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Equivalency condition of symmetric inequalities 

Jingjun Han 

High School affiliated to Fudan University, Shanghai  

Abstract: This paper researches on the judgment theorem and proof of the 

equivalency condition of a class of symmetric inequalities. By controlling two 

elementary symmetric polynomials and using the monotonicity of functions and 

Jensen inequality, it finds the necessary and sufficient condition of the equivalency a 

class of three-variable and n-variables symmetric inequalities. And we illustrate the 

application of this method in proof of these inequalities. Then we obtain several 

judgment theorems on symmetric and cyclic inequalities. 
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完全对称不等式的取等判定 

摘要:本文探讨了一类完全对称不等式的取等判定及其证明. 通过控制两个

初等对称多项式，利用函数的单调性及 Jensen 不等式，说明了一类三元完全对

称不等式取等的充要条件，继而推广得到关于一类 n 元完全对称不等式取等的充

要条件的若干定理，并举例说明此方法在证明完全对称不等式中的应用. 由此推

出有关完全对称不等式与轮换对称不等式的判定定理. 

关键词：不等式；完全对称；轮换对称；三元； n 元；取等判定 

 

 

1 Introduction  

The inequality has the wildly application in mathematics and other sciences, but 

to prove a inequality, there is no general method and fixed way, especially for difficult 

inequalities. Usually it doesn’t work by enlarging or reducing directly. The full 

symmetry inequality, because of its especial property, has become an active branch of this 

field. Some researchers have used derivative method, the increment method, variable controlled 

method or local revision method to deal with inequalities of this type[1-3]. However, there may be 
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a lot of computations, and often do not work successfully.  Academician Yang Lu, Mr. Chen 

Shengli, Mr. Yao Yong, Mr. Liu Baoqian etc. have done many works in this field by using the 

computer as a tool. In 1985, in a conference held in Shanghai, Academician Wu Wenjun had 

point out that the automated proving for inequalities is a difficult problem[4]. In 1982, 

Choi etc. obtained the judgment of the necessary and sufficient condition for the 

semi-positive definiteness of a symmetric form of degree 3 with n variables[5]. In 1999 

William Harris gave a necessary and sufficient condition for the semi-positive 

definiteness of a symmetric form of degree 4 and 5 with 3 variables[6]. Notice that the 

degrees of these results no more than 5. In 2001 Vlad Timofte considered the 

necessary and sufficient condition for the semi-positive definiteness for symmetric 

forms of degree d with n variable in nR
. But his result is difficult to be judged when 

d>5[7]. In 1993 Chen Shengli deeply discussed the semi-positive definiteness for more 

general symmetric forms with 3 variables[8]. Now it is still an unsolved problem to 

judge the semi-positive definiteness of the symmetric form of degree 6(or higher 

degree) with n variables[9]. So far, there is no report on exploring the equivalency 

condition of symmetric inequalities and proving an inequality using the equivalency 

condition in China. The aim of our research is to explore the equivalency condition of 

symmetric inequalities and give a theorem of the judgment of the equivalency 

condition for 3 and n variables, then we get a judgment theorem for homogeneous 

fully symmetric forms of degree 6 with 3 variables and for homogeneous cyclic 

symmetric inequalities of degree 4 with 3 variables and try to explore the judgment 

for inequalities of higher degree, which can be used for the exploration of the method 

to prove inequalities by hand and supply a basis for the automated proving of 

inequalities. 

 

2 A judgment theorem of equivalency condition for some fully symmetric inequalities 

with 3 variables 

2.1 The judgment theorem of equivalency condition and its proof 

 We firstly introduce the properties for fully symmetric inequalities with 3 variables. 
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Lemma 1  A polynomial ( , , )f x y z  with 3 variables is fully symmetric if and only 

if ( , , )f x y z  can be expressed uniquely by basic polynomials 1 x x y z     ，

2 xy xy yz zx     ， 3 x xyz    ( ,  denote the sum and times ) 

(from the fundamental theorem for symmetric polynomials in linear algebra). Set 

( , , )f x y z = ( , , )g x xy xyz  . 

Lemma 2  A fully symmetric polynomial ( , , )f x y z  with 3 variables can be 

expressed uniquely by 1 x  ， 2

2 x  ， 3

3 x  . 

Lemma 3   A fully symmetric polynomial ( , , , )f x y z t  with 4 variables can be 

expressed uniquely by 
2 3

( , , )n x xy xyz
t g

t t t
  .  

Next we give the judgment theorem of equivalency condition for fully symmetric 

inequalities with 3 variables and its proof. 

 

Theorem 1  For any real number , ,a b c , we have 

2 2

1 2(6 2( ) ) (6 2( ) )

9 9

ab a ab a x ab a ab a x
abc

   
 

       
 

where

2 2

1 2

( ) 3 ( ) 3
,

3 3

a a ab a a ab
x x

   
 
     

. 

The equalities hold if and only if ( )( )( ) 0a b b c c a    . 

Proof: Suppose real number , ,a b c  satisfyc b a  . 

Consider the function
3 2( ) ( )( )( )f x x a x b x c x ax abx abc         . 

Then
2'( ) 3 2f x x ax ab    . 

Let 1 2,x x  be two roots of '( ) 0f x   with 1 2x x . Then it is easy to get 

2 2

1 2

( ) 3 ( ) 3
,

3 3

a a ab a a ab
x x

   
 
     

                  (1) 
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If 1 2x x , then ( )f x  is monotone increasing on  2, x ,  monotone decreasing 

in  2 1,x x  and monotone increasing  1,x  . 

Meanwhile ( )f x  has three zeros, that is, ( ) 0f a  ， ( ) 0f b  ， ( ) 0f c  . 

Hence 2 1a x b x c    . Then 2 1( ) 0, ( ) 0f x f x  , that is,  

3 2

2 2 2 0x ax abx abc     ， 3 2

1 1 1 0x ax abx abc     . 

By substituting (1) we obtain  

2 2

1 2(6 2( ) ) (6 2( ) )

9 9

ab a ab a x ab a ab a x
abc

   
 

       
,  

and any equality holds if and only if ( )( )( ) 0a b b c c a    . This completes the 

proof of Theorem 1. 

Corollary 1  For any real number , ,a b c , we have 

2 2

1 2(6 2( ) ) (6 2( ) )
max 0

9 9

ab a ab a x ab a ab a x
abc

   
 

       
（ ，） . 

Proof.  If 
2

2a ab  , then  

2 2

1 2(6 2( ) ) (6 2( ) )

9 9

ab a ab a x ab a ab a x
abc

   
 

       
. 

If 
2

2a ab  , then 

2

2(6 2( ) )
0

9

ab a ab a x
abc

 
 

   
. 

Combining these two cases we have  

2 2

1 2(6 2( ) ) (6 2( ) )
max 0

9 9

ab a ab a x ab a ab a x
abc

   
 

       
（ ，） . 

This completes the proof of Corollary 1. 

Inequalities in Theorem 1 and Corollary are very strong and have many applications 

in prove inequalities. 

Theorem 2  For a fully symmetric inequality ( , , ) 0f a ab abc    about real 

umbers , ,a b c (From Lemma 1 we know that it can be denotes in this form). 
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Supposed a ， ab  are fixed, and consider ( , , )f a ab abc   as a function of 

abc . 

(ⅰ)  If '( ) 0f abc  , then function ( , , )f a ab abc   attain its maximum when 

two of numbers are equal which are no greater than the third, attain its minimum 

when two of numbers which are no less than the third. 

(ⅱ)  If '( ) 0f abc  , then function ( , , )f a ab abc   attains its extremum when 

two of numbers are equal.  

（iii） If '( ) 0f abc  , then function ( , , )f a ab abc   attains its maximum when 

two of numbers are equal which are no less than the third, attains its minimum two of 

numbers are equal which are no bigger than the third. 

Proof:  At first we prove Theorem 2 (ⅰ). Consider 1 1 1( , , )x x y , 2 2 2( , , )x x y  

where 

2

1

( ) 3

3

a a ab
x

 

  

  ，

2

1

2 ( ) 3

3

a a ab
y

 

  

, 

     

2

2

( ) 3

3

a a a b
x

 

  

 ，

2

2

2 ( ) 3

3

a a ab
y

 

  

. 

( 1x , 1y , 2x , 2y  are the same in the following.) 

Then 1 1 1 2 2 2x x y x x y a b c        , 

  2 2

1 1 1 1 1 2 2 2 2 2x x y x y x x y x y ab bc ca        . 

From theorem 1 we know  

2 2

1 2(6 2( ) ) (6 2( ) )

9 9

ab a ab a x ab a ab a x
abc

   
 

       
. 

In fact : 

2

1 2

1 1

(6 2( ) )

9

ab a ab a x
x y

 


   
,

2

2 2

2 2

(6 2( ) )

9

ab a ab a x
x y

 


   
, 

Then 2 2

1 1 2 2x y abc x y  . 

Meanwhile '( ) 0f abc  , i.e., function ( )f abc  is monotone increasing with respect to 
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abc  and a , ab  are fixed. Let 1 1 1( , , )x x y , 2 2 2( , , )x x y  take the place of  

( , , )a b c . Then  

2 2 2

1 1 1 1 1 1 1 1 1 1 1 1( , , ) ( , , ) ( , , )f x x y x x y x y x y f a ab x y f a ab abc         ， 

2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2( , , ) ( , , ) ( , , )f a ab abc f x x y x x y x y abc f x x y x x y x y x y          

Obviously 1 1x y , 2 2x y ， hence the function ( , , )f a ab abc   attain its 

maximum when two of numbers are equal which are no greater than the third, attain 

its minimum when two of numbers which are no less than the third. This proves 

Theorem 2 (ⅰ). 

In the same way we can prove Theorem 2 (iii). 

If '( ) 0f abc  , the degree of abc  in ( , , )f a ab abc   is zero, then we can let 

any one of 1 1 1( , , )x x y , 2 2 2( , , )x x y  take the place of ( , , )a b c , and the value of 

( , , )f a ab abc   is unchanged. Hence for a function ( , , )f a ab abc   there is 

a corresponding 1 1 1( , , )x x y  and 2 2 2( , , )x x y . So when ( , , )f a ab abc   attains its 

extremum, there is a corresponding  1 1 1( , , )x x y  and 2 2 2( , , )x x y , i.e., the function 

attains its extremum when two of the numbers are equal. This proves Theorem 2 

(iii). 

Hence Theorem 2 is proved. 

Corollary 2  For a fully symmetric inequality about non-negative real umbers 

, ,a b c  

( , , ) 0f a ab abc   , 

(i) If '( ) 0f abc  , then ( , , )f a ab abc   attain its maximum when two of 

numbers are equal which are no greater than the third, attain its minimum when two 

of numbers which are no less than the third. 

(ii) If '( ) 0f abc  , then function ( , , )f a ab abc   attains its extremum when two 

of numbers are equal. 
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（iii） If '( ) 0f abc  , then function ( , , )f a ab abc   attains its maximum when 

two of numbers are equal which are no less than the third, attains its minimum two of 

numbers are equal which are no bigger than the third. 

Proof:  At first we prove Corollary 2 (i).  

When 1x , 1y , 2x , 2y  are nonnegative, the proof is similar to the proof of Theorem 2. 

However, 

2

1

( ) 3
0

3

a a ab
x

 
 
  

，

2

2

( ) 3
0

3

a a ab
x

 
 
  

 

2

2

2 ( ) 3
0

3

a a ab
y

 
 
  

，then we only have to consider the case that 

2

1

2 ( ) 3
0

3

a a ab
y

 
 
  

. 

We consider 3 3( , ,0)x y , where  

2

3

( ) 4

2

a a ab
x

 

  

，

2

3

( ) 4

2

a a ab
y

 

  

. 

From 
2

2a ab   we know 3x , 3y  are real numbers. Obviously 3 0x  , 3 0y  , 

so 3x , 3y  are nonnegative real numbers. Then  

3 3 0x y a   ， 

3 3 3 30 0x y x y ab     . 

Since '( ) 0f abc  , let 3 3( , ,0)x y  takes the lace of ( , , )a b c , then  

3 3 3 3 3 3 3 3( 0, 0 0 ,0 ) ( , ,0) ( , , )f x y x y x y x y f a ab f a ab abc             . 

Hence the function attains its maximum when two of numbers are equal which are no 

greater than the third. The function attains its minimum when two of the numbers are 

equal (and these two numbers are no less than the third.) or one of the numbers is 

equal to zero. This proves Corollary 2 (i). 

In the same way we can prove Corollary 2 (iii). 

When '( ) 0f abc  , let 2 2 2( , , )x x y  take the place of ( , , )a b c , then using similar 
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method to proving Theorem 2(ii), we can prove Corollary 2(ii). 

This completes the proof of Corollary 2. 

Theorem 3  For a fully symmetric inequality about  real umbers , ,a b c  

( , , ) 0f a ab abc   , 

 (i)  If ''( ) 0f abc  , then maximum of the function ( , , )f a ab abc   is attained 

when two of numbers are equal.  

(ii)  If ''( ) 0f abc  , then it can be reduced to one of the cases in Theorem 2. 

(iii)  If ''( ) 0f abc  , the minimum of the function ( , , )f a ab abc   is attained 

when two of numbers are equal. 

Proof:  At first we prove Theorem 3(i). 

 Since ''( ) 0f abc  , ( )f abc  is convex to the downwards. So the maximum of  

( )f abc  is attained in the end points. Hence 

 

2 2

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

2 2 2 2

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

( , , ) ( , , ) ( , , )

max ( , , ), ( , , )

f a ab abc f x x y x x y x y abc f x x y x x y x y abc

f x x y x x y x y x y f x x y x x y x y x y

         

        

 

i.e., the maximum of ( , , )f a ab abc   must be attained only when two of 

numbers are equal. This proves Theorem 3 (i). 

In the same way we can prove Theorem 3(iii). 

If ''( ) 0f abc  , i.e., the degree of abc  in ( , , )f a ab abc   is less than 2, the 

sign of '( )f abc  is invariant, hence it can be reduced to one of cases in Theorem 2. 

Theorem 3(ii) is proved. This completes the proof of Theorem 3. 

Corollary 3  For a fully symmetric inequality about non-negative real umbers 

, ,a b c  

( , , ) 0f a ab abc   , 

(i)  If ''( ) 0f abc  , then the maximum of the function ( , , )f a ab abc   is 

attained when two of numbers are equal or one of numbers is equal to zero. 
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(ii)  If ''( ) 0f abc  , then it is reduced to one of cases in Corollary 2, and the 

extremum of ( , , )f a ab abc   is attained when two of numbers are equal or one 

of numbers is equal to zero. 

(iii)  If ''( ) 0f abc  , then the minimum of the function ( , , )f a ab abc   is 

attained when two of numbers are equal or one of numbers is equal to zero. 

The proof of Corollary is similar to Theorem 3 and Corollary and we omit it here. 

The main idea of theorems and corollaries above is that the fully symmetric 

polynomial about real numbers , ,a b c  can be expressed in the form 

( , , )f a ab abc  , and we can control two quantities a , ab , and adjust 

abc . 

Corollary 4  A fully symmetric inequality of degree n with 3 variables 

( , , ) 0f a b c   if and only if ( ,1,0) 0f x   and ( ,1,1) 0f x  （ 5n  ）. 

Proof:  The inequality to be proved can be rewritten as ( , , ) 0f a ab abc   . 

Since the degree of the inequality is less than, the degree of abc  is less than one 

and ''( ) 0f abc  . Then from Corollary 3 we know that the extremum of the function 

is attained when two of numbers are equal or some of numbers is zero. Hence if 

( ,1,0) 0f x   and ( ,1,1) 0f x  , then the inequality holds. Obviously it is the 

sufficient condition of the inequality. This completes the proof of Corollary 4. 

Remark: Corollary 4 is stronger than the result of Mr. Chen Shengli about the 

nonnegative homogeneous fully symmetric inequality of degree 4 with 3 

variables
[10]

. 

With respect theorems and corollaries above we may make some further extensions. 

Extension 1: For fully symmetric inequalities with 3 variables, ( , , )f a ab abc   

can be rewritten in the form 
2 3( , , )g a a a   . We can make a ,

2a  

unchanged and adjust 
3a , similar results also hold. This is because that for such 
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polynomials, quantities such as a , 2a  may determinate ,a ab   uniquely. 

Since 3 3( ) 3 3a a abc a ab      , quantities such as 3a  is abc  in 

fact., hence similar results hold. 

If theorems and corollaries above can not be applied to the primary function, we can 

make some replacement of , ,a b c  such that theorems and corollaries above may 

work for now function. (see example 2) 

Extension 2: an extension for homogeneous fully symmetric inequalities of degree n 

with 4 variables defined on real number field or nonnegative real number field: 

Every homogeneous fully symmetric inequality of degree n with 4 variables defined 

on real number field or nonnegative real number field, except 0, is equivalent to a 

fully symmetric inequality with 3 variables.  

Proof: For a fully symmetric in equality of degree n with 4 variables ( , , , ) 0f x y z t  , 

from Lemma 3 we know that every fully symmetric in equality of degree n with 4 

variables ( , , , )f x y z t  can be expressed uniquely in the form 
2 3

( , , )n x xy xyz
t g

t t t
  . 

Hence ( , , , ) 0f x y z t 
2 3

( , , ) 0n x xy xyz
t g

t t t
   ，that is. 

2 3
( , , ) 0

x xy xyz
g

t t t
  .  

Then it is equivalent to a fully symmetric inequality with 3 variables about , ,
x y z

t t t
. 

Furthermore we can apply theorems and corollaries above to fully symmetric 

inequalities of degree n with 4 variables defined on real number field or nonnegative 

real number field. 

 For fully symmetric inequalities of degree n with 4 variables to which theorems and 

corollaries can be applied, we may adjust two of variables to be equal. Furthermore, 

because of the homogeneity we may suppose these two variables are 1, hence we 

cam reduce it to be a fully symmetric inequality with 2 variables. 

2.2 Application 

We explain application of the equivalency condition in proving inequalities. 

Example 1. Verify that if , ,a b c  are nonnegative real numbers, then  

3 3 3 2 2 2 2 2 23 0a b c abc a b ab a c ac b c bc          . 
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Proof 1: From Corollary 1 we know that 

2

1(6 2( ) )
max 0

9

ab a ab a x
abc

 


   
（ ，） ,(here

2

1

( ) 3

3

a a ab
x

 

  

) 

Set a p ， 2 23a ab t  （ ） ，abc r . Obviously p t . Hence we obtain  

2

max 0
27

p t p t
r

（ +）（ -2）
（ ，） .                                          (2) 

The original problem is equivalent to 2 327 4 0r pt p   . 

If 
2

p
t  , then obviously the inequality holds. 

If 
2

p
t  , by using (2), we have 2 3 2 3 3 227 3 2 4r p t p t p t p t p pt     （ +）（ -2） , 

This completes the proof. 

Proof 2: Denote by ( , , )f a ab abc   the left hand side of the inequality. Since the 

highest degree of the function if less than 3, the degree of abc  is less than 3. Hence 

''( ) 0f abc  . By using Corollary 3 we know that the minimum of ( , , )f a ab abc   

is attained when two of numbers are equal. We may assume that a c , hence it is 

sufficient to prove  

3 3 3 2 2 2 3 3 2 23 0a b a a b a b ab a a b a a b          2 0b a b  （ ） . 

Hence original inequality holds. 

 Remark: This example is a part of the well-known Schur inequality. The whole 

Schur inequality can be found in [11]. 

Example 2. Suppose , ,x y z  are three nonnegative real number satisfying 

2 2 2 1x y z   . Verify that 
3

3
x

x yz



 . 

Proof : Let , ,
yz xz xy

a b c
x y z

   . Then it sufficient to prove that if , ,a b c  are 

nonnegative real number satisfying 1ab  , then 
1

3
ab c




  

( )( ) 3( )( )( ) 0ab c ac b ab c ac b bc a        . 
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Suppose ( , , )f a ab abc  = ( )( ) 3( )( )( )ab c ac b ab c ac b bc a      ，then  

''( ) 0f abc  . Hence form Theorem 3(i) we know that the minimum 

of ( , , )f a ab abc   is attained when two of numbers are equal or one of numbers is 

equal to 0. 

If one is zero, we may assume 0c  . Then we only have to show 
1 1 1

3
ab a b

    

under the condition 1ab  . Since 
1 1 1 2 1

3
a b ab abab
     , this prove the case that 

one of numbers is zero. 

If two of numbers are equal, we may assume a c , then we only have to show 

2

2 1
3

ab a a b
 

 
 under conditions that ,a b  are nonnegative real numbers and 

22 1ab a  . Substitute
21

2

a
b

a


 , 

2 2
2

2 1
3,

1 1

2 2

a a
a a

a

  
 

 

 when  0,1a . 

2 2
2

2 2
2

1 1
1 ( ) 1

2 22
1 1

2 2

a a
a a

a

a a
a a

a

 
   

 
 

 

， 

 

2
2

2 2
2

1
(1 )(1 )

(1 )2 0
1 1

2 2

a
aa

a a
a a

a

 


  
 

 

. 

 0,1a , hence inequality above holds, i.e., the original inequality holds when two 

of numbers are equal. 

Hence the inequality holds. 

Remark: By a skillful substitution the degree is reduced form 9 to 6, which makes it is 

impossible to use the theorems. The substitution is in fact consider the function in the 

form 2( , , )
yz

f y xyz
x

  , which is the extension of fully symmetric inequality with 

3 variables as we said. 

Example 3  Suppose , ,a b c  are nonnegative real numbers satisfying 1a b c   . 
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Verify that 
1

2 2
3 1

( )
2 2

a abc  . 

Proof. Original inequality is equivalent to 
1

2 22
3 1

( ) ( )
2 2

abc a a a      

1

223( ) 2abc a ab a     ， 

If 2 2a ab  , the inequality holds obviously. 

If 2 2a ab  , suppose 
1

22( , , ) 3( ) 2f a ab abc abc a ab a       , 

So 
1

' 2
1

( ) ( ) 0
2

f abc abc


  . Hence from Theorem 2(i) we know the minimum of the 

function when two numbers are equal, and they are bigger than the third. We may 

suppose a c . Then 2 2 2 23 2 2( 2 ) 2a b a b a ab a b       and a b , 

2 23 (2 ) (4 )a a b b a b     

3 2 2 3 26 3 16 8a a b a b b ab     ， 

2 26 ( ) 7 ( ) ( ) 0a a b ab b a b a b       ， 

2 2( )(6 7 ) 0a b a ab b     ， 

2( ) (6 ) 0a b a b    ， 

Notice that a b , hence inequality above holds. Combining these two cases the 

original inequality is proved. 

There is a detail which may be ignored easily: if 
2

2a ab  , then the minimum 

is attained when two of numbers are equal(and these two numbers are no less than 

third.). Hut it is essential in dealing with this example. 

In this section we choose three typical examples about proving inequalities by using 

judgment of equivalency condition. In fact the judgment of equivalency condition has 

wide application in proving fully symmetric inequalities with 3 variables. Here we 

don’t list one by one. 
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3  Judgment of equivalency condition a class of fully symmetric inequalities 

with n variables. 

3.1 Judgment theorem f equivalency condition a class of fully symmetric 

inequalities with n variables. 

Theorem 4 (i)  Given nonnegative real numbers a b c  , real number 0m   

which are not same at the same time, for variables x y z   satisfying 

x y z  = a b c  ， m m mx y z  = m m ma b c  .(in particular xyz abc  if 0m  ). 

Then there exist nonnegative real numbers 1x , 2x , if 1x x , then 1x x y z   ; if 

2x x  then 2x x y z   ,; if  1 2,x x x , then x y z  . 

(ii) Given nonnegative real numbers a b c  , real number 0m   in which at most 

two numbers are equal, at most one is equal to zero and 1m  , for variables 

x y z   satisfying x y z  = a b c  ， m m mx y z  = m m ma b c  , then there 

exist nonnegative real numbers 1x , 2x , if 1x x , then 1x x y z   ; if  1 2,x x x , 

then x y z  ; if 1x x , then 10 x x y z     or 1x x y z   . 

Proof: We make some preparation. Consider ,y z  as functions of x, then form 

x y z  = a b c  ， m m mx y z  = m m ma b c   we know  

' '1 0y z   ，
1 ' 1 ' 1 0m m mmx my y mz z     . 

We obtain 
1 1

'

1 1

m m

m m

x z
y

z y

 

 





，

1 1
'

1 1

m m

m m

y x
z

z y

 

 





.(it is easy to see that equality holds 

when m=0). Form ,x z z y  , we get ' 0y  ， ' 0z  . Hence when x increases, y  

is monotone decreasing and z  is monotony increasing.  

Firstly we prove Theorem 4(i). If 0m  , consider function 

3 2 2( ) 2 ( ) 4f x x ax a x abc      

(0) 4 0f abc   ， 3 2 2( ) ( ) 2 ( ) ( ) 4 0
3 3 3 3

a a a a
f a a abc    
   

  . 



 15 

Then there is nonnegative real number 
1x  such that 1( ) 0f x   and 

1 0,
3

a
x

 
  
 


. 

Let 1x x , then 2

1 1( )a b c x x   , i.e., 2( ) 4y z yz  . Hence y z , which implies  

1x x y z   . Since y is monotony decreasing, when 1x x , x y . Hence there is 

2x  such that when 2x x , 2x x y z   . From the monotony of z we know when 

 1 2,x x x , x y z  . Hence when m=0 theorem is proved. 

When 0m  , consider function  

( ) 2( ) ( (( ) ( ) ( ) ) ( ) )( )
2

m m m m m m ma b c x
f x abcx x ab ac bc abc        

    
. 

If 0x  ， (0) ( ) ( ) 0
2

m ma b c
f abc   

  . 

If x c ， 2 2( ) 2( ) ( )( ) 0
2

m m m m ma b
f c abc c a b    

    . Mean while 
3

a b c
c

 
 , 

hence there is 1x  such that 1 3
0 a b cx    , 1( ) 0f x  . Then we can get that when 

1x x , y z ,  hence 1x x y z    by using similar argument as the case 0m  .  

From the monotony of y and z, there is 2x  such that when 2x x , 2x x y z   ，

when  1 2,x x x ， x y z  . Hence when 0m   theorem is proved.  

Secondly we prove Theorem 4(ii). When 1m  , consider function  

( ) 2
2

m

m m m m a b c x
f x a b c x

   
      

 
.  

Obviously 

1

' 1( ) 0
2

m

m a b c x
f x mx m



    
    

 
 when 0,

3

a
x

 
 
 


.  

If (0) 0f  , then there are y, z such that m m m m ma b c y z    and y z a b c   

且 0y  . 

Let 1 0x  , then x y z  . 

If (0) 0f  , since ( ) 3 0
3 3

m

ma b c a b c
f a

    
   

 
 , there is 1x  such that  



 16 

1 3
0 a b cx    , and 1( ) 0f x  . Using similar argument as the case 0m   we can get 

that y z , hence 
1x x y z   . Since y is monotone decreasing and z is monotone 

increasing strictly, in any one of two cases above there is 2x  such that when 2x x , 

2x x y z   , when  1 2,x x x ， x y z  . The case 1m   is proved. 

When 0< 1m  , consider function ( ) 2
2

m

m m m m a b c x
f x a b c x

   
      

 
. 

Obviously 

1

' 1( ) 0
2

m

m a b c x
f x mx m



    
    

 
 when 0,

3

a
x

 
 
 


. 

If (0) 0f  ，there are ,y z ，such that 
m m m m ma b c y z    , y z a b c     and 

0y  . Let 1 0x  ，then x y z  . 

If (0) 0f  ，since ( ) 3 0
3 3

m

ma b c a b c
f a

    
   

 
 ，there is 1x ，such that 

1 3
0 a b cx    ， 1( ) 0f x  . Using similar argument as the case 0m   we get that 

y z ，hence 1x x y z   . Since y is monotone decreasing and z is monotone 

increasing strictly, in any one of two cases above there is 2x  such that when 2x x , 

2x x y z   , when  1 2,x x x ， x y z  . The case 1m   is proved.  

This completes the proof of the theorem. 

Remark: When 0m  , if two of , ,a b c are equal to 0, then the only possibility is 

x y z  . 

Theorem 5  For nonnegative real numbers x, y, z, and a function in the form 

( , , ) ( ) ( ) ( )F x y z f x f y f z   , let 1 '( ) ( )mg x f x  . 

(i) If ( )g x  is convex to the downwards,  

When hen 0m   the minimum of ( , , )F x y z  is attained when x y z   or 

0 x y z   , the maximum is attained when x y z  . 
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When 0m  , the minimum of ( , , )F x y z  is attained when x y z  , the 

maximum is attained when x y z  . 

(ii) If ( )g x  is convex to the upwards, 

When 0m   the maximum of ( , , )F x y z  is attained when x y z   or 

0 x y z   , the minimum is attained when x y z  . 

When 0m  , the maximum of ( , , )F x y z  is attained when x y z  , the 

minimum is attained when x y z  . 

If ( )f x ， ( )g x  are continuous functions, then ( )f x ， ( )g x  are continuous between 

the minimum and the maximum, i.e., any value between the minimum and the 

maximum can be attained. 

Proof: Firstly consider the case that ( )g x  is convex to the downwards 

Let x y z  ， m m mx y z   fixed(m is a real number non-equal to 1), then there are 

a b c   in which at most two are the same, (when 0m  , there is at most one is 

zero among such a, b, c.) satisfying x y z  = a b c  ， m m mx y z  = m m ma b c  . 

Consider ,y z  as functions of x , then from x y z  = a b c  ，

m m mx y z  = m m ma b c   we know 

' '1 0y z   ，
1 ' 1 ' 1 0m m mmx my y mz z     . 

Hence 
1 1

'

1 1

m m

m m

x z
y

z y

 

 





，

1 1
'

1 1
,

m m

m m

y x
z

z y

 

 





（obviously when 0m   the equality holds 

either.） 

Then '( )F x = ' ' ' ' '( ) ( ) ( )f x y f y z f z  =
1 1 1 1

' ' '

1 1 1 1
( ) ( ) ( )

m m m m

m m m m

x z y x
f x f y f z

z y z y

   

   

 
 

 
. 

Hence  

' ' ' '

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )m m m m m m m m m m m m m m m m

F x f x f y f z

x z y x x z x y y z y x z x z y               
  

       
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Since 1 '( ) ( )mg x f x  ， 1 '( ) ( )mg y f y  ， 1 '( ) ( )mg z f z  ，then  

' 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )

m m m

m m m m m m m m m m m m m m m m

F x g x g y g z

x z y x x z x y y z y x z x z y

  

               
  

       
 

From x y z   we know 

 1 1 1 1( )( ) 0m m m mx z x y      ， 1 1 1 1( )( ) 0m m m mz x z y      , 

1 1 1 1( )( ) 0m m m mz y y x      . 

Since ( )g x  is convex to the downwards, form Jensen inequality we obtain 

1 1

1 1 1 1 1 1 1 1

( ) ( )

( )( ) ( )( )

m m

m m m m m m m m

g x g z

x z x y z x z y

 

       
 

   
 

1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 ( )( ) ( )( )
( )

1 1( )( ) ( )( )

( )( ) ( )( )

m m

m m m m m m m m

m m m m m m m m

m m m m m m m m

x z

x z x y z x z y
g

x z x y z x z y

x z x y z x z y

 

       

       

       


     

 
     

   

 

1

1 1 1 1

( )

( )( )

m

m m m m

g y

z y y x



   


 
. 

i.e., '( )F x  is monotone increasing, form Theorem 4 we know when 0m  , the 

minimum of ( , , )F x y z  is attained when x y z   or 0 x y z   , the maximum 

is attained  when x y z  ; when 0m  , the minimum of ( , , )F x y z  is attained 

when x y z  , the maximum is attained when x y z  . 

Similarly if  ( )g x  is convex to the upwards on  0, , when 0m  , the 

maximum of ( , , )F x y z  is attained when x y z   or 0 x y z   , the minimum 

is attained when x y z  , when 0m  , the maximum of ( , , )F x y z  is attained 

when x y z  , the minimum is attained when x y z  . 

This completes the proof of Theorem. 

Remark 1 : For functions in the form ( , , ) ( , ) ( , ) ( , )F x y z f x y f y z f z x    

( ( , )f x y  is a symmetric function with respect to ,x y ), we may fix x ， 2x  or 



 19 

x ， xyz , only notice that  
22 21 1

( )
2 2

xy x x z z x y z        ，
xyz

xy
z

 ，

x y x y z z     , and a symmetric function of ,x y  can be considered as a 

function of xy， x y . 

Remark 2: The extremum of ( , , )F x y z  is assumed to exist. 

Theorem 6  For nonnegative real numbers x, y, z, and a function in the form 

( , , ) ( ) ( ) ( )F x y z f x f y f z   , let 
''

1

1 1 1 1

( )
( )

( )( )

m

m m m m

f x
h x

x z x y



   


 
 

(i)  If 0m  , for nonnegative real number x, 

If '( ) 0f x  , 
''( ) 0f x   or ( )h x  is convex to downwards, the maximum of 

( , , )F x y z  is attained when two of numbers are equal or some of numbers is equal to 

0. 

If '( ) 0f x  , 
''( ) 0f x   or  ( )h x  is convex to upwards, the minimum of ( , , )F x y z  

is attained when two of numbers are equal or some of numbers is equal to 0. 

(ii) If 0m  , for nonnegative real number x, 

If '( ) 0f x  , 
''( ) 0f x   or ( )h x  is convex to downwards, the maximum of 

( , , )F x y z  is attained when two of numbers are equal. 

If '( ) 0f x  , 
''( ) 0f x   or  ( )h x  is convex to upwards, the minimum of 

( , , )F x y z  is attained when two of numbers are equal and ( )f x is continuous 

between the minimum and the maximum, i.e., any value between the minimum and 

the maximum can be attained. 

Since the proof is similar to Theorem 5,  here we only give a sketch of the proof. 

Sketch of the proof.: Firstly we prove Theorem 6(i). Similar to theorem 5, we know 

that 
1 1

'

1 1

m m

m m

x z
y

z y

 

 





，

1 1
'

1 1
,

m m

m m

y x
z

z y

 

 





（it is easy to see that it holds when 0m  ）

then '( )F x = ' ' ' ' '( ) ( ) ( )f x y f y z f z  =
1 1 1 1

' ' '

1 1 1 1
( ) ( ) ( )

m m m m

m m m m

x z y x
f x f y f z

z y z y

   

   

 
 

 
,. 
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Hence 

     
2 2 1 1 1 1

'' '' ' ' 2 '' 2 ''

1 1 1 1 1 1 1 1

( 1) ( 1)
( ) ( ) ( ) ( ) ( )

m m m m m m

m m m m m m m m

m x m x x z y x
F x f x f y f z f y f z

z y z y z y z y

     

       

   
    

   
 

 If '( ) 0f x  ，then    
2 2

' '

1 1 1 1

( 1) ( 1)
0

m m

m m m m

m x m x
f y f z

z y z y

 

   

 
 

 
. Hence if ''( ) 0f x  ，

 '' 0F x  . 

If ( )h x  is convex to downwards, then 

1 1 1 1
'' 2 '' 2 ''

1 1 1 1
( ) ( ) ( ) ( ) ( )

m m m m

m m m m

x z y x
f x f y f z

z y z y

   

   

 
  

 
 

1 1 1
1 1 2 1 1 2

1 1 1 1 1 1 1 1 1 1 1 1

( ) ( ) ( )
( ) ( ) ( ) 0

( )( ) ( )( ) ( )( )

m m m
m m m m

m m m m m m m m m m m m

h x h y h z
x z y x

x z x y y z y x z x z y

  
   

           
    

     
 

(by Jensen inequality). Hence  '' 0F x  . 

 So the maximum is attained at the end,  i.e., the maximum of ( , , )F x y z  is attained when 

two of numbers are equal or some of numbers is zero. 

Using similar method we can prove the case that '( ) 0f x  ，
''( ) 0f x   or ( )h x  is 

convex to upwards. Hence Theorem 6{i} holds. 

Similarly we can prove Theorem 6(ii). This completes the proof of Theorem 6. 

Theorem 7  For nonnegative real numbers 1 2, , nx x x  and a function in the form 

1 2( , , )nF x x x, = 1 2( ) ( ) ( )nf x f x f x   , let 1 '( ) ( )mg x f x  .( 3n  , n is integral 

numbers.) 

(i)  If ( )g x  is convex to downwards,  

When 0m  , the minimum of 1 2( , , )nF x x x,  is attained when 

1 2 3 nx x x x     or the d of numbers are zero and n-d-1 of positive numbers are 

equal, the maximum is attained when 1 2 1n nx x x x   (here 1 1d n   , 

d N , the following is the same.) 

When 0m  , the minimum of 1 2( , , )nF x x x,  is attained when 

1 2 3 nx x x x    ,, the maximum is attained when 1 2 1n nx x x x   .. 
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(ii) If ( )g x  is convex upwards,  

When 0m  , the maximum of 1 2( , , )nF x x x,  are attained when 

1 2 3 nx x x x    , the minimum is attained when 1 2 1n nx x x x   . 

If ( )f x ， ( )g x  are continuous then ( , , )F x y z  is continuous between the minimum 

and the maximum, i.e., every value between the minimum and the maximum can be 

attained. 

Proof: Firstly we prove the case that ( )g x  is convex to downwards. 

When 0m  , we first prove that when the minimum of 1 2( , , )nF x x x, then 

1 2 3 nx x x x    , or  d  of numbers are zero and n-d-1 of the positive numbers 

are equal. We adjust 1 2, , nx x x,  such that three of them , ,i j kx x x  1 i j k n     

(at most one of , ,i j kx x x  is zero), fix other variables and i j kx x x  ，

m m m

i j kx x x  ( , 1)m R m   such that , ,i j kF x x x（ ） attains its minimum. From 

Theorem 5 we know that when , ,i j kF x x x（ ） attains its minimum, i j kx x x   or 

0 i j kx x x   . 

If the adjustment is taken as far as 1 2( , , , )nx x x  and 1 2 3 nx x x x     or d of 

numbers are zero and n-d-1 of positive numbers are equal, the adjustment will stop, 

we call it the end of adjustment. So we only have to there are only two cases as stated 

when the adjustment can not carry over.  

Suppose that the adjustment carries over until 

1 2 1 2( , , ) ( ) ( ) ( )n nF x x x f x f x f x   , , we may assume 1 2 nx x x   . 

If there is zero among (1 )ix i n  , we may suppose that 1dx   is the smallest one which 

are not zero. If 1d n  , 2n  , then the proposition is proved(hence it is proved 

when 3n  ). If 3d n  ( 4n  ), consider 

1 2 1 3 1 1( , , ),( , , ), ,( , , )d d n d d n d n nx x x x x x x x x      . Since ( )g x  is convex to downwards, 
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hence when 1, ,d i nF x x x（ ）， ( 2 1d i n    ) attains its minimum, there holds 

1d i nx x x   . Combining these 2n d   formulas we know d of numbers are zero and at 

least 1n d   of positive numbers are equal when the adjustment is ended. 

When (1 )ix i n  are all positive, similarly we can prove 1 2 3 nx x x x    . 

Hence if 0m  , when 1 2( , , )nF x x x,  attains the minimum, there holds 

1 2 3 nx x x x     or d of numbers are zero and at least 1n d   of positive numbers are 

equal. 

 Similarly 1 2 1n nx x x x    when 1 2( , , )nF x x x,  attains the maximum. 

So when m>0 the proposition is proved. 

Hence the case that ( )g x  is convex to downwards is proved. 

In the similar way if ( )g x  is convex to upwards, when 0m  , the maximum of 

1 2( , , )nF x x x,  is attained when 1 2 3 nx x x x     or d of numbers are zero and at 

least 1n d   of positive numbers are equal., the minimum is attained when 

1 2 1n nx x x x   ; when 0m  , the maximum of 1 2( , , )nF x x x,  is attained 

when 1 2 3 nx x x x    , the minimum is attained when 1 2 1n nx x x x   . 

This proves Theorem 7. 

Using similar argument we can get a generalization of Theorem 6 with 6 variables. 

We omit it here. 

Corollary 5(i)  If 1 2( , , , )nx x x  are nonnegative real numbers,  1 2 nx x x   ，

1 2

m m m

nx x x   ( , 1)m R m   are fixed, function 

1 2 1 2( , , ) p p p

n nF x x x x x x   ,  ( , 1, )p R p m  . In particular when p=0, 

1 2( , , )nF x x x , 1 2 nx x x .( 3n  , n is integer); when ( 1)( ) 0p p p m    and 0p   

or 0p   and 0m  ：if 0m  , the minimum of 1 2( , , )nF x x x,  is attained when  

1 2 3 nx x x x     or d of numbers are zero and at least 1n d   of positive numbers are 
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equal, the maximum is attained when 1 2 1n nx x x x   , if 0m  , the minimum of 

1 2( , , )nF x x x,  is attained when 1 2 3 nx x x x    , the maximum is attained 

when 1 2 1n nx x x x   . 

(ii) If 1 2( , , , )nx x x , and 
1 2 nx x x   ,

1 2

m m m

nx x x   ( , 1)m R m   are fixed , 

function 
1 2 1 2( , , ) p p p

n nF x x x x x x   , ( , 1, )p R p m  , in particular when p=0 

1 2 1 2( , , )n nF x x x x x x, ( 3n  , n is integer), when ( 1)( ) 0p p p m    and 0p   

or 0p  及 0m  , if 0m  , then the maximum of 1 2( , , )nF x x x,  is attained when  

1 2 3 nx x x x     or d of numbers are zero and at least 1n d   of positive numbers are 

equal, the minimum is attained when 1 2 1n nx x x x   , if 0m  , then the maximum 

of 1 2( , , )nF x x x,  is attained when 1 2 3 nx x x x    , the minimum is attained 

when 1 2 1n nx x x x   ,  

If ( )f x ， ( )g x  are continuous then ( , , )F x y z  is continuous between the minimum 

and the maximum, i.e., every value between the minimum and the maximum can be 

attained. 

Proof : Firstly we prove Corollary (i). If 0p  , set 1 '( ) ( )mg x f x  . Since  

2 1

1''

2

( 1)( )
( ) 0

( 1)

p m

m
p p m

g x p x
m

 


 

 


, we know from Theorem 6 that when 0m  , 

the minimum f 1 2( , , )nF x x x,  is attained when 1 2 3 nx x x x     or d of 

numbers are zero and at least 1n d   of positive numbers are equal, the maximum is attained 

when 1 2 1n nx x x x   , if 0m  , then the minimum of 1 2( , , )nF x x x,  is 

attained when 1 2 3 nx x x x    , the maximum is attained when 

1 2 1n nx x x x   ,. 

If 0p  , set ( ) ln( )f x x ，
1 '( ) ( )mg x f x  ， since 

2 1
1''

2
( ) 0

( 1)

m
m

m
g x x

m

 
 


, and  
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ln( )x  is continuous, the minimum of 
1

ln( )
n

i

i

x


  when 1 2 3 nx x x x     or d of 

numbers tend to zero and n-d-1 of numbers are equal, the maximum is attained when 

1 2 1n nx x x x   , i.e., the minimum of 
1

n

i

i

x


  when 1 2 3 nx x x x     or d 

of numbers are zero and n-d-1 of positive umbers are equal, the maximum is attained 

when 1 2 1n nx x x x   ,. 

Hence Corollary 5(i) is proved. Similarly we can prove Corollary 5(ii). This 

completes the proof of Corollary. 

Remark: In corollary 5(i) if n=3,m=2,p=0，then when x y z  , 2 2 2x y z   are 

fixed(i.e., x y z  ，xy yz zx   since 2 2 2 22( ) ( )x y z xy yz zx x y z        ) , 

the minimum of xyz is attained when x y z   or there is a zero, the maximum is 

attained when x y z  . This is corollary 1, also the core to prove Theorem 2,3, and 

Corollary 2,3. 

In corollary 5(i) if n=3,m=0,p=2 when x y z  ， xyz  are fixed, the minimum of 

xyz is attained when x y z  , the maximum is attained when x y z   i.e., the 

maximum of xy yz zx   is attained when x y z  , the minimum is attained when 

x y z  . 

In corollary 5(ii) let n=3, m=0, p= 1
2

 and 
1 1 1
2 2 2

1 1 1, ,x x y y z z   , ,then when 

2 2 2

1 1 1x y z  , 1 1 1x y z  are fixed, the maximum of 1 1 1x y z   is attained when 

1 1 1x y z   or there is a zero, the minimum is attained when 1 1 1x y z  . 

Corollary 6 For nonnegative  real numbers , ,x y z , if xy ， xyz  are fixed, the 

minimum of x  is attained when x y z  , and its maximum is attained when 

x y z  . 
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Proof: If some of , ,x y z  is zero, we may assume 0x  , then it is sufficient to get 

the range of y z  when yz  is fixed. Obviously y z  attains its minimum when 

y z , while y z  tends to infinity as y  tends to 0, i.e.., the maximum is attained 

when x y z  . If , ,x y z  are all positive, we may assume 设 xy c ， yz a ，

xz b ，, then 
bc

x
a

 ，
ac

y
b

 ，
ab

z
c

 . Then it is sufficient to get the range of 

x = 0.5 1
( )abc

a
  when xy = a ， xyz = 0.5( )abc  are fixed, or the range of 

1

a
 . 

From Corollary 5(ii) we know that 
1

a
  attains the minimal when a b c  , attains 

the maximum when a b c  . Hence x  attains the minimal when z x y  , 

attains the maximum when z y x  . 

When handling fully symmetric inequalities with 3 variables, we may fix two of the 

three fundamental polynomials and change the value of the third polynomial to attain 

the extremum . 

Theorem 8  For a fully symmetric inequality about nonnegative real numbers 

, ,a b c  ( , , ) 0f a ab abc   . If ' '( ) ( ) 0f abc f ab   or ' '( ) ( ) 0f a f ab   , 

equalities hold if and only if three numbers are the same. 

Proof: We prove the case that ' '( ) ( ) 0f a f ab   , the case that 

' '( ) ( ) 0f abc f ab   can be proved in the same way. 

We only have to prove the case when 
'( ) 0f a  , the case 

'( ) 0f a   can be 

proved in the similar way. 

Form Corollary 6 we know that we may control  ab ，abc  and adjust , ,a b c  

such that a  attains the minimum when a b c  , i.e.,  , ,f a b c  attains the 

minimum and a  attains the maximum when a b c  , i.e.,  , ,f a b c  attains 
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the maximum. Since ab ， abc  are fixed,  we have '( ) 0f a  , hence 

'( ) 0f ab  . From Corollary 5(ii) we know that we may control  a ，abc  and 

adjust , ,a b c  such that ab  attains the maximum when a b c  , i.e.,  , ,f a b c  

attains the maximum and ab  attains the minimum when a b c  , i.e., 

 , ,f a b c  attains the minimum. Since a ， abc  are fixed,  we have 

'( ) 0f ab  , hence '( ) 0f a  .Hence if we continue the adjustment until when 

( , , )a b c  and at this time the adjustment of ( , , )a b c  is still ( , , )a b c , then we call it 

the end of the adjustment(it is easy to see when a b c   the end of the adjustment 

cones, hence there is always a end of adjustment.) 

Suppose that the end comes when ( , , )a b c , then a b c   and a b c   or 

a b c  及a b c  . In any case we have a b c  . This completes the proof of 

Theorem 8. 

Remark: From Theorem 8 we obtain a judgment of some fully symmetric inequality 

with 3 variables when three numbers are equal to each other. 

For Theorems and Corollary, using similar method we can obtain similar results as 

result in this section, when variables are defined on  ,   or  ,   or  ,  or 

 ,  , 0     which is omitted here. For variables defined on the real number 

field, as long as the degree m  such that variables are well-defined we also have 

similar result. 

3.2 Application 

By through following examples, we show the application of the equivalency condition 

in proving inequalities. 

Using same replacement argument as in Corollary 6 we cam prove following 

conjecture proposed by Mr. Yang Xuzhi[12]. 

Example 1. Conjecture of Yang Xuzhi: Suppose 1, , nx x  are real numbers such that  
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2

1

n

i

i

x n


 , then 
11 1

1
2 - 2

n n n

i i

ii i i

n x x
x 

   （ ） . 

Proof: The condition 2

1

n

i

i

x n


  when n=1 is in fact the inequality to be proved. 

When n=2, from 2 2

1 2 2x x   we know 1 22 2x x  , this is the the inequality to be 

proved. 

Now we prove the case 3n  . 

Let 
1

1 1n

i

i i i

x
x y

  ， 1 2i n （ ，，， ）  
1

2 - 1

1

1

1n

n
i n

i
i

i

x

y



 


（ ）（ ）
1

2 - 1

1

2

1

n

i
i n

i

i

y
x

y


 


（ ）

,  

Hence 
1

1

1 1

( )
nn

n
i i

i i

y n y 

 

  . 

We want to prove 
1

2 -1

1

1

1 1
2 ( 2)

n

n
n

i i
i

i

n
y

y 



  


（ ）（ ） . 

Fixed 
1

n

i

i

y


 ，
1

n

i

i

y


 , then from Corollary 6 we know the maximum of 
1

1n

i iy

  when 

1 2 3 ny y y y   , or when 2 3 1nx x x x   . 

So we only have to prove when 2 2-1n x y n （ ）  we have 

1 1 22 - 2 -1n n nn x y x n x y    （ ） （ ）  1 22- -1 - 2n nx x y n x n   ( ) （ ）（ ）. 

Hence we only have to prove the case when 2 2-1n x y n （ ） . 

1 2 1 -2 22 ( 2) -1 -1 -1n n nn x n n x x n x n n x       （ ） （ ） （ ） （ 21
1

n
x

n
 


） 

Set 1 2 1 -2 2( ) ( 2) -1 -1 -1n n nf x n x n n x x n x n n x      （ ） （ ） （ ）  

' 2 2 2 3 2( ) ( 2)( 1) -1 ( 1) ( 2)( 1) -1n n nf x n n x n n x n x n n x n n x            （ ） （ ）

1 1

2 2 1 22 2( 2)( 1) ( ( 1) ) ( 1) ( ( 1) )n nn n x n n x n x n n x
 

         

'( ) 0f x  2 2 2( 2)( 1)( ( 1) ) -1 (( 1) ( 2) ) 0n x n n x x n n x x n n x           （ ）  

2 2 2 2( 2)( 1)( ( 1) ) ( 2) (1 ) -1 0n x n n x n x x x x n n x           （ ）  
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2
2

2

( 1)
( 2)( 1) ( 1) 0

-1

x
n n x x nx

x n n x


      

 （ ）
 

2
( 2)( 1)

-1

x
n x

x n n x
   

 （ ）
，记 2( ) -1g x x n n x  （ ）  

then ： '

2

( 1)
( ) 1 1 ( 1) 0

-1

n x
g x n x

n n x


     

（ ）
， hence ( )g x  is monotone 

decreasing in the field of definition.  

2
Hence :

2-1

x x

x n n x


 （ ）
， ( 2) 2

2

x
n x n      

2 4 (2 5)n n x    ，
2 4

2 5

n
x

n


 


， 22 4

( )
2 5 1

n n

n n


 

 
，

2

4 9 1

(2 5) 1

n

n n


 

 
 

2(4 9)( 1) (2 5)n n n     ， 2 24 13 9 4 20 25n n n n      ， 7 16n   

The last inequality holds obviously when 3n  。So '( ) 0f x  ，hence ( )f x  is 

monotone increasing. 

Thus ( ) (1) 0f x f  .  

This proves the proposition.！ 

Example 2 : Suppose 1, , nx x  are real numbers such that 
1

1
n

i

i

x


 . Try to compute 

the maximum of 
1

n
x

j

i j i

x
 

 (x is a nonnegative real number.) 

Solution: When 1x  , 
1 1

( ) 1

n n
x

j j

i j i i j i x

x x

n n

   
 

 
, that is, 

1

n
x

j

i j i

x n
 

 . 

When 1x  , note that 
1 1 1

1n n n
x x

j i x
i j i i i i

x x
x   

   . Fix 
1

n

i

i

x


 、
1

n

i

i

x


 , from Corollary 

5(II) we know that the maximum of 
1

1n

x
i ix

  is attained when 

1 2 3 nx x x x a   ……= . Hence we only have to compute the maximum of  
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( 1) ( 2)( ) ( 1) ( ( 1) )n x n x xf a a n a n n a      (1
1

n
a

n
 


). 

When the maximum of ( )f a  is attained when 
1

n
a

n



, ( ) ( )

1

n
f a f

n



, 

When the maximum of ( )f a  is not attained when 
1

n
a

n



, that is the maximum is 

attained when ( 1) 0n n a   , 

' ( 1) 1 ( 2) 1 ( 2) 1( ) ( 1) ( ( 2) ( ( 1) ) ( 1) ( ( 1) ) )n x n x x n x xf a n x a n a n n a n a n n a                

     ( 2 ) 1( 1 ) ( ( 1 ) ) ( ( ) ( 2 ) ( 1 ) )
( 1 ) ( 1 )

n x x xa a
n xa n n a n n

n n a n n a

        
   

 

Set 
( 1)

a

n n a 
= k ， ( ) ( 2) ( 1)xg k k n n k     ，then 1k  ，when 1x n  ， 

1( ) ( 2) ( 1) ( 1) ( 1) 0
x

x ng k k n n k n k n k          . 

When 1x n  ， ' 1( ) ( 1)xg k xk n   . When k is a positive real number, ( )g k  only 

have one stationary point 

1

11 xn
k

x

 
  
 

, hence there are two zeros at most. 

Meanwhile 1k   is a stationary point of ( )g k , and 

1

11
1

xn

x

 
 

 
. Hence the 

maximum of ( )f a  is attained when 1k   or k tends to infinite. However 

( 1) 0n n a    when k tends to infinity, a contradiction. 

 Hence the maximum of ( )f a  is attained when k=1 or a=1. 

Thus ( ) max( (1), ( ))
1

n
f a f f

n



. 

When 
lg

1
lg lg( 1)

n
x

n n
 

 
， (1) ( )

1

n
f f

n



，while when 

lg

lg lg( 1)

n
x

n n


 
, 

(1) ( )
1

n
f f

n



. Hence 

( 1)
1

lg
, 0

lg lg( 1)

lg
,

1 lg lg( 1)

n
x

j n x
i j i

n
n when x

n n
x

n n
whenx

n n n


 


   

 
       

 . 

When 3n  , 
1

1 1
(1 ) 1 1

1 ( 1)
n n

n n n
    

 


1 lg

lg lg( 1)

n n

n n n




 
. 
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Hence we have when 
1

1 2 3

1

, , ,  , ( )
n

nn

n i n

i

x x R x n x x x n




    …… . This is 

another unsolved conjecture of Mr. Yang Xuezhi[13]. 

This example solved a problem of optimal exponent, while the Bottema developed by 

Academician Yang Lu can not dual with this problem[14]. 

4 Judgment of un-normal equivalency condition for some fully symmetric or 

cyclic inequalities. 

In the beginning of this section we emphasize following fact: when 1 2,   are fixes, 

3  is continuous between the minimum and the maximum(from Corollary 6), i.e., if 

the maximum of 3( )f   is bigger than 0, and the minimum of 3( )f   is less than 0, 

and 3( )f   is a continuous then there is a 3  such that 3 =0. 

4.1  Judgment for homogeneous fully symmetric inequality of degree n with 3 

variables ( 6, )n n N   

We have proved that the equality of a fully symmetric inequality of degree n with 3 

variables ( 5,n n N  ) holds if and only if two variables are equal or some of 

variables is zero. We call it the normal equivalency condition. However when the 

degree is 6, the equivalency condition is not like this, so what is the equivalency 

condition for a fully symmetric inequality of degree 6 with 3 variables? Many 

scholars have studied this problem[3]、[15]. But there is no result on the whole judgment 

for fully symmetric inequalities of degree 6 with 3 variables. In the following we 

obtained a general result, and extend it to higher degrees. 

A fully symmetric inequality of degree 6 with 3 variables can be written in the form 

2 3 2

3 1 1 3 1( , , ) ( ) ( , ) 0f a b c A B C t g t           

Where 6 4 2 2 4 6

1 1 1 1( , )g t D E t F t Gt       ，
2 2

21
1 3, ,

3

t
a ab abc


 


    . 

Hence 10 t   . From the homogeneity we may assume that 1 1  . Hence we 

obtain following theorem. 
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Theorem 9  Judgment theorem for fully symmetric inequalities of degree 6 with 3 

variables defined on nonnegative real field. 

For a fully symmetric inequality of degree 6 with 3 variables defined on nonnegative 

real field, it holds if and only if: 

6 4 2 2 2 2 2 3( 1) ( 1) ( 1) ( 1) ( 1) ( 1) 0D x E x x x F x x x G x x             i.e.,

( ,1,0) 0f x  ， 

2 3 2 6 4 2 6( (2 1) (2 )( 1) ) ( 2) ( 2) ( 1) ( 1) 0Ax B x C x x x D x E x x G x             i.

e., ( ,1,1) 0f x  . Two inequalities holds when  0,x  . 

When 0A , 

3 2 3 24 (27 6 ) 2 27 0,4 (6 27 ) 2 27 0At C A t A B At A C t A B          ， 

2 0B Ct   Have solutions when  0,1t , and their intersection of solutions is 

non-empty. Let this intersection by (3). Then elements in (3) satisfy  

6 2 4 2 24 (4 ) (4 2 ) 4 0AGt AF C t AE BC t AD B       . 

Proof: We fix 1 t，  and change the value of 3 . 

When 0  , then ''

3( ) 0f   . From corollary 3 w3 only have to prove 

( ,1,0) 0f x   or ( ,1,1) 0f x  . 

When 0A , then 3( ) 0f    has no root. Since 3  is continuous between the 

minimum and the maximum we know that the sigh of 3( )f   is fixed. Hence from 

Corollary 2 we only have to prove ( ,1,0) 0f x   or ( ,1,1) 0f x  . 

If 0A  and 3( ) 0f    has roots, i.e.,   3 2

3 3 1 12 0f B C t          has 

root 
2 3

1 1
3

2

C t B

A

 



  . From Corollary 1 we know that  

2 2

1 1 1 1
3

( ) ( 2 ) ( ) ( 2 )
max(0, )

27 27

t t t t   


   
  . 
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Hence 
2 2 3 2

1 1 1 1 1 1( ) ( 2 ) ( ) ( 2 )
max(0, )

27 2 27

t t C t B t t

A

          
  .  

From formula above we obtain  

3 2 3 24 (27 6 ) 2 27 0,4 (6 27 ) 2 27 0At C A t A B At A C t A B          ， 

2 0B Ct  （0 1t  ） 

The intersection of the solutions of three inequalities above is the range of t (3), and 

the original inequality holds if and only if  

2 3

1 1
3min ( ) ( ) 0

2

C t B
f f

A

 



    

2 2

14 ( , ) ( )
0

4

Ag t B Ct

A

  
    

2 4 6 2 2 4 24 ( ) ( 2 ) 0A D Et Ft Gt B C t BCt            

6 2 4 2 24 (4 ) (4 2 ) 4 0AGt AF C t AE BC t AD B        . 

If for t satisfying (3) formula above holds then the original inequality holds, otherwise 

the original inequality doesn’t hold. 

Then Theorem 9 holds.  

Hence the judgment for fully symmetric inequalities of degree 6 with 3 variables is 

solved in theory. Since ( ,1,0) 0f x  ， ( ,1,1) 0f x   are inequalities of degree 6 with 

one variable and there are 23 cases in discussing the solution of a inequality of degree 

6 with one variable, hence the judgment for fully symmetric inequalities of degree 6 

with 3 variables is very difficult.  

Further for variables defined on any interval (in real number filed), we all obtain 

perfect judgment. 

In theory we know easily that if we can get all real roots of 3( )f  or 2( )f   of 

1( )f  , then we can using Theorem 9 to judge the homogeneous fully symmetric 

inequalities of degree n with 3 variables. Hence as long as the degree of one among 

3 2 1, ,    is less than 5(the derivation has degree less than or equal to 4). These 
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inequalities can be solved whenever the equivalency condition is. For some special 

problems of higher dimensions can be solved either. Using similar method we may get 

judgment theorem for fully symmetric inequalities of degree n with 3 variables 

( 7,8,9,10,11)n   and we omit it here. But when the degree is 12-14，15-17, we have 

to solve a equation with 3 variables or 4 variables, and there are a large quantity 

computations. It is hard to give a full judgment theorem. 

4.2 Judgment of equivalency condition for homogeneous fully symmetric 

inequality with 3 variables 

A cyclic symmetric form can be expressed by fundamental polynomials; hence 

theorems above work for cyclic symmetric inequalities. Since all cyclic symmetric 

inequalities can be written in the form 

2

1 2 3 1 2 3( , , ) ( , , ) ( , , ) 0
cyc

f a b c g h a b        . The quantity 2

cyc

a b  is very 

important; hence it is essential to estimate 2

cyc

a b . Firstly we fix 1 2,   and get the 

upper and lower bounds of 2

cyc

a b . Since  

2 2 2 2 2 2 2 3 2 2

1 2 3 1 2 2 1 2 1 3 33 ,( ) 4 2 (9 2 ) 27
cyc cyc cyc cyc

a b ab a b ab                       

Then 

2 2 3 2 2

2 1 2 3 1 2 2 1 2 1 3 33 4 2 (9 2 ) 27

2cyc

a b
               

  

Set 2 2 3 2 2

3 1 3 3 1 2 2 1 2 1 3 3( ) 3 4 2 (9 2 ) 27f                            

2 1

3 3 1 2 1

1
( ) 3 ( 54 2 (9 2 )) ( )( )( )

2
f a b b c c a                

When 3( ) 0f   ， 2

cyc

a b  attains the maximum. 

While 3

3 1 2 1 3( ) 0 3 (9 2 27 )f a b b c c a              

3 26 3
cyc

a abc ab     

 2 3 6 2 2 3 4

3 1 1 2 3 1 1 2 2 1 2243 36 162 18 9 9 0                    

3 6 2 2 4 3

1 2 1 1 1 2 1 2 2

3

9 2 27 9 27

27

        


    
  ， 
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It is easy to see that when 3  is the bigger one, 2

cyc

a b  attains its maximum. Hence  

3 3 3
2 1 3 1 2 1 2 1

1 2 3 1 2 3 3

6 9 3 6
max 3 3 6

3 3 3cyc

a abc
a b

      
      

   
       




3
3 6 2 2 4 31 2 1

1 2 1 1 1 2 1 2 2

6 2
(9 2 27 9 27 )

3 9

  
        


        

33 3
6 2 2 4 3 21 1 2

1 1 2 1 2 2 1 2

2 2
27 9 27 ( 3 )

9 9 9 9

 
                

Similarly we get 
33

2 21 2
1 2

2
min ( 3 )

9 9cyc

a b


     

Hence 
3 33 3

2 2 2 21 12 2
1 2 1 2

2 2
min ( 3 ) ,max ( 3 )

9 9 9 9cyc cyc

a b a b
 

          . 

Using similar method we can prove some other cyclic symmetric inequalities with 3 

variables. 

Now we consider the judgment for cyclic symmetric inequalities. Chen Shengli has 

obtained a sufficient and necessary condition for cyclic symmetric inequalities of 

degree 3 with 3 variables and considered cyclic symmetric inequalities of degree 4 

with 3 variables and obtained some results[17]. However there is no result on the 

judgment for cyclic symmetric inequalities of degree 4 with 3 variables. We will 

begin with cyclic symmetric inequalities of degree 4 with 3 variables, get some 

general results and make some extensions to higher degrees. 

A cyclic symmetric inequality of degree 4 with 3 variables can be written as  

4 2 2 2

1 1 2 1 2 3 2 4 1 3 0 1( , , )
cyc

F a b c k k k k k a b             

and 
2 2

cyc cyc

a b ab  , that is 

 

2 2 3 2 2

2 1 2 3 1 2 2 1 2 1 3 33 4 2 (9 2 ) 27

2cyc

a b
               

 . 

From the homogeneity of the inequality we may assume 1 1  . 

Theorem 10 Judgment theorem for cyclic symmetric inequalities of degree 4 with 3 

variables defined on nonnegative real field:  
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A cyclic symmetric inequality of degree 4 with 3 variables holds if and only if  

( ,1,1) 0, ( ,1,0) 0f x f x  ，  0,x  ； 

If the equation 2

3 3 0A B C     about 3  has real roots 3i
 （ 1,2i  ） 

Here 2 2

0 4 0729 27(2 3 )A k k k   ,

2 3 2 2 2

0 1 2 1 0 4 0 1 2 1486 108 2(2 3 ) (9 2 )B k k k k           , 

2 2 6 4 2 2 2 2 3

1 2 1 1 2 0 4 0 1 2 2(81 4 36 ) (2 3 ) ( 4 )C k k k              

and there are 3i
  such that 

2 2

3

(1 ) (1 2 ) (1 ) (1 2 )
max(0, )

27 27i

t t t t


   
     (4) 

Then for t , 3i
  satisfying (4) also satisfy 3 min( ) 0

i
f   . 

Proof: we fix 1 2 ，  and change 3 . 

1

3 2 2 3 2 2 2
1 2 1 3 1 2 2 1 2 1 3 3

'

3 4 1 0 1

1
3 (18 4 54 )( 4 2 (9 2 ) 27 )

2( )
2

F k k
           

  



       
 

1'
2 2 3 2 2 33 2

4 0 1 2 2 1 2 1 3 3 0 1 2 1 3

1

2 ( )
(2 3 )( 4 2 (9 2 ) 27 ) (9 2 27 )

F
k k k


           


          

' 2 2 2 3 2 2 2 3 2

3 4 0 1 2 2 1 2 1 3 3 0 1 2 1 3( ) 0 (2 3 ) ( 4 2 (9 2 ) 27 ) (9 2 27 )F k k k                     

  2

3 3 0A B C                                                          (5) 

where 2 2

0 4 0729 27(2 3 )A k k k   ， 

2 3 2 2 2

0 1 2 1 0 4 0 1 2 1486 108 2(2 3 ) (9 2 )B k k k k           ， 

2 2 6 4 2 2 2 2 3

1 2 1 1 2 0 4 0 1 2 2(81 4 36 ) (2 3 ) ( 4 )C k k k              

1,2

2

3

4

2

B B AC

A


  
 ，and 

2 2

1 1 1 1
3

( ) ( 2 ) ( ) ( 2 )
max(0, )

27 27

t t t t   


   
   

If (5) has no solution or there is no 3i
  satisfying (4), then inequality holds if and 

only if ( ,1,1) 0, ( ,1,0) 0f x f x  ，  0,x  . If not then 3 min 3 min( ) ( )
i

f f  . 

Hence it is sufficient to prove that 3 min( ) 0
i

f    holds on the range of 3i


 such that 

（4） holds. This completes the proof. 
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Further more for variables defined on any interval (in the real number field), we can 

also get perfect ways of judgment. 

Like before, in theory, as long as we get all roots of 3( )f   or 2( )f   or 1( )f  , 

then we can judge cyclic symmetric inequalities of degree n with 3 variables using 

Theorem 10. But when the degree is 5 or 6, we have to solve a equation of degree 3 or 

4, and it becomes more complicated since there are a large quantities of computations. 

Hence it is hard to give a complete judgment theorem. 

5 Conclusions  

This research, by controlling two fundamental symmetric polynomials and using the 

monotony of functions and Jensen inequality, gives some sufficient and necessary 

conditions for the equivalency of some fully symmetric inequalities with 3 variables. 

Then we obtain some theorem on the equivalency conditions for some fully 

symmetric inequalities of degree 6 with 3 variables, and give some applications ny 

using some examples. At last we obtain judgment theorems for homogeneous fully 

symmetric inequalities of degree 6 with 3 variables and homogeneous fully cyclic 

inequalities of degree 4 with 3 variables and consider the possibility of the judgment 

for higher degrees in theory. Our research has widely applications in the proof of 

inequalities. 

6 Problems and prospects 

 In the proof there are some coincidences that can not be explained, and there are 

many difficulties in the extension. We list them here and make some prospects. 

6.1  Can we extend inequalities in Theorem 1 to degree 4, even degree n? 

This requires that '

1 1 2 1 2 3

1

( , , )
n

i

i

f a a a a a a a


   ，……，  has at least two real 

roots. 

For such function of degree n, its derivation is of degree n-1. Yet we don’t know the 

discriminant of equations with real coefficient of degree 5n  . Hence it is almost 

impossible to make extensions. To extend it to 4 or 5 variables we have to solve a 

equation of higher degree which contains a large quantity of computations. 
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6.2  Jensen inequality can be considered as fixing ix , and by using properties of 

convex or concave functions to adjust n variables to be equal. The core of the third 

section is by fixing two polynomials ix ， m

ix , and using properties of convex or 

concave functions,  to adjust the n variables to make n-1 of them equal or some 

variable touching the boundary.  So can we adjust the n variables to make n-p-1 of 

them equal or some variable touching the boundary by fixing p polynomials such as 

m

ix , and using properties of convex or concave functions,? 

6.3 Academician Yang Lu pointed that for judgment of the number of roots when the  

Coefficients are constant or the text Coefficients are in given range can be solved by 

using computers. Hence we conjecture that using the method in section 4, and making 

some improvements, it can be used in the proof of inequalities using computers, in the 

judgment of more general fully symmetric or cyclic inequalities with 3 variables. 

These problems need further and in-depth study. 
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