −Xk〉)

By the definition of subgradient, we have

Φ2(X
k+1) ≥ Φ2(X

k) + 〈W k, Xk+1 −Xk〉.

As a result,

Φ(Xk) = Φ1(X
k)− Φ2(X

k) ≥ Φ1(X
k+1)− (Φ2(X

k) + 〈W k, Xk+1 −Xk〉)
≥ Φ1(X

k+1)− Φ2(X
k+1) = Φ(Xk+1),

We used the fact that Xk+1 minimizes Φ1(X)− (Φ2(X
k) + 〈W k, X −Xk〉) in the first

inequality above. Therefore, DCA permits a decreasing sequence {Φ(Xk)}, leading to
its convergence provided Φ(X) is bounded from below.

The DCA for solving (2.4) is:

T k+1 = arg min
T

c∑
i=1

‖TYi‖∗ − w〈Sk, TY 〉+
λ

2
‖T − P‖2F (3.1)

with Sk ∈ ∂‖T kY ‖∗. Suppose the SVD of T kY is UkΣkV kT, then we can choose

Sk = UkV kT.
Now that the subproblem (3.1) is a convex program, the DCA for (2.4) is always

descending provided that (3.1) is solved properly, which is a nice mathematical property
to have.

3.1 Convergence

Next we show that the objective in (2.4) has a lower bound under mild conditions, and
thus {Ψ(T k)} converges.
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Proposition 3.1. For any fixed w ≥ 1 and λ > w−1,
∑c

i=1 ‖TYi‖∗−w‖TY ‖∗+
λ
2
‖T −

P‖2F is bounded from below.

Proof. As
∑c

i=1 ‖TYi‖∗−‖TY ‖∗ ≥ 0, it suffices to show that λ
2
‖T−P‖2F−(w−1)‖TY ‖∗

has lower bound. By an alternative definition of nuclear norm [10],

‖X‖∗ := inf
Q,R

{
1

2
(‖Q‖2F + ‖R‖2F ) : X = QRT

}
,

therefore,

‖TY ‖∗ ≤
1

2
(‖T‖2F + ‖Y T‖2F ).

Then we have

λ

2
‖T − P‖2F − (w − 1)‖TY ‖∗ ≥

λ− w + 1

2
‖T‖2F − λ〈T, P 〉+

λ

2
‖P‖2F −

w − 1

2
‖Y T‖2F

=
λ− w + 1

2
‖T − 2λ

λ− w + 1
P‖2F

+ (
λ

2
− 2λ2

λ− w + 1
)‖P‖2F −

w − 1

2
‖Y T‖2F

≥ (
λ

2
− 2λ2

λ− w + 1
)‖P‖2F −

w − 1

2
‖Y T‖2F

We also show that ‖T k − T k+1‖F → 0 as k →∞.

Proposition 3.2. Let {T k} be the sequence of iterates generated by (3.1). Then
Ψ(T k)−Ψ(T k+1) ≥ λ

2
‖T k − T k+1‖2F , and ‖T k − T k+1‖F → 0 as k →∞.

Proof.

Ψ(T k)−Ψ(T k+1) =
λ

2
‖T k − T k+1‖2F + λ〈T k − T k+1, T k+1 − P 〉

+ w(‖T k+1Y ‖∗ − ‖T kY ‖∗) +
c∑
i=1

(‖T kYi‖∗ − ‖T k+1Yi‖∗) (3.2)

By the the first-order optimality condition for (3.1), we have that there exist Lk+1
i ∈

∂‖T k+1Yi‖∗ for 1 ≤ i ≤ c, such that

c∑
i=1

Lk+1
i Y T

i − wSkY T + λ(T k+1 − P ) = 0,

and therefore,

λ〈T k − T k+1, T k+1 − P 〉 = −
c∑
i=1

〈Lk+1
i , (T k − T k+1)Yi〉+ w〈Sk, (T k − T k+1)Y 〉

=
c∑
i=1

(‖T k+1Yi‖∗ − 〈Lk+1
i , T kYi〉) + w(‖T kY ‖∗ − 〈Sk, T k+1Y 〉).
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Plug into (3.2), we have

Ψ(T k)−Ψ(T k+1) =
λ

2
‖T k − T k+1‖2F + w(‖T k+1Y ‖∗ − 〈Sk, T k+1Y 〉)

+
c∑
i=1

(‖T kYi‖∗ − 〈Lk+1
i , T kYi〉)

≥λ
2
‖T k − T k+1‖2F .

In the above arguments, we used the facts that

〈Lk+1
i , TYi〉 ≤ ‖TYi‖∗, for all T ∈ Rm×n and 1 ≤ i ≤ c

with equality at T = T k+1, and that

〈Sk, TY 〉 ≤ ‖TY ‖∗, for all T ∈ Rm×n

with equality at T = T k.
Finally, since {Ψ(T k)} converges, we must have ‖T k − T k+1‖F → 0 as k →∞.

3.2 Solving the subproblem

Each DCA step for T k+1 can be updated via the alternating direction method of mul-
tipliers (ADMM). By introducing the auxiliary variable Z and multiplier Λ, we first
recast (3.1) as

min
T

c∑
i=1

‖Zi‖∗ − w〈Sk, TY 〉+
λ

2
‖T − P‖2F s.t. Z − TY = 0,

and then form the augmented Lagrangian:

c∑
i=1

‖Zi‖∗ − w〈Sk, TY 〉+
λ

2
‖T − P‖2F + 〈Λ, Z − TY 〉+

δ

2
‖Z − TY ‖2F

=
c∑
i=1

‖Zi‖∗ − w〈Sk, TY 〉+
λ

2
‖T − P‖2F +

c∑
i=1

〈Λi, Zi − TYi〉+
c∑
i=1

δ

2
‖Zi − TYi‖2F ,

where Z = [Z1, . . . , Zc] and Λ = [Λ1, . . . ,Λc] are partitioned in the same way as Y is.
By ignoring constants, ADMM takes the iteration:

T l+1 = arg min
T
−w〈Sk, TY 〉+

λ

2
‖T − P‖2F + 〈Λl, Z l − TY 〉+

δ

2
‖Z l − TY ‖2F

Z l+1
i = arg min

Zi

‖Zi‖∗ + 〈Λl
i, Zi − T l+1Yi〉+

δ

2
‖Zi − T l+1Yi‖2F , i = 1, . . . , c

Λl+1
i = Λl

i + δ(Z l+1
i − T l+1Yi), i = 1, . . . , c
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The ADMM steps for updating T l+1 and Z l+1
i have closed form solutions. Hereby we

summarize the algorithm for solving (3.1) in Algorithm 1. In Algorithm 1,

Sr(X) :=
n∑
i=1

1{σi(X)>r}(σi(X)− r)uivTi

denotes the soft-thresholding operator on singular values of X, where 1{σi(X)>r} is the
indicator function given by

1{σi(X)>r} :=

{
1, σi(X) > r

0, otherwise

Algorithm 1 ADMM for updating T k+1 in (3.1)

Input: T k, Y = [Y1, . . . , Yc], S
k, P, δ > 0.

Initialize: {Z0
i }ci=1, {Λ0

i }ci=1.

for l = 0, 1, . . . do
Z l = [Z l

1, . . . , Z
l
c]

Λl = [Λl
1, . . . ,Λ

l
c]

T l+1 = (ΛlY T + λP + wSkY T + δZ lY T)(δY Y T + λIn)−1

Z l+1
i = S1/δ(T l+1Yi − Λl

i/δ), i = 1, . . . , c
Λl+1
i = Λl

i + δ(Z l+1
i − T l+1Yi), i = 1, . . . , c

end for

Output: T k+1.

4 Numerical experiments

We present numerical experiments on the benchmark image datasets MNIST [7] and
CIFAR-10 [5], using neural network classifiers. The MNIST database is a large database
of handwritten digits that is commonly used for training various image processing sys-
tems. The MNIST database contains 70,000 28×28 images, including 60,000 training
images and 10,000 testing images. The CIFAR-10 dataset consists of 60,000 color im-
ages of size 32×32. Each image is labeled with one of 10 classes (for example, airplane,
automobile, bird, etc). These 60,000 images are partitioned into a training set of 50,000
images and a test set of 10,000 images; see Fig. 2 for sample images from the datasets.

We extract both training and testing features through trained convolutional neu-
ral nets (CNN) on Caffe [3]. Caffe is a deep learning framework developed by the
Berkeley Vision and Learning Center and by community contributors. LeNet [7] and
cuda-convnet [1] are two baseline CNN on Caffe, working with MNIST and CIFAR-10
datasets respectively. The extracted features of CIFAR-10 images through cuda-convnet
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Figure 2: Left: sample images of handwritten digits in MNIST. Right: 10 random
example images from each class in CIFAR-10.

are 3-D arrays of dimensions 64×4×4, while that of MNIST through LeNet are vec-
tors in R500. We convert CIFAR-10 features into vectors in R1024. After T̂ ∈ Rm×n

(n = 1024 for CIFAR-10 and n = 500 for MNIST) is computed from the training
feature vectors only, we then apply it to both the original training and testing data,
and feed the transformed data to a single layer neural net classifier from Scikit-learn
package implemented in Python. Comparison of PCA and PCA with LFT is shown in
Tables 2 and 3.

For CIFAR-10, when feature dimensions are reduced to 64 and 32, the accuracy
dropped noticeably. The LFT can further improve the accuracy on top of PCA. The
P in model (2.4) is provided by PCA, with parameters w = 3 and λ = 200. The
additional gain from LFT is 2% at feature dimension 32, and 0.7% at dimension 64.
For MNIST, when reduced feature dimensions are 8 and 16, LFT improves the accuracy
by 1.8% and 0.2% respectively. We can see from both cases that the lower the reduced
dimension, the greater the improvement from LFT. At the original high dimension, the
improvement is minimal or absent as seen in Table 1.

Table 1: Accuracy in % for CIFAR-10.

Dataset Original LFT

CIFAR10 81.77 81.97

MNIST 99.05 99
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Table 2: Accuracy in % for CIFAR-10 with reduced feature dimensions.

Reduced dim PCA PCA + LFT

64 80.21 80.90

32 77.91 79.95

Table 3: Accuracy in % for MNIST with reduced feature dimensions.

Reduced dim PCA PCA + LFT

16 98.14 98.33

8 95.31 97.1

5 Concluding Remarks

From the experiments on MNIST and CIFAR-10, we found that LFT can improve even
a state-of-the-art classifier based on the new model (2.4), although the improvement is
not yet significant.

There are two fundamental challenges for the linear transform. One is that the feature
vectors of each class may not lie in a subspace with low enough dimension causing
limited enlargement of pairwise subspace angles. The other is that the training model
(2.4) is independent of the classifier or its decision function which is nonlinear in DNN.

A future line of work is to seek a linear transform to maximize the classification objective
directly, for example in conjunction with adjusting the weight of the final fully connected
layer in DNN. This way, the linear transform is not prone to the two restrictions above
and may potentially improve accuracy more at the cost of retraining the original network
via backpropagation.
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