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Abstract 

This paper mainly focuses on the optimized methods of the sprinkling 

irrigation for greenery patches, by maximally equalizing the amount of water 

sprayed on a certain area. Various models are being discussed, where the 

main mathematical tool is analytic geometry, employed to research the 

possible effects of different proposals. 

Firstly, the simplest models are built based on a totally ideal situation. 

Assuming that sprinkling spouts are spinning over plain lawn with a set of 

specified radii, install them in arrangements of simple geometric figures. 

Areas of overlapping and blank parts are being calculated and the most 

reasonable arrangement of all that are studied is selected. 

Secondly, real factors are taken into consideration separately as follows: 

1. The disequilibrium of the water that drops in a line from the sprinkling 

center is transformed into a functional expression, whose graphs are drawn to 

show the water distributed over the area; 2. The plane models are changed 

into solid ones on the assumption that the sprinkling spouts are placed on 

slopes. Analytic geometry methods are employed to describe the range of 

sprayed water on the oblique surface. Through calculation and analysis, 

models can be adjusted to specific situations. 

Finally, the boundary problems and landscape effects are involved. 

Key words: Sprinkling irrigation; Optimizing; Spouts arrangements; 

Rate of covering; Rate of overlapping; Degree of equalizing on the planes; 

Degree of equalizing on the oblique planes 



I. Introduction: 

Mind on mathematics is a theoretical foundation, based on which real 

problems can be solved. Undoubtedly only with good model building, 

analyzing and calculating can various optimizing problems be worked out. As 

high school students, due to our limited mathematical knowledge, the 

methods we take to solve problems are not very far beyond the textbook. So 

we focused on a problem close to daily life as well as one we can more or 

less solve on our own. Our inspiration came from the small lawn near our 

classroom in junior school. Every time the spouts did the irrigation, there was 

a great amount of water spilled on the hallway, and even sometimes the water 

would went through the open windows into the classroom, which caused 

many inconveniences as well as much waste. In today’s world where drinking 

water is badly in need, it is, with no doubt, very meaningful to maximally 

equalize the amount of water a certain area gets in order to decrease the 

amount of water wasted.Through the information we got, we found that there 

were three factors on which sprinkling irrigation mainly depends: intensity, 

equilibrium and diameter of water drops. We began to develop interests in the 

equilibrium factor and decided to make an optimized proposal by a series of 

mathematical methods. Thereupon this paper primarily focuses on the degree 

of equalizing in the sprinkling irrigation.  

To equalize the water distribution through reasonable spout 

arrangements, researchers have studied several models. Some special 

irrigation tools have also been invented to solve this problem. 



In this paper, we mainly focus on the most common spouts, in order to 

come up with an optimized plan that can be popularized. The two of the plane 

models are studied in a new aspect of analytic geometrey, combined with the 

degree of equalizing of the water in one single spout’s covered range. 

Another creative point is the spout adjustment on slope surface. Adjust the 

angle of elevation to a certain slope angle, we can get an equalized water 

distribution. Thus the irrigation plan can be optimized in a practical way, 

without giving rise to the cost of equipment. The methods and models we 

used in this paper in equalizing the water in the sprinkling irrigation can also 

be employed to study some similar problems, such as network, radio or 

phone’s signal covering. In addition, more solid models, like models on a 

sphere, can be further studied. 

Before we began the study, we had found some information that 

primarily introduced the importance and advantages of the spinkling irration 

and some related knowledge about the irrigation technique. The information 

comes from Reference [1], [2] and [3]. 



II. Problem 1: 

Efficiency of Irrigation in the Totally Ideal Situation 

Assumption: Use the identical sprinkling spouts; the covered area of a 

single spout is an ordinary circle with an appointed radius; water is 

distributed evenly in each circle; the irrigation takes place on an infinite 

horizontal plane (namely this part only focuses on the central part of the 

irrigated area, regardless of the boundary problems). 

In this simplified situation, we need to come up with the most water 

saving plan, namely the spout arrangement that brings about the most 

efficient irrigation effects. This arrangement must leave the least blank and 

overlapping areas. 

 

(A green circle encircles the covered area of a single spout, with following alike) 

Therefore, we can transform this problem into a mathematical model: 

the irrigation area can be regarded as a plane with several circles on it, and 

the area of the blank and overlapping parts need to be minimized. This 

problem can be solved, depending on the paving of right polygons. Among 

all the regular polygons, there are three that can be paved on the plane: 



equilateral triangle, square and right hexagon. Because a right hexagon is 

formed by six equilateral triangles, it has similar principles of paving to 

equilateral triangle, so here we only need to study equilateral triangles and 

squares. These two figures can be used as unit patterns to form other spout 

arrangements. 

1. Spout Arrangements with Spaces Not Overlapping 

(1) Equilateral Triangle Model 

 

The centers of the circles are placed on the vertices of the triangle, 

respectively; and the radius is half the length of the side. Since the whole 

plane is formed by the unit triangles as is shown above , the percentage of the 

covered area of the whole plane is that of the triangle. We have: 
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where 
Tc  denotes the rate of covering; 

cS  denotes the area of the covered parts; 

TS  denotes the area of the unit triangle; 

r  denotes the radius. 
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(2) Square Model 

 

The centers of the circles are placed on the vertices of the square, 

respectively; and the radius is half the length of the side of the square. Since 

the whole plane is formed by the unit squares as is shown above, the 

percentage of the covered area of the whole plane is that of the square. We 

have: 
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where 
Sc  denotes the rate of covering; 

cS  denotes the area of the covered parts; 

SS  denotes the area of the unit square. 
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For ,
432


  we can tell ST cc  , which means in the situation without 

overlapping areas, the Equilateral Triangle Model has a higher density of 

covering and thus is more economical. Therefore we adopt the Equilateral 

Triangle Model. 

2. Spout Arrangements without Blank Areas 

(1) Equilateral Triangle Model 

 

The centers of the circles are placed on the vertices of the triangle, 

respectively; and the radius is the distance between one of the vertices and 

the centroid of the triangle. Since the whole plane is formed by the unit 

triangles as is shown above, the percentage of the overlapping area of the 

whole plane is that of the triangle. We have 
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where To  denotes the rate of overlapping; 

oS  denotes the area of the overlapping parts; 

TS  denotes the area of the unit triangle. 
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(2) Square Model 

 

The centers of the circles are placed on the vertices of the square, 

respectively; and the radius is the distance between one of the vertices and 

the center of the mass of the square. Since the whole plane is formed by the 

unit squares as is shown above, the percentage of the overlapping area of the 

whole plane is that of the square. We have 
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where So  denotes the rate of overlapping; 

oS  denotes the area of the overlapping parts; 

SS  denotes the area of the unit square. 

We can get 
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 we can tell ,ST oo   which means in the situation 

without blank areas, the Equilateral Triangle Model has a lower rate of 

overlapping and is more economical. Therefore we adopt Equilateral Triangle 

Model. 

3. Brief Summary 

On the assumption that all the factors are ideal, the Equilateral Triangle 

Model reaches a superior irrigation effect to the others in a situation whether 

there are blank or overlapping areas. So in the simple arrangement, it is more 

economical to apply the Equilateral Triangle Model into practice. Drought 

tolerant plants or stones, walking paths and statues can fill up the blanks, or, 

the areas out of the irrigated range, to make the landscape more beautiful. As 

for the areas where much water is distributed, also called overlapping areas, 

some moisture tolerant plant can be planted, to make full use of the extra 

water. Thus, in addition to increasing the efficiency to the highest it can reach, 

this spout arrangement also brings some changes to the monotonous lawn. 

When needed, blanks and overlapping areas can appear alternately, and the 

irrigation efficiency can be even higher. 



III. Problem 2: Boundary Problems  

Problem 1 has been discussed without considering the boundaries, but in 

reality, boundary problems must be taken into consideration, for beyond the 

edges there are things that cannot be sprayed on, like buildings and roads etc.. 

As in the case of our school campus, the water would go onto the walkways 

and even into classrooms. 

1. Adjusting Boundaries to the Spouts Arranged 

Example: in the Square Model in Problem 1, the covered area is a figure 

encircled by four arcs. 

 

The planted area can be also made into this figure, and considering the 

entire visual effect, fences, statues and stone roads can be built along the 

boundaries. 

But this method has its limitation. It needs irrigation to be under 

consideration at the very beginning of the design for greenery patches. It is 

not very changeable. Additionally, generally speaking, irrigation problems are 

discussed after a piece of land is planted, so this method is not so practical. 

2. Compromise Pattern 

Coordinate the blank with the overflowed areas, leaving some parts not 



watered while some water is spilled out. 

 

To get a better arrangement, balance the blank with the overflowed areas. 

Following are discussions respectively about the boundary problems in 

situations without overlapping or blanks (not considering the inner blanks 

and overlapping as was discussed in Problem 1). The former part has 

concluded that using the Equilateral Triangle Model is more efficient, so 

following questions are only discussed in the Equilateral Triangle Model. 

(1) No Overlapping 

 

Suppose the irrigated area is big enough, so the irregular parts such as a 

corner can be neglected. The boundaries of the whole plane can be regarded 

as the unit figure as is shown below. Calculate the value of x  when fb SS  , 

where bS  denotes the area of blank parts and fS  denotes the area of 

overflowed parts. 



 
(The upper side of the rectangle refers to the edge of a lawn, with following alike) 

Assume the radius of the circle above is ,r  we have 
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and the effect of the irrigation reaches its best. 

(2) No Blanks 

 

Suppose the irrigated area is big enough, so the irregular parts such as a 

corner can be neglected. Calculate the value of x  when fb SS  . 



 

Assume the radius of the circles is ,r  we have 
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each other, and the effect of the irrigation reaches its best. 

It is a compromise, which can be selected when there is little impact on 

the walkways around. Though there is a certain amount of water wasted, it is 

a good arrangement, thanks to its simplicity. However, it has its limitation: if 

the water that overflows may cause huge inconveniences, spouts need to be 

set leaving a large blank, in order not to spill the water out, which may be 

disadvantageous for plants’ growth. 

3. Use of Angle-limited Spinning Spouts 

Now spouts that have appointed spinning angles are available. Some 



spouts can spin in angle ranges up to 90°, 120°, 180°, 270° or even any 

degree. But compared to common fully circling spouts, they may cost more, 

so they are not widely used for central irrigation but at boundaries. 

For example, the boundaries of the irrigated area is a right hexagon, as is 

shown below (here we neglect the central part). 

 

Use fully circling spouts in the inner areas, and when meeting 

boundaries, set spouts that spin limited angles identical to the interior angles 

of the right hexagon. As is shown in the figure above, we can use 6 spouts 

with a limited spinning angle of 120° to fulfill this task.  

Notice that the use of spinning angle-limited spouts is only suitable for 

large areas where several fully circling spouts can be placed in the center 

while angle-limited spouts are placed along the sides for boundary irrigation. 

It is not suitable for very small irrigation areas. 



 

For example, in the case of the small square area whose lengths of sides 

are equal to the diameter of the covered area of one spout, as is shown above, 

using a fully circling spout is as effective as using 4 spouts with limited 

spinning angles of 90°. They both leave a blank area of 

222 )4()2( rrr   . The former only needs one spout, but the latter needs 

four that each is even more expensive, which is obviously not economical. 

4. Use of Specially Designed Spouts 

Example: the spout as is shown below. 

 

Mechanical force rotates the pipe round the axis, so that it can distribute 

water in a rectangle with an area of mm 2040~10  . Meanwhile this sort of 

spouts has a beautiful visual effect, which makes it appropriate for gardening 

irrigation. 

However, compared to the common spouts mentioned before, these 

spouts seem costly, so here this part is only a brief introduction of it. The 

special spouts are not considered in the following discussions. 



IV. Problem 3: 

Degree of Equalizing of Water Unequally Distributed 

Problem 1 discussed the best spout arrangement in the situation that the 

water drops equally in a ray from the sprinkling center. But in reality, there 

exists disequilibrium of water distribution in the covered area of a single 

spout, which means, some parts of the circular area that a spout irrigates get 

more water than other parts. Following is a discussion about how to get the 

water well distributed on the horizontal plane in this situation. 

To determine the water distribution in the line that stretches from a 

single spout, we can place identical containers that each keeps the same 

distance with its neighbors. After the spout sprinkles water for some time, 

measure the depth of the water that each container has collected and then 

draw the graph of the water distribution. 

 
Reference [1] 

The graph of the water distribution in the covered area of a single spout 

can be offered as basic information by its manufacturer, commonly as is 

shown below:  



 
Reference [1] 

Apparently, the closer it is to the spout, the more water a certain point 

gets. As its distance from the spout increases, the container gets less and less 

water. In the container that is the farthest from the center, there is virtually no 

water.  

According to the picture above, we can draw the graph of the function 

that shows the relationship between T  and s  (T  denotes the amount of 

water the ground gets from a single spout, s  denotes the distance between 

the spout and an arbitrary point within each covered area; meanwhile use 

constants rw, : w  is the water amount that the spout gets, and r  is the 

radius of the covered circle): 

 

Thus we have  

rsws
r

w
T  0, .                  (15) 

Using the mathematical software MATLAB, we can generate the graph 



of the water distribution produced by a single spout. As is presented, 

apparently the area closer to the spout gets more water. 

 

1. Degree of Equalizing in One-dimensional Lines 

Due to the difficulty of directing the two-dimensional plane, we first 

focus on the water distribution on the one-dimensional line for reference. 

The easiest way to equalize the water amount all over the irrigated area 

on a straight line is to set the distance between two neighboring spouts same 

as the radius r of the covered circle. In this way, every point on the line only 

gets watered by two spouts. 

rA B

M

 

Let BA,  represent two neighboring identical spouts, and M  is an 

arbitrary point on line segment AB ; s  denotes the distance between M  

and A , so the distance between M  and B  is sr  . We have 
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being is a constant; namely on a one-dimensional line this model can reach 

an ideal irrigation effect, with water equally distributed over the irrigated 

area. 

2. Degree of Equalizing on Two-dimensional Planes 

On a two-dimensional plane, because the covered area of a single spout 

is circular, we cannot simply use the model for the one-dimensional lines to 

simulate its effect but can model on its researching method. As is concluded 

in the one-dimensional situation, when the neighboring spouts keep a 

distance same as the radius of the covered area of a spout, the water is well 

distributed. So here we can cite this arranging plan in the following 

discussion. 

Based on Problem 1, we consider using the Equilateral Triangle Model 

or the Square Model to fill the plane by paving. In the case of the Square 

Model, though the lengths of the sides are the same, the diagonal lengths are 

longer, so it is difficult to make the distances between every neighboring 

spouts equal to each other. So there is possibly an area in the center that lacks 

of water; but in the Equilateral Triangle Model, this problem can be avoided. 

So here we mainly consider the Equilateral Triangle Model. 

First we focus on the area of a single equilateral triangle. Suppose that 

an arbitrary point in the considered area only gets irrigated from the spouts 

placed on the three vertices of the triangle.  
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As is shown above, the equilateral triangle ABC  is the considered area; 

CBA ,,  are the spouts placed on the three vertices of the triangle; M  is an 

arbitrary point in the triangle and cba ,,  denote the lengths of line segments 

MCMBMA ,, ,respectively, so the total amount of water that point M  gets is 
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Due to the uncertainty of the value cba  , the received water differs 

as the position of M  changes. 

It’s easy to prove that the most possible minimum value of the sum of 

the distances from one specific point in an equilateral triangle to three 

vertices is attained in the centroid of the triangle, which means the centroid of 

the triangle gets the maximum amount of water, and the amount of water 

reduces gradually as M  moves to the boundary. 

From the graph generated by MATLAB, we can conclude the same. 

However, generally speaking, the contour lines of water amount are sparsely 

distributed, so the water are relatively well-distributed. That is to say, this 

kind of spout arrangement is quite good. 



 

Put this graph together with the previous graph of water distribution 

produced by a single spout, apparently we made a big progress. 

 
(Due to the difficulty of generating a graph with range of a triangle, the graph above is the smallest square that 

contains the considered equilateral triangle; one of the vertices and one side of the considered triangle are 

concurrent with the origin and the x-axis, respectively) 

Since the functional expressions established to simulate the water 

distribution graphs in the following paragraphs are much more complex, the 

graphing method above will not be used again. So here its graph is drawn by 

x



listplotting, for further reference. 

 

As a matter of fact, the length of side of an equilateral triangle is longer 

than the median, so some parts in an equilateral triangle as is considered 

before is sure to be irrigated by spouts from nearby triangles. We divide that 

triangle into 4 parts: 4,3,2,1 DDDD , in which 3,2,1 DDD  get the water not 

only from spout CBA ,, , but also from nearby spout QPO ,, ; 4D  only gets 

the water from CBA ,, . For sure we need to rebuild the function. 

Establish the Cartesian coordinate system as is shown in the graph 

below: 
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If point M  belongs to district 1D , then 

;)

)()
2

3
()

2

1
()

2

3
()

2

1
(

4(

22222222

w
r

yrxryrxyxryrx

T
MMMMMMMM

M





(19) 

if M  belongs to 2D , then 
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if M  belongs to 3D , then 
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if M  belongs to 4D , then 
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So we get the function of water amount that different parts of the triangle get: 
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Due to the difficulty of generating a piecewise function directly using 

MATLAB, we consider plotting the graph of the function by means of 

MATLAB programming: 

 

The figure implies that the water from nearby triangles in district 



3,2,1 DDD  to some extent makes up the lack of water in periphery area of the 

triangle and as well even the water distribution out, making the relative 

difference (defined as
average

minmax
, where max, min and average represent the 

maximum, minimum and average water amount in the covered area, 

respectively, with following alike) smaller than %25 . Also, the districts with 

less water are mostly near the spouts where few plants grow. This spout 

arrangement turns out to be acceptable with water relatively well distributed. 

3. Brief Summary 

In this problem, by calculating the water distribution, we conclude that 

the Equilateral Triangle Model is an efficient way of irrigation on the 

horizontal plane, while water drops are unequally distributed in the covered 

area of a single spout. 



V. Problem 4: Degree of Equalizing on Slope Surface 

Problem 3 discussed the reasonable spout arrangements in the sake of 

the equilibrium of water distribution, in a situation that the irrigation takes 

place on a horizontal plane. But in real irrigation, the water amount in the soil 

can be greatly affected by the slope of the irrigated surface.. 

Because the technique of irrigation requires the water which drops onto 

the irrigated surface to immediately percolate down into the soil, without 

producing runoff and puddles, in order not to cause soil erosion and too much 

evaporation. So the runoff brought about by the slope is not considered. What 

we need to focus on is the changes of area brought forth by the gradient of 

the irrigated area. 

1. Area Changes from Planes to Slopes 

As is shown below: it is a figure of side-glance of the spout and the 

slope; the purple parabola represents the current coming out of one single 

spout; the green line represents a horizontal plane; the brown line represents a 

slope; <1> means the covered range on the horizontal plane; <2> means the 

covered range on the slope. 

 

Obviously, from the horizontal plane to the slope, the covered area of a 

single spout changes. As the spout arrangement designed for the horizontal 



plane is no longer suitable, the previous function needs to be revised. 

First we need to analyze the how the spout sprays water: water drops go 

out of the nozzle at a certain angle according to the spout’s angle of elevation, 

and it has a initial velocity that is determined by the water pressure and the 

radius of the spray nozzle; water drops, after going out of the nozzle, fall and 

follow the rule of the projectile motion, leaving a locus that is a parabola. In 

rough calculation, the aero resistance can be neglected, and the winds are not 

considered in the condition. 

Taking the spout as the origin and the x-axis parallel to the horizontal 

plane, establish the Cartesian coordinate system xOy  on the vertical plane in 

which the position of the water drops can be described as ),( zy .   denotes 

the angle of elevation (The spouts are installed perpendicular to the horizontal 

plane, though, in reality, spouts are always set perpendicular to the slope. However, 

because water drops may be greatly influenced by the gravity if the spouts are 

perpendicular to the oblique plane, and when the gradient is very small, there are few 

differences between the two ways of installing the spouts. In order to get a simple 

equation of the locus of the water drops’ motion, here we keep the spout 

perpendicular to the horizontal plane. Notice that now the angle of elevation   must 

be smaller than the slope angle  ); 0v  denotes the initial velocity (so cos0v  

denotes its component horizontal velocity and 

sin0v  denotes its component vertical velocity), 

g  denotes the acceleration due to the gravity 
cos0v

sin0v 0v





which directs vertically downwards to the horizontal plane, and t  denotes 

the time. The relationship between them can be determined by the rule of the 

projectile motion in physics: 
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Eliminate t  from the two equations above，and we have: 
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Establish the three-dimensional Cartesian coordinate system Oxyz , in 

which the spout is taken as origin. A slope of )
2

0(


   can be expressed 

as Rxyz  tan , and the locus of the movement of the water, in the 

space, can be regarded as the curved surface formed by the parabola (25) on 

plane yOz , which rotates around the z-axis: 
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(The colored curved surface is the locus of the movement of water drops; the plane uncolored is the slope) 



The curve that encircles the covered area can be regarded as the 

intersection line of plane )
2

0(tan


  yz  and the curved surface (26) 

so the equation of the intersection line is: 
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On the horizontal plane, that is to say, 0 , we have the equation of 

the intersection line which is 2

2

022 )
sincos2

(
g

v
yx


 , namely a circle with 

the radius 
g

v  sincos2 2

0 . 

On a slope of )
2

0(


  , because the intersection line is in the space, 

which makes it hard to deal with, we rotate it to the horizontal plane:  

 

(The light colored part in the midst is the covered area as it is rotated to the horizontal plane. Marked as Graph #) 

The rotation through an angle )
2

0(


   (with the positive direction 

taken anticlockwise) carries the plane )
2

0(tan


  yz  in the 

previous coordinate system to the plane xOy . From the graph shown below 

we learn that the old and new coordinates are related by 





















sin'

cos'

'

yz

yy

xx

                         (28) 

 

Substitute (28) into (27), and we have the equation of the intersection 

line on the plane: 

)cos''(
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cos''tansin' 222
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222 
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v

g
yxy        (29) 

That is to say, the circular covered area changes into the curve we can 

draw according to the equation (29). Using MATLAB (The program is 

presented in Appendix 1), we have the graph of the curve (the position where 

the cross stands is the position of the spout):  

 

Corresponding well with Graph #, it proves the correctness of the 



equation. 

2. Degree of Equalizing with Water Distributed on Slopes 

From Problem 3, we can see the amount of water )(T  that a specific 

point M  gets from a single spout O  can be uniquely determined by the 

length of the directed line-segment OM  as well as the sprinkling radius in 

the direction of OM : 

,0, dsws
d

w
T                  (30) 

where w  is a constant, representing the water amount that the spout gets, 

namely the maximum amount of water; d  is the sprinkling radius in the 

direction of OM (in order to distinguish it from the radius r  on the 

horizontal plane, here we use d  to represent the similar status in function 

(15). 

For an arbitrary spout ),( baP  on the plane, the equation of the 

boundary of the covered area can be obtained by translation of axes: 
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We focus on an arbitrary point ),( MM yxM  on the plane (within the 

covered area of the spout ),( baP  but not concurrent with it, namely 



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



by

ax

M

M ), the distance between point M  and the spout P  is 

22 )()( byaxMPs MM                      (32) 

To calculate the radius d  in the direction of PM , we get the system of 



equations for the straight line MP  and equation (31). Solving the equations, 

we can get the coordinates of the intersect points ),,(),,( 222111 yxPyxP  so 
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The equation of line MP  can be written as 
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so we can get 

.
))((

by

axby
ax

M

M




                     (34) 

Substituting (34) into (31), we have: 
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then we have the three roots of the equation 321 ,, yyy : 
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Case I. If ,byM   then the radius d  in the direction of PM  equals 1PP : 
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Case II. If ,byM   then d  equals 2PP : 
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Case III. If ,byM   then d  equals ax 1  and the equation of line MP  can 

be written as .: bylMP   

Together with (31), we have:
g
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As we can see from (37), (38) and (39), the expression of sprinkling 

radius d  in the direction of PM , which has nothing to do with the 

relationship between 
My  and b , is 
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Substitute (40) and (32) into function (30): 
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When the point ),( MM yxM  that we are studying is concurrent with the 

spout, namely 








by

ax

M

M , there does not exist a d , so we cannot use function 

(41) directly to calculate the water amount. However, as we assumed w  is 

the water amount that the spout gets, that is to say when M  is concurrent 

with the spout, the water amount )(T  that M  gets equals w , it can be 



classified in function (41) with 0s , with the water distribution not 

influenced. 

Apply the relatively ideal spout arrangement designed for horizontal 

plane (pave the plane with equilateral triangles whose lengths of sides are 

equal to the radius r  of the covered area of a single spout on the horizontal 

plane, and the spouts are placed on the vertices) to the oblique plane. 

Simulate the water distribution in this situation: 

 

The graph implies that the district of a unit triangle only receives water 
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3
 into (41), respectively. We get 7 functions that show the 

relationship between the coordinates of an arbitrary point in the irrigated area 

and the amount of water it gets. 

However the functional expression we get is not only complex with lots 

of sections but also indirect, which makes the water distribution hard to be 

evaluated. So we state the graph directly instead of showing the complete 

expression of the function (The program is presented in Appendix 2): 

 

The graph gives a general idea of the water distribution that the nearer a 

point is to a spout, the more water it gets. The relative difference 
average

minmax
, 

compared to the same spout arrangement on the horizontal plane, is bigger. 

However, in reality, the spouts’ angles of elevation   and the slope 

angle   in (41) are variable. Different angles of elevation   and slope 

angles   may cause differences in degree of equalizing of the water 

distribution (While drawing the graphs above, we appointed that 



 5.7,15   ). So for a certain slope angle, we can adjust the angle of 

elevation of the spouts to make the water best distributed, namely to make the 

relative difference minimum. 

Write programs through MATLAB (The program is presented in 

Appendix 3), we can get a spouts’ angle of elevation   for each set slope  , 

when the relative difference of the water amount reaches its minimum. 

Because there is little influence brought about by the different slope angles 

when they differ by less than 5 , and in order to reduce the frequency of the 

computer calculation，the slope angle   is set one value every 5 , from 0  

to 40 ; and due to the limitation of the adopted model (in which spouts are 

installed perpendicular to the horizontal plane), the slope angles   cannot 

be bigger than the spouts’ angles of elevation  . 

 Slope angle )(rad  Angle of elevation )(rad  Relative difference % 

1 0 0.7505 22.37 

2 0.0873(
36


) 0.7854 28.45 

3 0.1745(
18


) 0.7854 32.48 

4 0.2618(
12


) 0.7854 33.30 

5 0.3491(
9


) 0.5236 30.91 

6 0.4363(
36

5
) 0.6894 27.90 

7 0.5236(
6


) 0.7854 25.47 

8 0.6109(
36

7
) 0.7854 25.24 

9 0.6981(
9

2
) 0.7854 31.92 



We plot the graph of the water distribution based on the data listed 

above to see a direct visual impact: 

1. 

 

2. 

 

3. 

 

 



4. 

 

5. 

 

6. 

 

 

 



7. 

 

8. 

 

9. 

 

While drawing the graph, we found that our previous analysis of the 



Equilateral Triangle Model has some shortcomings. When we considered the 

spouts that might influence the water distribution in a unit triangle, we only 

drew a graph, appointing that  5.7,15   . That is worth referring to but 

cannot involve all the possible situations. When 0  in the case of the 

horizontal plane model in Problem 3, for instance, a unit triangle not only 

gets irrigated by the mentioned 7 spouts but also the spouts below the x-axis. 

But when 5.7  it doesn’t need to be considered. So we need to consider 

more spouts that may influence the water distribution, and make a further 

discussion. 

Meanwhile, the term “relative difference” (
average

minmax
), which we 

employed to describe the degree of equalizing and got the spout’s angle of 

elevation that made the water best distributed for an appointed slope angle, is 

not persuasive enough. It doesn't include the influence on water distribution 

at all the points in the calculation. Maybe adopting terms like standard 

deviation will be more comprehensive, where we can make further 

improvement. 

3. Brief Summary 

In this part, for the irrigation on the slope surface, we adopted the 

Equilateral Triangle Model that gives the most efficient irrigation in the 

studied situation, and for a certain slope angle, we calculated the exact angle 

of elevation of the spouts that makes the water best distributed. 



VI. Design of Irrigative Landscape Effects 

Irrigation technology is mainly used for plantation maintaining，but 

meanwhile it helps to create better visual effects. On the premise that it does 

not influence the irrigative equilibrium, the design of the irrigative landscape 

effects is as well one part a optimized project for the sprinkling irrigation. 

Taking the viability of the design and the general esthetics into 

consideration, this study puts forward two projects, utilizing the geometric 

symmetry, in order to reach a simple, regular and harmonious visual effect. 

To avoid disorderly effects, here the spouts are set to be all spinning 

clockwise, at the same angular velocities. Now the origin spout exposure is 

under discussion. 

Project 1: Total Synchronism 

All the spouts are set to start in the same direction and spin slowly at the 

same angular velocities. 

The effective image is presented below (the radius and the arrangement 

takes the best ones concluded in the former parts): 

 



The advantage of this design is its simplicity. It is easy to control the 

irrigation system, and the sightseers can easily avoid being spilled over. It is 

applicable to parks and some other places where tourists can step on the 

grass. 

Project 2：Extreme Symmetry 

All the spouts are set to start in different but regular-patterned directions. 

Here they are designed to be, alternately, outwardly radiating and inwardly 

radiating, horizontally and longitudinally. 

The effective image is presented below: 

 

The advantage of this design is that it has a fancier visual effect. This 

project is suitable for large areas of greenery patches for sight seeing, 

especially for a bird’s-eye view. 

The dynamically effective images are up loaded adhering. Please check 

them in the accessory. 



VII. Retrospect 

1. Sketch 

This paper goes from simple to complicated conditions and from ideal to 

realistic situations. It starts in an totally ideal situation, gradually developing 

deeper as factors are in succession taken into consideration. 

Firstly, the simplest models are built based on a totally ideal situation. 

Assumed to spin over plain lawn with radii appointed, sprinkling spouts are 

installed in arrangements of simple geometric figures. Areas of overlapping 

and blank spaces are calculated and the most reasonable arrangement of all 

that are suggested is selected. 

Secondly, real factors are taken into consideration: 1. The disequilibrium 

of the water that drops in a line from the sprinkling center is transformed into 

a function, whose graphs are drawn to show the water distributed over the 

area; 2. The plane models are changed into solid ones when the sprinkling 

spouts are assumed to be placed on slopes. Analytic geometry methods are 

employed to deduce the range of sprayed water on the oblique planes. 

Through calculation and analysis, models can be adjusted to specific 

situations. 

Finally, the boundary problems and landscape effects are also involved. 

Although the models are still a little too idealized, during the process of 

researching, we got through the challenges while our mathematical abilities 

got more excellent. 



2. Difficulty Overcoming in the Studying Process 

Information acquiring. Searching for helpful information took us a good 

deal of time, and selecting useful things by comparing what we had got was 

also difficult to some extent. Due to the lack of professional knowledge, we 

met with some trouble. However, as we were getting to know more, we 

finally got accurate results. 

Calculating and data sorting. Since the functional expressions were 

complex, simplifying and calculating required a lot of patience as well as a 

reliable calculating ability. As for the complex results, we redid the 

calculation to guarantee their correctness. 

Applying mathematical knowledge and ability. Problems were even 

more complex than we had expected. Relying on the high school math and 

some extracurricular knowledge, we spent a lot of time establishing 

appropriate functions. As the research went further, we were faced with many 

barriers. To get the equation of the figure formed by the water sprayed on a 

slope, for instance, we made efforts that did not all helped. What we needed 

to do first was to draw the traces of the water drops that fell onto the ground 

as a spout finished spinning a circuit (just like being continually exposed by a 

camera). Then we had to cut through the three-dimensional figure with an 

oblique plane, get the graph of the section on that plane, deduce its function 

and, at last, put it into a plane xOy  coordinate. That might be a piece of cake 

to those who could master more mathematical techniques, yet to us, it was a 



logical and intellectual challenge. We had discussed the problem with three of 

the math teachers at school who gave us some directive advice but failed to 

provide a specific means to work it out, before we raised the questions to a 

university instructor and a graduate, who, later, explained some further 

knowledge related to analytic geometry for us. However, new problems 

emerged: because the ways of thinking differed, they misunderstood our train 

of thought, and the function we got by methods they provided was not what 

we had expected it to be. Finally we decided to solve the problem ourselves, 

using exactly what we had learned in high school——somehow we had a 

premonition that we could make it. After a hard time’s work, we eventually 

got the correct functional expressions through consumption, deduction and 

examination, which, to some extent, resulted in our solid mathematical and 

physical abilities. After the graph was drawn through mathematical software, 

we were delighted to find that it tallied with what we had imagined through 

common sense. Before we set the seal on its correctness, we had repeatedly 

examined every step during the deduction. Maybe the method we took seems 

a little bit awkward, but it enabled us to realize the practicality of math. There 

are other examples like that, and even though they slowed up our progress, 

they seem valuable because of all the sparks of thought produced as the 

conclusion came to light. 

Graph showing. For it was geometry problems that we were trying to 

figure out, we felt obliged to use a series of graphs to show the effects our 



proposal brought forth. We mainly employed The Geometer's Sketchpad and 

MATLAB. The former was used for some basic geometric drawing and was 

employed to simulate the landscape effects when for different spout 

arrangement. The latter was much harder to master for it acquired more 

professional skills. We input our functions in MATLAB language and then 

got the images directly showing the irrigation effects. It was difficult at first, 

for correctly inputting the functions as well as checking the correctness of the 

graphs need a lot of repeating. Usually, a graph was perfectly drawn after 

much examination and correction. To better master this skill, we read books 

on the MATLAB and consulted our teachers. We  got satisfactory results, 

ultimately, after so many attempts. 
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Appendix 1 

 

theta=pi/12; 

g=9.8; 

v0=19.6; 

alpha=pi/24; 

x1=2*v0^2*cos(theta)^2*(tan(theta)-tan(alpha))/g; 

y1=tan(alpha)*x1; 

ymax=sqrt(x1^2+y1^2); 

x2=-2*v0^2*cos(theta)^2*(tan(theta)+tan(alpha))/g; 

y2=tan(alpha)*x2; 

a=g/(2*v0^2*cos(theta)^2); 

b=tan(theta); 

ymin=-sqrt(x2^2+y2^2); 

y=ymin:.00001:ymax; 

x=sqrt(((b+sqrt(b.^2-4*a*y*sin(alpha)))/(2*a)).^2-y.^2*cos(alpha).^2); 

plot(x,y); 

hold on 

plot(-x,y); 

plot(0,0) 



Appendix 2 

theta=pi/12; 

g=9.8; 

v0=19.6; 

alpha=pi/24; 

r=2*v0^2*cos(theta)*sin(theta)/g; 

w=8; 

a=[0,1/2*r,r,-1/2*r,3/2*r,0,r]; 

b=[0,sqrt(3)/2*r,0,sqrt(3)/2*r,sqrt(3)/2*r,sqrt(3)*r,sqrt(3)*r]; 

ym=0; 

xm=0; 

while xm<=r 

     ym=0; 

     if xm<=r/2 

        while ym<=sqrt(3)*xm 

            z=0; 

            for i=1:7 

              M=sqrt((xm-a(i))^2+(ym-b(i))^2); 

              N=(xm-a(i))^2+cos(alpha)^2*(ym-b(i))^2; 

      d=M*2*v0^2*cos(theta)/g*(sin(theta)*sqrt(N)-cos(theta)*sin(alpha)*(ym-b(i)))/N; 

              s=sqrt((xm-a(i))^2+(ym-b(i))^2); 

              if s>d 

                T=0; 

              else 

                T=-w/d*s+w; 

              end 

              z=z+T; 

            end 

            plot3(xm,ym,z);   

            hold on 

            ym=ym+0.1; 

        end 

     else 

        while ym<=sqrt(3)*(r-xm) 

             z=0; 

             for i=1:7 

               M=sqrt((xm-a(i))^2+(ym-b(i))^2); 

               N=(xm-a(i))^2+cos(alpha)^2*(ym-b(i))^2; 

      d=M*2*v0^2*cos(theta)/g*(sin(theta)*sqrt(N)-cos(theta)*sin(alpha)*(ym-b(i)))/N; 

               s=sqrt((xm-a(i))^2+(ym-b(i))^2); 

               if s>d 

                 T=0; 

               else 



                 T=-w/d*s+w; 

               end 

               z=z+T; 

             end    

             plot3(xm,ym,z);   

             hold on 

             ym=ym+0.1; 

        end 

     end 

     xm=xm+0.1; 

end 



Appendix 3 

g=9.8; 

v0=19.6; 

w=8; 

alpha=0; 

while alpha<=2*pi/9 

    theta=pi/4; 

    p=10; 

    while theta>alpha 

        r=2*v0^2*cos(theta)*sin(theta)/g; 

        a=[0,1/2*r,r,-1/2*r,3/2*r,0,r]; 

        b=[0,sqrt(3)/2*r,0,sqrt(3)/2*r,sqrt(3)/2*r,sqrt(3)*r,sqrt(3)*r]; 

        xm=0; 

        max=0; 

        min=100; 

        k=0; 

        Q=0; 

        while xm<=r 

            ym=0; 

            if xm<=r/2 

                 while ym<=sqrt(3)*xm 

                     z=0; 

                     for i=1:7 

                         M=sqrt((xm-a(i))^2+(ym-b(i))^2); 

                         N=(xm-a(i))^2+cos(alpha)^2*(ym-b(i))^2; 

                         if N==0 

                            T=w; 

                         else 

      d=M*2*v0^2*cos(theta)/g*(sin(theta)*sqrt(N)-cos(theta)*sin(alpha)*(ym-b(i)))/N; 

                            s=sqrt((xm-a(i))^2+(ym-b(i))^2); 

                            if s>d 

                               T=0; 

                            else 

                               T=-w/d*s+w; 

                            end 

                         end 

                         z=z+T; 

                     end 

                     if z>max 

                         max=z; 

                     end 

                     if z<min 

                         min=z; 



                     end 

                     Q=Q+z; 

                     k=k+1; 

                     ym=ym+0.1; 

                 end 

            else 

                while ym<=sqrt(3)*(r-xm) 

                     z=0; 

                     for i=1:7 

                         M=sqrt((xm-a(i))^2+(ym-b(i))^2); 

                         N=(xm-a(i))^2+cos(alpha)^2*(ym-b(i))^2; 

                         if N==0 

                            T=w; 

                         else 

      d=M*2*v0^2*cos(theta)/g*(sin(theta)*sqrt(N)-cos(theta)*sin(alpha)*(ym-b(i)))/N; 

                            s=sqrt((xm-a(i))^2+(ym-b(i))^2); 

                            if s>d 

                               T=0; 

                            else 

                               T=-w/d*s+w; 

                            end 

                         end 

                         z=z+T; 

                     end 

                     if z>max 

                         max=z; 

                     end 

                     if z<min 

                         min=z; 

                     end 

                     Q=Q+z; 

                     k=k+1; 

                     ym=ym+0.1; 

                end 

            end 

            xm=xm+0.1; 

        end 

        ave=Q/k; 

        c=(max-min)/ave; 

        if c<p 

           p=c; 

           the=theta; 

        end 

        theta=theta-pi/360; 



     end 

     p 

     the 

     alpha 

     alpha=alpha+pi/36; 

end 


