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Abstract

This Paper is aimed to study a generalization of the Catlan Conjecture
(The only nontrivial solution to x™-y" =1 is x=3,m=2,y=2,n=3), that is,
to determine the nontrivial solutions to x™-2y" =1. To solve this problem,
| study some arithmetic properties of the solutions to Pell equation, or
more precisely, when the minimum solution is fixed, the properties about
factors of the recursive solutions to the equation. Furthermore, | apply
these properties into the study of x"-2y"=1, and obtain some
successful results when n is restricted to be even. What’s more, some
applications of these arithmetic properties in other problems are

contained in the paper as well.
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1. Preliminaries.

We begin with some elementary properties about the solutions of Pell equation.
(1) x¥*-Dy’=1 ( D>0 and has no divisor of form n?) is called positive Pell
equation(or standard Pell equation). It always has a minimal positive
solution(x,, y,) » and all solutions (x,,y,) are fixed by x + ynJB =(x + yl\/B)” )

AT+ A" AT - A"

, Yy = , where 1=x+y,vD, 1=%-Vy,/D)
Yn 2\/5 X +Y =Y

(or x, =

Xn = Xn—1X1 + Dyn—lyl n>

2)
Yo = XYt YaaX

Furthermore, the recursion formula{

= D -
and {X”“" X% Y m o (m,neN”) hold.

Yinen = Xn Yo T YnXa

If we define x,=1, y,=0, X, =x,, y,=-Y,, indexin the recursion formulas

above can be chosen from Z including negative integers.
(2) x*-Dy?=-1, is called negative Pell equation. If it has solution, it must have
infinitely many solutions. Assume (a,,b,)is its minimal positive solution, then the

general solutions (a,,b,) are fixed by a_+b /D =(a,+b~/D)**, (or

2n-1 —2n-1 2n-1__ =2n-1

p i Iy -
a,=—=-"—, b="~—, where u=a +bvD, u=a-bvD)
5 5) H=a+D A=a-D

What’s more, (a,+b,v/D)?=x +y,v/D (As the symbols above, (x,, Y,) is the
minimal solution of the corresponding positive Pell equation) .

(3) x¥*-Dy’=K,

K| >1, is called quasi-Pell equation. If it has solution, it must
have infinitely many solutions. In particular, when |K| =2, if we denote the minimal

solution as (u,v) , then the general solutions (u,,v,) are fixed by



\/B _ (U1 +Vl\/5)2n71 é;Zn—l +é?2n—l 6gzn—l _622n—1

i Cor uy=2—-=>—, v,=2——2—, Where

2" " /D

u,+Vv,

E=u+vvD, E=u-vD)
(4) No matter what kind of Pell equation it is, the recursion formula always holds.

Where (xn,yn) and (x:,y’;) stand for the nth positive solution of

x*-Dy*=K and x*-Dy’=1.

2. Main Theorems

In this paper, we will obtain the following two main theorems

Theorem 1 (1) For standard Pell equation x*—Dy?* =1, assume d isa divisor
of D, d is greater than 3, and (y,,d)=1, then d“0y,<d“0On (neN’",
ke N . The symbol “J” means: b*Ca < b*|a, b*'[a)

(2) For (1) negative Pell equation x*—Dy*=-1,
(1) quasi-Pell equation x*—Dy* =+2,—4,

(1D quasi-Pell equation x> —Dy* =4.
Similar conclusion holds, that is:

In equation of type (1), if d|Dand (d,y,) =1, d>3, then
d“0y, < d“02n-1.
In equation of type (1D, if d|D, (d,y,)=1, d>3, and d isodd integer,
then d*0y <d“02n-1.

In equation of type CIID, if d|D, (d,y;)=1, d >3, and d isodd integer,



then d“0y < d“0On.
(3) In particular, for standard Pell equation x*—-Dy®=1, we have: assume the
minimal solutionis (x,y,), d|D, d>3,and d“ly,, thenif (d,g—i)zl,we have

d“*Jy < d“On.

Remark: In (2), among the equations of type (1), the situation that 2|d and

k >0will never occurat all, since this will yield 2|y, = 4|Dy? = x’ =-1(mod 4) ,

which leads to a contradiction. So in this case d must be odd.

Theorem 2 (1) Denote the general solutions of standard Pell equation
x*—Dy*=1 as (x,,Y,),then Vte N among the following propositions either (i) or
(ii) will hold; and either (iii) or (iv) will hold:

() vn,t ] ..

(ii)3 f(t)e N" which is uniquely determined by t, such that t|x @% isa

positive odd integer.
@iiyvn,t |y, .

(iv) 3 g(t)e N" which is uniquely determined by t, suchthat t|y < g(t)|n.

(2) x*-Dy®=-2, denote its general solutions as (x,,y,), for Vv odd integer
t, among the following propositions either (i) or (ii) will hold; and either (iii) or (iv)
will hold:

(()VneN"t|x, .
(i) 3 f(t)eN" which is uniquely determined by t , such that

t|x, < f(t)|2n-1.



(ii)vneN"t]y, .
Civ) 3 g(t)eN" which is uniquely determined by t , such that
tly, < g(t)[2n-1.

(3)More generally, we can obtain:

For fixed te N”, we denote the following statement as proposition (1): either
we cannot find an x  such that t|x , or 3If(t)eN" such that t|x
<n=(2k-1)f(t), keN"; either we cannot find an y_such that t|y , or
Jg(t)e N” suchthat t|y <n=kg(t), keN".

In parallel, we denote the following statement as proposition (l): either we

cannot find an x, suchthat t|x,, or 3f(t)e N~ suchthat t|x, < 2n-1=kf(t),
keN"; either we cannot find an y_ such that t|y , or 3g(t)eN" such that
t|y, < 2n-1=kg(t), keN".

Then we have:

(i) For x*—Dy*=1, proposition (1) holds.
(ii) For x*—Dy®=-1, proposition (1) holds.
(iii)For x*—Dy? =42, proposition(11) holds if we require in which t is odd.

(iv) XF x* —Dy* =+4, proposition (1) holds if we require in which t is odd.

This paper will be organized as follows: in section 3 we will prove theorem 1,
and several applications of theorem 1 will be given in section 4; in section 5 we will
prove theorem 2, and several applications of theorem 2 will be given in section 6. In
the applications in section 4 and 6, we will obtain parts of the results of the

generalized Catlan’s Conjecture.



3. Proof of Theorem 1

Obviously, theorem 1.(1) is the corollary of 1.(3), so we prove 1.(3) first.
The proof of 1.(3) is divided into three parts:

In standard Pell equation x*—Dy”*=1, assume d is divisor of D, d is
greater than 3, and d“ Ly, , (d,g—i)=1(aeN ).
(i) d“?|y, <d]|n

_ (4 +Dy)" - (% —Dy,)"
since " 2JD

=nx"'y, (mod d“*)

=Cr -y, +CF )y’ -D+..

and by the original equation we have (x,d)=1,thenby (d,y,)=d“ the conclusion
follows.
(i) d** 0y,

If not, assume d“?|y, =dx/ "y, +Cix' *y°D+...

Then de?| dx{"ly1+—d (d _123(d ) xf’3yl‘°’D+...
4t xtly, + D(d -1)(d -2) XY

6
If 3Jd, then 3[(d-1)(d-2) , 2|(d-1)(d-2)

so  6](d-1)(d-2)

da+1 | D- (d _1)(d _2) Xi;i—3 3

then 5 y>=d“*|x/™y,, which leads to a contradiction.

If 3|]d, thenassume d=3d,, then d >1

D(d-1)(d-2) ,
3 2 %

(xy,,d*)=d* and d, >1, which leads to a contradiction. ~ So (ii) holds.

S0 Aot xtty, + Py =d Xy, however

(iii) Now we prove the theorem directly

9



o - — 2 = 2 20+3

By the preliminary proposition (4), Yad )2(" Yo , Xa yzd (mod d2 , ) . Generally,
X,q = X5 + Dy; = x5 (modd““*)
) = ka—l 2a+3
if we have proven Yha =1% ) Yo (modzd , ) then
X4 = Xy (Mod d“**7)
Yisyd = YeXa T Xa Yo = kxg‘lyd Xy T X(Ij( Yy =(k +1)X§ Y, (mod dZMS)
Xosnya = XaXa T DYig Vo = X('j Xy D-kxg‘lyd Yo = X§+l (mOdd2a+3)
o X, = X (mod d***®)
Yoa =NXg Y (Mod d***?)

so whe d/n wehave d*** |y, otherwise d“"|nx]"y, =d|nx]™.

by (d,x,)=1=d|n, thisis a contradiction. This deduction also proves when d|n,
da+2 | ynd. da+2 0 ydz )
S0 da+2|yn<:>d2|n, da+2Dyd2.

Generally, assume that we have proven d“**|y, <d*|n, and d“" 0y .,

*

seN”.

2d°®

— 2a+2s+1y -
Yyue = 2% Yy =2X .Y . (Mmodd )

Y 2 _ 2 2a+2s+1
X _de+Dyds_xds(modd )
then

_uk 2a+25+1
X, qo = Xys (modd )

If we have proven {yk.ds = kXId(s_lyds (mOd d 2a+2$+1) .

—_— . . . = k . S k 2
then X(k+1)d5 = Kge Kge T D Yige Yas = Xgs " Xg Dxdsyds

_ yk+1 200+25+1
=X,. (modd ).
_ _ vk k-1
y(k+1)ds o Xkds yds + ydeXdS = de yds + kde de
_ k 200+25+2
=(k+1)x..y,.(modd )

_yh 200+25+2
X . =de(modd )

vn,
ynds = nxgs—lyds (mOd d 2a+25+2) .

SO

10



a+s+1
So naturally we have d“**|y «<s**|n , d [ Yysa .

By induction we have vkeN", d“*0Oy <d“On. [

Proof of 1. (2):

Firstly, the minimal solution of x*—Dy*=h is (x,y,), then the general solution

(X,.y,) isgivenby x,+Y,

\/B: (Xl + 3/1\/5)an .
b

Where when h=-1, a,=2n-1, b, =1;

when h=4 , a,=n, b =2"";

when h=-4, a,=2n-1, b, =2""7%;

when h=+2, a ,=2n-1, b, =2"".

The proof will still be divided into three parts:
(i) d]y, <d]a,

_ (VDY) — (¢ —Dy)* Gy XY +C, Xy Dt
since " 2b /D b,

=a,X""y,(modd)

By the original equation we have (x,d)=1, thenby (d,y,)=1 the conclusion

holds.
Gi) doy,
d+1
Where when h=-1,-4,£2, c, = > swhen h=4,c,=d.Thenwehave a, =d.
a Xy, +C3 xM D+,
If not, assume d*|y, = W N ;dxi i
Then gy, + LMD oy
, Dd-1)(d-2) 4
d|x'ty, + ( 6)( )-xf3y13+...

If 3/d, then 3|(d-1)(d-2) , 2|(d-1)(d-2), so 6|(d-1)(d-2)

11



and d|D-

W =d|x’"y,, which is a contradiction.

If d*|nuj?v, =d|nuj™.3|d, thenassume d=3d,, d,>1

D (d-1)(d-2) ,
3 2~

but (xy,,d)=1 and d, >1, which is a contradiction. So (ii) holds.

S0 d, %y, + Sy = d Xy,

(iii) Now we prove the theorem directly

u, \j
Let u ++/Dv, =(x ++Dy,)", then actually we have X, = bn S

n n

um+n = umun + Dvmvn - -
Thus what we have got in the previous two

v, satisfy {

Vinen = UV, ULV,

stepsisexactly d|v,<d|n, dlv,.

= = 3
Then we have {VZd = 2U,V, = 2u,Vy (mod d*)

U,y =U5 +Dv; =uj(modd®)

v, =ku v, (modd®
Generally, assume we have proven { ¢ o s )
Uy =Uy(modd®)
— _ k-1, k _ k 3
Then Visnya = VigUg T UigVg =Kug v, -uy +ugvy = (K +1)ugvy (modd®)
_ .k k-1, gkl 3
Uigyg = UgUg + Dv,Vy =Ug Uy + D- kud Vg Vg =U; (modd®)

u, =uj(modd®)

So we have ) )
Vg =Nug vy (modd®)

n

Sowhen d}n wehave d*|v,, otherwise d*|nuj™v, =d |nuj™

By (d,u,)=1=d|n, which is a contradiction. This also proves when d|n we
have d*|v,.d*[v,

So d*|v, &d*|n, d’0v,,.

Generally, assume we have proven d*|v, < d*[n, and d°*[v,

Y 2 .2 $+2
uds_uds+Dvds=uds(modd )
then

2
— — S+2
V, s _2udsvds _2udsvds(modd ).

12



u, . =ul, (modd*?)

If we have proven — LK 1 s+2
Vg = kuds vds(modd ).

o . . . —_— k . s k 2
Then u(k+1)ds = Upgs Ugs T D Vigs Vs =Ugs "Ug + DudSVdS

k+1 (mOd d s+2)

_ _ K k-1
Viergs = U Vs T ViggeUgs udsvds+kudsu

= (k+1ul,v , (modd*"?)

— N S+2
on u .. =u;(modd™ )
s0 ’ _ -t 5+2
vV . =nhuv . (modd™™).

1 1 1
sonaturally we have  d°" v, < d*"[n , d v,

Then by induction we have VvkeN", d*0v, < d“0n.

That is exactly d“ [y, < d*[a, 0

4. Applications of Theorem 1

Examplel x*—-24*"'=1 X, neN.

This equation has an obvious solution x=5, n=0. Assume (x,n)

non-negative solution of Xx*—24*"" =1 such that n>0, then in the Pell equation

13



x*—24y® =1, assume y =24".n>0, then 24"y «24"0m.So y_ >y

-
Notice that Y, :C;n -5+C§4n 5%.24+...
>5.24">24" =y
This is a contradiction.
So this equation has no non-negative integral solution other than (x,n) =(5,0).
This example can be directly generalized into the following result:

X —(@-D"'=1 (a>2 is fixed, X, N are variables) has no

non-negative solutions.

A more general question is: Besides n=0, is there any non-negative integral

2n+l

solution of x*—y*™* =12 We can only obtain parts of answer to this question here.

2n+1

Example 2 x*—y* =1(n>0)when 2n+1=p is prime, we must have 2|y,

p|x.
Proof: First we prove 2| y. Otherwise 2}y ,then 2|x.So x+1, x—1 are both odd.
By (Xx+D(x-1)=y**, and (x+1)(x-1)=y*"*

X+1:u2n+l
SO :>u2n+l_v2n+l=2. SO U—Vl u2n+l_v2n+1:2.

X_1:V2n+l
Since u, v are either both odd or both even, we must have u=v+2. So

(v+2)°™t —v*" > 221 5 2 This is a contradiction.

So 2]|y.
By the original equation, we have x* =(y+1)(y"'—y*?+..+1).
yPrtoyP?y 41=1-(-1)+...+1= p(mod y +1).
If ply+1 then p|x*= p|x ,and the conclusion follows.

Next we assume pJy+1 so (y+LyP'—yP?+. . .+1)=1.

14



1=a° )
So { o1 y; a 1o p? since y>2 and 2|y so y>8, a>2.
yPr -y L+ l=

Now the original equation turns into x*> —(a®>-1)*""=1 (a>2)

By the generalization of example 1 we know this equation has no non-negative

integral solutions such that n>0. [

In fact x*—y*"*

=1 is a special case of Catalan’s Conjecture: the Diophantine
equation x*—y° =1 has only one solutionx=3, y=2, a=2, b=3 if we require
the positive integers X, y, a, b are greater than 1. This conjecture has been solved

by Preda Mihailescu in 2002.

Now we deal with the generalized Catlan’s conjecture: the Diophantine eugation
X" —2y" =1.
When m=n=2, it is just the standard Pell equation x* —2y* =1, we have known it has

infinitely many solutions with minimal solution (3,2), general solutions can be given

by X ++/2y, =(3+2/2)".

When m=p or 2p, p is odd prime, the following several examples show some

necessary conditions of the solutions of this equation.

Example 3 x”—2y*=1(x>3) (p is odd prime), its any positive integral solution
must satisfy p|y.
Proof: (x°—D(XxP™"+...+1)=2y?

X" +...+1= p(mod(x—1))

15



If p| x—1, thenobviously p|y.

If pfx-1, then (x—1,x**'+..+1)=1.

Since x isodd, x"*+..+1 isodd, too.

so x*'+..+1=a’, x-1=2b%,

The equation turns to (2b°+1)° —2y*=1, so (2y,(2b2 +1)pT4) is
solution of quasi-Pell equation X?—2(2b* +1)Y*=-2.

The minimal solution of this equation is (X,Y,)=(2b,1) , assume
(2y, (20 +1)%) = (X,.Y,),

Then by theorem 1.(2) we have (20° +1)pr1 0n, thus n>(2b° +l)p%

2n-1
2b+4/2 2b* +1
Now X, ++/2(2b% +1)Y, =( ! (2“ i )) ,

(2n—1)(2b)>"*

So Y > >2n-1>n>(2b° +1)pr1 =Y, , this is a contradiction.

So p|x-1, ply. [

Completely in parallel, we can prove any positive integral solution of

xP—2y*=—1(x>3) (p isodd prime) must satisfy p|y.

Example 4 x*P —2y*=1 (x>3) (pis odd prime), its any positive integral solution
must satisfy p|y.

Proof: x*°+y*=(y*+1)?, and x isodd= x** =1(mod8), so y iseven.

By results from Pythagoras equation, 3a,b with one odd and the other even, a>b,

such that x? =a’-b*, y*=2ab, y*+l1=a’+b’.

so a*+b®=1+2ab a-b=1.

16



so  x"=2b+1, y?*=2b(b+1).

When b isodd, (2(b+1),b)=1, so 2(b+1)=u?*, b=v’, y=uv,
xP—2v?> =1, by Example3, p|v so ply.

When b iseven, (2b,(b+1)=1, so 2b=u*, (b+1)=Vv*, y=uv,

xP —2v? =-1, by the remark after Example 3, p|v so ply. [

Example 5 The Diophantine equation 3*"* —2y* =1 has no positive integral solution
when 2n+1 isacomposite number.

Lemma: a, m, neN’, Jll@"-1a"-1)=a™" 1.

Proof of lemma: For m>n, by Euclidean algorithm we have,

m=qgn+n

n=q,n+r

e = Okl i

=052l
thus r.,=(mn).

Then we have (@"-La"-1)
=((@"-1)-(a"-1),a"-1)
=(@"-a",a"-1)
=@"@""-1,a"-1)
=(@""-La"-1

—.=@*"-1a"-])=(@"-1a" -1

17



—.=@"-La"-) =..=(@"-La*-1)=a“-1=a™" -1,
The lemma is proven.

Now return to Example 5. Denote prime divisors of 2n+1 as p,, P, ..., P,-

since 2n+1 isacomposite number,

So for V1i<i<k,

2n+1\ P 2n+1
p, <2n+1. Now we have (3 § ] —2y* =1 since 3 ™ >3, by conclusion of

Example 3 we know for V1<i<k, p.|y.
So F" =1(modp,), VI<i<Kk.
Without losing generality, we can assume p, is the minimal prime divisor of
2n+1, then p, isanodd integer that is greater than 1, and we have
p 3" -1, p|3*"-1
By the lemma, p, |3%"*"™ —1,
Notice that all the prime divisors of p, -1 is smaller than p,, by our assumption
of p,, 2n+1 cannot divided by them. So p, —1 is relative prime to 2n+1.
Thus (2n+1,p,-1) =1, p,|3-1=2, thisis a contradiction.

Thus we have proven when 2n+1 is a composite number, 3*"*" —2y? =1 has

no positive integral solutions. [

18



5. Proof of Theorem 2

Theorem 2.(1) We denote the general solutions of standard Pell equation
x*-Dy?’=1 as (x,y,), then VteN",

among the following propositions either (i) or (ii) will hold; and either (iii) or (iv) will
hold:

() vn,t ] ..

(i)3 f(t)eN" that is uniquely determined by t, such that t|x, @% is a

positive odd integer.
@ii)vn,t |y, .
(iv) 3 g(t)eN" thatis uniquely determined by t, suchthat t|y, <> g(t)|n.

Proof: First, we enlarge the domain of index of (x ,y.) from N to Z. Define

y = (VDY) (6, =VDy)" (VDY) = =VDy)"
n 2 n 2'\/5
- S Xm+n = Xan + Dymyn
Check directly from the definition we have (Vm,neZ2).
ym+n = Xm yn + ymxn

If we let ﬂ:x1+\/5y1, Z:xl—\/ﬁyl, then

CATHA" A+ AT +an _y
" 2 2(A-A)" 2 a

X

AN =" AN An A

=00 20.4yvD 29D ™

Or equivalently, (x .,y ,)=(X,,—y,) VneZ.

With these preparations we can enter the proof of the theorem now.

Yoer = X ¥r + XY, =X, Y, (Mod x,)

For vreN", :
{XW = XX +Dy,y, =Dy,y,(modXx,)

19



s0 X, =Dy,y, =D-(X._V,)Y, =Dy’x,  (modx,)

For fixed reN", assume n=2kr+r,, —-r<r<r.

Then we have X, =(Dy? )k X, (mod x,) E(Dyf)k X, (Modx,). o<r j<r.
(since X, =X_ =X, )

Thus, for Wte N" such that there is some x, that can be divided by t,
assume Xf(t) is the minimal term with positive index such that its index is
dividable by t and itself is dividable by t as well, then (t,Dyfq)=1.In the
congruence equation above we let r=f(t) , then t|X, < t| Xy - Since

O4qr|<f(t), and Xx,=1 cannot be divided by p, then by our requirement of
f(t) we must have |r,|=f(t), or equivalently, n=(2k=x1)f(t). So %is a

positive odd number.
The other direction of the sufficient and necessary condition is easy to shown in the

same manner.

As for the corresponding conclusion about vy : either YneN", tfy ; or
Jg(t)e N, suchthat t|y <> g(t)|n.

By Yoor = Yo X + XY, =X Y, (mody,) immediately we have:

If n=kr+r,, 0<r<r,

then vy, z(xr)k y,(mody,). Thus we still take Yy, as the term with minimal
positive integral index among those terms that are dividable by t. In the congruence
equation above let r=g(t) we have t|y, <t|y,, by our requirement of g(t),
we must have 1, =0, that justmeans g(t)|n.

The other direction of the sufficient and necessary condition is easy to shown in the

same manner. []

20



Theorem 2.(1) actually shows such a fact: among the solutions (x,,y,) of

x* —Dy® =1, if we select out the terms that can be dividable by a given positive

integer t, we will see that their indexes are generated by a positive integer f(t) that

is determined by t.

Theorem 2.(2) x* —Dy? =2, denote its general positive integral solutions as

(x,,Y,), for Voddinteger t, among the following propositions either (i) or (ii)
will hold; and either (iii) or (iv) will hold:

(i))VneN"t|x, .

(i) 3 f@)eN" that is uniquely determined by t , such that
t|x, < f(t)|2n-1.

(ii)vneN" t]y,.

(iv) 3 g(t)eN” that is uniquely determined by t , such that
tly,<g()|2n-1.

Proof: Denote the minimal solutionas (x;,V,) ,u=x1+\/5yl,

2n-1 , —2n-1 2n-1 _ —2n-1
Xn=%’ yn:%’ neZ.
-2n-1 —-2n-1 -2n-1 —-2n-1
. M AETT g AH
en -n -n - n+ly —\-2n-1
2 2" (up)
2n+1 —2n+1
Y e
ST o Ko
y _ ﬂ—Zn—l _ﬁ—Zn—l _ ﬂ—Zn—l _ﬁ—Zn—l
-n 24\/6 2n+1(luﬁ)72nfl\/5
Iu2n+1 _ =2n+l

2n+1\/5 = Ynu.
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By the preliminary proposition (3) about Pell equation, such defined (x,,y,) are
all positive integers when n>0.
So such defined (x,,y,) areall integerswhen neZ.

Define again

n —n

A N T L

n 2 v Uy = 2\/5

n

a , VneZ. Itis easy to verify this definition

- . a,.,=a,a,+Dbb
satisfies the recursion formula , ¥Ym,neZ .
bm+n = ambn + anbm

Here a,, b, donotneed to be integers.
But a,, b, must be an integral power of 2 times by a integer, this is because:

Obviously, when n>0, a,, b eZ,

A N 0 N v ~2"[(1)a, ]

But a, 2 - 2(_2)n(luﬁ)—n - (_1)n on+l -
h = /u_n _ﬁ_n — /u_n _ﬁ_n _ /un _ﬁn =2 (1 n+lb ,
—n 2\/5 2(_2)n(lu!—l)—n\/6 (_2)n+1\/6 I:( ) ”]

So for VvneZ, a,, b, can be represented as an integral power of 2 times by a
integer.
: . . I,
Without losing generality, we can assume a,=2"-c,, b, =2"-d , ¢,

n

d, e Z and they are both odd, k., | €Z.

For a fixed odd integer t, we define t|a, if t|c,, t|b, if t|d,.

Since b, =ab +ab ,and 3 N thatis large enough such that 2" -b  , 2"-ab.,
2" -a b, are all integers.

Thus, when tla , by 2V-b  =2"ah +2%ab , t|C, and 2"-2“-b eZ,

2"a b =(2" A -b.)c,

Sowe have 2"b .. =2"a b (modt)
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So t|b,.,, <t|ab,.

In parallel, from a.,, =a,a, + Db, we can also obtain

when t|a,, t|a, <t|Dbpb,.

thus, when tl|a,, t|a, <t|Dbb <t|Db’a, 6 <tla,, . (The last
equivalence is because a’ — Db? = (-2)",sot|a,, (t,(-2)")=1= (t,Db?)=1.)

Assume @; . is the term with minimal positive integral index among the terms
dividable by t, for vn such that t|a, , denote n=2kf(t)+r, ,
—f(t) <1, < f(t). By the discussion above we know that t|a, <t|a, .
when r, >0, by the requirement of f(t) we musthave r, = f(t).
when 1, =0, a, =a,=1, itisimpossible.
when r,<0, a =2"(-)°a, so t|la <tla,.and O<-r,<f(t), this

will lead to a contradiction to the requirement of f (t).

so tla, onR=1t)< % =2k +1 is a positive odd integer. Thus we have proven,

either odd integers t cannot divide any a , or 3 f(t)eN" such that

t|a, @% is a positive odd integer. Now notice that X, :2‘(”‘1)a2n_1, o)
t|x, o tla,,,.
Thus we have proven either the odd integer t cannot divide any x,, or 3

f (t) e N"such that

t| x, < f(t)|2n-1. The proof of corresponding result about y, isparallel. [

Proof of theorem 2(3) can be obtained with minor changes in proofs of theorem

2.(1) and 2.(2).
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6. Applications of Theorem 2

Recall that in Example 5 in section 4 we have proven 3" =2y? +1 has no solutions

when 2n+1 is a composite number, so the only situation left unsolved is when 2n+1 is
prime. Now by theorem 2, let’s give a general proof that does not need to discuss

whether 2n+1 is composite or prime.
Example 6 The Diophantine equation 3°"*=2y*+1 .has no positive integral
solutions other than n=2, y=11.

Proof: We turn the equation into a quasi-Pell equation: (2y)*—-6-(3")>=-2. Thus
the problem is turned to: among the solutions (x,,y.) of X*-6Y?=-2, how
many Yy, is3’s power.

We write out the first few terms: y, =1, vy,=9, vy, =10y, -V, ;.

Such we have got y =3°, 3% are both possible. Now we care about the cases

y, =3, a>3.Ifsuch y, exists, it must be multiples of 27, then by theorem 8,

39(27) e N"such that 27|y, <> g(27)|2n-1.

So now we need to fix g(27), or equivalently, to find the index of the first term in

{y.} thatis dividable by 27.

Compute y, =89, vy, =881, y, =8721=27x17x19, so g(27)=5.

However, notice that for 17 , there also 3g(l7)eN” such that

17|y, < 9(@7)|2n-1.So 17|y, =g(17)|5.

Thus now for vy, =3, a>3, by 27|y,we have g(27)=5[|2n-1. Since

9(7)|5, so g7)|2n-1=17]y,, thiscontradictsto y,=3".

Sowe have y, =3, a>3 isimpossible.
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Thus among the solutions (x,,y,) of X?-6Y?=-2, there are only two y,'s such
that y is 3’s power: y,=3°, 3°. So all the non-negative solutions of

32n+l=2y2 +1 are (n,y):(o,l) y (2,11) D

Example 7 Whenn=2%,n=2.5, the Diophantine equation 3*" =2y*+1 has no
positive integral solutions.

Proof: 3*"+y*=(y*+1)*, By results of Pythagoras equation, Ja,b with one odd
and one even, a>b, suchthat 3"=a’-b*, y*=2ab, y*+l=a’+b’.

S0 a’+b*=1+2ab, a-b=1

S0 3"=2b+1, y*=2b(b+1).

When b iseven, (2b,b+1)=1, so 2b=u®b+1=Vv*, y=uv, 3" -u®=1.

2
n
SO u iseven, by modulo 4 we can see n iseven, so we have (?ﬂj —u® =1, this

equation has no positive integral solution.
When b isodd, (2(b+1),b)=1, so 2(b+1)=u®, b=Vv’, y=uv,

3"=2v*+1. Thus from 3" =2y®+1 we obtain 3" =2v*+1, repeat this procedure

2n
for finitely many steps we will get 3% =w? +1, such that i—: is odd. By

. . . 2n .
the hypothesis, n is neither 2°s power nor 2’s power times 5, 5027 is an

odd integer other than 5, then by Example 7, the equation has no positive

integral solutions.

Finally, we list results we have got for the Diophantine equation x™ —-2y" =1 as

follows:

1. When m=n=2, it has infinitely many solutions, the minimal solution is (3,2),
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general solutions can be given by X, +\/§yn =(3+ 2\/5)”.
2. When m=p or 2p, n is even, the positive integral solution (x,y) (x>3) of the
equation must satisfy p|y.

3. When m is odd; or m is even but not type of 2%,2“-5, nis even, there is not

integral solution for the equation such that x =3.
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