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Abstract

Motivated by an extra credit problem from our Linear Algebra class, we
study the invertibility probability of binary matrices (the number of invertible
binary matrices divided by the total number of binary matrices). Binary matri-
ces are of interest in combinatorics, information theory, cryptology, and graph
theory. It is known that the invertibility probability of n x n binary matrices
goes to 1 as n — oo. We conjecture that this probability monotonically in-
creases as the size of the binary matrix increases, and we investigate this by
exploring how n x n binary matrices of rank n and rank (n—1) can be enlarged
to (n 4+ 1) x (n + 1) invertible binary matrices. Calculating this explicitly for
the identity matrix, we obtain a probable bound that would show that, in a
sense, our conjecture is asymptotically true. With the use of a computer, we
also computed how many (n + 1) x (n + 1) invertible binary matrices can be
enlarged from n x n matrices of rank n and rank (n—1) for small n. In addition,
we study the invertibility probability of matrices with entries in Zj.



1 Introduction

In this paper, we explore the invertibility probability of binary matrices ((0,1)-
matrices). We had come across a question in our Linear Algebra class, which our
teacher assigned for extra credit, regarding whether there were more singular or non-
singular binary 10 x 10 matrices:

16 (a) There are sixteen 2 by 2 matrices whose entries are 1's and ('s. How many ar¢
invertible?
(b) (Much harder!y If you put 1's and (s at random into the entries of a 10 by 10
miatrix, is it more likely to be invertible or singular?

Figure 1: The extra credit problem, from [3].

Part (a) was quite easy; one can just list them out. However, part (b) turned out
to be a surprisingly difficult question. As we looked into it, it became more and more
fascinating.

Binary matrices are of interest in combinatorics, information theory, cryptology,
and graph theory. Their invertiblity is especially important in encoding (see Section
2 for more detail). There are many important works on the invertibility of binary
matrices. Note that there are 2*° n x n binary matrices. Let F(n, k) be the number
of n x n matrices of rank k, and P(n) = F;:’Q"), the invertibility probability. In 1967,
J. Komlos [2] showed that lim, ., P(n) = 1, unlike the mod 2 case (see Section 3
for more detail). Recently T. Tao and V. Vu [4, 5] studied the rate of convergence
and made great progress. However, it is very difficult to explicitly compute F'(n,n),
and thus P(n) as well. For n < 8, M. Zivkovi¢ explicitly calculated F(n, k) with the
use of a computer [7], see Table 1 in the Appendix.

We conjecture that the invertibility probability monotonically increases as the size
of the matrix increases.

Conjecture 1.1. ' P(n+1) > P(n) for alln > 3.

This is true for 3 < n < 8 from M. Zivkovié’s work [7]. We have tested it with
random computer sampling, with sample sizes of 100, 000 for n < 30, which suggested
that it is true in that range. Later, we found that T. Voigt and G. Ziegler had used
computer sampling of sizes 250,000 for n < 30 [6], which also indicated that it is
true.

When the matrices are over a finite field, it is well known that the number of in-
vertible ones can be explicitly computed. In fact, the invertibility probability for these
matrices decreases as their size increases. We present it in Section 3 for comparison.

"'We have checked with several experts that this is still open.



To investigate our conjecture, note that P(n + 1) > P(n) is equivalent to
F(n+1,n+1)>2""F(n,n). (1.1)

Thus, we look at the number of invertible (n + 1) x (n + 1) binary matrices that
correlate to a single n X n binary matrix. A single n X n binary matrix can be
enlarged by an n x 1 column and a 1 x (n+ 1) row to generate 2*"*1 (n4+1) x (n+1)
binary matrices (see (4.4) in Section 4). Therefore, given an n x n invertible matrix,
if the matrices it generates are all invertible, we are done. However, this is never true
as one can always append a row of zeros, making the matrix singular. We denote
S(A,) as the number of singular (n + 1) x (n 4 1) binary matrices generated by A,,,
and N(A,) the number of nonsingular ones generated. S(A,) > (n + 1)2" for all
invertible matrices A, (see the explanation above (4.5) in Section 4). On the other
hand, a singular n x n matrix can generate invertible (n + 1) x (n + 1) matrices. We
try to compensate for the loss of the former with these ones.

First, in Section 4.1, we give the following rough estimate which holds for matrices
with entries in Z,, with ¢ prime.

Theorem 1.2. For matrices with entries in Z,, with q prime, F(n +1,n + 1) >

Letting ¢ = 2 gives

Corollary 1.3. For binary matrices, F(n+ 1,n + 1) > 2*"F(n,n), namely, at least
half of the (n 4+ 1) x (n + 1) binary matrices generated by an invertible n X n binary
matriz are invertible.

To obtain a better bound for binary matrices, we compute S(I,,) explicitly, giving
the estimate below.

Theorem 1.4. The number of (n+1) x (n+1) invertible matrices that can be enlarged
from the identity matriz I, is bounded from below by

n—+1

N(I,) > 2°"+1 (1 5 (2)") : (1.2)

We had hoped that for any invertible matrix A,,, N(A,) > N(I,) since the rows of
I,, are able to produce many linear combinations that remain binary. However, it turns
out that this is not true. While N(I3) = 74, we found many invertible matrices As
with N(A3) = 72 through a program we created to compute the number of invertible
matrices generated by each 3 x 3 invertible one (see Table 2 in the appendix for more
data). On the other hand, it is possible that the estimate (1.2) is true for all invertible
n x n matrices (its right hand side is only 20 when n = 3).

In Section 4.2, we look at the number of invertible binary matrices that can be
generated from a singular n X n binary matrix, especially the ones of rank (n—1). As
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an example, we take [,,_; and expand it to an n X n matrix by adding zeros, which
gives an n x n matrix of rank (n—1), B, (see (4.7)). Again we compute the number of
singular (n+1) x (n+ 1) matrices B,, generates by looking at the linear combinations
of its rows. As a result, we find

Theorem 1.5. The number of (n+1) x (n+1) invertible matrices that can be enlarged
from the matriz B, is bounded from below by

N(B,) > 2*" — (n+1)3"1. (1.3)

We expect this to be true for all n x n matrices of rank (n — 1).
If (1.2) holds for all n x n invertible matrices and (1.3) for all n x n rank (n — 1)
matrices, then

_n+1(3
2 4

F(n+1,n+1)> 2"+ (1 )”) F(n,n) +[2*" — (n+ 1)3" '|F(n,n — 1).
By (4.5), F(n,n—1) > n2" 'F(n—1,n—1). Hence dividing by 20"+)” gives a bound
on the invertibility probability of (n + 1) x (n + 1) binary matrices:

n 3"(n+1)

3" (n+1)n
on+l (n) 92n+1

P(n+1)> P(n)+ P(n—1) DT

— P(n—1)

This would show that P(n) is, in a sense, asymptotically increasing with an error of
O((2)™), which is known from T. Tao and V. Vu [5]. We hope our method of estimat-
ing Fi(n+1,n+ 1) by N(A,) would provide a much simpler approach. Furthermore,

we conjecture that

Conjecture 1.6. When A, is invertible, lim,,_, %Aﬁ) = 1.

We provide evidence for this in Section 4.3, namely, that on average, Conjecture
1.6 is true. In fact, for most A,, our conjecture is true. Note also that if (1.2) is
true for all invertible binary matrices, then Conjecture 1.6 would be an immediate
consequence. Thus one can view Conjecture 1.6 as a weakened version of Theorem
1.4 for all invertible binary matrices.

We are continuing to look into this.

2 Binary Matrices and Science

Binary matrices are widely used not only in mathematics but also in cryptography,
telecommunications, combinatorics, and graph theory. Invertible matrices’ unique
nature of having a determinant and an inverse helps to encrypt messages and com-
press communication signals effectively. Several techniques of encryption have been
developed using matrix inverses, such as the Hill Cipher, one of the first polygraphic
substitution ciphers (multiple letters encrypted to ciphertext) [1].
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To encrypt a plaintext message using the Hill Cipher, the message is divided into
m blocks, each containing n letters. Then a number is assigned to each possible
n letter combination (e.g. if n = 2, assign aa = 0, ab = 1... 2z = 26 — 1, or
in any pattern). The plaintext message is made into an m x 1 vector, each entry
containing the assigned number. Then generate a word of m?n letter length as a key
and convert it to a matrix by coding n length letters of the word to assigned numbers
(e.g. if m = 3 and n = 2, abede fghijklmnopgr = [1(ab)55(cd)109(ef)164(gh)...]) to
be placed into a matrix horizontally. Lastly, this key matrix is multiplied with the
converted plaintext m x 1 vector to create the final encrypted matrix. The Hill Cipher
can be deciphered using matrix inverses, so the key matrix should be invertible. As
shown above, the calculation process of Hill Cipher is simple and completely linear;
thus the encrypted matrix is vulnerable to known plaintext attacks. Yet as the
numbers get larger, combined with non-linear operations, its security grows rapidly.

The extension of this cipher technique is used in telecommunications with binary
matrices. Bits of data are formed into binary matrices through heapsort, facilitating
the application of more complicated and advanced techniques (such as multiplying
the key matrix in the Hill Cipher). The goal in communications engineering is to
transmit and receive data accurately and quickly (for this, smaller amounts of data,
and thus compression as well, are good) and often in a secure environment, hence
this technique.

In addition, the development of random matrix theory in combinatorics has cleared
the path for modern physics theories, such as nuclear physics and quantum theory,
to be represented in math.

3 Matrices over Finite Fields

Given a finite field F, with ¢ elements, the order of GL(n, q) (n xn invertible matrices
over F;) can be explicitly calculated. Note that A € GL(n, q) is equivalent to det A #
0 in F,. Therefore, the number of GL(n, q) gives a lower bound on the F'(n,n) when
g = 2. An n x n matrix A € GL(n,q) is also the same as a set of n linearly
independent vectors in IF,. The first vector can be any nonzero vector, of which there
are ¢" — 1 choices. This first vector spans a one-dimensional subspace, which contains
q' elements. We must choose a second vector that is not in this subspace, giving
q" — ¢' possibilities. Having already chosen k independent vectors, there are ¢" — ¢"
possible vectors that will create a linearly independent set. Hence, the number of
ways to choose vectors that will form an n x n invertible matrix is

("= )Ng" =N =) (" =" ) =[] - ¢



So the invertibility probability of an n x n matrix over field F, is

[T i(q" — ") . 1
kzlqn2 :H(l_qkl )<1__.

q

n

k=1

It is interesting to note that as n grows, this probability decreases. Also, for any
fixed n, when ¢ — oo, the invertibility probability goes to 1. This case corresponds
to binary matrices when F, = Z,. However, it is very different from the case with
invertible matrices over R, as that invertibility probability has been shown to approach
1 as m — oo. Hence, there are much fewer invertible matrices in Zy. (This is the case
because in Zs, k linearly independent vectors span a much larger set.) This does not
give a good lower bound on P(n) at all.

4 From Size n to Size n + 1 Binary Matrices

In order to compare the invertibility probability of a n x n binary matrix to a
(n+1)x (n+1) binary matrix, we look at how many distinct invertible (n+1) x (n+1)
binary matrices can be generated from one invertible n x n binary matrix and one
singular n X n binary matrix, respectively.

Given an n X n binary matrix A,, we can enlarge it by an n x 1 column vector (on
the right), and to this new matrix append a 1 x (n + 1) row vector (to the bottom)

as follows:
*

A, s (4.4)

% .. *k

where the asterisks signify the appended column and row of components 0 or 1.

Thus we produce 22! different possible (n + 1) x (n + 1) binary matrices from
A,,. When A, is invertible, at least (n+1)2" of these matrices generated are singular,
since we can always append a last row of Os or one of the original n rows. Hence,
when A, is invertible,

S(A,) > (n+1)2". (4.5)

4.1 n x n Invertible Matrices to (n + 1) x (n + 1) Invertible
Matrices

First, we give a rough lower bound for F(n + 1,n + 1) in terms of F(n,n), proving
Theorem 1.2. Given an invertible matrix A, whose entries are in Z,, the (n+1)x(n+1)
matrices it generates will be singular if and only if the last row (the appended row)
is in the span of the above n rows. After enlarging A, by an n x 1 column, giving
q"F(n,n) matrices, these matrices have n linearly independent columns. In adding a
1 x (n+ 1) row to these matrices, the entries in this appended row that correspond



to the n linearly independent columns completely determine the remaining entry in
the row. Thus the probability that this appended row is in the span of the first n is
at most %. This gives at most ¢"F(n, n)%(q”“) = ¢*"F(n, n) singular matrices (with
entries in Z,) produced by an n x n invertible matrix (with entries in Z,).

With these estimates, we have

Fn+1,n+1) > (¢ = ¢*")F(n,n) = ¢""(¢ — 1)F(n,n).

Dividing this by ¢+’ gives

Here, as ¢ — oo, P(n+ 1) > P(n).
This applies to binary matrices when ¢ = 2. In this case,

Fn+1,n+1)> (2" —2*")F(n,n) = 2°"F(n,n).

Dividing this by 2(**1* gives

1
Pn+1) > §P(n)
However, this only gives half of the invertible binary matrices we need.
Among the nonsingular n x n binary matrices, it seems that the identity matrix
could produce the most binary linear combinations (at least, in terms of additive
combinations). So we compute the number of singular (n + 1) x (n + 1) binary

matrices that can be generated from the identity matrix I,:

*

I

Let k& be the number of 1s in the appended column, so 0 < k < n. There are (})
distinct ways to arrange these k 1s. In order for the last row to be in the span of the
first n rows, we can only add together combinations of the first n rows (as subtracting
would produce a non-binary matrix). However, we cannot add two rows which have
the appended 1s as their n + 1th entry, as this would produce a non-binary matrix
as well. Thus there are n — k£ rows that do not have the appended ones to choose
to create combinations, giving Z;:Ok (";k) = 2" % different combinations. To these,
we can also add one of the k rows with appended ones (or not add any), producing
(k +1)2"7* possibilities. Hence, S(1,,), the total number of singular (n+1) x (n + 1)
matrices we can create from an n by n identity matrix, is

n n

S(L) = (MIk+1)2" ] < (n+1)> (12" = (n+1)3". (4.6)

k=0 k=0



Therefore, the probability of a singular matrix here is at most 3;57:111) = 37;((2:[)1)

@y,
! This applies to permutation matrices as well, as they contain the same rows as
the identity matrix.

Although the identity matrix can produce many linear combinations, it does not
produce the most, as we had wished. We created a computer program to compare
S(1I,) to the number generated by other n x n invertible matrices, and found that
the identity matrix did not generate the least amount of invertible (n 4+ 1) x (n + 1)
matrices. Some 3 x 3 invertible matrices, like

, about

11
0 1
0 0

= O O

produce 72 4 x 4 invertible matrices, compared with N(I3) = 74.

4.2 nxn Singular Matrix to (n+1) x (n+ 1) Invertible Matrix

We want F(n+1,n+1) > 22" F(n, n), which is impossible through expanding only
invertible n X n matrices to invertible (n 4+ 1) X (n 4 1) matrices, as there are only
2271 total possible (n+ 1) x (n+ 1) matrices that can be generated from the original
n x n matrix, and they are not all nonsingular (e.g. appending a row of 0s to the
matrix creates a singular matrix). On the other hand, n x n singular binary matrices
can be enlarged to (n+ 1) x (n + 1) invertible ones. Thus we look at the number of
invertible binary matrices that can be generated from a singular n x n binary matrix.
This will cancel out some of the singular matrices generated by invertible n x n binary
matrices.
We take the matrix

B.=| . (4.7)

as an example of n x n matrices of rank n — 1, as it gives the most additive linear
combinations of its rows. Given this matrix, if we enlarge it by adding a 0 as (n+1)th
entry of the top row, it then has a row of 0s, which gives 22" singular matrices in the
below form:

o0 --- 00
0 *
In—l

0 *
* % * %



If we enlarge it by adding a 1 as (n + 1)th entry of the top row, we have a situation
similar to that with the identity matrix:

0o --- 01
0 *
In—l

*

Here, let m be the number of the rest of the 1s that we add in the extra column. Thus
there are ("7;1) different ways to arrange these m 1s. From the n—m —1 rows without
an appended 1, we can choose any combination, giving Z?:_Om_l ("7?71) = gn-m-1
combinations. To these we can add any of the m + 1 rows with appended 1s, or none
of them, producing (m + 2)2"~™~! possibilities. Hence,

n—1

S(B,) = 2%+ mz <"7; 1) [(m + 2)2°=Y]

0

n—1

—1

< 2+ (nt1)) (nm )Qn—m—l =2 4 (n+1)3"",
m=0

Thus, N(B,,) > 2*"+1 — 22" — (n41)3""! = 2°" — (n+1)3"~*. This finishes the proof
of Theorem 1.5.

4.3 Remarks on Conjecture 1.6

From an n x n singular binary matrix, there are at most 2" different columns to
append, and 2" rows. Thus there are at most 22" (n + 1) x (n + 1) invertible

binary matrices that can be generated from an n x n singular binary matrix, hence
n—1

at most 227+ Z F(n,k). We compare this to the total number of (n + 1) x (n +1)
k=1
n—1
binary matrices, o(nt1)? giving W As n — oo, Komlos has shown this to

ZrankAn<n N(An) — 0

approach 0 [2]. So when A, is singular, lim,, ., e

On the other hand,
Fin+1Ln+1)= >  NA)+ > N(4)

rankAn,=n rankAnp<n

n—1
< ) N(A)+ 22> F(nk).
k=1

rankAn,=n

Dividing by 2(D* gives

N(An) n—1
—n 2T S F(n, k
P(n+ 1) S ZrankAznn—Qn 22n+1 + k—12n2(n )
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n—1
Asn — o0, lim, oo P(n+1) =1 and lim,,_., Zim Pk) Thus,

gn?
T Trankdpon goatt S ranidn—n ST
lim,, o =225t 2252 > 1. However, ==52522 < 1 s0
. > _p, D) .. .
lim, ”"'“A;n; 22111 < 1. Therefore, the limit exists and
. > rankAn=n St : : :
lim,, o, =" ;L;" 2= = 1. That is to say, on average, Conjecture 1.6 is true.
. N(A : .
In fact, since 22(n +"1) < 1, the discussion above suggests that for most A,,,

. N(A
lim,, % =1.

This is formulated in the following statement.

Proposition 4.1. For any 6 > 0 and any € > 0, there exists an N such that for any
n>N, #{A, | A, is invertible and 3a2) <1 —§} < 27",

22n+1

We prove this by contradiction. Suppose that there exists a dg > 0 and an gy > 0
such that for any N, there exists n > N such that

N(A, 5
#{A, | A, is invertible and % <1—90p} >e02".

Let S ={A, | A, isinvertible and % <1—19p} and S’ be its complement.

then N(A) = N(A) = N(A)
Z 92n+1 :Z 92n+1 +Z 92n+1
rankAp=n S S’

Substituting in the bound gives

N(A, N(A, , ,
SR L S T < 50— )+ S = #S+ S — S
S/

S
S 2”2 — 50802”2 = 2”2(1 — 5080).

This implies that

S ronhyn S
lim rankA,=n 922n+1

n— o0 2"2

<1 —=9peg < 1,

© N(An)

rankAp=n 92n+1 __ 1 ThlS

which is a contradiction, as we have shown that lim,,_ o

finishes the proof of the proposition.
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5 Appendix: Tables and Data

Table 1. (F(n,k) for k=mn and k =n — 1 and P(n) data from [7])

n x n Matrices

n || Total | F(n,n) F(n,n—1) P(n)
12! 1 1 0.5

2 | 24 6 9 0.375

3 2° 174 288 0.33984
4 | 21¢ 22560 36000 0.34424
5 | 2% 12514320 17760600 0.37296
6 || 2% 28836612000 34395777360 0.41963
71 2% 270345669985440 259286329895040 0.48023
8 || 204 10160459763342013440 | 7547198043595392000 || 0.55080

Table 2. (N(A,,) for invertible A,, data from our computer program)

n x n Invertible Matrices to (n 4+ 1) x (n + 1) Invertible Matrices

n | F(n,n) | # of A, | N(A,) | Total N(A4,) | Average || N(A,) + S(4,)
2 6 6 17 102 17 32

72 72
3 174 96 74 12768 73.379 128

6 80

Table 3. (N(A,,) for n x n rank (n — 1) A, data from our computer program)

n X n rank n — 1 Matrices to (n + 1) x (n + 1) Invertible Matrices

ni| F(n,n—1) | # of A, | N(A,) | Total N(A,) | Average | N(A,) + S(A,)
2 9 9 8 72 8 32

216 32
3 288 79 40 9792 34 128

Acknowledgements: We would like to thank Prof. Zhenghan Wang for help-
ful email communications and bringing our attention to the references [4, 7], Prof.
Terence Tao for answering our email question and pointing out the reference [6], and
Prof. Gilbert Strang, author of our linear algebra textbook, and our teacher Mr.
Kruidenier for introducing us to this problem.

12



References

1]

2]

[7]

M.A. Khamsi, Application of Invertible Matrices: Coding,
http://www.sosmath.com /matrix/coding/coding.html

J. Komlos, On the Determinant of (0,1) Matrices, Studia Scientiarum Mathe-
maticarum Hungarica 2 (1967), pp. 7-21.

G. Strang, Linear Algebra and Its Applications, 4th ed., Belmont: Brooks/Cole
(2006), pp. 65.

T. Tao, V. Vu, On Random +1 Matrices: Singularity and Determinant, Random
Structures Algorithms 28 (2006), no. 1, 1-23.

T. Tao, V. Vu, On the Singularity Probability of Random Bernoulli Matrices, J.
Amer. Math. Soc. 20 (2007), no. 3, 603-628.

T. Voigt, G. Ziegler, Singular 0/1-Matrices, and the Hyperplanes Spanned by
Random 0/1-Vectors, Combinatorics, Probability and Computing 15 (2006), 463-
471.

M. Zivkovi¢, Classification of Small (0,1) Matrices., Linear Algebra Appl. 414
(2006), no. 1, 310-346.

13



