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Abstract: This paper researches on the judgment theorem and proof of the
equivalency condition of a class of symmetric inequalities. By controlling two
elementary symmetric polynomials and using the monotonicity of functions and
Jensen inequality, it finds the necessary and sufficient condition of the equivalency a
class of three-variable and n-variables symmetric inequalities. And we illustrate the
application of this method in proof of these inequalities. Then we obtain several
judgment theorems on symmetric and cyclic inequalities.
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1 Introduction

The inequality has the wildly application in mathematics and other sciences, but
to prove a inequality, there is no general method and fixed way, especially for difficult
inequalities. Usually it doesn’t work by enlarging or reducing directly. The full
symmetry inequality, because of its especial property, has become an active branch of this
field. Some researchers have used derivative method, the increment method, variable controlled

method or local revision method to deal with inequalities of this type[1'3]. However, there may be



a lot of computations, and often do not work successfully. Academician Yang Lu, Mr. Chen
Shengli, Mr. Yao Yong, Mr. Liu Baogian etc. have done many works in this field by using the
computer as a tool. In 1985, in a conference held in Shanghai, Academician Wu Wenjun had
point out that the automated proving for inequalities is a difficult problem[*. In 1982,
Choi etc. obtained the judgment of the necessary and sufficient condition for the
semi-positive definiteness of a symmetric form of degree 3 with n variablest.. In 1999
William Harris gave a necessary and sufficient condition for the semi-positive
definiteness of a symmetric form of degree 4 and 5 with 3 variables(®l. Notice that the
degrees of these results no more than 5. In 2001 Vlad Timofte considered the

necessary and sufficient condition for the semi-positive definiteness for symmetric

forms of degree d with n variable in r". But his result is difficult to be judged when

d>5"], In 1993 Chen Shengli deeply discussed the semi-positive definiteness for more
general symmetric forms with 3 variablest®l. Now it is still an unsolved problem to
judge the semi-positive definiteness of the symmetric form of degree 6(or higher
degree) with n variables®®.. So far, there is no report on exploring the equivalency
condition of symmetric inequalities and proving an inequality using the equivalency
condition in China. The aim of our research is to explore the equivalency condition of
symmetric inequalities and give a theorem of the judgment of the equivalency
condition for 3 and n variables, then we get a judgment theorem for homogeneous
fully symmetric forms of degree 6 with 3 variables and for homogeneous cyclic
symmetric inequalities of degree 4 with 3 variables and try to explore the judgment
for inequalities of higher degree, which can be used for the exploration of the method
to prove inequalities by hand and supply a basis for the automated proving of

inequalities.

2 A judgment theorem of equivalency condition for some fully symmetric inequalities
with 3 variables
2.1 The judgment theorem of equivalency condition and its proof

We firstly introduce the properties for fully symmetric inequalities with 3 variables.



Lemmal A polynomial f(X,y,z) with 3 variables is fully symmetric if and only
if f(x,y,z) can be expressed uniquely by basic polynomials o, = Zx =X+Yy+2,

o, =) Xy=xy+yz+2x, o,=][]x=xyz (D .J] denote the sum and times )
(from the fundamental theorem for symmetric polynomials in linear algebra). Set

f(%y,2)=90 % D Xy, xyz).

Lemma 2 A fully symmetric polynomial f(x,y,z) with 3 variables can be

expressed uniquely by o, =Y X, o,=>.x", o= x.
Lemma 3 A fully symmetric polynomial f(x,y,z,t) with 4 variables can be

Xy Xyz
28
Next we give the judgment theorem of equivalency condition for fully symmetric

expressed uniquely by t”g(Z%,Z
inequalities with 3 variables and its proof.

Theorem 1 For any real numbera,b, c, we have

ZabZaJr(GZS:)ab—Z(Za)Z)x1 < abe< ZabZaJr(GZ;‘)ab—Z(Za)Z)x2

where x, =

Za+\/(2a)2—32ab ) _Za—\/(Za)z—3Zab
3 e 3 '

The equalities hold if and only if (a—b)(b—c)(c—a) =0.

Proof: Suppose real number a,b,c satisfyc>b>a.

Consider the function f (x) = (x—a)(x—b)(x—c) =x> = > ax®+ > abx—abc .
Then f'(x) =3x*-2) ax+ > ab.

Let x,x, be two roots of f'(x)=0 with x >x,. Then it is easy to get

~ Zeht\/’(Za)2 -3> ab ~ Za—\[(Za)2 -3> ab
X = 3 1 Xy = 3

(1)




If x,>x,, then f(x) is monotone increasing on (—oo, xz], monotone decreasing
in (x,,x] and monotone increasing (x,,+x).

Meanwhile f(x) has three zeros, thatis, f(a)=0, f(b)=0, f(c)=0.

Hence a<x,<b<x <c.Then f(x,)>0, f(x)<O0,thatis,

X' =Y ax,”+ > abx,—abc>=0, x’-> ax’+> abx,—abc<0.

By substituting (1) we obtain

ZabZaJr(GZS:)ab—Z(Za)Z)x1 < abe< ZabZaJr(GZ;‘)ab—Z(Za)Z)x2 |

and any equality holds if and only if (a—b)(b—c)(c—a)=0. This completes the
proof of Theorem 1.

Corollary 1  For any real number a,b,c, we have

D ab) a+ (6%ab -20> a)*)x D<abes D aby a+ (G%ab -2(> a)*)x, |

max (

Proof. If ZaZSZZab,then

D abd a+(6) ab—2(> a)’)x, < abe < D abd a+(6) ab—2(> a)*)x,
9 B B 9 '

_ 2
if 3 a’>23 ab, then OsabcszabzaJr(G%ab 2230

Combining these two cases we have

ZabZaJr(GZéab—Z(Za)z)xl 0 <abe< Zab2a+(6%ab—2(2 a)*)x, |

max (

This completes the proof of Corollary 1.
Inequalities in Theorem 1 and Corollary are very strong and have many applications
in prove inequalities.

Theorem 2 For a fully symmetric inequality f(Za,Zab,abc)zO about real

umbers a,b,c (From Lemma 1 we know that it can be denotes in this form).



Supposed > a, > ab are fixed, and consider f(D a, > ab,abc) as a function of
abc.
(i) If f(abc)>0, then function f(D> a,> ab,abc) attain its maximum when

two of numbers are equal which are no greater than the third, attain its minimum

when two of numbers which are no less than the third.

(ii) If f'(abc)=0, then function f(D a,> ab,abc) attains its extremum when

two of numbers are equal.

(i) If f'(abc) <0, then function f(D a > ab,abc) attains its maximum when

two of numbers are equal which are no less than the third, attains its minimum two of

numbers are equal which are no bigger than the third.

Proof: At first we prove Theorem 2 ( i ). Consider (X, %, ¥;), (X, X,, Y,)

Za+\f(2a)2—32ab _Za—z\/(Za)z—SZab
3 v V1= 3 :

where x =

_Za—\/(z afj- 3 al _Za+2\j(2a)2—32ab
X, = - LY, = : -

(X,,Y;,X%,,Y, arethesame in the following.)
Then X +X+Yy,=X+X+Y,=a+b+c,

X12 +X1yl+X1y]_ =X22 +X2y2 +X2y2 =ab+bC+Ca.

From theorem 1 we know

ZabZaJr(GZS:)ab—Z(Za)Z)x1 < abe< ZabZaJr(GZ;‘)ab—Z(Za)Z)x2 |

In fact :

D abd a+(6) ab—2(> a)*)x, 2y D aby a+(6) ab-2(3 a)’)x,
9 S 9

2
=X Yo

Then x’y, <abc<x,’y,.

Meanwhile f (abc) >0, i.e., function f(abc) is monotone increasing with respect to



abc and Y a, > ab are fixed. Let (x,%,¥), (X, X,Y,) take the place of
(a,b,c). Then

f (Xl X+ Y1 X12 XY XY X12y1) = f (Za, zabr X12y1) <f (Zar Zab, abc) ,
f(O a,D ab,abc) = f (X, +X, + V5, X, + XY, +X,Y,,806) < T (X, + X, + Y5, X2 + XY, + X, Y5, %, Y,)
Obviously x>y, , X,<y, , hence the function f(> a,> ab,abc) attain its

maximum when two of numbers are equal which are no greater than the third, attain
its minimum when two of numbers which are no less than the third. This proves
Theorem 2 (1).

In the same way we can prove Theorem 2 (iii) .

If f'(abc)=0, the degree of abc in f(D a, > ab,abc) is zero, then we can let
any one of (x,x,V,),(X,X,,Y,) take the place of (a,b,c), and the value of
f (> a,> ab,abc) is unchanged. Hence for a function (D a, > ab,abc) there is
a corresponding (%, X, Y;) and(x,,X,,Y,). So when f(Za,Zab,abc) attains its

extremum, there is a corresponding (X, X.,Y;) and(x,,X,,Y,), i.e., the function
attains its extremum when two of the numbers are equal. This proves Theorem 2
(iii) .
Hence Theorem 2 is proved.

Corollary 2 For a fully symmetric inequality about non-negative real umbers
a,b,c

f(> a,> ab,abc) >0,

(i) If f(abc)>=0, then f(D a > ab,abc) attain its maximum when two of

numbers are equal which are no greater than the third, attain its minimum when two

of numbers which are no less than the third.

(i) If f (abc)=0, then function f(Za,Zab,abc) attains its extremum when two

of numbers are equal.



(i) If f'(abc) <0, then function f(D a > ab,abc) attains its maximum when

two of numbers are equal which are no less than the third, attains its minimum two of
numbers are equal which are no bigger than the third.

Proof: At first we prove Corollary 2 (i).

When x.,v,,X,,Y, arenonnegative, the proof is similar to the proof of Theorem 2.

x = Za+\/(zs)2—32ab >0, % = Za_\/(Z:)Z_SZab >0

However,

X

. Za+2\/(%a)2 -3 ab o

y then we only have to consider the case that

Yi

2
_ Za—z\/(Za) -3) ab 0.
3
We consider (X, Y,,0), where

) _Za+\/(2a)2—42ab y _Za—\/(Za)z—4Zab
3 = 5 y Y= > .

From > a’>2> ab we know x,,y, are real numbers. Obviously x>0,y, >0,

SO X,,Y, arenonnegative real numbers. Then

X, +Yy;+0=> a,

X3Y; +0-X;+0-y;=> ab.

Since f (abc)>0, let (x,,Y,,0) takes the lace of (a,b,c), then

f(%+Y;+0,%Y; +0-%+0-y;,0-%,-y;) = f (O a, > ab,0) < f (D a,> ab,abc)
Hence the function attains its maximum when two of numbers are equal which are no
greater than the third. The function attains its minimum when two of the numbers are
equal (and these two numbers are no less than the third.) or one of the numbers is

equal to zero. This proves Corollary 2 (i).

In the same way we can prove Corollary 2 (iii).

When f (abc)=0, let (x,,X,,y,) take the place of (a,b,c), then using similar



method to proving Theorem 2(ii), we can prove Corollary 2(ii).

This completes the proof of Corollary 2.

Theorem 3  For a fully symmetric inequality about real umbers a,b,c

f(> a,> ab,abc) >0,
(i) If f'(abc)>0, then maximum of the function f(D a, > ab,abc) is attained
when two of numbers are equal.

(i) If f'(abc)=0, then it can be reduced to one of the cases in Theorem 2.

(iiiy If f'(abc)<0, the minimum of the function f(D a,> ab,abc) is attained

when two of numbers are equal.

Proof: At first we prove Theorem 3(i).

Since f'(abc)>0, f(abc) is convex to the downwards. So the maximum of

f (abc) is attained in the end points. Hence

f(O> a ) ab,abc) = f(x +X + Y, X + XY, +XY;,8bc) = F (X, + X, + ¥,, X3 +X,Y, +X,Y,,abc)
<max{ f (X + X+ Y3 ¢ X Y5+ XY 5 Y) F (X %X+ Y5, XK + XY, +X,Y,, X Y,)}

i.e, the maximum of (> a ) ab,abc) must be attained only when two of

numbers are equal. This proves Theorem 3 (i).

In the same way we can prove Theorem 3(iii).
If f'(abc)=0, i.e., the degree of abc in f(D a> ab,abc) is less than 2, the

sign of f (abc) is invariant, hence it can be reduced to one of cases in Theorem 2.

Theorem 3(ii) is proved. This completes the proof of Theorem 3.

Corollary 3 For a fully symmetric inequality about non-negative real umbers

a,b,c

f(O a > ab,abc) >0,
(i) If f'(abc)>0, then the maximum of the function f(> a,> ab,abc) is

attained when two of numbers are equal or one of numbers is equal to zero.



(i) If f'(abc)=0, then it is reduced to one of cases in Corollary 2, and the

extremum of f(z a,Zab,abc) is attained when two of numbers are equal or one

of numbers is equal to zero.
(iiiy If f'(abc)<0, then the minimum of the function f(D a, > ab,abc) is
attained when two of numbers are equal or one of numbers is equal to zero.

The proof of Corollary is similar to Theorem 3 and Corollary and we omit it here.

The main idea of theorems and corollaries above is that the fully symmetric

polynomial about real numbers a,b,c can be expressed in the form

f(> a,> ab,abc), and we can control two quantities » a, > ab, and adjust

abc.

Corollary 4 A fully symmetric inequality of degree n with 3 variables
f(a,b,c)>0 ifandonlyif f(x,,0)>0 and f(x,1,1)>0 (n<5) .

Proof: The inequality to be proved can be rewritten as f(Za,Zab,abc)zO.
Since the degree of the inequality is less than, the degree of abc is less than one
and f (abc)=0. Then from Corollary 3 we know that the extremum of the function
is attained when two of numbers are equal or some of numbers is zero. Hence if
f(x,,00>0 and f(x,,1) >0, then the inequality holds. Obviously it is the

sufficient condition of the inequality. This completes the proof of Corollary 4.

Remark: Corollary 4 is stronger than the result of Mr. Chen Shengli about the

nonnegative homogeneous fully symmetric inequality of degree 4 with 3
[10]

variables .

With respect theorems and corollaries above we may make some further extensions.

Extension 1: For fully symmetric inequalities with 3 variables, f(D a,> ab,abc)
can be rewritten in the form g(> a,> a* > a%). We can make ) a, > a’

unchanged and adjust Za"5 , similar results also hold. This is because that for such



polynomials, quantities such as > a,> a® may determinate »'a, > ab uniquely.
Since Y a’=(D_a)’+3abc—3> a) ab, quantities such as > a° is abc in

fact., hence similar results hold.

If theorems and corollaries above can not be applied to the primary function, we can

make some replacement of a,b,c such that theorems and corollaries above may

work for now function. (see example 2)
Extension 2: an extension for homogeneous fully symmetric inequalities of degree n
with 4 variables defined on real number field or nonnegative real number field:
Every homogeneous fully symmetric inequality of degree n with 4 variables defined
on real number field or nonnegative real number field, except 0, is equivalent to a

fully symmetric inequality with 3 variables.

Proof: For a fully symmetric in equality of degree n with 4 variables f (x,y,z,t) >0,

from Lemma 3 we know that every fully symmetric in equality of degree n with 4

xy Xyz
)

Hence f(x,y,z,t)>0 <t g(z ny xyz)>0’ that is. g(z ny xyz

1

t
Furthermore we can apply theorems and corollaries above to fully symmetric

variables f(x,y,z,t) can be expressed uniquely in the form t g(z Z

Then it is equivalent to a fully symmetric inequality with 3 variables about

r—c-|><

z
1t-

inequalities of degree n with 4 variables defined on real number field or nonnegative
real number field.
For fully symmetric inequalities of degree n with 4 variables to which theorems and
corollaries can be applied, we may adjust two of variables to be equal. Furthermore,
because of the homogeneity we may suppose these two variables are 1, hence we
cam reduce it to be a fully symmetric inequality with 2 variables.

2.2 Application

We explain application of the equivalency condition in proving inequalities.
Example 1. Verify that if a,b,c are nonnegative real numbers, then
a’+b® +¢® +3abc—a’b—ab® —a’c—ac’ —b’c—bc® > 0.

10



Proof 1: From Corollary 1 we know that

ZabZa+(GZslaab—z(Za)z)x1 0= abo (herex, - Za+J(Z;> -3> ab )

max (

Set > a=p, O a*-3> ab=t*, abc=r.Obviously p>t. Hence we obtain

max (

20 ~—
(p+°(p Zt),O)Sr. )
27

The original problem is equivalent to 27r +4pt*> —p*>0.

If t> g , then obviously the inequality holds.

iF <P by using (2), we have 27r > (p+D*(p—20) = p® -3t*p—2t* > p* —4pt?,

2 H
This completes the proof.

Proof 2: Denote by f(z a,Zab,abc) the left hand side of the inequality. Since the

highest degree of the function if less than 3, the degree of abc is less than 3. Hence

f'(abc) =0. By using Corollary 3 we know that the minimum of f(>_a, > ab,abc)

is attained when two of numbers are equal. We may assume that a=c, hence it is

sufficient to prove
a’+b*+a’+3a’h—-a’h—ab’-a’-a’-b’a-a’b>0 < hb(a-b)?*>0.
Hence original inequality holds.

Remark: This example is a part of the well-known Schur inequality. The whole

Schur inequality can be found in [11].

Example 2. Suppose x,y,z are three nonnegative real number satisfying

x*+y?+2° =1. Verify that > 3X >3.
X® +yz
Proof : Let a:E,b:E,c:ﬁ. Then it sufficient to prove that if a,b,c are
X y z
nonnegative real number satisfyingZabzl,then Z . >3
ab+c

& Z(ab +c)(ac+b)—3(ab+c)(ac+b)(bc+a)>0.

11



Suppose (D> a,> ab,abc)=>"(ab+c)(ac+b)—3(ab+c)(ac+b)(bc+a), then
f'(abc)>0 . Hence form Theorem 3(i) we know that the minimum

of f (Za, Zab, abc) is attained when two of numbers are equal or one of numbers is

equal to 0.
. 1 11
If one is zero, we may assume c=0. Then we only have to show —b+—+—23
ab a
- : 11 1 2 1 .
under the conditionab=1. Since —+—+—>——+— =3, this prove the case that

a b ab Jab ab

one of numbers is zero.
If two of numbers are equal, we may assume a=c, then we only have to show
2
+ 2
ab+a a“+b

>3 under conditions that a,b are nonnegative real numbers and

a’ 2
=

>3, when ae[0,1].

2ab+a® = 1. Substituteb = 2= —+ 1 - >
2 1-a 1-a

+a a’+
2 2a
_ 2 _ 2
1—(a2+1 a) 1=a” A
=N 2‘3‘ >0 2 > ,
, l-a l1-a
a’+ +a
2a 2
(1-a’)1+

—) 2
ga + @ 23.) >0.
, 1-—a 1-a
+
2a 2

f—

a

+a

~~a€[0,1], hence inequality above holds, i.e., the original inequality holds when two

of numbers are equal.
Hence the inequality holds.
Remark: By a skillful substitution the degree is reduced form 9 to 6, which makes it is

impossible to use the theorems. The substitution is in fact consider the function in the

form f(ZE,ZyZ, xyz) , which is the extension of fully symmetric inequality with
X

3 variables as we said.

Example 3 Suppose a,b,c are nonnegative real numbers satisfyinga+b+c=1.

12



1
Verify that > a’ +§(abc)2 2% :

1
Proof. Original inequality is equivalent to ? (abc)?, fZa 2%(2 a)’-> a’

N ﬁ(abc)%ﬂfZa >2> ab-Y a?,

If > a?>2> ab, the inequality holds obviously.

1
If > a®<2> ab,suppose (> a,> ab,abc)=+/3(abc)2> a-2> ab+> a?,
1
So f'(abc) :%(abc) 2 >0. Hence from Theorem 2(i) we know the minimum of the

function when two numbers are equal, and they are bigger than the third. We may
suppose a=c.Then <« 3a?by2a+b>2(a?+2ab)—2a®—b? and a>b,
<> 3a°(2a+b) >b(4a—b)?

< 6a’+3a’h >16a’h+b° —8ab®,

<> 6a’(a—b)+7ab(b—a)+b’(a—b)=>0,

< (a—b)(6a’ —7ab+b*) >0,

< (a-b)*(6a—b)>0,
Notice that a>b, hence inequality above holds. Combining these two cases the
original inequality is proved.
There is a detail which may be ignored easily: if Zaz <2> ab, then the minimum

is attained when two of numbers are equal(and these two numbers are no less than
third.). Hut it is essential in dealing with this example.

In this section we choose three typical examples about proving inequalities by using
judgment of equivalency condition. In fact the judgment of equivalency condition has
wide application in proving fully symmetric inequalities with 3 variables. Here we

don’t list one by one.

13



3 Judgment of equivalency condition a class of fully symmetric inequalities
with n variables.

3.1 Judgment theorem f equivalency condition a class of fully symmetric
inequalities with n variables.

Theorem 4 (i) Given nonnegative real numbers a>b>c, real number m<0
which are not same at the same time, for variables x<y<z satisfying
X+y+z=a+b+c, x"+y"+z"=a"+b™ +c".(in particular xyz=abc if m=0).
Then there exist nonnegative real numbers X, X,, if x=x, then x=x <y=z; if
x=X, then x=x,=y<z,if xe(x,X),then x<y<z.

(ii) Given nonnegative real numbers a>b>c, real number m>0 in which at most

two numbers are equal, at most one is equal to zero and m=1, for variables
x<y<z satisfying x+y+z=a+b+c, x"+y"+z"=a"+b"+c", then there
exist nonnegative real numbers x,,X,, if x=x, then x=x<y=z;if xe(x,X,),
then x<y<z;if x=x,then O0=X =X<y<zZ or X, =X<y=2Z.

Proof: We make some preparation. Consider y,z as functions of x, then form
X+y+z=a+b+c, x"+y"+z"=a"+b"+c" we know

ey +z=0 mx"+myy™ +mzz"" =0

oo™t gmd ' ym—l_Xm—l
We obtain vy =y z =W.(it is easy to see that equality holds

when m=0). Form x<z,z>y,weget y <0, z >0.Hence when X increases, y

iIs monotone decreasing and z is monotony increasing.

Firstly we prove Theorem 4(i). If m=0, consider function

f(x)=x*-2> ax’+ (D a)*x—4abc

f(0)=—4abc<0, f (%) = (%)3 —ZZa(%)Z +(D a)? %—%bc >0.

14



a
Then there is nonnegative real number x, suchthat f(x)=0 and xle{O,ZTJ.

Let x=x,then (@+b+c—x)’x,i.e., (y+2z)*=4yz.Hence y=z,which implies
X=X <Yy=z. Since y is monotony decreasing, when x=x,, x<Y. Hence there is
X, such that when x=Xx,, X=X, =y<z. From the monotony of z we know when

xe(X%,X%,), x<y<z.Hence when m=0 theorem is proved.

When m <0, consider function

f (x) = 2(abex) ™ — (x " ((ab) ™ + (ac) ™ + (bc) ™) —(abc)-m)(—a““b“z“c‘x)-m

a+b+c

2
If x=c, f(c):2(abc2)m—c2m(am+bm)(a7+b)mgo.Mean while ¢<2+B+C

If x=0, f(0)=(abc)™( )™ >0.

hence there is x, such that 0<x, <&«  f(x)=0. Then we can get that when
X=X, Y=z, hence x=x <y=z by usingsimilar argument as the case m=0.
From the monotony of y and z, there is x, such that when x=Xx,, x=X,=y<z,
when xe(x,X,), x<y<z.Hencewhen m<0 theorem is proved.

Secondly we prove Theorem 4(ii). When m>1, consider function

f(x):am+bm+cm—xm—2(wj :

2

m-1
Obviously f (x)=-mx""+m (%j >0 when xe [O,%] :

If £(0)>0, thentherearey, zsuchthat a" +b™" +c" =y"+z"and y+z=a+b+c
Hy>0.

Let x, =0, then X<y<z.

If f(0)<O0,since f(a+g+c):2am—3[a+:+cj >0, there is X, such that

15



O<x <& and f(x)=0. Using similar argument as the case m=0 we can get
that y=1z, hence x=x <y=z. Sincey is monotone decreasing and z is monotone
increasing strictly, in any one of two cases above there is x, such that when x=x,,
X=X,=y<z,when xe(x,X,), X<Y<Z.Thecase m>1 isproved.

When 0<m <1, consider function f(x)=a" +b™+c" —x" - Z(WJ .

2

m-1
Obviously f'(x)=-mx"*+m (%j <0 when xe [O,%] .

If f(0)<O0, thereare y,z, suchthat a" +b™+c"=y"+z", y+z=a+b+c and

y>0.Let x, =0, then x<y<z.

If £(0)>0, since f(a+g+c)zzam—3(a+:+cj <0, thereis x,, such that

O<x, <&, f(x)=0. Using similar argument as the case m=0 we get that
y=12z, hencex=x <y=2z. Since y is monotone decreasing and z is monotone
increasing strictly, in any one of two cases above there is x, such that when x=x,,

X=X,=y<z,when xe(x,X,), X<Y<Z. Thecase m<1 isproved.
This completes the proof of the theorem.

Remark: When m>0, if two of a,b,care equal to O, then the only possibility is
X=y<z.

Theorem 5 For nonnegative real numbers X, y, z, and a function in the form
F(x,y,2)=f(X)+ f(y)+f(2),let g(x™")="f(x).

(1) If g(x) isconvex to the downwards,

When hen m>0 the minimum of F(x,y,z) is attained when x<y=z or

0=x<y<z,the maximum is attained when x=y<z.
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When m<0, the minimum of F(x,y,z) is attained when x<y=z, the
maximum is attained when x=y<z.

(i) If g(x) is convex to the upwards,

When m>0 the maximum of F(x,y,z) is attained when x<y=z or
0=x<y<z,the minimum is attained when x=y<z.

When m<0, the maximum of F(x,y,z) is attained when x<y=z, the
minimum is attained when x=y<z.

If f(x), g(x) are continuous functions, then f(x), g(x) are continuous between

the minimum and the maximum, i.e., any value between the minimum and the

maximum can be attained.

Proof: Firstly consider the case that g(x) is convex to the downwards

Let x+y+z, x"+y"+z" fixed(m is a real number non-equal to 1), then there are
a>b>c in which at most two are the same, (when m> 0, there is at most one is
zero among such a, b, ¢.) satisfying x+y+z=a+b+c, x"+y"+z"=a"+b" +c".
Consider y,z as functions of x , then from x+y+z = a+b+c ,
X"+y"+z"=a"+b" +c™ we know
ey +z=0 mx" ' +myy™ +mzz"" =0

,ox™_md ‘ ym—l _ ™t ) _
Hence y =———, ,z ==——— (obviously when m=0 the equality holds
Zml_yml Zml_yml

either.)

m—l m— m—l

Then F(x)= f(x)+yf(y)+zf(z)-f(x)+—yf(y)+ v f(z)

Hence

F () _ e N £(y) . ()
(mel _ Zmfl)(ymfl _ mel) (mel _ mel)(xmfl _ ymfl) (ymfl _ mel)(ymfl _ mel) (mel _ mel)(szl _ ymfl)
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Since g(x"")=1(x), g(y")=1(y), 9(z")=1(z), then

F () _ (™) . 9™ N 92"
(Xm—l _ Zm—l)(ym—l _ Xm—l) (Xm—l _ Zm—l)(xm—l _ ym—l) (ym—l _ Zm—l)(ym—l _ Xm—l) (Zm—l _ Xm—l)(zm—l _ ym—l)

From x<y<z we know
(X" ="M =y" )20, ("X -y 20,
(2" =y" (" =x"1) =0.
Since g(x) isconvex to the downwards, form Jensen inequality we obtain

g(x™?) : 9(z"™) S
(mel _ Zmfl)(xmfl _ ymfl) (mel _ mel)(szl _ ymfl)

m-1 m-1

X z
+
1 1 (mel _ mel)(xmfl _ ymfl) (mel _ mel)(szl _ ymfl)
[(Xml_zml)(xml_yml) + (Zml_Xml)(Zml_yml)Jg( 1 N 1 )
(mel _ Zm—l)(xm—l _ ym—l) (Zm—l _ Xm—l)(zm—l _ ymfl)

_ g(y™) _
(mel _ ymfl)(ymfl _ mel)

i.e., F(x) is monotone increasing, form Theorem 4 we know when m>0, the
minimum of F(X,y,z) is attained when x<y=z or 0=x<y<z, the maximum
is attained when x=y<z; when m<0, the minimum of F(x,y,z) is attained
when x<y=z, the maximum is attained when x=y<z.

Similarly if g(x) is convex to the upwards on [0,+oo), when m>0, the
maximum of F(x,y,z) is attained when x<y=z or 0=x<y<z, the minimum
is attained when x=y<z, when m<0, the maximum of F(Xx,y,z) is attained

when x<y=z,the minimum is attained when x=y<z.

This completes the proof of Theorem.

Remark 1 : For functions in the form F(x,y,z) = f(x,y)+ f(y,z)+ f(z,X)

(f(x,y) isasymmetric function with respect to x,y), we may fix > x, > x* or

18



Xyz
z

> X, xyz, only notice that xyz—%szJr%(Zx)z+22—z(x+y+z), Xy =
X+y=X+y+z—z, and a symmetric function of x,y can be considered as a
function of xy, x+y.

Remark 2: The extremum of F(X,y,z) isassumed to exist.

Theorem 6 For nonnegative real numbers X, y, z, and a function in the form

FOoy D)= 100+ () + 1) let (e = L0
Ty )

(i) If m>0, for nonnegative real number X,

If f(x)<0, f(x)>0 or h(x) is convex to downwards, the maximum of

F(x,y,z) is attained when two of numbers are equal or some of numbers is equal to
0.
If f(x)>0, f(X)<0 or h(x) isconvex to upwards, the minimum of F(x,y,z)

is attained when two of numbers are equal or some of numbers is equal to 0.

(if) If m<O0, for nonnegative real number x,

If f(x)<0, f(xX)=0 or h(x) is convex to downwards, the maximum of
F(x,y,z) is attained when two of numbers are equal.
If f(x)>0, f(X)<0 or h(x) is convex to upwards, the minimum of

F(x,y,z) is attained when two of numbers are equal and f(x)is continuous

between the minimum and the maximum, i.e., any value between the minimum and
the maximum can be attained.
Since the proof is similar to Theorem 5, here we only give a sketch of the proof.

Sketch of the proof.: Firstly we prove Theorem 6(i). Similar to theorem 5, we know

.oyl pmd ‘ ym—l _xmt
that y = ———, ,z ==——— (itis easy to see that it holds when m=0)
4

N ym—l > Zm—l i ym—l

m-1 m-1 m-1

then F'(x)= f(x)+yf(y)+7f (@)= f'(x)+;(m_+;m_l f'(y)+;’m_+x:_i £'(2).
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F (0= 00+ T () - D (o) K2 m1>f<y>+(ym1 m)f(z)
"y z y
m-2 m-2
If f(x)<0, then %f'(y)—%f'(z)zo.mnceif f'(x)=0,

F (x)=0.

If h(x) isconvex to downwards, then

f (X)+( — _1) f (y)+(y_l _1) f(z)=

m-l_ ome1y2 o m-l_ me1y2 h(x™™) h(y™™) h(z™™") 0
(X z ) (y X ) (( m-1_ —1)(X m-1 ym—l) + (ym—l _ Zm—l)(ym—l _ Xm—l) + (Zm—l _ Xm—l)(zm—l _ ym—l)) =

(by Jensen inequality). Hence F"(x)>0.

So the maximum is attained at the end, i.e., the maximum of F(X,y,z) is attained when
two of numbers are equal or some of numbers is zero.
Using similar method we can prove the case that f'(x)>0, f(x)<0 or h(x) is

convex to upwards. Hence Theorem 6{i} holds.

Similarly we can prove Theorem 6(ii). This completes the proof of Theorem 6.

Theorem 7  For nonnegative real numbers x,X,...,X, and a function in the form

F (X %oy X )= F(X) + FOG) +.o+ F(X), let g(x™)=f(x).(n>3,nis integral
numbers.)

(i) If g(x) isconvex todownwards,
When m>0 , the minimum of F(x,X,,...,x,) is attained when
X, <X, =X;=...=X, orthe d of numbers are zero and n-d-1 of positive numbers are

equal, the maximum is attained when x =Xx,=...X ,<X, (here 1<d<n-1,

d € N, the following is the same.)

When m<0 , the minimum of F(x,X,,...,x,) is attained when

<X

X <X, =X, =...=X,,, the maximum is attained when x, =X, =...X, ; <X ..

n”
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(i) If g(x) is convex upwards,
When m>0 , the maximum of F(x,X,,...,x,) are attained when

<X

X, <X, =X; =...=X,, the minimum is attained when x =X, =...X, ; <X, .
If f(x), g(x) arecontinuousthen F(X,y,z) iscontinuous between the minimum

and the maximum, i.e., every value between the minimum and the maximum can be

attained.

Proof: Firstly we prove the case that g(x) is convex to downwards.
When m>0, we first prove that when the minimum of F(x,X,,...,x,) then

or d of numbers are zero and n-d-1 of the positive numbers

n?

X, <X, =X =...=X
are equal. We adjust x;,X,,...,X, such that three of them x;,x;,%, (1<i< j<k<n)

(@t most one of x,x;,x is zero), fix other variables and X +X;+X -

i1 Xjs
" +x"+x" (meR,m=1) such that F(x,x;,x) attains its minimum. From
Theorem 5 we know that when F(x;,Xx;,x) attains its minimum, x <x; =x_ or
0=% <X; <X

If the adjustment is taken as far as (X, X,,...,X,) and X <X, =X, =...=x, or d of

numbers are zero and n-d-1 of positive numbers are equal, the adjustment will stop,
we call it the end of adjustment. So we only have to there are only two cases as stated
when the adjustment can not carry over.

Suppose that the adjustment carries over until
F(X, X000 %) = F(X)+ F(X,)+...+ T(X,), we may assume x <X, <...<X,.
If there is zero among x; (L <i <n), we may suppose that X,,, iS the smallest one which

are not zero. If d=n-1,n-2, then the proposition is proved(hence it is proved

when n=3 ). If d<n-3 ( n>4 ), consider

(Xgu1r Xguz0 %)y (Xgaas Xguzs Xo ) s+ o0 (Xgoa0 X0 X,,) - Since  g(x) is convex to downwards,
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hence when F(x,,,x,x,), (d+2<i<n-1) attains its minimum, there holds

X4, < X =X, . Combining these n—d —2 formulas we know d of numbers are zero and at

least n—d —1 of positive numbers are equal when the adjustment is ended.

When x (1<i<n)are all positive, similarly we can prove X, <X, =X, =...=X

Hence if m>0, when F(x,X,,...,x,) attains the minimum, there holds
X, <X, =X, =...=X, 0rdof numbers are zero and at least n—d —1 of positive numbers are
equal.

Similarly X, =X, =...X,; <X, when F(x,X,,...,X,) attains the maximum.
So when m>0 the proposition is proved.

Hence the case that g(x) is convex to downwards is proved.
In the similar way if g(x) is convex to upwards, when m>0, the maximum of

F (X, X,,...,X,) is attained when x, <X, =X, =...=X, 0r d of numbers are zero and at
least n—d—1 of positive numbers are equal., the minimum is attained when

X, =X =...X,,<X,; when m<0, the maximum of F(x,X,,...,X,) is attained

<X

n-1— "n*

when x, <X, =X, =...=X,, the minimum is attained when x =X, =...X

This proves Theorem 7.

Using similar argument we can get a generalization of Theorem 6 with 6 variables.

We omit it here.

Corollary 5(i) If (x,X,,...,X,) are nonnegative real numbers, X +X,+...+X,»
XXy A X (meR,m=1) are fixed, function
FOG X0 X ) =X+ X0 +...+ X" (peR,p#1m) . In particular when p=0,
F (X, Xp5000s X,) = XX, ...X, .(N>3,nis integer); when p(p-D)(p—m)>0 and p=0
or p=0 and m>0: if m>0,the minimumof F(x,X,,...,X,) isattained when

X, <X, =X, =...=X, 0rdof numbers are zero and at least n—d —1 of positive numbers are
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equal, the maximum is attained when X, =X, =...X , <X, if m<0, the minimum of

n-1— ""n?
F(X,X,,...,X,) is attained when x <X, =X,=...=X,, the maximum is attained

<X

n-1— "n"

when x, =X, =...X
(i) If (X, Xy,..00 %), and X +X, +...+ X, X +X +...+ X, (MeR,m=1) are fixed ,
function F(x,X,,...,x,)=X"+x}+...+Xx" (peR, p=#1,m), in particular when p=0

F(X, Xpsee s X,) =X %, ... X, (N >3, nis integer), when p(p—-1)(p—m)<0 and p=0
or p=0fm<0,if m>0, then the maximum of F(x,X,,...,x,) Is attained when
X, <X, =X, =...=X, 0rdof numbers are zero and at least n—d —1 of positive numbers are

equal, the minimum is attained when X, =X, =...x,, <X, if m<0, then the maximum

n-1 —

of F(x,X,,...,X,) Is attained when x <x, =X, =...=X,, the minimum is attained
when x, =X, =...X
If f(x), g(x) arecontinuousthen F(X,y,z) iscontinuous between the minimum

and the maximum, i.e., every value between the minimum and the maximum can be

attained.

Proof : Firstly we prove Corollary (i). If p=0,set g(x™")= f (x). Since

g (x)= p%xw >0, we know from Theorem 6 that when m>0,
m_

the minimum f F(x,X,,...,X,) is attained when x <Xx,=X,=...=x, or d of
numbers are zero and at least n—d —1 of positive numbers are equal, the maximum is attained

when X =X, =...X,, <X, if m<0, then the minimum of F(x,X,,...,x,) IS

n-1— “*n !

attained when X <X, =X =...=X the maximum is attained when

n )

X=X, =...X 15X,

If p=0,set f(x)=In(x), g(x™")="f(x), since g (x)= x "1 >0, and

m
(m-1)°
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n
In(x) is continuous, the minimum of Zln(xi) when x, <Xx,=X,=...=X, ord of
i=1

numbers tend to zero and n-d-1 of numbers are equal, the maximum is attained when

n
i.e., the minimum of J]x when x <x,=x=...=x, ord
i=1

X\ =X, =... X4 <X

n’

of numbers are zero and n-d-1 of positive umbers are equal, the maximum is attained

<X

n-1— “n1*

when x =X, =...X

Hence Corollary 5(i) is proved. Similarly we can prove Corollary 5(ii). This

completes the proof of Corollary.

Remark: In corollary 5(i) if n=3,m=2,p=0, then when x+y+z,x*+y’+2z* are
fixed(i.e., X+y+2z, Xy+yz+zx since X*+y>*+z°+2(xy+yz+2x)=(X+y+12)?),
the minimum of xyz is attained when x<y=z or there is a zero, the maximum is

attained when x =y <z. This is corollary 1, also the core to prove Theorem 2,3, and
Corollary 2,3.

In corollary 5(i) if n=3,m=0,p=2 when x+y+2z, xyz are fixed, the minimum of
xyzis attained when x<y=z, the maximum is attained when x=y<z i.e., the
maximum of Xy + yz+zx is attained when x <y =z, the minimum is attained when
x=y<z.

1
2

In corollary 5(ii) let n=3, m=0, p=3 and xlzx%,ylzy%,zlzz , ,then when
x’+y°+2°,xy,z, are fixed, the maximum of x +y,+z is attained when
X, <y, =z, orthere is azero, the minimum is attained when x =y, <z,.

Corollary 6 For nonnegative real numbers x,y,z, if ny, xyz are fixed, the

minimum of Zx is attained when x<y=z, and its maximum is attained when

X=y<z.
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Proof: If some of x,y,z is zero, we may assume x=0, then it is sufficient to get
the range of y+z when yz is fixed. Obviously y+z attains its minimum when
y=z,while y+z tends to infinity as y tends to 0, i.e.., the maximum is attained

when x=y<z. If x,y,z are all positive, we may assume & xy=c, yz=a,

xz=b, ,then x= \E AES /% y 2= ,a_b . Then it is sufficient to get the range of
a C

Zx:(abc)o*"zl when > xy=>"a, xyz=(abc)*® are fixed, or the range of
a
Zl
.
From Corollary 5(ii) we know that Zl attains the minimal when a=b <c, attains
a
the maximum when a<b=c. Hence Zx attains the minimal when z<x=y,

attains the maximum when z=y<x.

When handling fully symmetric inequalities with 3 variables, we may fix two of the
three fundamental polynomials and change the value of the third polynomial to attain
the extremum .

Theorem 8 For a fully symmetric inequality about nonnegative real numbers
abc f(O.a ) ababc)>0. If f(abc)f (D ab)=0 or (D a)f (D ab)=0,
equalities hold if and only if three numbers are the same.

Proof: We prove the case that f' (> a)f (D ab)>0 , the case that
f'(abc) f' (D _ab)>0 can be proved in the same way.

We only have to prove the case when f'(Za)ZO, the case f'(Za)SO can be

proved in the similar way.

Form Corollary 6 we know that we may control Zab, abc and adjust a,b,c
such that Za attains the minimum when a<b=c, i.e, f(a,b,c) attains the

minimum and Za attains the maximum when a=b<c, i.e, f(a,b,c) attains
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the maximum. Since Zab, abc are fixed, we have f'(Za)ZO, hence
f'(Zab)ZO.From Corollary 5(ii) we know that we may control Za, abc and
adjust a,b,c such that Zab attains the maximum when a<b=c,ie, f(ab,c)
attains the maximum and Zab attains the minimum when a=b<c, ie,
f(a,b,c) attains the minimum. Since Za, abc are fixed, we have
f'(Zab)ZO, hence f'(Za)zO.Hence if we continue the adjustment until when

(a,b,c) and at this time the adjustment of (a,b,c) is still (a,b,c), then we call it

the end of the adjustment(it is easy to see when a=b=c the end of the adjustment

cones, hence there is always a end of adjustment.)

Suppose that the end comes when (a,b,c), then a<b=c and a=b<c or

a=b<c/ta<b=c. In any case we have a=b=c. This completes the proof of
Theorem 8.

Remark: From Theorem 8 we obtain a judgment of some fully symmetric inequality
with 3 variables when three numbers are equal to each other.

For Theorems and Corollary, using similar method we can obtain similar results as

result in this section, when variables are defined on [a, ] or (a,f) or [a,f)or

(a,B]. 0<a<p which is omitted here. For variables defined on the real number

field, as long as the degree m such that variables are well-defined we also have
similar result.

3.2 Application

By through following examples, we show the application of the equivalency condition
in proving inequalities.

Using same replacement argument as in Corollary 6 we cam prove following

conjecture proposed by Mr. Yang Xuzhil*?l,

Example 1. Conjecture of Yang Xuzhi: Suppose x,,...,X, are real numbers such that
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D xi<n,then 2+n-D] [x =[x 1
i1 X

i=1 i=1 i=1

Proof: The condition fo <n when n=1is in fact the inequality to be proved.

i=1
When n=2, from x°+x,”><2 we know 2xX, <2, this is the the inequality to be
proved.

Now we prove the case n>3.

1
2

Tx 2o |2, iz TTx =L iy y Y
Let ];[Xi Xi—\/yT, (i=12,..., m uli_ll)(i_(f[y,) :Xi_ﬁyaiﬂ,

i1 i1
n n 1
Hence >y, <n(] Jy)™.
i-1 i=1
1 o &1
We want to prove 2+ (n—2)(——)2n >>" | =
Hy_ i1\ Vi
i=1 I
Fixed >y, []: . then from Corollary 6 we know the maximum of " 1 when
i1 i=1 i1\ Yi
Y, <Y,=Y,=...=Y ,0rwhen x,=X,=...=X, >X,.

So we only have to prove when (n-D x*+y®><n we have

2+(n-2 x"y2x"t+(n-D x"?y < (2-x") = x"?y((n-D-x(n-2)).

Hence we only have to prove the case when (n-D x*+y*=n.

=2+ -2 n—(-D ¥ >x+(n-D x"2Jh—(n-D x* (1<x? Sni—l )
Set f(X)=(n-2)x"*Vn—(n-D x2 —x" +(n-D x"2Jn—(n-D x*

/(%) = (N—2)(N—Dx2Jn—(n-D x2 —(n—Dx" 2 —(n-2)(n-Dx"*Jn—(n-D x* —
(n—2)(n-)x"(n—(n —1)x2)_% +(n=1)*x"*(n—(n —1)x2)’§

£'(x) >0 < (N—2)(x=D(N—(N-D)x2) = xn—(n-D x +x2((n—-1) —(N—2)x) >0
= (N=2)(x=D(N—N-Dx3) + (N —2)x*L-x)+ X2 —x/n—(n-D x* >0
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(X -1

X+yn—(n-D x?

X ,
N >(n—2)(x=1), it g(x)=x+yn—(n-D x?
Xx+Jn—(n-D x2

then : g (x)=1-

& -n(n—-2)(x—=1)*(x+1) +nx >0

(n=1)x

Jn=(n-D x?

decreasing in the field of definition.

<1-(n-1)x<0 , hence g(x) is monotone

X
Hence : >

X
x+yn—(n-D x*> 2

) cgz(n—Z)x—n+2

2n—4’ <:(Zn—4)22 n 4n-9 S 1

, & >
2n-5 2n-5" n-1 (2n-5)° n-1

< 2n—-4>(2n-5)x, < x<

< (4n-9)(n-1) >(2n-5)*, <4n*-13n+9>4n°>-20n+25, < 7n>16

The last inequality holds obviously when n>3. So f (x)>0, hence f(x) is
monotone increasing.
Thus f(x)>f(@)=0.

This proves the proposition. !

Example 2 : Suppose x,,...,X, are real numbers such that in =1. Try to compute
i=1

n
the maximum of > ][ x,* (x is a nonnegative real number.)

i=l i

2116 21 1% :
Solution: When x<1, = ’;‘ < (=2 ‘: ) <1,thatis, > J]x*<n.

i=l ji

When x>1, note that Zn:ijx :ﬁxixzn:%. Fix Zn:xi N ﬁxi , from Corollary
i=1 i

i=1 j=i i=1 A i=1 i=1
: o1 . .
5111) we know that the maximum of — is attained when
i1 X
X SXy =Xg=roreee =X, =a. Hence we only have to compute the maximum of
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f(a)=a® +(n-1)a"?*(n—(n-1)a) (1<a< ni_l )

When the maximum of f(a) is attained when a= Ll f(a)< f(Ll) :
n— n—

When the maximum of f(a) is not attained when a = Ll , that is the maximum is
n —

attained when n—(n-1)a =0,

f'(@)=n-)x@"*+(n-2)a"*(n-(n-1a)* —(n-Da"?*(n—(n-1a)* ")

=(n- 13" 2* H-nE aly yf— En- € n2) i)
n—(n— 13 n—n-"4)

Set 2 -k, gk)=k*+(n-2)—(n—Dk, then k>1, whenx>n-1,

n—(n—l)a_

9(K) = k" +(n—2)— (n—Dk > (N—1)k™ —(n—1)k >0

Whenx <n—-1, g'(k)=xk*"—(n-1). When k is a positive real number, g(k) only

1
—1\x1
have one stationary point k:(n—lj , hence there are two zeros at most.
X

1
Meanwhile k=1 is a stationary point of g(k), and (n—_lj“>l. Hence the
X

maximum of f(a) is attained when k=1 or k tends to infinite. However
n—(n—1)a=0 when k tends to infinity, a contradiction.

Hence the maximum of f (a) is attained when k=1 or a=1.
Thus f (a) < max(f (1), f(ni_l)).

Ig—n’ f()= f( n ) » while when X>Ig—n’
lgn—Ig(n—1) n-1 lgn—Ig(n-1)

When 1<x<

n,when0 < x < lgn

n lgn—Ig(n-1
f(1) < f(—). Hence ST < oy gn-lon-y
n-1 i1 jei n Ign
— ,whenx > —————
n-1 lgn—Ig(n-21)
1
When n>3, (1+L)”<1+ <n—1<:>n+1< Ign .
n-1 n(n-1) n lgn—Ig(n-1)
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Hence we have when x,...,X, € Rﬂzn:xi” =n ,Z(xzx3 ------ X,) <n. This is
i=1

another unsolved conjecture of Mr. Yang Xuezhit*3l,

This example solved a problem of optimal exponent, while the Bottema developed by

Academician Yang Lu can not dual with this problem4],

4 Judgment of un-normal equivalency condition for some fully symmetric or

cyclic inequalities.

In the beginning of this section we emphasize following fact: when o;,,o, are fixes,
o, Is continuous between the minimum and the maximum(from Corollary 6), i.e., if
the maximum of f (o) is bigger than 0, and the minimum of f(o;) is less than O,

and f(o,) Isacontinuous then thereisa o, suchthat o,=0.

4.1 Judgment for homogeneous fully symmetric inequality of degree n with 3

variables (n>=6,ne N)

We have proved that the equality of a fully symmetric inequality of degree n with 3
variables (n<5neN) holds if and only if two variables are equal or some of
variables is zero. We call it the normal equivalency condition. However when the
degree is 6, the equivalency condition is not like this, so what is the equivalency
condition for a fully symmetric inequality of degree 6 with 3 variables? Many
scholars have studied this problem!" 51, Byt there is no result on the whole judgment
for fully symmetric inequalities of degree 6 with 3 variables. In the following we
obtained a general result, and extend it to higher degrees.

A fully symmetric inequality of degree 6 with 3 variables can be written in the form
f(a,b,c) = Ao’ +(Bo,’ +Cot’)o, + g(o,,t) >0

2 2
o, —t

Where g(oy,t) =Do;’ +Ea't? + Fot* +Gt®, o,=>a,> ab= ,abc = o).

Hence 0<t<o,. From the homogeneity we may assume that o, =1. Hence we

obtain following theorem.
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Theorem 9 Judgment theorem for fully symmetric inequalities of degree 6 with 3
variables defined on nonnegative real field.
For a fully symmetric inequality of degree 6 with 3 variables defined on nonnegative

real field, it holds if and only if:

D(X+1D° + E(x+D*(x* =x+1) + F(x+1)*(X* = x+1)*+G(x* = x+1)* >0 ie.,
f(x,1,0)>0,

A +(B2x+1)+CR+X)(Xx-D))x+D(x+2)° + E(x+2)*(x-1)*+G(x-1°>0i.

e., f(x,11)>0.Two inequalities holds when X €[0,+o0).

When A>0,

4AL% + (27C —6A)* +2A+27B > 0,4At° + (6A—27C)t* —2A-27B >0,

B+Ct*<0 Have solutions when te[0,1], and their intersection of solutions is
non-empty. Let this intersection by (3). Then elements in (3) satisfy

4AGt® + (AAF —C*)t* + (4AE —2BC)t* +4AD —B* >0.

Proof: We fix o, t and change the value of o,.

When A <0, then f'(o,)<0. From corollary 3 w3 only have to prove
f(x,,0)>0 or f(x,1,1)>0.

When A>0, then f’(o,)=0 has no root. Since o, is continuous between the
minimum and the maximum we know that the sigh of f(o;) is fixed. Hence from
Corollary 2 we only have to prove f(x,,0)>0 or f(x,1,1)>0.

If A>0 and f'(c;)=0 has roots, ie., f'(0,)=2Ac,+Bo’+Cot’=0 has

2 3
root o, = —Caltz%. From Corollary 1 we know that

2 2
max(0, (o +1) (o, — 2t)) <o < (o, —1t) (o, +2t) .
27 27
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+1)%(o, - 2t)) < ~Cot’ -Bg, < (o, —t)* (o, +2t) .

Hence max(0, (o,
27 2A 27

From formula above we obtain

4AL +(27C —BA* +2A+27B > 0,4At° + (6A-27C)t* ~2A—-27B >0

B+Ct?<0 (0=t<l)
The intersection of the solutions of three inequalities above is the range of t (3), and

the original inequality holds if and only if

2 3
Cot° +Bo, )>0

min f (o,) = f (- A

2\2
o 4Ag(a )= (B+CEY
4A

< 4A(D + Et* + Ft* + Gt®) — (B* + C*t* + 2BCt*) >0

< 4AGt® + (4AF —C*)t* + (AAE —2BC)t* +4AD—-B* >0 .

If for t satisfying (3) formula above holds then the original inequality holds, otherwise
the original inequality doesn’t hold.

Then Theorem 9 holds.

Hence the judgment for fully symmetric inequalities of degree 6 with 3 variables is
solved in theory. Since f(x,1,0)>0, f(x,1,1) >0 are inequalities of degree 6 with
one variable and there are 23 cases in discussing the solution of a inequality of degree
6 with one variable, hence the judgment for fully symmetric inequalities of degree 6
with 3 variables is very difficult.

Further for variables defined on any interval (in real number filed), we all obtain

perfect judgment.

In theory we know easily that if we can get all real roots of f'(o,)or f'(o,) of

f'(o,), then we can using Theorem 9 to judge the homogeneous fully symmetric

inequalities of degree n with 3 variables. Hence as long as the degree of one among

0,,0,,0, Is less than 5(the derivation has degree less than or equal to 4). These
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inequalities can be solved whenever the equivalency condition is. For some special
problems of higher dimensions can be solved either. Using similar method we may get

judgment theorem for fully symmetric inequalities of degree n with 3 variables

(n=7,8,9,10,11) and we omit it here. But when the degree is 12-14, 15-17, we have

to solve a equation with 3 variables or 4 variables, and there are a large quantity
computations. It is hard to give a full judgment theorem.

4.2 Judgment of equivalency condition for homogeneous fully symmetric
inequality with 3 variables

A cyclic symmetric form can be expressed by fundamental polynomials; hence
theorems above work for cyclic symmetric inequalities. Since all cyclic symmetric
inequalities can be written in the form

f(a,b,c)=g(oy,0, 0;) +h(cy,0,,0;)> @ >0 . The quantity » a’0 is very

cyc cyc

important; hence it is essential to estimateZazb. Firstly we fix o,,0, and get the

cyc

upper and lower bounds onazb. Since

cyc

Zazb + Z:ab2 = 0,0, — 303, (Zazb - Z:abz)2 =00, —40,’ +20,(90, - 20,*)0, - 275,

cyc cyc cyc cyc

Then > a’b= 0,0, ~30; % \/(712‘722 _4‘723; 20,(90, —20,*)0, - 270,
cyc

Set f(o0,)=0,0,-30,+ \/0120_22 ~40,° +20,(90, - 20,*) 0, — 270,
f'(o,) =-3+ % (-540,+20,(90, — 20,%))|(a—b) (b—c)(c-a) ‘_l

When f'(c;)=0, Zazb attains the maximum.

cyc
While f'(o,) =0« 3[a-b| |b—clc-al=(90,0, - 20;’ - 275,)

o Za3 +6abc = BZab2

cyc

< 24307 + (36(713 -1620,0, ) o, +0,° +18c°0,° +90,° —90,'c, =0

96,0, 20>+ \/0'16 +2700," 90,0, - 275,°
~ 03 = 27 ’
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It is easy to see that when o, is the bigger one, Zazb attains its maximum. Hence

cyc

> a’+6abc _ 0, +90,-30,0, 60,0,

3

max Zazb =0,0,—30, —
cyc 3

=0,0,—30, =

3

3
_ 60,0, -0,

3 - % (90,0, 20> + \/0'16 +270/0," 90,0, —275,%)

3 3 3
= % + é \/0'16 +2700,"-90,'c, - 275,° = % + g (o, —30,)?

3 3
Similarly we get min> a’h = %—é(aﬁ -30,)?
cyc

3 3 3 3
Hence min) a’h= %—é(o—f ~30,)2,max Y _a’h= %+§(012 ~30,)?.

cyc cyc

Using similar method we can prove some other cyclic symmetric inequalities with 3

variables.

Now we consider the judgment for cyclic symmetric inequalities. Chen Shengli has
obtained a sufficient and necessary condition for cyclic symmetric inequalities of
degree 3 with 3 variables and considered cyclic symmetric inequalities of degree 4
with 3 variables and obtained some results*”l. However there is no result on the
judgment for cyclic symmetric inequalities of degree 4 with 3 variables. We will

begin with cyclic symmetric inequalities of degree 4 with 3 variables, get some

general results and make some extensions to higher degrees.
A cyclic symmetric inequality of degree 4 with 3 variables can be written as

F(a,b,c) =ko,* +k,0,°0, +k,0,” +K,0,0, + koalZazb

cyc

and Zazb > Z:ab2 ,that is

cyc cyc

ZaZb _010,~ 3o, + \/0120'22 —40,° +20,(90, - 26,*) o, — 270, |
2

cyc

From the homogeneity of the inequality we may assume o, =1.

Theorem 10 Judgment theorem for cyclic symmetric inequalities of degree 4 with 3

variables defined on nonnegative real field:

3
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A cyclic symmetric inequality of degree 4 with 3 variables holds if and only if

f(x,1,1) >0, f(x,,0)>0, xe[0,+x):
If the equation Ac,”+Bo,+C =0 about o, has real roots o, (i=12)
Here A =729k, +27(2k, — 3k,)’
B = -486k,’0,0, +1080,k,* — 2(2k, —3k,)* 5,(9c, — 25,%)
C =(81c,°0,’ +40," —360,"0,)k,” — (2k, — 3Kk,)*(0,°0,” —40,°)

(1+1)*(1—2t)
27

< (1-t)*(1+2t)

and there are O3 such that max(0, 7

)SO-%

(4)
Then for t,o, satisfying (4) also satisfy f (o ), 20.
Proof: we fix o, o, andchangeo,.

1
-3+ ; (180,0, — 40> —540,)(0,’0,” - 40,° + 20,(90, — 26,°) 0, — 270,") 2

F'(O's) =k,0, +Ky0, 2

. 1
2F (03) _ (2k, —3k,)(0,°0,% —40,% +20,(90, — 26,70, — 215,)? + K, (90,0, — 26,° — 275,)

0
F (0,) =0< (2k, —3k,)?(0,°0,° —40,° +20,(90, — 26,°) 0, — 275,") =k,’ (90,0, — 20,° — 275,)°
< As +Bo,+C=0 (5)
where A= 729Kk, +27(2k, —3k,)’ ,
B = -486k,’0,0, +1080,k,” — 2(2k, — 3K,)*5,(90, —25,%) »

C =(81c,°0,’ +40," —360,"0,)k,” — (2k, — 3k,)*(0,°0,” —40,°)

B+ 2 ) B .
oy, = B+ ZBA 4AC . and max(0, (Gl-i-t)z(?Gl 2t)) <o, < (o, t)2(701+2t)

If (5) has no solution or there is no o, satisfying (4), then inequality holds if and

only if f(x,11)>0,f(x1,0)>0, xe[0,+0). If not then f(o,)y,= f(oy)mn-

Hence it is sufficient to prove that f (o)., =0 holds on the range of 93 such that

(4) holds. This completes the proof.
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Further more for variables defined on any interval (in the real number field), we can

also get perfect ways of judgment.

Like before, in theory, as long as we get all roots of f'(c,) or f'(c,) or f'(oy),

then we can judge cyclic symmetric inequalities of degree n with 3 variables using
Theorem 10. But when the degree is 5 or 6, we have to solve a equation of degree 3 or
4, and it becomes more complicated since there are a large quantities of computations.
Hence it is hard to give a complete judgment theorem.
5 Conclusions
This research, by controlling two fundamental symmetric polynomials and using the
monotony of functions and Jensen inequality, gives some sufficient and necessary
conditions for the equivalency of some fully symmetric inequalities with 3 variables.
Then we obtain some theorem on the equivalency conditions for some fully
symmetric inequalities of degree 6 with 3 variables, and give some applications ny
using some examples. At last we obtain judgment theorems for homogeneous fully
symmetric inequalities of degree 6 with 3 variables and homogeneous fully cyclic
inequalities of degree 4 with 3 variables and consider the possibility of the judgment
for higher degrees in theory. Our research has widely applications in the proof of
inequalities.
6 Problems and prospects

In the proof there are some coincidences that can not be explained, and there are
many difficulties in the extension. We list them here and make some prospects.

6.1 Can we extend inequalities in Theorem 1 to degree 4, even degree n?

This requires that 'O a,> aa,, > aaa, - J[a) has at least two real

i=1
roots.
For such function of degree n, its derivation is of degree n-1. Yet we don’t know the
discriminant of equations with real coefficient of degree n>5. Hence it is almost
impossible to make extensions. To extend it to 4 or 5 variables we have to solve a

equation of higher degree which contains a large quantity of computations.
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6.2 Jensen inequality can be considered as fixing in , and by using properties of

convex or concave functions to adjust n variables to be equal. The core of the third
section is by fixing two polynomials > x,, > x", and using properties of convex or

concave functions, to adjust the n variables to make n-1 of them equal or some
variable touching the boundary. So can we adjust the n variables to make n-p-1 of

them equal or some variable touching the boundary by fixing p polynomials such as

Z X" , and using properties of convex or concave functions,?

6.3 Academician Yang Lu pointed that for judgment of the number of roots when the
Coefficients are constant or the text Coefficients are in given range can be solved by
using computers. Hence we conjecture that using the method in section 4, and making
some improvements, it can be used in the proof of inequalities using computers, in the
judgment of more general fully symmetric or cyclic inequalities with 3 variables.

These problems need further and in-depth study.
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