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COMPACTIFICATIONS OF SYMMETRIC SPACES

Armand Borel & Lizhen Ji

Abstract

Compactifications of symmetric spaces have been constructed
by different methods for various applications. One application is
to provide the so-called rational boundary components which can
be used to compactify locally symmetric spaces. In this paper,
we construct many compactifications of symmetric spaces using a
uniform method, which is motivated by the Borel-Serre compact-
ification of locally symmetric spaces. Besides unifying compact-
ifications of both symmetric and locally symmetric spaces, this
uniform construction allows one to compare and relate easily dif-
ferent compactifications, to extend the group action continuously
to boundaries of compactifications, and to clarify the structure of
the boundaries.

1. Introduction

Let X = G/K be a symmetric space of noncompact type. Com-
pactifications of X arise from many different sources and have been
studied extensively (see [GJT], [BJ1], [Os] and the references there).
There are two types of compactifications depending on whether one
copy of X, always assumed to be open, is dense or not. For example,
the Satake compactifications, Furstenberg compactifications, the conic
(or geodesic) compactification, the Martin compactification, and the
Karpelevic compactification belong to the first type, while the Oshima
compactification and the Oshima-Sekiguchi compactification belong to
the second type. In this paper, we will only study the case where X is
dense.

All these compactifications were constructed by different methods
and motivated by different applications. For example, the Satake com-
pactifications are obtained by embedding symmetric spaces X into the
space of positive definite Hermitian matrices as a totally geodesic sub-
manifold, which is in turn embedded into the (compact) real projective
space of Hermitian matrices; on the other hand, the Furstenberg com-
pactifications are defined by embedding X into the space of probability
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measures on the Furstenberg boundaries. The Martin compactification
was motivated by potential theory, and the ideal boundary points are
determined by the asymptotic behaviors of the Green function. On the
other hand, the conic (or geodesic) compactification X ∪ X(∞) and

the Karpelevic compactification X
K

are defined in terms of equivalence
classes of geodesics with respect to various relations. In all these com-
pactifications, parabolic subgroups play an important role in describing
the geometry at infinity.

In this paper, we propose a new, uniform approach, called the attach-
ment method in [BJ1], to construct most of the known compactifica-
tions of symmetric spaces by making direct use of parabolic subgroups.
Briefly, the compactifications of X are obtained by attaching bound-
ary components associated with parabolic subgroups, and the topology
is also described in terms of the Langlands decomposition of parabolic
subgroups. A basic feature of this method is that it uses reduction the-
ory for real parabolic subgroups; in particular, separation property of
Siegel sets and strong separation of generalized Siegel sets, and hence
relates compactifications of symmetric spaces closely to compactifica-
tions of locally symmetric spaces. In fact, this method is suggested by
the compactification of locally symmetric spaces in [BS].

This method allows one to show easily that the G-action on X ex-
tends continuously to the compactifications of X and to describe explic-
itly neighborhoods of boundary points and sequences of interior points
converging to them. Explicit descriptions of neighborhoods of bound-
ary points are important for applications (see [Zu] and the references
there), but they do not seem to be available in literature for the Satake
and the Furstenberg compactifications; in particular, the non-maximal
Satake compactifications. As explained above, this procedure is closely
related to compactifications of locally symmetric spaces, and it seems
conceivable that the method in §§4, 5 can be modified to give more
explicit descriptions than those in [Zu] of neighborhoods of boundary
points of the Satake compactifications of locally symmetric spaces.

Since compactifications of X are obtained by adding boundary faces
associated with real parabolic subgroups, this procedure relates the
boundary of the compactifications of X to the spherical Tits building
of X, a point of view emphasized in [GJT]. A basic geometric con-
struction in [GJT] is the dual cell compactification X ∪ ∆∗(X), which
is isomorphic to the maximal Satake compactification. The dual cell
compactification X ∪ ∆∗(X) is constructed by gluing together polyhe-
dral compactifications of maximal totally geodesic flat submanifolds in
X passing through a fixed basepoint in X and plays an important role
in identifying the Martin compactification of X, one of the main results
of [GJT]. Briefly, for each such flat, the Weyl chambers and their faces
form a polyhedral cone decomposition and their dual cell complex gives
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the boundary at infinity; and the K-action glues the compactification
of all such flats to give the compactification X ∪∆∗(X). Because of the
nature of the construction, the continuous extension of the G-action to
the dual cell compactification X ∪ ∆∗(X) is not clear. On the other
hand, from the construction in this paper, the continuous extension of
the G-action follows easily. This difficulty of extending the G-action to
the dual cell compactification is one of the motivations of this paper.

The organization of this paper is as follows. In §2, we recall Siegel
sets and generalized Siegel sets of real parabolic subgroups, and their
separation property for different parabolic subgroups. In §3, we outline
a general approach to compactifications of symmetric spaces. One key
point is to define boundary components for real parabolic subgroups and
to attach them by means of the horospherical decomposition. In §4, we
construct the maximal Satake compactification using this method. §§5,
6, 7, 8 are respectively devoted to the non-maximal Satake compactifi-
cations, the conic (or geodesic) compactification X ∪X(∞), the Martin
compactification and the Karpelevic compactification.

Some of the results in this paper have been announced in [BJ1].
This paper is mainly written up by the second author, who will bear
the primary responsibility for it.

Acknowledgments. We would like to thank an anonymous referee for
his extremely careful reading of preliminary versions of this paper and
for his numerous detailed, very helpful, kind suggestions, in particular
for a modification of the definition of convergent sequences for Xµ and
the proof of the second part of Proposition 5.3. After this paper was
submitted, Professor Armand Borel unexpectedly passed away on Au-
gust 11, 2003. This is a tragic loss to the math community, in particular
to the second author, who is very grateful for the experience of working
with Professor Borel.

Conventions. In this paper, for any x, y ∈ G, define

xy = y−1xy, yx = yxy−1.

The same notation applies when x is replaced by a subset of G. For two
sets A, B, A ⊂ B means that A is a proper subset of B; and A ⊆ B
means that A is a subset of B and could be equal to B. A reference to
an equation is to one in the same section unless indicated otherwise.

2. Parabolic subgroups and Siegel sets

In this section, we introduce some basic facts about (real) parabolic
subgroups and their Siegel sets.

Let G be an adjoint connected semisimple Lie group, K ⊂ G a maxi-
mal compact subgroup, and X = G/K the associated symmetric space
of non-compact type. We remark that the adjoint assumption is used
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in the proof of Proposition 2.4. Since every symmetric space X of non-
compact type is a quotient of such an adjoint group G, there is no loss
of generality in assuming this.

Let x0 = K ∈ X be the fixed basepoint. Then for every (real and
proper) parabolic subgroup P of G, there is a Langlands decomposition

P = NP AP MP ,

where NP is the unipotent radical of P , AP MP is the unique Levi com-
ponent stable under the Cartan involution associated with K, and AP

is the split component. In fact, the map

NP × AP × MP → P, (n, a, m) 7→ nam

is a diffeomorphism and the right multiplication by P is given by

(1) n0a0m0(n, a, m) = (n0
a0m0n, a0a, m0m).

Let KP = MP ∩K. Then KP is a maximal compact subgroup of MP ,
and

XP = MP /KP

is a symmetric space of noncompact type of lower dimension, called the
boundary symmetric space associated with P .

Since G = PK and KP = K ∩ P , the Langlands decomposition of P
gives a horospherical decomposition of X:

X = NP × AP × XP ,

(2) (n, a, mKP ) ∈ NP × AP × XP 7→ namK ∈ X,

and the map is an analytic diffeomorphism. We note that this diffeo-
morphism depends on the choice of the basepoint x0 and will be denoted
by

(3) µ0 : NP × AP × XP → X

as in [Bo2, 4.1] if the basepoint x0 needs to be specified. This map µ0

is equivariant with respect to the following P -action on NP ×AP ×XP :

n0a0m0(n, a, z) = (n0
a0m0n, a0a, m0z).

In the following, for (n, a, z) ∈ NP × AP × XP , the point µ0(n, a, z) in
X is also denoted by (n, a, z) or naz for simplicity.

The group G acts on the set of parabolic subgroups by conjugation,
and the subgroup K preserves the Langlands decomposition of these
parabolic subgroups and the induced horospherical decompositions of
X. Specifically, for any k ∈ K and any parabolic subgroup P ,

(4) NkP = kNP , MkP = kMP , AkP = kAP ,

and hence the Langlands decomposition of kP is given by

kP = kNP × kAP × kMP .



COMPACTIFICATIONS OF SYMMETRIC SPACES 5

To describe the K-action on the horospherical coordinate decompo-
sition, for any z = mKP ∈ XP , k ∈ K, define

(5) k · z = km kKP ∈ XkP .

Note that kKP = KkP . Under this action k maps XP to XkP . Then for
(n, a, z) ∈ NP ×AP ×XP = X, k ∈ K, the point kµ0(n, a, t) = k·(n, a, z)
has horospherical coordinates with respect to kP ,

(6) k · (n, a, z) = (kn, ka, kz) ∈ NkP × AkP × XkP .

The reason is that K fixes the basepoint x0 and these components
are defined with respect to x0. On the other hand, conjugation by
elements outside K does not preserve the horospherical decomposition
with respect to the basepoint x0.

For a pair of parabolic subgroups P, Q with P ⊂ Q, P determines a
unique parabolic subgroup P ′ of MQ such that
(7)
XP ′ = XP , NP = NQNP ′ = NQ ⋊ NP ′ , AP = AQAP ′ = AQ × AP ′ ,

where the split component AP ′ and the boundary symmetric space XP ′

are defined with respect to the basepoint x0 = KQ in XQ = MQ/KQ.
Conversely, every parabolic subgroup of MQ is of this form P ′ for some
parabolic subgroup P of G contained in Q.

Let Φ(P, AP ) be the set of roots of the adjoint action of aP on the
Lie algebra nP , and ∆ = ∆(P, AP ) be the subset of simple roots in
Φ(P, AP ). We will also view them as characters of AP defined by aα =
expα(log a). For any t > 0, let

(8) AP,t = {a ∈ AP | aα > t, α ∈ ∆}.

Then A+
P = AP,1 is the positive chamber, and its image in the Lie

algebra aP is

a
+
P = {H ∈ aP | expH ∈ A+

P } = {H ∈ aP | α(H) > 0, α ∈ ∆}.

Define

(9) aP (∞) = {H ∈ aP | ‖H‖ = 1},

the unit sphere to be identified with the sphere at infinity of aP , and

a
+
P (∞) = a

+
P ∩ aP (∞),

an open simplex.
Then for any k ∈ K,

AkP,t = kAP,t, a
+
kP

(∞) = ad(k)a+
P (∞).

For any subset I ⊂ ∆(P, AP ), there is a unique parabolic subgroup
PI containing P such that

API
= {a ∈ AP | aα = 1, α ∈ I},
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and ∆(PI , API
) is the set of restrictions to API

of the elements of
∆(P, AP ) − I. When I = ∅, PI = P ; when I1 ⊂ I2, PI1 ⊂ PI2 . Any
parabolic subgroup containing P is of this form. If P is a minimal para-
bolic subgroup P0, the parabolic subgroups P0,I containing it are called
standard parabolic subgroups.

For simplicity, in the following, we denote the subset ∆(P, AP ) − I
also by ∆(PI , AP ) to indicate its relation to PI (i.e., to convey intuitively
that the roots in ∆(P, AP ) − I are in the directions of PI):

(10) ∆(PI , AP ) = ∆(P, AP ) − I.

For each PI , let a
I
P be the orthogonal complement of aPI

in aP with
respect to the Killing form. Then

(11) aP = aPI
⊕ a

I
P .

Let P ′ be the unique parabolic subgroup in MPI
corresponding to P in

Equation (7). Then its split component with respect to the basepoint
x0

(12) aP ′ = a
I
P .

Let a
+
P (∞) be the closure of a

+
P (∞) in aP (∞), a closed simplex. Then

each a
+
PI

(∞) is a simplicial (open) face of a
+
P (∞), and

(13) a
+
P (∞) = a

+
P (∞) ∪

∐

I 6=∅

a
+
PI

(∞),

where I ⊂ ∆(P, AP ).
For bounded sets U ⊂ NP , V ⊂ XP and t > 0, the set

(14) U × AP,t × V

is identified with the subset µ0(U × AP,t × V ) of X through the horo-
spherical decomposition of X and called a Siegel set in X associated
with the parabolic subgroup P .

An important property of Siegel sets is the following separation prop-
erty.

Proposition 2.1. Let P1, P2 be two parabolic subgroups of G and
Si = Ui × AP,ti × Vi be a Siegel set for Pi (i = 1, 2). If P1 6= P2 and
ti ≫ 0, then

S1 ∩ S2 = ∅.

Proof. This is a special case of [Bo1, Proposition 12.6]. In fact, let
P be a fixed minimal parabolic subgroup. Then P1, P2 are conjugate to
standard parabolic subgroups PI1 , PI2 containing P ,

P1 = k1PI1 , P2 = k2PI2 ,

for some k1, k2 ∈ K. If for all ti > 0,

U1 × AP1,t1 × V1 ∩ U2 × AP2,t2 × V2 6= ∅,
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then [Bo1, Proposition 12.6] implies that I1 = I2 and k1k
−1
2 ∈ PI1 .

This implies that P1 = P2. q.e.d.

A special case of this proposition concerns rational parabolic sub-
groups and their Siegel sets. This separation property for rational par-
abolic subgroups plays an important role in reduction theory for arith-
metic subgroups and compactifications of locally symmetric spaces (see
[BJ2]). For compactifications of symmetric spaces, we need stronger
separation properties.

Proposition 2.2. Let P1, P2,S1,S2 be as in Proposition 2.1 and let
C be a compact neighborhood of the identity element in K. Assume
that P k

1 6= P2 for every k ∈ C. Then there exists t0 > 0 such that
kS1 ∩ S2 = ∅ for all k ∈ C if t1, t2 ≥ t0.

This proposition follows from the even stronger separation property
of Proposition 2.4 below, which plays a crucial role in this paper.

Let B(, ) be the Killing form on g, θ the Cartan involution on g

associated with K. Then

〈X, Y 〉 = −B(X, θY ), X, Y ∈ g,

defines an inner product on g and hence a Riemannian metric on G and
NP . Let BNP

(ε) be the ball in NP of radius ε with center the identity
element.

For a bounded set V in XP and ε > 0, t > 0, define

(15) Sε,t,V = SP,ε,t,V =
{

(n, a, z) ∈ NP × AP × XP = X |

z ∈ V, a ∈ AP,t, n
a ∈ BNP

(ε)
}

.

We shall call SP,ε,t,V a generalized Siegel set associated with P , and P
will be omitted when it is clear.

Lemma 2.3. For any bounded set U ⊂ NP and ε > 0, when t ≫ 0,

U × AP,t × V ⊂ Sε,t,V .

Proof. Since the action of A−1
P,t by conjugation on NP shrinks NP

towards the identity element as t → +∞, it is clear that for any bounded
set U ⊂ NP and ε > 0, when t ≫ 0, a ∈ AP,t,

Ua ⊂ BNP
(ε),

and the lemma follows. q.e.d.

On the other hand, Sε,t,V is not contained in the union of countably
infinitely many Siegel sets defined above. In fact, for any strictly in-
creasing sequence tj → +∞ and a sequence of bounded sets Uj ⊂ NP

with ∪∞
j=1Uj = NP , we claim that

Sε,t,V 6⊂ ∪n
j=1Uj × AP,tj × V.
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In fact,
Sε,t,V = ∪a∈AP,t

aBNP
(ε) × {a} × V.

For every j such that tj+1 > tj , there is an unbounded sequence ak ∈
AP,tj \ AP,tj+1

. Fix such a j and a sequence ak. Then akBNP
(ε) is not

bounded, and hence

akBNP
(ε) × {ak} × V 6⊂ ∪j

l=1Ul × AP,tl × V.

On the other hand, since ak 6∈ AP,tl for all l ≥ j + 1,
akBNP

(ε) × {ak} × V 6⊂ Ul × AP,tl × V,

and the claim follows.
To cover Sε,t,V , we need to define Siegel sets slightly differently. For

any T ∈ AP , define

(16) AP,T = {a ∈ AP | aα > Tα, α ∈ ∆(P, AP )},

and

(17) Sε,T,V = SP,ε,T,V =
{

(n, a, z) ∈ NP × AP × XP = X |

z ∈ V, a ∈ AP,T , na ∈ BNP
(ε)

}

.

Siegel sets of the form U × AP,T × V are needed for the precise re-
duction theory of arithmetic subgroups (see [Sap] for more details) and
will also be used in §5 to describe the topology of nonmaximal Satake
compactifications; and an analogue of Lemma 2.3 holds for them. Then
there exist sequences Tj ∈ AP,t and bounded sets Uj ⊂ NP such that

Sε,t,V ⊂ ∪∞
j=1Uj × AP,Tj

× V.

In fact, Tj could be any sequence in AP,t such that every point of AP,t

belongs to a δ-neighborhood of some Tj , where δ is independent of j.

Proposition 2.4. For any two distinct parabolic subgroups P, P ′ and
generalized Siegel sets Sε,t,V , Sε,t,V ′ associated with them, and a compact
neighborhood C of the identity element in K such that for every k ∈ C,
kP 6= P ′, if t ≫ 0 and ε is sufficiently small, then for all k ∈ C,

kSε,t,V ∩ Sε,t,V ′ = ∅.

Proof. Let τ : G → PSL(n, C) be a faithful irreducible projective
representation whose highest weight is generic. Since G is semisimple
of adjoint type, such a representation exists. Choose an inner product
on C

n such that τ(θ(g)) = (τ(g)∗)−1, where θ is the Cartan involution
on G associated with K, and A → (A∗)−1 is the Cartan involution
on PSL(n, C) associated with PSU(n). Then τ(K) ⊂ PSU(n). Let
Mn×n be the vector space of complex n × n matrices, and PC(Mn×n)
the associated projective space. Composed with the map PSL(n, C) →
PC(Mn×n), τ induces an embedding

iτ : G → PC(Mn×n).
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For each Siegel set Sε,t,V in X associated with P , its inverse image in
G under the map G → X = G/K, g 7→ gx0, is {(n, a, m) ∈ NP × AP ×
MP K = G | m ∈ V K, a ∈ AP,t, n

a ∈ BNP
(ε)} and denoted by Sε,t,V K.

We claim that the images iτ (kSε,t,V K) and iτ (Sε,t,V ′K) are disjoint
for all k ∈ C under the above assumptions.

Let P0 be a minimal parabolic subgroup contained in P . Then P =
P0,I for a subset I ⊂ ∆(P0, AP0

). Let

C
n = Vµ1

⊕ · · · ⊕ Vµk

be the weight space decomposition under the action of AP0
. Let µτ be

the highest weight of τ with respect to the positive chamber a
+
P0

. Then
each weight µi is of the form

µi = µτ −
∑

α∈∆

cαα,

where cα ≥ 0. The subset {α ∈ ∆ | cα 6= 0} is called the support of µi,
and denoted by Supp(µi). For P = P0,I , let VP be the sum of all weight
spaces Vµi

whose support Supp(µi) is contained in I. Since τ is generic,
VP is nontrivial. In fact, P0,I leaves VP invariant and is equal to the
stabilizer of VP in G, and the representation of MP on VP is a multiple
of an irreducible, faithful one, and hence τ induces an embedding τP :
MP → PSL(VP ). The group PSL(VP ) can be canonically embedded
into PC(Mn×n) by extending each matrix in PSL(VP ) to act as the zero
linear transformation on the orthogonal complement of VP . Under this
identification, for every A ∈ PSL(VP ),

A(Cn) = VP .

Denote the composed embedding MP → PSL(VP ) →֒ PC(Mn×n) also
by τP ,

τP : MP → PC(Mn×n).

Similarly, for P ′, we get a subspace VP ′ invariant under P ′ and hence
under MP ′ , a subset PSL(VP ′) in PC(Mn×n), and an embedding

τP ′ : MP ′ → PSL(VP ′) ⊂ PC(Mn×n).

For any k ∈ C, kP 6= P ′, and hence

VkP 6= VP ′ .

Since for any m ∈ MP , m′ ∈ MP ′ , and any g ∈ G,

τP (m)τ(g)(Cn) = τP (m)(Cn) = VP ,

τP ′(m′)τ(g)(Cn) = τP ′(m′)(Cn) = VP ′ ,

it follows that for any g, g′ ∈ G, m ∈ MP , m′ ∈ MP ′ , and k ∈ C,

(18) τ(k)τP (m)τ(g) 6= τP ′(m′)τ(g′).

If the claim is false, then there exists a sequence gj in G such that

gj ∈ kjSεj ,tj ,V K ∩ Sεj ,tj ,V ′K,
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where kj ∈ C, εj → 0, tj → +∞. Since gj ∈ kjSεj ,tj ,V K, gj can be
written as

gj = kjnjajmjcj ,

where nj ∈ NP , aj ∈ AP,tj , mj ∈ MP , and cj ∈ K satisfy (1) for all

α ∈ ∆(P, AP ), aα
j → +∞, (2) n

aj

j → e, (3) mj ∈ V . By passing to a
subsequence, we can assume that kj → k∞ ∈ C, mj converges to some
m∞ ∈ MP , and cj converges to some c∞ in K.

By choosing suitable coordinates, we can assume that for a ∈ AP0
,

τ(a) is a diagonal matrix,

τ(a) = diag (aµ1 , . . . , aµn),

where the weights µi with support contained in I are µ1, . . . , µl for some
l ≥ 1, and µ1 is the highest weight µτ . Since τ is faithful and I is proper,
l < n. Recall that P = P0,I , and

AP = {a ∈ AP0
| aα = 1, α ∈ I}.

Then

τ(aj) = diag
(

aµ1

j , . . . , aµl

j , a
µl+1

j , . . . , aµn

j

)

= diag
(

aµτ

j , . . . , aµτ

j , a
µτ−

P

α cl+1,αα

j , . . . , a
µτ−

P

α cn,αα

j

)

,

where for each j ∈ {l + 1, . . . , n}, there exists at least one α ∈ ∆ − I
such that cj,α > 0. Then as j → +∞, the image of τ(aj) in PC(Mn×n)

iτ (aj) =
[

diag
(

1, . . . , 1, a
−

P

α cl+1,αα

j , . . . , a
−

P

α cn,αα

j

)]

,

→ [diag (1, . . . , 1, 0, . . . , 0)],

where the image of an element A ∈ Mn×n \{0} in PC(Mn×n) is denoted
by [A]. This implies that

iτ (gj) = τ(kj)iτ (aj)τ(n
aj

j )τ(mj)τ(cj)

→ τ(k∞)[diag (1, . . . , 1, 0, . . . , 0)]τ(m∞)τ(c∞)

= τ(k∞)τP (m∞)τ(c∞),

since kj → k∞, n
aj

j → e, mj → m∞, cj → c∞, and the image of C
n

under diag (1, . . . , 1, 0, . . . , 0) is equal to VP . Using gj ∈ Sεj ,tj ,V ′K, we
can similarly prove that

iτ (gj) → τP ′(m′
∞)τ(c′∞)

for some m′
∞ ∈ MP ′ and c′∞ ∈ K. This contradicts Equation (18), and

the claim and hence the proposition is proved. q.e.d.

Remark 2.5. It seems that the proof of [Bo1, Proposition 12.6]
does not apply here. Assume that P, P ′ are both minimal. Then there
exists an element g ∈ G, g 6∈ P such that P ′ = gP . In the proof
of [Bo1, Proposition 12.6], g is written in the Bruhat decomposition
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uwzv, where w ∈ W (g, aP ), w 6= id, u, v ∈ NP , z ∈ AP . For each
fixed g, the components u, v, z are bounded. This is an important step
in the proof. If w is equal to the element w0 of longest length, then
for a sufficiently small neighborhood C of g in G (or K), every g′ ∈ C
is of the form u′w0z

′v′ with the same Weyl group element W0 and the
components u′, v′, z′ are uniformly bounded, and the same proof works.
On the other hand, if w is not equal to w0, then any neighborhood C of g
contains elements g′ of the form u′w0z

′v′ whose components u′, z′, v′ are
not uniformly bounded, and the method in [Bo1, Proposition 12.6] does
not apply directly. The reason for the unboundedness of the components
is that NP w0 is mapped to an open dense subset of G/P .

Remark 2.6. The above proof of Proposition 2.4 was suggested by

the Hausdorff property of the maximal Satake compactification X
S
max.

In fact, Proposition 2.4 follows from the Hausdorff property of X
S
max,

by computations similar to those in the proof of Proposition 4.7. But
the point here is to prove this separation property without using any
compactification, so that it can be used to construct other compactifi-
cations.

Proposition 2.4 gives the separation property for different parabolic
subgroups. For the same parabolic subgroup P , separation of Siegel sets
for disjoint neighborhoods in XP is proved in Proposition 4.1 below.

As mentioned earlier, the separation property and the finiteness prop-
erty of Siegel sets for rational parabolic subgroups is a crucial result in
the reduction theory of arithmetic subgroups of algebraic groups (see
[Bo1], [BJ2]) and plays an important role in compactifications of locally
symmetric spaces Γ\X. One of the main points of this paper is that the
above (stronger) separation property of the generalized Siegel sets for
real parabolic subgroups will play a similar role in compactifications of
X.

3. An intrinsic approach to compactifications

In this section, we propose an uniform, intrinsic approach to com-
pactifications of X, suggested by the method in [BS] to compactify
locally symmetric spaces. In the terminology in [BJ1], this method is
called the attachment method, in contrast to the embedding method for
the Satake, Furstenberg compactifications.

It consists of three steps:

1) Choose a suitable collection of parabolic subgroups of G.
2) For every parabolic subgroup P in the collection, define a bound-

ary face (or component) e(P ) by making use of the Langlands
decomposition of P and its refinements.

3) Attach the boundary face e(P ) to X via the horospherical decom-
position of X to obtain X ∪

∐

P e(P ), and show that the induced



12 A. BOREL & L. JI

topology on X ∪
∐

P e(P ) is compact and Hausdorff, and the G-
action on X extends continuously to the compactification.

All the known compactifications can be constructed this way by vary-
ing the choices of the collection of parabolic subgroups and their bound-

ary faces. In fact, the maximal Satake compactification X
S
max, the conic

compactification X ∪X(∞), the Martin compactification X ∪∂λX, and

the Karpelevic compactification X
K

will be obtained by choosing the
full collection of parabolic subgroups. On the other hand, for the non-
maximal Satake compactifications, we can specify a sub-collection of
parabolic subgroups according to a dominant weight vector.

There are several general features of this approach which will become
clearer later.

1) It gives an explicit description of neighborhoods of boundary
points in the compactifications of X and sequences of interior
points converging to them, which clarifies the structure of the
compactifications and is also useful for applications (see [Zu]).
In [Sa] and other works [GJT], the G-orbits in the Satake com-

pactifications X
S
τ and convergent sequences in a maximal totally

geodesic flat submanifold in X through the basepoint x0 are fully
described, but there does not seem to be explicit descriptions of

neighborhoods of the boundary points in X
S
τ .

2) It relates compactifications of symmetric spaces X directly to com-
pactifications of locally symmetric spaces Γ\X; in fact, for locally
symmetric spaces, the method of [BS] modified in [BJ2] con-
sists of similar steps by considering only boundary faces associated
with rational parabolic subgroups instead of all real parabolic sub-
groups for symmetric spaces, and both constructions depend on
the reduction theory; in particular, separation property of Siegel
sets in Propositions 2.1 and 2.4.

3) By decomposing the boundary into boundary faces associated with
parabolic subgroups, its relation to the spherical Tits building of
G becomes transparent. (We note that the spherical Tits building
is an infinite simplicial complex with one simplex for each real par-
abolic subgroup whose dimension is equal to the parabolic rank
minus 1, and the face inclusion relation is opposite to the inclu-
sion relation for parabolic subgroups.) It can be seen below that
for many known compactifications, the boundary faces are cells,
and hence the whole boundary of the compactifications is a cell
complex parametrized by the Tits building, a fact emphasized in
[GJT].

4) By treating all the compactifications of X uniformly, relations be-
tween them can easily be determined by comparing their boundary
faces.
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5) Due to the gluing procedure using the horospherical decomposi-
tion, the extension of the G-action to the compactifications can
be obtained easily. In [GJT], the extension of the G-action to the
dual cell compactification X ∪ ∆∗(X) is obtained through iden-
tification with the Martin compactification, rather than directly.
This fact is one of the motivations of this paper.

6) Due to the definition of the topology at infinity, one difficulty is
to show the Hausdorff property of the topology. This will follow
from the strong separation property of the generalized Siegel sets
in Proposition 2.4 and Proposition 4.1.

Remark 3.1. Since there are continuous families of real parabolic
subgroups, we also need to put a topology on the set of boundary faces,
for example to measure whether points on different boundary faces of
conjugate parabolic subgroups are close to each other, while such a
problem does not arise for compactifications of locally symmetric spaces.
Using the parametrization of boundary faces by the spherical Tits build-
ing, we can use the topological Tits building in [BuS] to topologize the
set of boundary faces. In this sense, the compactifications in this paper
are more closely related to the topological Tits building than the usual
Tits building.

4. The maximal Satake compactification

In this section, we follow the general method outlined in §3 to con-
struct a compactification Xmax which will turn out to be isomorphic to

the maximal Satake compactification X
S
max.

For Xmax, we use the whole collection of parabolic subgroups. For
every parabolic subgroup P , define its boundary face by

e(P ) = XP ,

the boundary symmetric space defined in Equation (2) in §2. Let

Xmax = X ∪
∐

P

XP .

By Equations (4, 5) in §2, the K-action on parabolic subgroups preserves
the Langlands, horospherical decomposition, and hence K acts on Xmax

as follows: for k ∈ K, z = mKP ∈ XP ,

k · z = km ∈ XkP .

The topology of Xmax is defined as follows. First we note that X and
XP have a topology defined by the invariant metric. We need to define
convergence of sequences of interior points in X to boundary points and
convergence of sequences of boundary points:

1) For a boundary face XP and a point z∞ ∈ XP , a unbounded
sequence yj in X converges to z∞ if and only if yj can be written in
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the form yj = kjnjajzj , where kj ∈ K, nj ∈ NP , aj ∈ AP , zj ∈ XP

such that
(a) kj → e, where e is the identity element.
(b) For all α ∈ Φ(P, AP ), aα

j → +∞.

(c) n
aj

j → e.

(d) zj → z∞.
2) Let Q be a parabolic subgroup containing P . For a sequence

kj ∈ K with kj → e, and a sequence yj ∈ XQ, the sequence
kjyj ∈ Xkj Q

converges to z∞ ∈ XP if the following conditions

are satisfied. Let P ′ be the unique parabolic subgroup in MQ

that corresponds to P as in Equation (7) in §2, and write XQ =
NP ′×AP ′×XP ′ . The sequence yj can be written as yj = k′

jn
′
ja

′
jz

′
j ,

where k′
j ∈ KQ, n′

j ∈ NP ′ , a′j ∈ AP ′ , z′j ∈ XP ′ = XP satisfy the

same condition as part (1) above when K, NP , AP , XP are replaced
by KQ, NP ′ , AP ′ , XP ′ . Note that if Q = P , then P ′ = MQ, and
NP ′ , AP ′ are trivial.

These are special convergent sequences, and combinations of them
give general convergent sequences. By a combination of these spe-
cial sequences, we mean a sequence {yj}, j ∈ N, and a splitting N =
A1

∐

· · ·
∐

As such that for each infinite Ai, the corresponding subse-
quence yj , j ∈ Ai, is a sequence of type either 1 or 2. It can be shown
easily that these convergent sequences satisfy the conditions in [JM,
§6]. In fact, the main condition to check is the double sequence condi-
tion and this condition is satisfied by double sequences of either type
1 or type 2 above, and hence by general double sequences. Therefore
these convergent sequences define a unique topology on Xmax. In fact,
a neighborhood system of boundary points can be given explicitly.

For every parabolic subgroup P , let PI , I ⊂ ∆(P, AP ), be all the
parabolic subgroups containing P . For every PI , XPI

contains XP as a
boundary face. For any point z ∈ XP , let V be a neighborhood of z in
XP . For ε > 0, t > 0, let Sε,t,V be the generalized Siegel set in X defined
in Equation (15) in §2, and let SI

ε,t,V be the generalized Siegel set of XPI

associated to the parabolic subgroup P ′ in MPI
as in Equation (7) in

§2. Let C be a (compact) neighborhood of e in K. Then the union

C

(

Sε,t,V ∪
∐

I⊂∆

SI
ε,t,V

)

is a neighborhood of z in Xmax. For sequences of εi → 0, ti → +∞,
a basis Vi of neighborhoods of z in XP and a basis of compact neigh-
borhoods Cj of e in K, the above union forms a countable basis of the

neighborhoods of z in Xmax.
It can be checked easily that these neighborhoods define a topology

on X
max

whose convergent sequences are exactly those given above.
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When a point yj ∈ X is written in the form kjnjajzj with kj ∈
K, nj ∈ NP , aj ∈ AP , zj ∈ XP , none of these factors is unique, since
X = NP × AP × XP and the extra K-factor causes non-uniqueness.
Then a natural question is the uniqueness of the limit of a convergent
sequence yj in Xmax, or equivalently, whether the topology on Xmax is
Hausdorff.

Proposition 4.1. For a parabolic subgroup P and two different
boundary points z, z′ ∈ XP , let V, V ′ be compact neighborhoods of z, z′

with V ∩ V ′ = ∅. If ε is sufficiently small, t is sufficiently large and
C is a sufficiently small compact neighborhood of e in K, then for all
k, k′ ∈ C, the generalized Siegel sets kSε,t,V , k′Sε,t,V ′ are disjoint.

Proof. We prove this proposition by contradiction. If not, then for
all ε > 0, t > 0 and any neighborhood C of e in K,

kSε,t,V ∩ k′Sε,t,V ′ 6= ∅,

for some k, k′ ∈ C. Therefore, there exist sequences kj , k
′
j ∈ K, nj , n

′
j ∈

NP , aj , a
′
j ∈ AP , mj ∈ V KP , m′

j ∈ V ′KP such that

1) kj , k
′
j → e,

2) n
aj

j → e, n′
j
a′

j → e,

3) For all α ∈ ∆(P, AP ), aα
j , a′αj → +∞,

4) kjnjajmjK = k′
jn

′
ja

′
jm

′
jK.

Since V KP , V ′KP are compact, after passing to a subsequence, we can
assume that both mj and m′

j converge. Denote their limits by m∞, m′
∞.

By assumption, V KP ∩ V ′KP = ∅, and hence

m∞K 6= m′
∞K.

We claim that the conditions (1), (2) and (3) together with m∞K 6=
m′

∞K contradict the condition (4).
As in the proof of Proposition 2.4, let τ : G → PSL(n, C) be a

faithful representation whose highest weight µτ is generic and τ(θ(g)) =
(τ(g)∗)−1, where θ is the Cartan involution associated with K. Let Hn

be the real vector space of n × n Hermitian matrices and P (Hn) the
associated projective space. Then τ defines an embedding

iτ : G/K → P(Hn), gK 7→ [τ(g)τ∗(g)],

where [τ(g)τ∗(g)] denotes the line determined by τ(g)τ∗(g). We
will prove the claim by determining the limits of iτ (kjnjajmj) and
iτ (k

′
jn

′
ja

′
jm

′
j).

Let P0 be a minimal parabolic subgroup contained in P . Then P =
P0,I for a unique subset I ⊂ ∆(P0, AP0

). As in the proof of Proposition
2.4, we can assume that for a ∈ AP0

, τ(a) is diagonal,

τ(a) = diag (aµ1 , . . . , aµn),
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and the weights µ1, . . . , µl are the weights whose supports are contained
in I. Then

iτ (kjnjajmj)(1)

= [τ(kj)τ(aj)τ(n
aj

j )τ(mj)τ(mj)
∗τ(n

aj

j )∗τ(aj)
∗τ(kj)

∗]

→ [diag (1, . . . , 1, 0, . . . , 0)τ(m∞)τ(m∞)∗diag (1, . . . , 1, 0 . . . , 0)∗]

= [τP (m∞)τP (m∞)∗],

where

τP : MP → PSL(VP ) →֒ PC(Mn×n),

m 7→ [diag (1, . . . , 1, 0, . . . , 0)τ(m)],

is the map in the proof of Proposition 2.4. Since τP is a faithful repre-
sentation,

τP τ∗
P : XP → P (Hn), mKP 7→ [τP (m)τP (m)∗]

is an embedding.
Similarly, we get

(2) iτ (k
′
jn

′
ja

′
jm

′
j) → [τP (m′

∞)τP (m′
∞)∗].

Since m∞, m′
∞ ∈ MP and m∞K 6= m′

∞K, we get

[τP (m∞)τP (m∞)∗] 6= [τP (m′
∞)τP (m′

∞)∗].

Then the condition (4) implies that Equation (2) contradicts Equation
(1) and the claim is proved. q.e.d.

As mentioned earlier, Proposition 2.4 concerns separation of general
Siegel sets associated with different parabolic subgroups, while Propo-
sition 4.1 here concerns Siegel sets associated with different points on
the same boundary face. They are both needed below.

Proposition 4.2. The topology on Xmax is Hausdorff.

Proof. We need to show that every pair of different points x1, x2 ∈
Xmax admit disjoint neighborhoods. This is clearly the case when at
least one of x1, x2 belongs to X. Assume that both belong to the bound-
ary and let P1, P2 be the parabolic subgroups such that x1 ∈ XP1

, x2 ∈
XP2

. There are two cases to consider: P1 = P2 or not.
For the second case, let C be a sufficiently small compact neighbor-

hood of e in K such that for k1, k2 ∈ C,

k1P1 6= k2P2.

Then C(Sε,t,Vi
∪

∐

I SI
ε,t,Vi

) is a neighborhood of xi.
Proposition 2.4 implies that

CSε,t,V1
∩ CSε,t,V2

= ∅.
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For all pairs of I1, I2, k1, k2 ∈ C, either

k1P1,I1 6= k2P2,I2 ,

and hence

k1S
I1
ε,t,V1

∩ k2S
I2
ε,t,V2

= ∅,

or
k1P1,I1 = k2P2,I2 .

In the latter case, P1, (
k2P2)

k1 are contained in P1,I1 and correspond to
two different parabolic subgroups of MP1,I1

. As in the case above for
general Siegel sets in X, we get

k1S
I1
ε,t,V1

∩ k2S
I2
ε,t,V2

= ∅.

This implies that the two neighborhoods are disjoint.
In the first case, P1 = P2. Since x1 6= x2, we can choose compact

neighborhoods V1, V2 in XP1
such that V1 ∩ V2 = ∅. Then Proposition

4.1 together with similar arguments as above imply x1, x2 admit disjoint
neighborhoods. This completes the proof of this proposition. q.e.d.

Proposition 4.3. The topological space Xmax is compact and con-
tains X as a dense open subset.

Proof. Let P0 be a minimal parabolic subgroup, and P0,I , I ⊂ ∆ =
∆(P0, AP0

), be all the standard parabolic subgroups. Then

Xmax = X ∪
∐

I⊂∆

KXP0,I
.

Since K is compact, it suffices to show that every sequence in X and
XP0,I

has a convergent subsequence. First, we consider a sequence in
X. If yj is bounded, it clearly has a convergent subsequence in X.

Otherwise, writing yj = kjajx0, kj ∈ K, aj ∈ A+
P0

, we can assume,
by replacing by a subsequence, that the components of yj satisfy the
conditions:

1) kj → k∞ for some k∞ ∈ K,
2) there exists a subset I ⊂ ∆(P0, AP0

) such that for α ∈ ∆ − I,
α(log aj) → +∞, while for β ∈ I, β(log aj) converges to a finite
number.

Decompose

log aj = HI,j + HI
j , HI,j ∈ aP0,I

, HI
j ∈ a

I
P0

.

Since ∆(P0, AP0
)− I restricts to ∆(P0,I , AP0,I

), it follows from the defi-

nition that k−1
j yj = ajx0 converges to eHI

∞x0 ∈ XP0,I
in Xmax, where x0

also denotes the basepoint KP0,I
in XP0,I

, and HI
∞ is the unique vector

in a
I
P0

such that for all β ∈ I, β(HI
∞) = limj→+∞ β(log aj). Together
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with the action of K on parabolic subgroups and the Langlands decom-
position in Equation (6) in §2, this implies that yj = (kjk

−1
∞ ) k∞ajx0

converges to a point in X(k∞P0,I) in Xmax.

For a sequence in XP0,I
, we can similarly use the Cartan decompo-

sition XP0,I
= KP0,I

exp a
I,+
P0

x0 to extract a convergent subsequence in

Xmax. q.e.d.

Proposition 4.4. The action of G on X extends to a continuous
action on Xmax.

Proof. First we define a G-action on the boundary ∂Xmax =
∐

P XP ,

then show that this gives a continuous G-action on Xmax.
For g ∈ G and a boundary point z ∈ XP , write

g = kman,

where k ∈ K, m ∈ MK , a ∈ AP , n ∈ NP . Define

g · z = k · (mz) ∈ XkP ,

where k · (mz) is defined in Equation (5) in §2. We note that k, m are
determined up to a factor in KP , but km is uniquely determined by g,
and hence this action is well-defined. As pointed out earlier, under this
action, k · XP = XkP .

To prove the continuity of this G-action, we first show that if gj → g∞
in G and a sequence yj ∈ X converging to z∞ ∈ XP , then gjyj → g∞z∞.

By definition, yj can be written in the form yj = kjnjajzj such
that (1) kj ∈ K, kj → e, (2) aj ∈ AP , and for all α ∈ Φ(P, AP ),

α(log aj) → +∞, (3) nj ∈ NP , n
aj

j → e, and (4) zj ∈ XP , zj → z∞.
Write

gjkj = k′
jm

′
ja

′
jn

′
j ,

where k′
j ∈ K, m′

j ∈ MP , a′j ∈ AP , n′
j ∈ NP . Then a′j , n

′
j are uniquely

determined by gjkj and bounded, and k′
jm

′
j converges to the KMP -

component of g. By choosing suitable factors in KP , we can assume
that k′

j → k, and m′
j → m, where g = kman as above. Since

gjyj = k′
jm

′
ja

′
jn

′
jnjajzj = k′

j
m′

ja′

j (n′
jnj)a

′
jajm

′
jzj ,

and

(n′
jnj)

a′

jaj → e, m′
j → m,

it follows from the definition of convergence of sequences that gjyj con-

verges to k · (mz∞) ∈ XkP in Xmax, which is equal to g · z∞ as defined
above.

The same proof works for a sequence yj in XQ for any parabolic

subgroup Q ⊃ P . A general sequence in Xmax follows from combinations
of these two cases, and the continuity of this extended G action on Xmax

is proved. q.e.d.
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Remark 4.5. From the above proof it is clear that the NP -factor in
the definition of convergence to boundary points is crucial to the con-
tinuous extension of the G-action. In [GJT], convergence to boundary
points in the dual cell compactification X ∪ ∆∗(X) is defined in terms

of the Cartan decomposition X = KA+x0. Because of this difference,
the extension of the G-action to X ∪ ∆∗(X) is not easy. In fact, the
continuity of the G-action is not proved directly there. As mentioned
earlier, this is one of the motivations of this paper.

Next we identify this compactification with the maximal Satake com-
pactification of X. We first recall the Satake compactifications. As
mentioned in §2, G is assumed to be an adjoint semisimple Lie group in
this paper; otherwise the faithful projective representations below need
to be replaced by locally faithful representations.

As in the proof of Proposition 2.4, for every faithful projective repre-
sentation τ : G → PSL(n, C) satisfying

τ(θ(g)) = (τ(g)∗)−1, g ∈ G,

there is an embedding

τ : X → PSL(n, C)/PSU(n), gK 7→ τ(g)PSU(n),

which is in fact a totally geodesic embedding (see [Sa]). Let Hn be the
real vector space of n × n Hermitian matrices, and P (Hn) be the real
projective space. Then τ induces an embedding

iτ : X → P (Hn), gK → [τ(g)τ(g)∗],

where [A] represents the line in P (Hn) determined by A. The closure
of iτ (X) in P (Hn) is the Satake compactification associated with τ and

denoted by X
S
τ .

Let P0 be a minimal parabolic subgroup, and µτ ∈ a
+
P0

(∞) the high-

est weight of the representation τ . Then it is shown in [Sa] that as a

topological G-space, X
S
τ only depends on the degeneracy of µτ , i.e., the

Weyl chamber face which contains µτ as an interior point. The set of
Satake compactifications is partially ordered. The following fact was
first proved in [Zu, Proposition 2.11], though it was expected and un-
derstood earlier by others. We will obtain another proof in Remark 5.8
below, which gives an explicit surjective map between the two compact-
ifications.

Proposition 4.6. For two Satake compactifications X
S
τ1

, X
S
τ2

, let

a
+
P0,I1

, a+
P0,I2

be the Weyl chamber faces containing the highest weights

µτ1 , µτ2 as interior points respectively. If a
+
P0,I2

contains a
+
P0,I1

as a face

in its closure, i.e., µτ2 is more regular than µτ1, then the identity map
on X extends to a continuous surjective G-equivariant map

X
S
τ2

→ X
S
τ1

.
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When µτ is generic, i.e., belongs to the positive chamber a
+
P , X

S
τ is

the unique maximal Satake compactification, denoted by X
S
max.

In [Fu], Furstenberg defined compactifications of X by embedding X
into the space of probability measures M(G/P ) on G/P , where P is
a parabolic subgroup. Specifically, since G = KP , there is a unique
K-invariant probability measure νP on G/P . Define a map

iP : X → M(G/P ), gK 7→ g∗νP .

Since νP is K-invariant, this map is well-defined. Assume that P is a
standard parabolic subgroup containing P0 and does not contain any
simple factor of G. Then iP is an embedding, and the closure of iP (X)
in M(G/P ) is a Furstenberg compactification. Moore showed in [Mo]
that this compactification is isomorphic to the Satake compactification

X
S
τ whose highest weight µτ belongs to the interior of a

+
P . The above

condition on P is equivalent to the condition that µτ is connected to
every connected component of ∆(P0, AP0

), which is satisfied for every
faithful projective representation τ . In particular, for the minimal para-
bolic subgroup P0, the associated Furstenberg compactification iP0

(X)

is isomorphic to the maximal Satake compactification X
S
max. Due to

this connection, the Satake compactifications are also called Satake-
Furstenberg compactifications.

Proposition 4.7. For any Satake compactification X
S
τ , the iden-

tity map on X extends to a continuous G-equivariant surjective map

Xmax → X
S
τ .

Proof. Since every boundary point of Xmax is the limit of a sequence
of points in X, by [GJT, Lemma 3.28], it suffices to show that for any
unbounded sequence yj in X which converges in Xmax, then yj also

converges in X
S
τ . By definition, there exists a parabolic subgroup P

such that yj can be written as yj = kjnjajmjKP , where kj ∈ K, nj ∈
NP , aj ∈ AP , mjKP ∈ XP satisfy the conditions: (1) kj → e, (2)

n
aj

j → e, (3) for all α ∈ Φ(P, AP ), α(log aj) → +∞, (4) mjKP converges

to m∞KP for some m∞. Then under the map iτ : X → P (Hn),

iτ (yj) = [τ(kjnjajmj)τ(kjnjajmj)
∗]

= [τ(kj)τ(aj)τ(n
aj

j )τ(mj)τ(mj)
∗τ(n

aj

j )∗τ(aj)τ(kj)
∗].

Let P0 be a minimal parabolic subgroup contained in P . Write P = PI .
As in the proof of Proposition 2.4 (or 4.1), we can assume, with respect
to a suitable basis, that τ(aj) = diag (aµ1

j , . . . , aµn

j ) and that µ1, . . . , µl

are all the wrights whose supports are contained in I. Then as j → +∞,

[diag (aµ1

j , . . . , aµn

j )] → [diag (1, . . . , 1, 0, . . . , 0)];
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and hence

iτ (yj)→ [diag (1, . . . , 1, 0, . . . , 0)τ(m∞)τ(m∞)∗diag (1, . . . , 1, 0, . . . , 0)∗].

q.e.d.

Proposition 4.8. For the maximal Satake compactification X
S
max,

the map Xmax → X
S
max in Proposition 4.7 is a homeomorphism.

Proof. Since both Xmax and X
S
max are compact and Hausdorff, it

suffices to show that the map Xmax → X
S
max is injective. It was shown in

[Sa] that X
S
max = X∪

∐

P XP . By the proof of the previous proposition,
a sequence yj = kjnjajmjKP in X satisfying the conditions above with

mjKP → m∞KP in Xmax converges to the same limit as the sequence

ajmjKP . Under the above identification of X
S
max, ajmjKP converges

to m∞KP ∈ XP in X
S
max. This implies that the map Xmax → X

S
max is

the identity map under the identification Xmax = X ∪
∐

P XP = X
S
max,

and hence is injective. q.e.d.

Recall that the dual cell compactification X ∪ ∆∗(X) in [GJT] is
constructed via the Cartan decomposition. Specifically, let A+ = A+

P0

be a positive chamber, where P0 is a minimal parabolic subgroup. Then
a sequence yj in X converges in X ∪ ∆∗(X) if and only if yj admits a

decomposition yj = kjajx0, where kj ∈ K, aj ∈ A+ satisfy the following
conditions:

1) kj converges to some k∞,
2) there exists a subset I of ∆(P0, AP0

) such that for α ∈ I, aα
j

converges to a finite number, while for α ∈ ∆ − I, aα
j → +∞.

Proposition 4.9. The identity map on X extends to a continuous
map from X ∪∆∗(X) to Xmax, which is a bijection and hence a home-
omorphism.

Proof. For an unbounded sequence yj = kjajx0 in X that converges
in X ∪ ∆∗(X), let I be the subset of ∆ in the above definition. Write

aj = aj,Ia
I
j , log aj,I ∈ aP0,I , log aI

j ∈ a
I
P0

.

Then for α ∈ I, α(log aI
j ) = α(log aj), and hence aI

j has a limit aI
∞ in

a
I
P0

. This also implies that for α ∈ ∆−I, α(log aj,I) → +∞. Since yj =

kjaj,Ia
I
jx0 and aI

jx0 ∈ XP0,I
, it is clear that yj converges to k∞aI

∞KP ∈

k∞XP0,I
= Xk∞P0,I

in Xmax. This implies that there is a well-defined

map from X ∪ ∆∗(X) to Xmax which restricts to the identity on X.
Since X ∪ ∆∗(X) is a metrizable space, it can be shown as in [GJT,
Lemma 3.28] that this map is continuous, and hence is automatically
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surjective. By [GJT, Proposition 3.44],

X ∪ ∆∗(X) = X ∪
∐

P

XP ,

and the above sequence yj also converges to k∞aI
∞KP ∈ k∞XP0,I .

Therefore, the map Xmax → X ∪ ∆∗(X) is bijective and hence is a
homeomorphism. q.e.d.

5. Non-maximal Satake compactifications

In the previous section, we constructed the maximal Satake compact-
ification following the general method in §3. In this section, we use it
to construct non-maximal Satake compactifications.

For X
S
max in §4, we used the whole collection of parabolic subgroups.

In this section, we choose a sub-collection of parabolic subgroups and
attach only boundary faces associated with them at infinity. Let P0 be

a minimal parabolic subgroup, and µ ∈ a
∗+
P0

, a dominant weight. For

each such µ, we will construct a compactification Xµ. Before defining
the boundary components, we need to choose the collection of parabolic
subgroups and to refine the horospherical decomposition of X which are
needed to attach the boundary components at infinity.

A subset I ⊂ ∆(P0, AP0
) is called µ-connected if the union I ∪ {µ}

is connected, i.e., it can not be written as a disjoint union I1
∐

I2 such
that elements in I1 are perpendicular to elements in I2 with respect to
a positive definite inner product on a

∗
P0

invariant under the Weyl group.
A standard parabolic subgroup P0,I is called µ-connected if I is µ-

connected. For any standard parabolic subgroup P0,J , let P0,IJ
be the

unique maximal one among all the µ-connected standard parabolic sub-
groups contained in P0,J , i.e., IJ is the largest µ-connected subset con-
tained in J . Then P0,IJ

is called a µ-reduction of P0,J . In general,
a parabolic subgroup P is called µ-connected if P is conjugate to a
µ-connected standard parabolic subgroup, and for every parabolic sub-
group Q, there are maximal subgroups P among the collection of all
the µ-connected parabolic subgroups contained in Q. Such parabolic
subgroups P in Q are not unique. In fact, for any g ∈ Q \ P , gP is
also a maximal µ-connected subgroup in this collection, but gP 6= P ;
all such µ-connected parabolic subgroups P are conjugate by elements
in Q, and called the µ-connected reductions of Q.

On the other hand, for every µ-connected parabolic subgroup P , there
is a unique maximal subgroup Q among all the parabolic subgroups
which contain P as a µ-connected reduction. Such a Q is called the
µ-connected saturation of P , denoted by Sµ(P ). A parabolic subgroup
Q is called µ-saturated if it is equal to the µ-saturation of a µ-connected
parabolic subgroup P .
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For each dominant weight µ as above, we will construct a compactifi-
cation of X which is isomorphic to a Satake compactification. Instead of
the whole collection of parabolic subgroups, we choose the sub-collection
of µ-saturated parabolic subgroups Q.

For each such Q, let P0 be a minimal parabolic subgroup contained
in Q. Then Q = P0,J , J ⊂ ∆(P0, AP0

). Let I ⊂ J be the maximal

µ-connected subset as above, and I⊥ the complement of I in J , which
is orthogonal to I and µ. Then I spans a sub-root system ΣI , and
I⊥ spans ΣI⊥ . Let gI be the Lie subalgebra generated by

∑

α∈ΣI
gα,

gI⊥ by
∑

α∈Σ
I⊥

gα; and GI , GI⊥ the corresponding subgroups in G.

Then K ∩GI , K ∩GI⊥ are maximal compact subgroups in GI and GI⊥

respectively. Define

XI = GI/K ∩ GI = XP0,I
, XI⊥ = GI⊥/K ∩ GI⊥ = XP

0,I⊥
.

Then

(1) XQ = XI × XI⊥ = XP0,I
× XP

0,I⊥
.

In fact, MQ = GIGI⊥M ′, where M ′ is the identity component of the

intersection of MP0
with the centralizer of GIG

⊥
I .

Define the boundary component e(Q) by

e(Q) = XI .

To extend the group action to the compactification and to show that
XI and the splitting in Equation (1) do not depend on the choice of
the minimal parabolic subgroup P0 ⊂ Q, we realize XI as a different
quotient. Define

Z(e(Q)) = NQAQGI⊥M0.

Then XI can be canonically identified with Q/Z(e(Q))KQ, where KQ =
K ∩ Q, by the map

g(K ∩ GI) ∈ XI → gZ(e(Q))KQ ∈ Q/Z(e(Q))KQ.

Since all minimal parabolic subgroups P0 contained in Q are conjugate
under KQ, Z(e(Q)) is independent of the choice of P0. In fact, it turns
out to be the centralizer of e(Q) defined below. Similarly, XI⊥ is well-
defined, and hence the splitting in Equation (1) is independent of the
choice of P0.

As mentioned earlier, the µ-connected reductions P of Q are not
unique. On the other hand, for any such P , XP can be canonically
identified with XI and is hence independent of the choice of P .

To define the topology of the compactification, we need the following
lemma.

Lemma 5.1. Let Q be a µ-saturated parabolic subgroup, P0 a minimal
parabolic subgroup contained in Q, and P0,I the µ-connected reduction
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of Q as above. For any parabolic subgroup R satisfying P0,I ⊆ R ⊆ Q,
write R = P0,J ′ and J ′ = I ∪ I ′, where I ′ is perpendicular to I. Let

XR = XI × XP0,I′

be the decomposition similar to that in Equation (1). Then the horo-
spherical decomposition of X with respect to R

X = NR × AR × XR

can be refined to

(2) X = NR × AR × XI × XP0,I′
.

Proof. When R = Q, the decomposition XQ = XI × XP0,I′
was de-

scribed above. The general case is similar. q.e.d.

As commented earlier in the case R = Q, the decomposition XR =
XI × XP0,I′

is independent of the choice of the minimal parabolic sub-

group P0. In the following, XP0,I′ is denoted by XI′ and the decompo-
sition in Equation (2) is written as

(3) X = NR × AR × XI × XI′ .

Now we are ready to define the compactification Xµ of X by attaching
only the boundary components associated with µ-saturated parabolic
subgroups. Define

Xµ = X ∪
∐

µ-saturated Q

e(Q) = X ∪
∐

µ-saturated Q

XI

= X ∪
∐

µ-saturated Q

XP (Q),

where P (Q) is a µ-connected reduction of Q.
We can define a G-action on Xµ as follows. For a µ-saturated para-

bolic subgroup Q, a point

z ∈ e(Q) = Q/Z(e(Q))KQ,

and an element g ∈ G, write z = hZ(e(Q))KQ, and g = kq, where
k ∈ K, q ∈ Q. Then

qhZ(e(Q))KQ ∈ e(Q), k · (qhZ(e(Q))KQ) ∈ e(kQ) = e(gQ).

Though the decomposition g = kq is not unique, the point

k · (qhZ(e(Q))KQ) ∈ e(kQ)

is well-defined. Define the group action by

g · z = k · (qhZ(e(Q))KQ) ∈ e(gQ).

With respect to the above action of G, the group Q is the normalizer
of e(Q), i.e., the set of g ∈ G such that g · e(Q) = e(Q) and is often
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denoted by N (e(Q)), and the subgroup Z(e(Q)) defined above is the
centralizer of e(Q),

Z(e(Q)) = {g ∈ G | g · z = z for all z ∈ e(Q)}.

It is a normal subgroup of N (e(Q)) and we have

N (e(Q)) = GI · Z(e(Q)),

where GI ∩ Z(e(Q)) is finite.
A topology on Xµ is given as follows:

1) For a µ-saturated parabolic subgroup Q, let P0 ⊆ Q be a minimal
parabolic subgroup, and P0,I be a µ-connected reduction of Q.
Then an unbounded sequence yj in X converges to a boundary
point z∞ ∈ e(Q) = XI if there exists a parabolic subgroup R
that is contained in Q and contains P0,I such that in the refined
horospherical decomposition X = NR×AR×XI×XI′ in Equation
(3), yj can be written in the form yj = kjnjajzjz

′
j such that the

factors kj ∈ K, nj ∈ NR, aj ∈ AR, zj ∈ XI , z′j ∈ XI′ satisfy the
following conditions:

(a) the image of kj in the quotient K/K ∩ Z(e(Q)) converges to
the identity coset,

(b) for α ∈ ∆(P0, AP0
) \ (I ∪ I⊥) = ∆(Q, AP0

) (see Equation (10)
in §2 for the definition of ∆(Q, AP0

) and related sets below),
aα

j → +∞, while for α ∈ I⊥ \ I ′ = ∆(R, AP0
) − ∆(Q, AP0

), aα
j

is bounded from below.
(c) n

aj

j → e,

(d) zj → z∞,
(e) z′j is bounded.

2) For a pair of µ-saturated parabolic subgroups Q1 and Q2 such
that a µ-connected reduction of Q1 is contained in a µ-connected
reduction of Q2, let Q′

1 be the unique parabolic subgroup in MQ2

determined by Q1 ∩ Q2. For a sequence kj ∈ K whose image in
K/K ∩ Z(e(Q1) converges to the identity coset, and a sequence
yj in e(Q2) = XI(Q2), the sequence kjyj in Xµ converges to z∞ ∈
e(Q1) = XI(Q1) if yj satisfies the same condition as in part (1)
above when G is replaced by the subgroup GI(Q2) of MQ2

whose
symmetric spaces of maximal compact subgroups is XI(Q2), and
Q by Q′

1 ∩ GI(Q2).

These are special convergent sequences, and their (finite) combi-
nations give general convergent sequences. We note that all the µ-
connected reductions of Q are conjugate under Z(e(Q)). Hence in (1),
it does not matter which µ-connected reduction is used, and we can fix
a minimal parabolic subgroup P0 ⊆ Q and the µ-connected reduction
P0,I of Q. Then there are only finitely many parabolic subgroups R
with P0,I ⊆ R ⊆ Q.
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Note also that in §2 (Equation 10), for any R containing P0, ∆(R, AR)
is identified with the subset ∆(R, AP0

) of ∆(P0, AP0
). Then ∆(P0, AP0

)\
(I ∪ I⊥) is equal to ∆(Q, AP0

), and I⊥ \ I ′ is equal to ∆(R, AP0
) \

∆(Q, AP0
) as above in the condition 1.(b), which says roughly that

the component aj has to go to +∞ in the direction of Q but is only
bounded below in the other directions. To relate this condition better
to convergence of sequences in X

S
max, we note that one consequence of

condition 1.(b) is that for any subsequence yj′ of yj , there is a further
subsequence yj′′ for which there exists a parabolic subgroup R′, R ⊆
R′ ⊆ Q, such that with respect to R′, all conditions 1.(a), (c), (d) and
(e) are satisfied by this sequence yj′′ , and condition 1.(b) is replaced
by a stronger condition 1.(b′): For α ∈ ∆(R′, AP0

), aα
j′′ → +∞, and

for ∆(P0, AP0
) \ ∆(R′, AP0

), aα
j′′ is bounded. The reason for using the

weaker condition 1.(b) instead of 1.(b′) is that a sequence yj may split
into infinitely many such subsequences yj′′ satisfying condition 1.(b′),
and hence we could not use combinations of only finitely many special
sequences to get general convergent sequences.

The definition of the convergent sequences is motivated by the fact

that the maximal Satake compactification X
S
max of X dominates all

non-maximal Satake compatifications and the characterizations of con-

vergent sequences of X
S
max in §4, together with the observation that

the action by elements in the centralizer Z(e(Q)) will not change the
convergence of sequences to points in e(Q).

Proposition 5.2. The topology on Xµ defined above is Hausdorff.

Proof. It suffices to show that if an unbounded sequence yj in X con-

verges in Xµ, then it has a unique limit. Suppose yj has two different
limits z1,∞ ∈ e(Q1), z2,∞ ∈ e(Q2), where Q1, Q2 are two µ-saturated
parabolic subgroups. By passing to a subsequence, we can assume that
there exist two parabolic subgroups R1, R2, R1 ⊆ Q1, R2 ⊆ Q2, such
that yj satisfies the condition (1) in the definition of convergent se-
quences with respect to both R1 and R2. Let P0,1 (resp. P0,2) be a mini-
mal parabolic subgroup contained in R1 (resp. R2) as above. By passing
to a further subsequence, which is still denoted by yj for convenience, we
can assume that there exist parabolic subgroups R′

1, R′
2: Q1 ⊇ R′

1 ⊇ R1,
Q2 ⊇ R′

2 ⊇ R2 such that in the condition with respect to R1, aα
j → +∞

if and only if α ∈ ∆(R′
1, AR′

1
), and for α ∈ ∆(R1, AP0

) − ∆(R′
1, AP0

),

aα
j is bounded. The same conditions hold for R′

2. This implies that

(4) yj ∈ Cjk1,∞SR′

1
,εj ,tj ,V1

∩ Cjk2,∞SR′

2
,εj ,tj ,V2

,

where Cj ⊂ K is a sequence of compact neighborhoods of e converging
to e, ki,∞ ∈ K ∩ Z(e(Qi)), i = 1, 2, εj → 0, tj → +∞, and V1, V2 are
bounded sets in XR′

1
and XR′

2
respectively. Specifically, V1 is the prod-

uct of a compact neighborhood of z1,∞ in e(Q1) = XI1 and a bounded
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set in XI′
1
, where XR′

1
= XI1 ×XI′

1
as in Condition (1), and V2 is given

similarly. By replacing R′
i by ki,∞R′

i, we can assume that ki,∞ = e for
i = 1, 2. If R′

1 6= R′
2, Equation (4) contradicts the separation property

of general Siegel sets for R′
1, R

′
2 in Proposition 2.4. If R′

1 = R′
2, we can

take V1, V2 to be disjoint since z1,∞ 6= z2,∞. Then Equation (4) contra-
dicts the separation property in Proposition 4.1. These contradictions
show that yj must have a unique limit in Xµ. q.e.d.

For the sake of explicitness, we also describe neighborhoods of bound-
ary points explicitly. For any µ-saturated parabolic subgroup Q and a
boundary point z∞ ∈ e(Q), let V be a neighborhood of z∞ in e(Q).

Fix a minimal parabolic subgroup P0 contained in Q. Let aP0
be the

Lie algebra of its split component AP0
, W be the Weyl group of aP0

,
and T ∈ a

+
P0

be a regular vector. The convex hull of the Weyl group
orbit W ·T is a convex polytope ΣT in aP0

, whose faces are in one-to-one
correspondence with parabolic subgroups R whose split component aR

is contained in aP0
. Denote the closed face of Σ corresponding to R by

σR.
Then

(5) aP0
= ΣT ∪

∐

R

(σR + a
+
R),

where aR ⊆ aP0
as above. Define

(6) aµ,Q,T = ∪P⊆R⊆Q (σR + a
+
R),

where P ranges over all the µ-connected reductions of Q with aP ⊆ aP0
,

and for each such P , R ranges over all the parabolic subgroups lying
between P and Q. Then for any such pair P and R, aµ,Q,T ∩ aP is a
connected open subset of aP ; when R 6= P , it has the property that
when a point moves out to infinity along aR in the direction of the
positive chamber, its distance to the boundary of aµ,Q,T ∩ aP goes to
infinity.

More precisely, write R = PJ , J 6= ∅. Recall from Equations (10)
and (11) in §2 that aP = aPJ

⊕ a
J
P and a

J
P is the split component of the

parabolic subgroup of MPJ
corresponding to P . Then for a sequence

Hj ∈ a
+
R with α(Hj) → +∞ for all α ∈ ∆(R, AR) and any bounded set

Ω ⊂ a
J,+
P , when j ≫ 1,

(7) (Hj + Ω) ⊂ aµ,Q,T ∩ aP .

The positive chamber a
+
R intersects the face σR at a unique point TR,

and

exp(a+
R ∩ (σR + a

+
R)) = AR, exp TR

= exp(a+
R + TR),

the shifted chamber defined in Equation (16) in §2. The face σR is
contained in the shift by TR of the orthogonal complement of aR in aP0

,
and KR expσR · x0 is a codimension 0 set in XR. Denote the image of
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KR expσR · x0 in XI′ under the projection XR = XI × XI′ → XI′ by
WR,T .

For each such parabolic subgroup R which is contained in Q and
contains a µ-connected reduction P with aP ⊆ aP0

, define

(8) SR,ε,eTR ,V ×WR,T
=

{

(n, a, z, z′) ∈ NR × AR × XI × XI′ |

a ∈ AR,eTR , na ∈ BNR
(ε), z ∈ V, z′ ∈ WR,T

}

,

a generalized Siegel set in X associated with R defined in Equation (17)
in §2. Then

(9) exp aµ,Q,T · x0 ⊂ ∪P⊆R⊆Q SR,ε,eTR ,V ×WR,T
,

where P ranges over all the µ-connected reductions of Q with aP ⊆ aP0
,

and for each such P , R ranges over all the parabolic subgroups lying
between P and Q.

Define

(10) Sµ
ε,T,V = ∪P⊆R⊆Q SR,ε,eTR ,V ×WR,T

,

where P ranges over all µ-connected reductions of Q with aP ⊆ aP0
, and

for any such P , R ranges over all parabolic subgroups lying between
P and Q. It is important to note that there are only finitely many
parabolic subgroups R in the above union.

For each µ-saturated parabolic subgroup Q′ such that one of its µ-
connected reductions contains a µ-connected reduction P of Q with

aP ⊆ aP0
, we get a similar set SQ′,µ

ε,T,V in e(Q′).

For a compact neighborhood C of the identity coset in K/K∩Z(e(Q)),

let C̃ be the inverse image in K of C for the map K → K/K ∩Z(e(Q)).
Then

(11) C̃(Sµ
ε,T,V ∪µ−saturatedQ′ SQ′,µ

ε,T,V )

is a neighborhood of z∞ in Xµ.

Proposition 5.3. With the above notation, for a basis of neighbor-
hoods Ci of the identity coset in K/K ∩ Z(e(Q)), a sequence of points
Ti ∈ a

+
P0

with α(Ti) → +∞ for all α ∈ ∆(P0, AP0
), a sequence εi → 0,

and a basis Vi of neighborhoods of z∞ in e(Q), the associated sets in
Equation (11) form a neighborhood basis of z∞ in Xµ with respect to
the topology defined by the convergent sequences above.

Proof. We first show that any unbounded sequence yj in X converges

to z∞ ∈ e(Q) if and only if for any C̃Sµ
ε,T,V , when j ≫ 1, yj ∈ C̃Sµ

ε,T,V .
If yj → z∞, then by definition, it is a combination of a finite number of
sequences of the type in Condition (1). Since each of these sequences
can be handled in the same way, we can assume for simplicity that there
exist a µ-connected reduction P of Q with aP ⊆ aP0

and a parabolic
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subgroup R, P ⊆ R ⊆ Q, such that the condition (1) is satisfied with
respect to R. It suffices to show that for any subsequence yj′ , there is

a further subsequence yj′′ such that yj′′ ∈ C̃Sµ
ε,T,V when j ≫ 1. By the

comments on condition (1) of the definition of convergent sequences (be-
fore Proposition 5.2), there exist a parabolic subgroup R′, R ⊆ R′ ⊆ Q,
a subsequence yj′′ , which is denoted by yj for simplicity, and a sequence
Cj ⊂ K/K ∩ Z(e(Q)) of neighborhoods of the identity coset shrinking
to it, a sequence Vj of neighborhoods of z∞ shrinking to z∞, εj → 0,
a sequence Tj ∈ AR′ with Tα

j → +∞ for all α ∈ ∆(R′, AR′), and a
bounded set W ⊂ XI′ such that for j ≫ 1,

yj = kjnjajzjz
′
j , kj ∈ C̃j , (nj , aj , zj , z

′
j) ∈ SR′,εj ,Tj ,Vj×W .

When R′ = P , I ′ is empty and XI′ is reduced to one point, and hence
W ⊆ WR′,T . This implies that for j ≫ 0,

yj ∈ C̃SR′,ε,exp TR′ ,V ×WR′,T

and hence

yj ∈ C̃Sµ
ε,T,V .

Otherwise, R′ 6= P . Write z′j = k′
j expH ′

jx0, where k′
j ∈ KP0,I′

, and

H ′
j ∈ a

I′,+
P0

. (Recall from Equation (11) in §2 that a
I′

0 is the split com-
ponent of the minimal parabolic subgroup of MP0,I′

corresponding to

P0.) Since W is bounded and H ′
j is bounded, Equation (7) implies that

when j ≫ 1,

log aj + H ′
j ∈ aµ,Q,T ∩ aP ,

and hence by Equation (9),

yj ∈ C̃Sµ
ε,T,V .

Conversely, suppose that for a sequence Tj ∈ aP0
with α(Tj) → +∞

for all α ∈ ∆(P0, AP0
), εj → 0, Cj shrinks to the identity coset, and Vj

is a sequence of neighborhoods of z∞ shrinking to z∞,

yj ∈ C̃jS
µ
εj ,Tj ,Vj

.

It can be shown that we can assume without loss of generality that
α(Tj) is monotonically increasing for all α, εj → 0 monotonically, Cj

shrinks to the identity coset monotonically, and that Vj shrinks to {z∞}
monotonically.

Since there are only finitely many R in Equation (10), we can assume
without loss of generality that there exist a µ-connected reduction P of
Q with aP ⊆ aP0

and a parabolic subgroup R, P ⊆ R ⊆ Q, such that

yj ∈ C̃jSR,εj , exp Tj,R,Vj×WR,Tj
.

When j → +∞, WR,Tj
is expanding, and the sequence yj may not

satisfy the conditions 1.(b) and 1.(e) with respect to R.
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We need to divide SR,εj ,exp Tj,R,Vj×WR,Tj
into finitely many regions

and hence to show that the sequence yj can be split into finitely many
subsequences {yj,l}, l = 1, . . . , m, such that for every {yj,l}, we can
find a parabolic subgroup R′, P ⊆ R′ ⊆ Q, so that the sequence yj,l

satisfies condition (1) with respect to R′ in the definition of convergent
sequences.

Since α(Tj) is monotonically increasing for all α ∈ ∆(P0, AP0
), it

follows from the definition in Equation (6) that for any pair j, k with
j ≤ k,

(12) aµ,Q,Tj
⊇ aµ,Q,Tk

.

Using the above equation (12), by a compactness argument and the
method of proof by contradiction, we can show that there exists a se-
quence ε̃j → 0 such that for k ≥ j,

(13) Sµ
ε̃j ,Tj,Vj

⊇ Sµ
εk,Tk,Vk

.

By Equation (10), Sµ
εk,Tk,Vk

is a union of pieces S
R,εk,e

Tk,R ,Vk×WR,Tk

. It

follows that, more generally, for any R, for any k ≥ j,

(14)
⋃

P⊆R′⊆R

S
R′,ε̃j ,e

T
j,R′

,Vj×WR′,Tj

⊇ S
R,εk,e

Tk,R ,Vk×WR,Tk

,

where P ranges over all µ-connected reductions of Q with aP ⊆ aP0
and

R′ ranges over all parabolic subgroups lying between P and Q.
Now let R′

1, . . . , R
′
m be all the parabolic subgroups which satisfy

P ⊆ R′
k ⊆ R for some parabolic subgroup P which is a µ-connected

reduction of Q with aP ⊆ aP0
. We are going to define a splitting of

{yj} into subsequences {yj,k}, k = 1, . . . , m, such that each {yj,k} sat-
isfies condition (1) with respect to R′

k. Specifically, let {yj,k} be the
subsequence of those yj which satisfy

yj ∈ C̃1S
R′

k
,ε̃1,e

T
1,R′

k ,V1×WR′

k
,T1

;

in other words, include those yj which lie in the R′
k-piece of the first

neighborhood Sµ
ε̃1,T1,V1

. Note that by Equation (14), such a finite de-

composition is possible. By Equation (14) again, such a yj lies in the

R̃-piece of the jth neighborhood for some R̃ ⊇ R′
k.

Next we show that for each k = 1, . . . , m, the subsequence {yj,k}
satisfies condition (1) with respect to R′

k. The definition of {yj,k} and
the above observation show that the only conditions to check are those in
1.(b) on the aα

j . The condition that for α ∈ I⊥− I ′, aα
j is bounded from

below follows from yj,k being in the R′
k-piece of the first neighborhood

above. The condition that for α ∈ ∆(P0, AP0
) − (I ∪ I⊥), aα

j → +∞
follows from the fact that the lower bound of every α ∈ ∆(P0, AP0

) −
(I ∪ I⊥) = ∆(Q, AP0

) (see Equation 10 in §2) on aµ,Q,Tj
(⊆ aP0

) goes
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to +∞ and the fact that for any pair of parabolic subgroups R̃, R with
R̃ ⊇ R, the lower bound of α on σR̃ + a

+
R̃

is greater than or equal to

the lower bound of α on σR + a
+
R. This latter inequality follows from

the fact that σR̃ + a
+
R̃

and σR + a
+
R are pieces of the complement of the

convex polytope ΣT contained in aP0
(see Equation (5)), and ΣT is the

intersection of half spaces defined by α(H) ≤ α(T ), α ∈ ∆(P0, AP0
),

and their images under the Weyl group.
Similar arguments show that for any µ-saturated parabolic subgroup

Q′ such that one of its µ-connected reductions contains a µ-connected
reduction of Q, an unbounded sequence yj in e(Q′) converges to z∞ ∈

e(Q) if and only if for any C̃SQ′,µ
ε,T,V , yj ∈ C̃SQ′,µ

ε,T,V when j ≫ 1. This
completes the proof of the proposition. q.e.d.

The construction of the neighborhoods described in the above propo-
sition is motivated by a result in [Ca] and [Ji]. In fact, it was shown
in [Ca] and [Ji] that the closure of the flat aP0

= aP0
x0 in the Sa-

take compactification X
S
τ is canonically homeomorphic to the closure

of the convex hull of the Weyl group orbit Wµτ of the highest weight
µτ . When µτ is generic, we can take T = µτ , and the closure of the
convex hull is ΣT given in Equation (5). For non-generic µτ , there is a
collapsing from ΣT to the convex hull of Wµτ , and all the faces σR for
P ⊆ R ⊆ Q collapse to the face σP . The domain Sµ

ε,T,V was suggested
by this consideration.

Proposition 5.4. For any two dominant weights µ1, µ2 ∈ a
∗+
P0

, if µ2

is more regular than µ1, i.e., if µi ∈ a
∗+
P0,Ii

and I2 ⊆ I1, then there exists

a continuous surjective map from Xµ2
→ Xµ1

. If µ1, µ2 belong to the

same Weyl chamber face, then Xµ1
is homeomorphic to Xµ2

. For any

Xµ, there is a continuous surjective map from Xmax to Xµ.

Proof. Since µ2 is more regular than µ1, every µ1-connected para-
bolic subgroup is also µ2-connected, and every subset of ∆ perpen-
dicular to µ2 is also perpendicular to µ1. This implies that for any
µ1-connected parabolic subgroup P , its µ2-saturation Qµ2

is contained
in its µ1-saturation Qµ1

.
For every µ2-saturated parabolic subgroup Q, let Pµ2

be a µ2-connect-
ed reduction, and Pµ1

a µ1-connected reduction contained in Pµ2
. Then

Pµ1
is also a maximal µ1-connected parabolic subgroup contained in

Pµ2
. In Lemma 5.1 and Equation (3), for R = Pµ2

, the decomposition
of XR = XI × XP0,I′

gives

XPµ2
= XPµ1

× XP0,I′
.

Let Qµ1
be the µ1-saturation of Pµ1

. Then Qµ1
⊆ Q.

Define a map π : Xµ2
→ Xµ1

such that it is equal to the identity
on X, and on the boundary component e(Q) = XPµ2

, a point (z, z′) ∈
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XPµ1
× XP0,I′

= XPµ2
is mapped to z ∈ XPµ1

= e(Qµ1
). Clearly, π is

surjective.
Since the convergence in Xµ1

is determined in terms of the refined
horospherical coordinates decomposition, using AQµ1

⊆ AQ, and XPµ2
=

XPµ1
× XP0,I′

, it can be checked easily that any unbounded sequence

yj in X that converges to (z, z′) ∈ XPµ1
× XP0,I′

= XPµ2
⊂ Xµ2

also

converges to z ∈ XPµ1
⊂ Xµ1

. By [GJT, Lemma 3.28], this proves that
the map π is continuous. q.e.d.

Proposition 5.5. For any dominant weight µ ∈ a
∗+
P0

, Xµ is compact.

Proof. It was shown in Proposition 4.3 that Xmax is compact. By
Proposition 5.4, Xµ is the image of a compact set under a continuous
map and hence compact. q.e.d.

Proposition 5.6. The G-action on X extends to a continuous action
on Xµ.

Proof. The proof is similar to that of Proposition 4.4. It uses the
more refined decomposition in Lemma 5.1, instead of the horospherical
and Langlands decompositions. q.e.d.

Proposition 5.7. Let τ be a faithful projective representation, τ :
G → PGL(n, C), whose highest weight µτ belongs to the same Weyl

chamber face as µ. Then the Satake compactification X
S
τ is isomorphic

to Xµ.

Proof. We first show that for any unbounded sequence yj in X, if it

converges in Xµ, then it also converges in X
S
τ . For simplicity, we can

assume that µ is equal to µτ .
It is known that every weight µi of τ has support equal to a µ-

connected subset, i.e., µi = µτ −
∑

α∈∆ ci,αα and Supp(µi) = {α ∈
∆(P0, AP0

) | ci,α > 0} is equal to a µ-connected subset. Conversely,
every µ-connected subset is equal to the support of a weight of τ .

Let P = P0,I be a µ-connected parabolic subgroup, and Q = Sµ(P )
its µ-connected saturation. For any point z∞ = m∞KP ∈ XP , let
yj = gjx0 be a sequence in X converging to z∞, i.e., there exists a
parabolic subgroup R satisfying P ⊆ R ⊆ Q such that with respect
to the refined horospherical decomposition of X determined by R in
Equation (3), yj = kjnjajmjm

′
jx0, the components satisfy (1) kj ∈ K,

kj → k∞ ∈ K∩Z(e(Q)), (2) aj ∈ AR, for all α ∈ ∆(Q, AQ), α(log aj) →
+∞, and for α ∈ ∆(R, AR) − ∆(Q, AQ), α(log aj) is bounded from

below, (3) nj ∈ NR, n
aj

j → e, (4) mj ∈ MP , mj → m∞, (5) m′
j ∈ MP0,I′

is bounded.
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Then we have

iτ (yj)

= [τ(gj)τ(gj)
∗]

= [τ(kj)τ(aj)τ(n
aj

j )τ(mj)τ(m′
j)τ(m′

j)
∗τ(mj)

∗τ(n
aj

j )τ(aj)
∗τ(kj)

∗],

which has the same limit as the sequence

τ(kjmj)[τ(aj)τ(m′
j)τ(m′

j)
∗τ(aj)

∗]τ(kjmj)
∗

= τ(k∞m∞)[τ(aj)τ(m′
j)τ(m′

j)τ(aj)
∗]τ(k∞m∞)∗,

if the latter converges. To determine the limit of this sequence, order
the weights µ1, . . . , µn (with multiplicity) of τ so that the weights with
support contained in I are µ1 = µτ , . . . , µl, and the rest of the weights
are µl+1, . . . , µn.

Note that P0,I is a µ-reduction of Q. By definition, for any j ≥
l + 1, Supp(µj) is µ-connected and hence contains at least one root

α ∈ ∆(Q, AQ) = ∆(P0, AP0
)−(I∪I⊥), which satisfies α(log aj) → +∞.

For other roots in Supp(µj), α(log aj) is bounded from below. Then as
in the proof of Proposition 2.4,

[τ(aj)] → [diag (1, . . . , 1, 0, . . . , 0)],

where the first l entries are equal to 1. On the other hand, write the
Cartan decomposition m′

j = k′
ja

′
jk

′′
j for the elements in MP0,I′

. Since m′
j

is bounded, we can assume, by passing to a subsequence if necessary,
that all the components converge, i.e., k′

j → k′
∞, a′j → a′∞, and k′′

j →

k′′
∞. Since the roots in I ′ are the simple roots of MP0,I′

with respect to

a
I′

P0
and perpendicular to I, this implies that for α ∈ I, α(log a′j) = 0,

and hence for µ = µ1, . . . , µl, (a′j)
µ = (a′j)

µτ . It follows that

[τ(a′j)] → [diag (1, . . . , 1, (a′∞)µl+1−µτ , . . . , (a′∞)µn−µτ )],

[τ(aj)τ(a′j)τ(a′j)
∗τ(aj)

∗] → [diag (1, . . . , 1, 0, . . . , 0)],

and

[τ(aj)τ(m′
j)τ(m′

j)
∗τ(aj)

∗]

= [τ(aj)τ(k′
j)τ(a′j)τ(k′′

j )τ(k′′
j )∗τ(a′j)

∗τ(k′
j)

∗τ(aj)
∗]

= τ(k′
j)[τ(aj)τ(a′j)τ(a′j)

∗τ(aj)
∗]τ(k′

j)
∗

→ τ(k′
∞)[diag (1, . . . , 1, 0, . . . , 0)]τ(k′

∞)∗,

since τ(k′′
j )τ(k′′

j )∗ = id, and k′
j commutes with aj . Because k′

j commutes

with aj , τ(k′
∞) commutes with diag (1, . . . , 1, 0, . . . , 0), and hence

τ(k′
∞)[diag (1, . . . , 1, 0, . . . , 0)]τ(k′

∞)∗

= [diag (1, . . . , 1, 0, . . . , 0)]τ(k′
∞)τ(k′

∞)∗

= [diag (1, . . . , 1, 0, . . . , 0)].
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Since k∞ also commutes with aj and m∞, it implies that

iτ (yj) → τ(k∞)τ(m∞)[diag (1, . . . , 1, 0, . . . , 0)]τ(m∞)∗τ(k∞)∗

= τ(m∞)[diag (1, . . . , 1, 0, . . . , 0)]τ(m∞)∗,

and hence yj converges in the Satake compactification X
S
τ .

This gives a well-defined map

ϕ : Xµ → X
S
τ .

By [GJT, Lemma 3.28], this map ϕ is continuous.
In [Sa], it is shown that

X
S
τ = X ∪ G





∐

I is µ-connected

XP0,I



 ,

where P0 is a minimal parabolic subgroup, I ⊂ ∆(P0, AP0
), and that

X
S
τ can be identified with X ∪

∐′ XP (Q), where the union is over µτ -
saturated parabolic subgroups Q and P is a µ-connected reduction of
Q. Under this identification, the map ϕ is the identity map. Since both

X
S
τ and Xµ are compact and Hausdorff, ϕ is a homeomorphism. q.e.d.

Remark 5.8. Propositions 5.4 and 5.7 give a more explicit proof of
Proposition 4.6. In [Zu], Proposition 4.6 was proved by comparing the
closures of a flat in these compactifications of X. On the other hand,
the proof here gives an explicit map and its surjectivity is immediate.

Remark 5.9. Another application of the construction of Xµ in this
section is that it gives an explicit description of neighborhoods of the
boundary points.

6. The conic compactification

The symmetric space X is a complete Riemannian manifold of non-
positive curvature and hence admits a compactification X∪X(∞) whose
boundary is the set of equivalence classes of geodesics. In [GJT], this
compactification is called the conic compactification. It will also be
called the geodesic compactification below. In this section, we con-
struct X ∪ X(∞) by following the approach in §3. This construction is
less direct than the geometric definition, but is needed for the Martin
compactification in §7.

As in the compactification X
S
max, we use the whole collection of par-

abolic subgroups. For every parabolic subgroup P , define its boundary
face to be

e(P ) = a
+
P (∞).

Define
X

c
= X ∪

∐

P

a
+
P (∞).
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We note that the K-action on the set of parabolic subgroups preserves
the Langlands decomposition with respect to x0 = K (see Equations (4,
5) in §2) and hence K acts on X

c
as follows: for k ∈ K, H ∈ a

+
P (∞),

k · H = Ad(k)H ∈ a
+
kP

(∞).

The space X
c

is given the following topology.

1) An unbounded sequence yj in X converges to H∞ ∈ a
+
P (∞) if

and only if yj can be written as yj = kjnjajzj with kj ∈ K, nj ∈
NP , aj ∈ AP , zj ∈ XP satisfying the conditions:

(a) kj → e,
(b) for all α ∈ ∆(P, AP ), α(log aj) → +∞ and log aj/‖ log aj‖ →

H∞,
(c) n

aj

j → e,

(d) d(zj , xo)/‖ log aj‖ → 0, where x0 ∈ XP is the basepoint KP ,
and d(zj , x0) is the Riemannian distance on XP for the invari-
ant metric.

2) For a sequence kj ∈ K, kj → e, and a parabolic subgroup Q
contained in P and a sequence Hj ∈ a

+
Q(∞), kjHj converges to

H∞ ∈ a
+
P (∞) if and only if Hj → H∞ ∈ a

+
Q(∞). (Note that

a
+
P (∞) ⊂ a

+
Q(∞).)

Combinations of these two special types of convergent sequences give
general convergent sequences.

Neighborhoods of boundary points can be given as follows. For any
parabolic subgroup P , let P0 be a minimal parabolic subgroup contained

in P . Then a
+
P (∞) ⊂ a

+
P0

(∞). For H ∈ a
+
P (∞) and ε > 0, let

Uε,H = {H ′ ∈ a
+
P0

(∞) | ‖H ′ − H‖ < ε},

a neighborhood of H in a
+
P0

(∞). For t > 0, let

Vε,t,H = {(n, a, z) ∈ NP × AP × XP = X

| a ∈ AP,t, log a/‖ log a‖ ∈ Uε,H , na ∈ BNP
(ε), d(z, x0)/‖ log a‖ < ε}.

Let C be a compact neighborhood of e in K. Then the set

CVε,t,H ∪ CUε,H

is a neighborhood of H in X
c
.

For sequences εi → 0, ti → +∞, and a basis Ci of neighborhoods of
e in K, CiVεi,ti,H ∪ CUεi,H forms a basis of neighborhoods of H in X

c
.

Proposition 6.1. The space X
c

is a compact Hausdorff space.
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Proof. To prove that X
c

is compact, we note that

X
c
= K



exp a
+
P0

x0 ∪
∐

∅⊆I⊂∆

a
+
P0,I

(∞)





= K
(

exp a
+
P0

x0 ∪ a
+
P0

(∞)
)

,

where P0 is a minimal parabolic subgroup. Since K and a
+
P0

(∞) are
compact, it suffices to show that every unbounded sequence of the form

expHjx0, Hj ∈ a
+
P0

, has a convergent subsequence. Replacing by a

subsequence, we can assume that Hj/‖Hj‖ converges to H∞ ∈ a
+
P0,I

(∞)

for some I. By decomposing

Hj = Hj,I + HI
j , Hj,I ∈ aP0,I , HI

j ∈ a
I
P0

,

it follows immediately that expHjx0 = expHj,I(expHI
j x0) converges

to H∞ in X
c
.

To prove the Hausdorff property, let H1, H2 ∈ X
c

be two distinct
points. Clearly they admit disjoint neighborhoods if at least one of them
belongs to X. Assume that Hi ∈ a

+
Pi

(∞) for some parabolic subgroups
P1, P2.

First consider the case that P1 = P2. Let P0 be a minimal parabolic
subgroup contained in P1, and Uε,1, Uε,2 be two neighborhoods of H1, H2

in a
+
P0

(∞) with Uε,1∩Uε,2 = ∅. Let C be a small compact neighborhood

of e in K such that for all k1, k2 ∈ C, k1Uε,1 ∩ k2Uε,2 = ∅. We claim
that the neighborhoods CVε,t,H1

∪ CUε,1, CVε,t,H2
∪ CUε,2 are disjoint

when t ≫ 0, ε and C are sufficiently small.
By the choice of C,

CUε,1 ∩ CUε,2 = ∅.

We need to show that

CVε,t,H1
∩ CVε,t,H2

= ∅.

If not, there exist sequences εj → 0, tj → +∞, Cj → e such that

CjVεj ,tj ,H1
∩ CjVεj ,tj ,H2

6= ∅.

Let yj ∈ CjVεj ,tj ,H1
∩CjVεj ,tj ,H2

. Since yj ∈ CVεj ,tj ,H1
, yj can be written

as yj = kjnjajzj with the components kj ∈ K, nj ∈ NP1
, aj ∈ AP1

, zj ∈
XP1

satisfying (1) kj → e, (2) ‖ log aj‖ → +∞, log aj/‖ log aj‖ → H1,

(3) n
aj

j → e, (4) d(zj , x0)/‖ log aj‖ → 0. Similarly, yj can be written

as yj = k′
jn

′
ja

′
jz

′
j with k′

j , n
′
j , a′j , z

′
j , satisfying similar properties and

log a′j/‖ log a′j‖ → H2. We note that

d(yj , xo) = (1 + o(1))‖ log aj‖ = (1 + o(1))‖ log a′j‖,

hence
‖ log a′j‖ = (1 + o(1))‖ log aj‖;
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and

d(yj , kjajx0) = d(kjnjajzj , kjajx0) = d(njajzj , ajx0)

= d(n
aj

j zj , x0) = o(1)‖ log aj‖,

d(yj , k
′
ja

′
jx0) = o(1)‖ log a′j‖.

Since X is simply connected, nonpositively curved, H1 6= H2, and
kjajx0, k

′
ja

′
jx0 lie on two geodesics from x0 with a uniform separation

of angle between them, comparison with the flat space gives

d(kjajx0, k
′
ja

′
jx0) ≥ c0‖ log aj‖

for some positive constant c0. This contradicts with the inequality

d(kjajx0, k
′
ja

′
jx0) ≤ d(yj , kjajx0) + d(yj , k

′
ja

′
jx0) = o(1)‖ log aj‖.

The claim is proved.
The case P1 6= P2 can be proved similarly. In fact, for suitable neigh-

borhoods Uε,H1
, Uε,H2

and a neighborhood C of e in K such that for all
k1, k2 ∈ C,

k1Uε,H1
∩ k2Uε,H2

= ∅,

the same proof works. q.e.d.

Proposition 6.2. The G-action on X extends to a continuous action
on X

c
.

Proof. For g ∈ G and H ∈ a
+
P (∞), write g = kp with k ∈ K and

p ∈ P . Define
g · H = Ad(k)H ∈ akP .

Since k is uniquely determined up to a factor in KP and KP commutes
with AP , this action is well-defined. Clearly, P fixes a

+
P (∞).

To show that it is continuous, by [GJT, Lemma 3.28], it suffices to
show that for any unbounded sequence yj in X, if yj converges to H∞ in

X
c
, then gyj converges to gH∞. By definition, yj can be written as yj =

kjnjajzj with (1) kj ∈ K, kj → e, (2) aj ∈ AP , for all α ∈ ∆(P, AP ),

α(log aj) → +∞, log aj/‖ log aj‖ → H∞, (3) nj ∈ NP , n
aj

j → e, and (4)

zj ∈ XP , d(zj , x0)/‖ log aj‖ → 0. Write

gkj = k′
jm

′
ja

′
jn

′
j ,

where k′
j ∈ K, m′

j ∈ MP , n′
j ∈ NP and a′j ∈ AP . Then m′

j , n
′
j , a

′
j are

bounded, and k′

jP converges to kP . Since

gyj = k′
jm

′
ja

′
jn

′
jnjajzj = k′

j
m′

ja′

j (n′
jnj)a

′
jaj(m

′
jzj),

it is clear that gyj converges to Ad(k)H∞ ∈ a
+
kP

(∞), which is equal to
gH∞ by definition. q.e.d.

Proposition 6.3. The identity map on X extends to a continuous
map X

c
→ X ∪ X(∞), and this map is a homeomorphism.
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Proof. First we recall the construction of X ∪ X(∞) (see [GJT],
[BGS]). Two unit speed geodesics γ1, γ2 in X are defined to be equiv-
alent if lim supt→+∞ d(γ1(t), γ2(t)) < +∞. Let X(∞) be the set of
equivalence classes of geodesics. X(∞) can be identified with the unit
sphere in the tangent space Tx0

X and is endowed with the topology of
the latter. The topology of X∪X(∞) is defined such that an unbounded
sequence yj in X converges to a geodesic class [γ] if the geodesic passing
through x0 and yj converges to a geodesic in [γ].

To prove that the identity map extends to a continuous map X
c
→

X ∪ X(∞), by [GJT, Lemma 3.28], it suffices to prove that if an
unbounded sequence in X converges in X

c
, then it also converges in

X ∪ X(∞). For an unbounded sequence yj in X which converges

to H∞ ∈ a
+
P (∞) in X

c
, yj can be written as yj = kjnjajzj where

the components satisfy (1) kj ∈ K, kj → e, (2) ‖ log aj‖ → +∞,

log aj/‖ log aj‖ → H∞, (3) n
aj

j → e, (4) d(zj , x0)/‖ log aj‖ → 0.
Clearly, the geodesic passing through ajx0 and x0 converges to the

geodesic exp tH∞x0. Since kj → e, the geodesic passing through kjajx0

and x0 also converges to exp tH∞x0. We claim that the geodesic passing
through yj and x0 also converges to exp tH∞x0.

Since

d(kjnjajzj , kjnjajx0) = d(zj , x0),

and hence

d(kjnjajzj , kjnjajx0)/‖ log aj‖ → 0,

comparison with the Euclidean space shows that the two sequences yj

and kjnjajx0 will converge to the same limit if kjnjajx0 converges in
X ∪ X(∞). Since

d(kjnjajx0, kjajx0) = d(n
aj

j x0, x0) → 0

and the geodesic passing through kjajx0 and x0 clearly converges to
the geodesic exp tH∞x0, it follows that kjnjajx0 converges to H∞ ∈
X ∪ X(∞).

To show that this extended continuous map is a homeomorphism, it
suffices to prove that it is bijective, since X

c
and X ∪ X(∞) are both

compact and Hausdorff. We note that
∐

P a
+
P (∞) can be identified with

the unit sphere in the tangent space Tx0
X (see [GJT, Chap. III]), and

hence under this identification, the map X
c
→ X ∪ X(∞) becomes the

identity map and is bijective. q.e.d.

7. The Martin compactification

For any complete Riemannian manifold X, there is a family of Mar-
tin compactifications parametrized by λ ≤ λ0(X), where λ0(X) is the
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bottom of the spectrum of the Laplace operator of X. For each λ, de-
note the corresponding Martin compactification by X ∪ ∂λX. For more
details about Martin compactifications, see [GJT] and [Ta].

When X is a symmetric space of noncompact type, the Martin com-
pactifications are completely determined in [GJT]. In fact, it is shown
that for λ = λ0(X), X ∪∂λX is isomorphic to the maximal Satake com-

pactification X
S
max, and for all λ < λ0(X), X ∪ ∂λX are the same and

equal to the least common refinement X
S
max

∨

X ∪ X(∞) of X
S
max and

X ∪ X(∞). In the following, we always assume that λ < λ0(X), and
call X ∪∂λX the Martin compactification. In this section, we follow the

method in §3 and construct a compactification X
M

, which will turn out
to be isomorphic to the Martin compactification X ∪ ∂λX.

For every parabolic subgroup P , define its boundary face to be

e(P ) = a
+
P (∞) × XP .

Define

X
M

= X ∪
∐

P

a
+
P (∞) × XP ,

where P runs over all parabolic subgroups. We note that the K-action
on the set of parabolic subgroups preserves the Langlands, horospherical
decompositions with respect to x0 = K (see Equations (4, 5) in §2) and

hence K acts on X
M

as follows: for k ∈ K, (H, z) ∈ a
+
P (∞) × XP =

e(P ),

k · (H, z) = (Ad(k)H, k · z) ∈ a
+
kP

(∞) × XkP .

A topology on X
M

is given as follows:

1) For a boundary point (H∞, z∞) ∈ a
+
P (∞) × XP , an unbounded

sequence yj in X converges to (H∞, z∞) if yj can be written in
the form yj = kjnjajzj with the components kj ∈ K, nj ∈ NP ,
aj ∈ AP , zj ∈ XP satisfying the conditions:

(a) kj → e,
(b) for all α ∈ ∆(P, AP ), α(log aj) → +∞, log aj/‖ log aj‖ → H∞,

(c) n
aj

j → e,

(d) zj → z∞.
2) For a pair of parabolic subgroups P, Q, P ⊂ Q, let P ′ be the

unique parabolic subgroup of MQ determined by P . For a sequence

kj ∈ K with kj → e and a sequence yj = (Hj , zj) ∈ a
+
Q(∞) ×

XQ, the sequence kjyj converges to (H∞, z∞) ∈ a
+
P (∞) × XP if

H∞ ∈ a
+
Q(∞), Hj → H∞, and zj can be written in the form

zj = k′
jn

′
ja

′
jz

′
j , where k′

j ∈ KQ, n′
j ∈ NP ′ , a′j ∈ AP ′ , z′j ∈ XP ′

satisfy the same condition as part (1) above when the pair (G, P )
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is replaced by (MQ, P ′) except (b) is replaced by (b’): for all
α ∈ ∆(P ′, AP ′), α(log a′j) → +∞, and log a′j/‖ log a′j‖ → H∞.

These are special convergent sequences, and their combinations give
the general convergent sequences.

Remark 7.1. As mentioned above, X ∪ ∂λX is the least common

refinement X
S
max

∨

X ∪X(∞), but its boundary faces are not products

a
+
P (∞) × XP of the boundary faces XP and a

+
P (∞) of X

S
max and X ∪

X(∞). The reason is that the fibers over XP must be compact and

hence equal to a compactification a+(∞) of a
+(∞).

Remark 7.2. In the previous sections for the Satake compactifica-
tions and the conic (or geodesic) compactification, for a pair of parabolic
subgroups P, Q, P ⊂ Q, their boundary faces e(P ), e(Q) satisfy either

e(P ) ⊂ e(Q) or e(Q) ⊂ e(P ). For X
M

, neither inclusion is true. It will
be shown in the next section that the same phenomenon occurs for the
Karpelevic compactification.

Neighborhoods of boundary points can be given explicitly as follows.

For a parabolic subgroup P and a point (H, z) ∈ a
+
P (∞) × XP , there

are two cases to consider: H ∈ a
+
P (∞) or not.

In the first case, let U be a neighborhood of H in a
+
P (∞) and V a

neighborhood of z in XP . Let

SM
ε,t,U,V =

{

(n, a, z) ∈ NP × AP × XP = X |

a ∈ AP,t, log a/‖ log a‖ ∈ U, na ∈ BNP
(ε), z ∈ V

}

.

For a neighborhood C of e in K, the set

C(SM
ε,t,U,V ∪ U × V )

is a neighborhood of (H, z) in X
M

. The reason is that (H, z) is contained

in the closure of other boundary components only when H ∈ ∂a
+
P (∞).

In the second case, H ∈ ∂a
+
P (∞). Let Q be the unique parabolic

subgroup containing P such that H is contained in a
+
Q(∞). Let Q = PJ .

Then PI with I ⊆ J are all the parabolic subgroups containing P such

that H ∈ a
+
PI

(∞), and XP is a boundary symmetric space of XPI
. Let

SI
ε,t,V be the generalized Siegel set in XPI

associated with P ′ as defined

in Equation (15) in §2, where V is a bounded neighborhood of z. Let

U be a neighborhood of H in a
+
P (∞). Then

(a+
PI

(∞) ∩ U) × SI
ε,t,V
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is the intersection of a neighborhood of (H, z) with the boundary face

a
+
PI

(∞) × XPI
. Let C be a neighborhood of e in K. Then

C



SM
ε,t,U,V ∪

∐

I⊆J

(a+
PI

(∞) ∩ U) × SI
ε,t,V





is a neighborhood of (H, z) in X
M

.

Proposition 7.3. The topology on X
M

is Hausdorff.

Proof. We need to show that every pair of distinct points x1, x2 ∈ X
M

admit disjoint neighborhoods. If at least one of them belongs to X, it
is clear. Assume that they both lie on the boundary, xi = (Hi, zi) ∈

a
+
Pi

(∞) × XPi
for a pair of parabolic subgroups P1, P2. There are two

cases to consider: P1 = P2 or not.

In the first case, (H1, z1), (H2, z2) ∈ a
+
P1

(∞) × XP1
. If z1 6= z2, ex-

istence of the disjoint neighborhoods follows from the corresponding
results for Xmax in Proposition 4.2. If z1 = z2, then H1 6= H2, and the
existence of disjoint neighborhoods follows from the similar result of X

c

in Proposition 6.1.
In the second case, P1 6= P2, existence of the disjoint neighborhoods

follows similarly from the results for Xmax and X
c
. q.e.d.

Proposition 7.4. The G-action on X extends to a continuous action

on X
M

.

Proof. First we define a G-action on the boundary of X
M

. For

(H, z) ∈ a
+
P (∞)×XP , g ∈ G, write g = kman, k ∈ K, m ∈ MP , a ∈ AP ,

n ∈ NP . Define

g · (H, z) = (Ad(k)H, k · mz) ∈ a
+
kP

(∞) × XkP ,

where k · XP is defined in Equation (5) in §2. To show that this is a
continuous extension of the G-action on X, by [GJT, Lemma 3.28], it
suffices to show that if an unbounded sequence yj in X converges to a
boundary point (H, z), then gyj converges to g · (H, z).

By definition, yj can be written in the form yj = kjnjajzj , where
kj ∈ K, nj ∈ NP , aj ∈ AP , zj ∈ XP satisfy (1) kj → e, (2) for all

α ∈ ∆(P, AP ), α(log aj) → +∞, log aj/‖ log aj‖ → H, (3) n
aj

j → e, (4)
zj → z. Write

gkj = k′
jm

′
ja

′
jn

′
j ,

where k′
j ∈ K, m′

j ∈ MP , n′
j ∈ NP , a′j ∈ AP . Then n′

j , a
′
j are bounded

and k′
jm

′
j → km. The components k′

j , m
′
j are not uniquely determined,

but determined up to an element in KP . By choosing this element
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suitably, we can assume that k′
j , m

′
j converge to k, m respectively. Then

gyj = k′
jm

′
ja

′
jn

′
jnjajzj = k′

j
m′

ja′

j (n′
jnj) a′jajm

′
jzj

= k′

jm′

ja′

j (n′
jnj)

k′

j (a′jaj) (kj
′m′

jzj)

= (k′
jk

−1) km′

ja′

j (n′
jnj)

k(a′jaj)(km′
jzj).

From the last expression it can be checked easily that the conditions for

convergence in X
M

are satisfied, and gyj converges to (Ad(k)H, kmz) ∈

a
+
kP

(∞) × XkP . q.e.d.

Proposition 7.5. The space X
M

is compact.

Proof. We need to show that every sequence in X
M

has a convergent

subsequence. Since X is dense and every point in X
M

is the limit of a
sequence of points in X, it suffices to consider sequences yj in X.

If yj is bounded, it clearly has a convergent subsequence. Otherwise,
we can assume that yj goes to infinity. Using the Cartan decomposition

X = K exp a
+
P0

x0, yj = kj expHjx0 and replacing Hj by a subsequence,
we can assume that

1) kj converges to some k ∈ K,
2) there exists a subset I ⊂ ∆(P0, AP0

), such that for α ∈ I, α(Hj)
converges to a finite number, while for α ∈ ∆ − I, α(Hj) → +∞.

3) Hj/‖Hj‖ → H∞ ∈ a
+
P0,I

(∞).

Writing Hj = Hj,I + HI
j , where Hj,I ∈ aP0,I

, HI
j ∈ a

I
P0

, expHI
j x0

converges to a point z∞ ∈ XP0,I
, and Hj,I/‖Hj,I‖ → H∞. From this, it

is clear that yj = kj expHj,IH
I
j x0 converges to k(H∞, z∞) ∈ a

+
kP0,I

(∞)×

XkP0,I
in X

M
. q.e.d.

Proposition 7.6. X
M

is isomorphic to the least common refinement
Xmax

∨

X
c

of Xmax and X
c
.

Proof. By [GJT, Lemma 3.28], it suffices to show that an unbounded

sequence yj in X converges in X
M

if and only if yj converges in both

Xmax and X ∪ X(∞).

If yj in X converges in X
M

to (H, z) ∈ a
+
P (∞) × XP , then it can

be written in the form yj = kjnjajzj with kj ∈ K, nj ∈ NP , aj ∈ AP

and zj ∈ XP satisfying (1) kj → e, (2) α(log aj) → +∞, α ∈ ∆(P, AP ),
log aj/‖ log aj‖ → H, (3) zj → z. Since these conditions are stronger

than the convergence conditions of Xmax, it is clear that yj converges

in Xmax to z ∈ XP . On the other hand, let PI be the unique parabolic
subgroup containing P such that a

+
P (∞) contains H as an interior point.

By decomposing log aj according to aP = aP,I ⊕a
I
P , it can be seen easily

that yj converges to H ∈ a
+
PI

(∞) in X
c
.
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Conversely, suppose that yj converges in both Xmax and X
c
. Let

z ∈ XP be the limit in Xmax. Then yj can be written as yj = kjnjajzj

with the components satisfying similar conditions as above except (2)
is replaced by (2’): α(log aj) → +∞, α ∈ ∆(P, AP ). We claim that
the second part of (2) is also satisfied, i.e., log aj/‖ log aj‖ → H for

some H ∈ a
+
P (∞). In fact, since yj converges in X

c
, the proof of

Proposition 6.1 shows that ajx0 also converges in X
c
. This implies

that log aj/‖ log aj‖ converges in aP (∞) and the limit clearly belongs

to a
+
P (∞). Since all the conditions (1)–(4) are satisfied, yj converges in

X
M

to (H, z) ∈ a
+
P (∞) × XP . q.e.d.

Corollary 7.7. The compactification X
M

is isomorphic to the Mar-
tin compactification X ∪ ∂λX, λ < λ0(X).

Proof. It was proved in [GJT] that X ∪ ∂λX, λ < λ0(X), is isomor-

phic to the least common refinement X
S
max

∨

X∪X(∞). By Proposition

4.8, X
S
max

∼= Xmax, and by Proposition 6.3, X
c
= X ∪X(∞). Then the

corollary follows from the previous proposition. q.e.d.

8. The Karpelevic compactification

Karpelevic [Ka] defined a compactification X
K

of X using structures
of geodesics; in particular, he refined equivalence relations on them. The
original definition is given by induction on the rank and is quite involved.
A simplified, more direct approach is given in [GJT] by first identify-
ing the closure of a flat. But in the latter approach, the continuous
extension of the G-action is not clear. In this section, we follow the
general approach in §3 to construct a compactification of X admitting
a continuous G-action, to be denoted by XK , which will turn out to

be isomorphic to the Karpelevic compactification X
K

. Consequently,
we obtain another non-inductive explicit description of the Karpelevic
topology.

The boundary faces of XK are refinements of the boundary faces of

X
M

. Recall that for any parabolic subgroup P , ∆ = ∆(P, AP ) is the
set of simple roots in Φ(P, AP ). For a pair of J, J ′ ⊂ ∆(P, AP ), J ⊂ J ′,
let

(1) a
J ′

J = aPJ
∩ a

J ′

P .

The restriction of the roots in J ′ − J yields a homeomorphism a
J ′

J
∼=

R
J ′−J . Define

(2) a
J ′,+
J (∞) = {H ∈ a

J ′

J | ‖H‖ = 1, α(H) > 0, α ∈ J ′ − J}.

For any ordered partition

Σ : I1 ∪ · · · ∪ Ik = ∆,
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let Ji = Ii ∪ · · · ∪ Ik, 1 ≤ i ≤ k, Jk+1 = ∅, be the induced decreasing
filtration. Define

a
Σ,+
P (∞) = a

+
J2

(∞) × a
J2,+
J3

(∞) × · · · × a
Jk,+
Jk+1

(∞).

Note that a
Jk,+
Jk+1

(∞) = a
Jk,+
P (∞). If we use the improper parabolic

subgroup P∆ = G, a
+
J2

(∞) = a
+
PJ2

(∞) can be identified with a
J1,+
J2

(∞).

When Σ is the trivial partition consisting of only ∆, a
Σ,+
P (∞) = a

+
P (∞).

Other pieces are blow-ups of the boundary of a
+
P (∞) in as shown in

Proposition 8.1 below.

Define

(3) a
K,+
P (∞) =

∐

Σ

a
Σ,+
P (∞),

where Σ runs over all the partitions of ∆.
The space is given the following topology:

1) For every partition Σ, a
Σ,+
P (∞) is given the product topology.

2) For two partitions Σ, Σ′, a
Σ,+
P (∞) is contained in the closure of

a
Σ′,+
P (∞) if and only if Σ is a refinement of Σ′, i.e., every part in Σ′

is union of parts of Σ. Specifically, the convergence of a sequence of

points in a
Σ′,+
P (∞) to limits in a

Σ,+
P (∞) is given as follows. Assume

Σ : I1∪· · ·∪Ik, Σ′ : I ′1∪· · ·∪I ′k′ . For any part I ′m in Σ′, write I ′m =
In1

∪ · · · ∪ Ins , where the indexes n1, . . . , ns are strictly increasing.

Then it suffices to describe how a sequence in a
J ′

m,+
J ′

m+1(∞) converges

to a limit in a
Jn1

,+

Jn1
+1(∞)×· · ·×a

Jns ,+
Jns+1(∞). Let Hj be a sequence in

a
J ′

m,+
J ′

m+1(∞), and (Hn1,∞, . . . , Hns,∞) ∈ a
Jn1

,+

Jn1
+1(∞)×· · ·×a

Jns ,+
Jns+1(∞).

Then Hj converges to (Hn1,∞, . . . , Hns,∞) if and only if the fol-
lowing conditions are satisfied:

(a) For α ∈ In1
, α(Hj) → α(Hn1,∞), in particular, α(Hj) 6→ 0.

(b) For α ∈ I ′m − In1
, α(Hj) → 0.

(c) For α ∈ Ina , β ∈ Inb
, a < b,

β(Hj)

α(Hj)
→ 0.

(d) For α, β ∈ Ina , 1 ≤ a ≤ s,

β(Hj)

α(Hj)
→

β(Hna,∞)

α(Hna,∞)
.
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For ε > 0, define a subset UΣ′

ε (H∞) in a
Σ′,+
P (∞) as follows:

UΣ′

ε (H∞) =
{

(H1, . . . , Hk′) ∈ a
Σ′,+
P (∞) |

(4)

for 1 ≤ m ≤ k′, I ′m = In1
∪ · · · ∪ Ins ,

(1) for α ∈ In1
, |α(Hm) − α(Hn1,∞)| < ε,

(2) for α ∈ I ′m − In1
, |α(Hm)| < ε,

(3) for α ∈ Ina , β ∈ Inb
, a < b,

∣

∣

∣

∣

β(Hm)

α(Hm)

∣

∣

∣

∣

< ε,

(4) for α, β ∈ Ina , 1 ≤ a ≤ s,

∣

∣

∣

∣

β(Hm)

α(Hm)
−

β(Hna,∞)

α(Hna,∞)

∣

∣

∣

∣

< ε
}

.

Proposition 8.1. There exists a continuous surjective map π :

a
K,+
P (∞) → a

+
P (∞). This map is a homeomorphism if and only if dim AP

≤ 2.

Proof. Recall that

a
+
P (∞) =

∐

I⊂∆

a
+
PI

(∞).

For each partition Σ : I1 ∪ · · · ∪ Ik = ∆, define a map by projecting to
the first factor:

π : a
Σ,+
P (∞) = a

+
J2

(∞)×a
J2,+
J3

(∞)×· · ·×a
Jk,+
Jk+1

(∞) → a
+
J2

(∞) = a
+
PJ2

(∞),

π(H1,∞, . . . , Hk,∞) = H1,∞

where Ji = Ii ∪ · · · ∪ Ik as above. This gives a surjective map

π : a
K,+
P (∞) → a

+
P (∞).

If Hj ∈ a
+
P (∞) converges to (H1,∞, . . . , Hk,∞) ∈ a

Σ,+
P (∞), it is clear

from the description of the topology of a
K,+
P (∞) that in particular con-

ditions (a) and (b) Hj converges to H1,∞ in a
+
P (∞). Since a

+
P (∞) is

dense in a
K,+
P (∞) and hence every point in a

K,+
P (∞) is the limit of a

sequence of points in a
+
P (∞), this proves the continuity of π.

When dimAP = 1, this map π is clearly bijective. When dimAP = 2,
there are only two nontrivial ordered partitions, Σ1 : I1∪I2, Σ2 : I2∪I1 of

∆, and each of a
Σ1,+
P (∞), a

Σ2,+
P (∞) consists of one point, corresponding

to the two end points of the 1-simplex a
+
P (∞), and hence the map π

is bijective. On the other hand, if dimAP ≥ 3, there are nontrivial
ordered partitions Σ : ∆ = I1∪I2 where |I1| = 1, |I2| ≥ 2. For such a Σ,

a
Σ,+
P (∞) has positive dimension and is mapped to the zero dimensional

space a
+
J2

(∞), and hence π is not injective. q.e.d.
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For each parabolic subgroup P , define its boundary face to be

e(P ) = a
K,+
P (∞) × XP .

Define

XK = X ∪
∐

P

a
K,+
P (∞) × XP ,

where P runs over all parabolic subgroups. By Equations (4), (5) in
§2, the K-action on parabolic subgroups preserves the Langlands de-

composition, and hence K acts on X
K

as follows: for k ∈ K, (H, z) ∈

a
K,+
P (∞) × XP ,

k · (H, z) = (Ad(H), k · z) ∈ a
K,+
kP

(∞) × XkP ,

where for H = (H1, . . . , Hj) ∈ a
Σ,+
P (∞) ⊂ a

K,+
P (∞) and Σ : I1 ∪ · · · ∪ Ij ,

Ad(k)H = (Ad(k)H1, . . . , Ad(k)Hj)) ∈ a
Σ,+
kP

(∞),

where Σ induces an ordered partition of ∆(kP, AkP ) by Ad(k) : aP →
akP , which is denoted by Σ also in the above equation.

Before defining a topology on XK , we need to define a topology of

aP ∪ a
K,+
P (∞). Given an ordered partition Σ : I1 ∪ · · · ∪ Ik and a point

H∞ = (H1,∞ . . . , Hk,∞) ∈ a
Σ,+
P (∞), an unbounded sequence Hj ∈ aP

converges to (H1,∞ . . . , Hk,∞) if and only if

1) For all α ∈ ∆, α(Hj) → +∞.
2) For every pair m < n, α ∈ Im, β ∈ In, β(Hj)/α(Hj) → 0.
3) For every m, α, β ∈ Im, β(Hj)/α(Hj) → β(Hm,∞)/α(Hm,∞).

Neighborhoods of boundary points in aP ∪ a
K,+
P (∞) can be given

explicitly. For any H∞ = (H1,∞ . . . , Hk,∞) ∈ a
Σ,+
P (∞), and ε > 0,

define

UX
ε (H∞) =

{

H ∈ aP |

(5)

(1) for α ∈ ∆, α(H) >
1

ε
,

(2) for every pair m < n, α ∈ Im, β ∈ In, |β(H)/α(H)| < ε,

(3) for every m, α, β ∈ Im, |β(H)/α(H) − β(Hm,∞)/α(Hm,∞)| < ε
}

.

Combining with the set UΣ′

ε (H∞) in Equation (4), set

(6) Uε(H∞) = UX
ε (H∞) ∪ ∪Σ′UΣ′

ε (H∞),

where Σ′ runs over all the ordered partitions for which Σ is a refinement.

This is a neighborhood of H∞ in aP ∪ a
K,+
P (∞).

The space XK is given the following topology:
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1) An unbounded sequence yj in X converges to (H∞, z∞) ∈ a
K,+
P (∞)

×XP if yj can be written as yj = kjnjajzj with kj ∈ K, nj ∈ NP ,
aj ∈ AP , zj ∈ XP satisfying the conditions:

(a) kj → e.

(b) log aj → H∞ in aP ∪a
K,+
P (∞) in the topology described above.

(c) n
aj

j → e.

(d) zj → z∞.
2) Let Q be a parabolic subgroup containing P , and P ′ be the para-

bolic subgroup in MQ corresponding to P . We note that a parti-

tion ΣQ of ∆(Q, AQ) and a partition of ΣP ′

of ∆(P ′, AP ′) combine

to form a partition ΣP = ΣQ∪ΣP ′

of ∆(P, AP ), where the roots in
∆(Q, AQ) and ∆(P ′, AP ′) are identified with the roots in ∆(P, AP )
whose restrictions are equal to them.

For a sequence kj ∈ K with kj → e, and a sequence yj =

(Hj , zj) in a
K,+
Q (∞)×XQ, the sequence kjyj converges to (H∞, z∞)

∈ a
K,+
P (∞)×XP if and only if zj can be written as zj = k′

jn
′
ja

′
jz

′
j

with k′
j ∈ KQ, n′

j ∈ NP ′ , a′j ∈ AP ′ , z′j ∈ XP ′ , and these compo-
nents and Hj satisfy the conditions:

(a) There exists a partition Σ of the form Σ = ΣQ ∪ ΣP ′

, i.e., a

combination of two partitions ΣQ, ΣP ′

, such that H∞ ∈ a
Σ,+
P .

Write H∞ = (H∞,Q, H ′
∞) ∈ a

ΣQ,+
Q (∞)× a

ΣP ′

,+
P ′ (∞). The com-

ponents k′
j , n

′
j , a′j , z

′
j satisfy the same condition as in part (1)

above when the pair X, P is replaced by XQ, P ′ and the limit

by (H ′
∞, z∞) ∈ a

K,+
P ′ (∞) × XP ′ .

(b) (Hj , H
′
∞) → H∞ in aP ∪ a

K,+
P (∞).

Neighborhood systems of boundary points can be described as fol-

lows. For a point (H∞, z∞) ∈ a
K,+
P (∞) × XP , let V be a bounded

neighborhood of z∞ in XP , and Uε = Uε(H∞) a neighborhood of H∞

in aP ∪ a
K,+
P (∞) defined in Equation (6) above. For ε > 0, t > 0, define

(7) SK
ε,t,V =

{

(n, a, z) ∈ NP × AP × XP = X |

log a ∈ Uε, a ∈ AP,t, n
a ∈ BNP

(ε), z ∈ V
}

.

Let Σ be the partition of ∆(P, AP ) such that H∞ ∈ a
Σ,+
P (∞). For

a parabolic subgroup PI containing P , if a partition Σ is of the form
ΣPI

∪ ΣP ′

in the above notation, we call PI a Σ-admissible parabolic
subgroup. For example, when Σ = ∆, the only Σ-admissible parabolic
subgroup is P .

For each Σ-admissible parabolic subgroup PI , write H∞=(H∞,I , H
I
∞)

∈ a
K,+
PI

(∞) × a
K,+
P ′ (∞). For ε > 0, let UI,ε = Uε(H∞,I) ∩ a

K,+
PI

(∞), a
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neighborhood of H∞,I in a
K,+
PI

(∞). (Recall that Uε(H∞,I) is a neigh-

borhood of H∞,I in aPI
∪ a

K,+
PI

(∞) as defined in Equation (6) above).

Let SK,I
ε,t,V be the corresponding neighborhood of HI

∞ in XPI
defined as

in Equation (7). For a neighborhood C of e in K, the set

(8) C



SK
ε,t,V ∪

∐

Σ−admissible PI

UI,ε × SK,I
ε,t,V





is a neighborhood of (H∞, z∞) in XK .

Proposition 8.2. The topology on XK is Hausdorff.

Proof. We need to show that any two distinct points x1, x2 in XK

admit disjoint neighborhoods. This is clearly the case when at least one

of them belongs to X. Assume that xi = (Hi, zi) ∈ a
K,+
Pi

(∞) × XPi
.

There are two cases to consider: P1 = P2 or not.
In the first case, if z1 6= z2, it follows from the proof of Proposition

7.3 (or rather the corresponding result for Xmax in Proposition 4.2) that
when t ≫ 0, ε is sufficiently small, C is a sufficiently small neighborhood
of e, and Vi a sufficiently small neighborhood of zi, i = 1, 2, the neigh-

borhoods C(SK
ε,t,Vi

∪
∐

UIi,εj
× SK,I

ε,t,Vi
) of xi are disjoint. On the other

hand, if z1 = z2, then H1 6= H2. We claim that the same conclusion
holds.

If not, there exists a sequence yj in the intersection of Cj(S
K
εj ,tj ,Vi,j

∪
∐

UIi,εj
×SK,I

εj ,tj ,Vi,j
) for sequences εj → 0, tj → +∞, Cj that shrinks to

e, and Vi,j shrinks to zi, i = 1, 2.
Assume first yj ∈ X. Then yj = kjnjajzj with kj ∈ K, nj ∈ NP ,

aj ∈ AP , zj ∈ XP satisfying the conditions (1) kj → e, (2) log aj →

H1 ∈ a
K,+
P (∞), (3) n

aj

j → e, (4) zj → z1. Similarly, yj = k′
jn

′
ja

′
jz

′
j

with the components satisfying the same condition except log a′j → H2,

z′j → z2. Since H1 6= H2,

(9) ‖ log aj − log a′j‖ → +∞.

Since

d(kjnjajzj , kjajzj) = d(n
aj

j zj , zj) → 0

and

d(kjajzj , kjajx0) = d(zj , x0)

is bounded, it follows that

d(kjajx0, k
′
ja

′
jx0) ≤ c

for some constant c. By [AJ, Lemma 2.1.2],

d(kjajx0, k
′
ja

′
jx0) ≥ ‖ log aj − log a′j‖,
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and hence
‖ log aj − log a′j‖ ≤ c.

This contradicts Equation (9), and the claim is proved. The case where
yj belongs to the boundary of XK can be handled similarly.

In the second case, P1 6= P2, and we can use the fact that SK
ε,t,V is

contained in the generalized Siegel set Sε,t,V defined in Equation (15)
in §2 and the separation result in Proposition 2.4 to prove that x1, x2

admit disjoint neighborhoods. q.e.d.

Proposition 8.3. The G-action on X extends to a continuous action
on XK .

Proof. For any g ∈ G and (H, z) ∈ a
K,+
P (∞) × XP , write g = kman

with k ∈ K, m ∈ MP , a ∈ AP , n ∈ NP . Define

g · (H, z) = (Ad(k)H, k · mz) ∈ a
K,+
kP

(∞) × XkP ,

where k canonically identifies a
K,+
P (∞) with a

K,+
kP

(∞), and the K-action
on XP is defined in Equation (5) in §2. This defines an extended action
of G on XK . Arguments similar to those in the proof of Proposition 7.4
show that this extended action is continuous. q.e.d.

Proposition 8.4. The space XK is compact.

Proof. Since X = K exp a
+
P0

x0, XK = Kexp a
+
P0

x0, where P0 is a

minimal parabolic subgroup, and exp a
+
P0

x0 is the closure of exp a
+
P0

x0

in XK . Since K is compact, it suffices to prove the compactness of

exp a
+
P0

x0, which follows easily from the definition. In fact, for any

unbounded sequence Hj ∈ a
+
P0

, there exists an ordered partition Σ′ :

I1 ∪ · · · ∪ Ik ∪ J = ∆ of ∆(P0, AP0
), where J could be empty, such that,

after replacing by a subsequence, Hj satisfies the conditions:

1) For all α ∈ J , α(Hj) converges to a finite limit.
2) For all α 6∈ J , α(Hj) → +∞.
3) For α, β ∈ Im, α(Hj)/β(Hj) converges to a finite positive number.
4) For α ∈ Im, β ∈ In, m < n, α(Hj)/β(Hj) → +∞.

Then it follows from definition that expHjx0 converges to a point in

a
Σ,+
PJ

(∞)×XPJ
⊂ a

K,+
PJ

(∞)×XPJ
, where Σ is the partition I1 ∪ · · · ∪ Ik

of ∆ \ J = ∆(P0,J , AP0,J
). q.e.d.

Proposition 8.5. The identity map on X extends to a continuous
surjective map π : XK → X

c
, and for every point H ∈ a

+
P (∞), the fiber

π−1(H) is equal to (XP )K ; in particular,

XK = X ∪
∐

P

a
+
P (∞) × (XP )K ,

where P runs over all parabolic subgroups.
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Proof. For any unbounded sequence yj in X, if it converges to (H∞, z)

∈ a
K,+
P in XK , then it follows from the definitions of convergence of

sequences that yj converges to π(H∞) in X
c
, where π is the map in

Proposition 8.1. By [GJT, Lemma 3.28], this defines a continuous map

π : XK → X
c
= X ∪ X(∞).

For any point H ∈ ∂X
c

=
∐

Q a
+
Q(∞), let Q be the unique par-

abolic subgroup such that H ∈ a
+
Q(∞). For any parabolic subgroup

P contained in Q, let P ′ be the corresponding parabolic subgroup
in MQ. Let J ⊂ ∆(P, AP ) such that Q = PJ . For any partition
Σ : I1∪· · ·∪Ik of ∆(P, AP ) satisfying I1 = ∆−J , Σ induces a partition

Σ′ : I2 ∪ · · · ∪ Ik of ∆(P ′, AP ′). For every point H ′ ∈ a
Σ′,+
P ′ (∞), z ∈ XP ,

then (H, H ′) ∈ a
Σ,+
P (∞), ((H, H ′), z) ∈ a

K,+
P (∞) × XP , and the fiber

π−1(H) consists of the union

∪P⊆Q ∪Σ {((H, H ′), z) | H ′ ∈ a
Σ′,+
P ′ (∞), z ∈ XP }

where for each P ⊆ Q, write Q = PJ as above, the second union is over
all the partitions Σ with I1 = ∆ − J . This set can be identified with

∪P ′⊆MQ
∪Σ′ a

Σ′,+
P ′ (∞) × XP ′ = XQ ∪ ∪P ′⊂MQ

a
K,+
P ′ (∞) × XP ′ ,

which is equal to (XQ)K by definition.
q.e.d.

Proposition 8.6. The identity map on X extends to a continuous

map XK → X
M

, and this map is a homeomorphism if and only if the
rank of X is less than or equal to 2.

Proof. It is clear from the definitions that if an unbounded sequence

yj in X converges to (H∞, z∞) ∈ a
K,+
P (∞) × XP in XK , then yj also

converges in X
M

to (π(H∞), z∞) ∈ a
+
P (∞) × XP , where π is the map

defined in Proposition 8.1. By [GJT, Lemma 3.28], this defines a con-

tinuous map XK → X
M

. By Proposition 8.1, this map is bijective if
and only if rk(X) ≤ 2. In this case, it is a homeomorphism. q.e.d.

Proposition 8.7. Let X
K

be the Karpelevic compactification, and
XK the compactification defined in this section. Then the identity map

on X extends to a homeomorphism χ : X
K

→ XK .

Proof. The Karpelevic compactification X
K

is defined in [Ka, §13]
and the construction is fairly complicated. The original definition of

the Karpelevic compactification X
K

is also recalled in [GJT, Chap. V]

using notations similar to those in this paper. Briefly, X
K

is defined

inductively on the rank of X. When rk(X) = 1, X
K

is defined to be
X ∪ X(∞) = X

c
. When rk(X) > 1, for any H ∈ X(∞) =

∐

P a
+
P (∞),
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let P be a unique parabolic subgroup such that H ∈ a
+
P (∞), i.e., P

is the stabilizer of H in G. Let XH = XP . Then XH is a symmetric
space of rank strictly less than rk(X). By induction, we can assume

that XH
K

is defined already. Then define

X
K

= X ∪
∐

H∈X(∞)

XH
K

.

Neighborhoods of boundary points are also defined inductively.
To prove the proposition, by [GJT, Lemma 3.28], it suffices to prove

that any unbounded sequence yj in X that converges in X
K

also con-

verges in XK , and hence we only need to describe the intersection with

X of neighborhoods of boundary points in X
K

which is given in [Ka,
§13.8], [GJT, §5.5] and show that it is contained in the intersection
with X of the neighborhoods of boundary points in XK .

For a point (H∞, z∞) ∈ a
K,+
P (∞)×XP , let H∞ = (H∞,1, . . . , H∞,k) ∈

a
Σ,+
P (∞), where Σ : I1∪· · ·∪Ik is an ordered partition of ∆(P, AP ). The

subset J2 = I2∪· · ·∪Ik determines a parabolic subgroup PJ2
containing

P . Let P ′ be the unique parabolic subgroup in MPJ2
corresponding

to P as in Equation (7) in §2. Then I2 ∪ · · · ∪ Ik can be identified
with ∆(P ′, AP ′) and gives an ordered partition Σ′ of the latter. Hence

(H∞, z∞) defines a boundary point (H ′
∞, z∞) ∈ (XPJ2

)
K

, where H ′
∞ =

(H∞,2, . . . , H∞,k), (H ′
∞, z∞) ∈ a

K,+
P ′ (∞) × XP ′ .

For any point x ∈ X, the directed geodesic from x0 to x is denoted by
x0, x, and the geodesic issued from x0 with direction H∞,1 by x0, H∞,1.
Since X is simply connected and nonpositively curved, the geodesic
x0, x is unique. Denote the angle between two such geodesics at x0 by
∠ x0, x, x0, H∞,1. Let W be the intersection with XPJ2

of a neighbor-

hood of (H ′
∞, z∞) in (XPJ2

)
K

. Identify APJ2
×XPJ2

with a subset of X

by (a, z) ∈ APJ2
× XPJ2

7→ az ∈ X. For ε > 0, t > 0, define

ŜK
ε,t,W =

{

(a, z) ∈ APJ2
× XPJ2

|

d(x0, az) > t, ∠ x0, az, x0, H∞,1 < ε, z ∈ W
}

.

Let D be a neighborhood of e in G. Then DŜK
ε,t,W is the intersection

with X of a neighborhood of (H∞, z∞) in X
K

.
In the following, we use the induction on the rank of X to prove

X
K

= XK . When rk(X) = 1, both X
K

and XK are isomorphic to

X ∪ X(∞), and hence X
K ∼= XK . Since rk(XPJ2

) < rk(X), we can
assume by induction that

(XPJ2
)
K

= (XPJ2
)
K

.



52 A. BOREL & L. JI

Hence, W can be taken to be a subset in XPJ2
of the form

(10) C ′SK
ε′,t′,V ′ = C ′

{

(n′, a′, z′) ∈ NP ′ × AP ′ × XP ′ |

log a′ ∈ Uε′ , a
′ ∈ AP ′,t′ , n

′a
′

∈ BNP ′
(ε′), z′ ∈ V ′

}

,

where V ′ is a bounded neighborhood of z∞ in XP ′ = XP , Uε′ =
Uε′(H

′
∞), C ′ a neighborhood of e in KPJ2

, and other sets are defined

similarly to those in Equation (7).
For any CSK

ε,t,V , we show that if ε′′, W , D are sufficiently small and

t′′ ≫ 0, then

DŜK
ε′′,t′′,W ⊂ CSK

ε,t,V .

We first show that ŜK
ε′′,t′′,W is contained in CSK

ε,t,V . We need to show

that for any (a, z) ∈ ŜK
ε′′,t′′,W , there exists k ∈ K such that k−1 ∈ C, and

k(a, z) ∈ SK
ε,t,V . Write the horospherical decomposition with respect to

P :

(11) kaz = (nP , aP , zP ) ∈ NP × AP × XP .

Then we need to check the following conditions: (a) aP ∈ AP,t, (b)
log aP ∈ Uε, (c) naP

P ∈ BNP
(ε), (d) zP ∈ V .

Since W is of the form in Equation (10) and z ∈ W , we can write
z = k′n′a′z′, where k′ ∈ C ′ ⊂ KPJ2

, n′ ∈ NP ′ , a′ ∈ AP ′ , z′ ∈ V ′,

and (n′, a′, z′) ∈ SK
ε′,t′,V ′ . When W is sufficiently small, k′ ∈ C. Take

k = k′−1 in Equation (11). Then

kaz = akz = an′a′z′ = n′aa′z′,

where we have used the fact that a ∈ APJ2
commutes with k, n′ ∈ MPJ2

.
Hence

nP = n′, aP = aa′, zP = z′.

For condition (a), we note that for α ∈ J2, aα = 1, and hence

aα
P = a′

α
≥ t′

since a′ ∈ AP ′,t′ , and hence aα
P → +∞ as W shrinks to (H∞, z∞). We

need to show that for α ∈ I1 = ∆(PJ2
, APJ2

), aα
P → +∞ as well when

ε′′ → 0, t′′ → +∞, and W shrinks to (H ′
∞, z∞). By the definition of

ŜK
ε′′,t′′,W ,

∠x0, az, x0, H∞,1 < ε′′.

Since k → e as W shrinks to (H ′
∞, z∞),

∠x0, nP aP zP , x0, H∞,1 = ∠x0, kaz, x0, H∞,1

= ∠k(x0, az), x0, H∞,1 → 0
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as W shrinks to (H ′
∞, z∞) and ε′′ → 0, where k(x0, az) is the geodesic

through x0 obtained from x0, az under the action (or rotation) of k. We
note that

∠ x0, aP x0, x0, H∞,1 ≤ ∠ x0, nP aP zP , x0, H∞,1.

The reason is that in the decomposition X = NP×AP×XP , AP
∼= AP x0

is a totally geodesic submanifold in the simply connected, nonpositively
curved manifold X, the geodesic x0, H∞,1 ⊂ AP , and picking out the
AP -component aP is the orthogonal projection to AP . Note that there
exist positive constants c1, c2 such that

c1‖ log aP /|| log aP || − H∞,1‖ ≤ ∠ x0, aP x0, x0, H∞,1

≤ c2‖ log aP /|| log aP || − H∞,1‖,

and hence

(12) ‖ log aP /|| log aP || − H∞,1‖ → 0

as W shrinks to (H ′
∞, z∞) and ε′′ → 0. Since H∞,1 ∈ a

+
PJ2

(∞), for

α ∈ I1,

(13)
α(log aP )

‖ log aP ‖
→

α(H∞,1)

‖H∞,1‖
> 0.

To use this result to prove aα
P → +∞, α ∈ I1, we need that ‖ log aP ‖ →

+∞ as t′′ → +∞. Consider the triangle with vertexes x0, aP x0 and
kza = nP aP zP . Since zP ∈ V ′, d(zP , x0) is bounded. Since

(14) naP

P = n′aP = n′aa′

= n′a
′

∈ BNP ′
(ε′)

is bounded,

d(kaz, aP x0) = d(nP aP zP , aP x0) = d(naP

P zP , x0) = d(n′a
′

zP , x0)

is also bounded. Then

d(aP x0, x0) ≥ d(kaz, x0) − d(kaz, aP x0)

= d(az, x0) − d(kaz, aP x0)

≥ t′′ − d(kaz, aP x0)

goes to infinity as t′′ → +∞, and hence

‖ log aP ‖ → +∞.

Combined with Equation (13), it implies that as ε′′ → 0, W shrinks to
(H ′

∞, z∞) and t′′ → +∞, for α ∈ I1,

aα
P → +∞.

Hence the condition (a) is satisfied.
For condition (b), we need to check the conditions in Equation (5).

Condition (1) follows from condition (a) above. Equation (12) implies
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that for every pair α ∈ I1, β ∈ J2, as ε′′ → 0, t′′ → +∞ and W shrinks
to (H ′

∞, z∞),

β(log aP )

α(log aP )
→

β(H∞,1)

α(H∞,1)
=

0

α(H∞,1)
= 0.

For α, β ∈ J2, α(log aP ) = α(log a′), β(log aP ) = β(log a′), and hence

β(log aP )

α(log aP )
=

β(log a′)

α(log a′)
.

Since log a′ ∈ Uε′(H
′
∞), the other conditions in Equation (5) are also

satisfied.
To show that the condition (c) is satisfied, we note as in Equation

(14) that

naP

P = n′a
′

∈ BNP ′
(ε′).

Since NP = NPJ2
NP ′ ,

naP

P ∈ BNP
(ε)

when ε′ < ε. Condition (d) that zP ∈ V is clearly satisfied when
V ′ ⊂ V . This proves that when ε′′, W are sufficiently small and t′′ ≫ 0,
ŜK

ε′′,t′′,W ⊂ CSK
ε,t,V .

Next we prove that when D is also sufficiently small,

(15) DŜK
ε′′,t′′,W ⊂ CSK

ε,t,V .

In fact, the only remaining problem is that D is a neighborhood of e in
G instead of in K as C is. To overcome this problem, we note that for
any gj → e, we can write

gj = kjmjajnj , kj ∈ K, mj ∈ MP , aj ∈ AP , nj ∈ NP

such that

kj , mj , aj , nj → e.

Then the inclusion in Equation (15) follows from Equation (1) in §2 and

the inclusion ŜK
ε′′,t′′,W ⊂ CSK

ε,t,V is proved above.
As pointed out at the beginning of the proof, the inclusion in Equation

(15) implies that any unbounded sequence yj in X which converges in

X
K

also converges in XK . By [GJT, Lemma 3.28], this implies that
the identity map on X extends to a continuous map

χ : X
K

→ XK .

As mentioned earlier, by induction on the rank, for any H ∈ X(∞),

XH
K

= (XH)K .

By Proposition 8.5,

X
K

= X ∪
∐

H∈X(∞)

XH
K

= X ∪
∐

H∈X(∞)

(XH)K = XK .
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This implies that χ is bijective. Since both X
K

and XK are compact
and Hausdorff, χ is a homeomorphism.

Remark 8.8. A corollary of the identification of the topologies of X
K

and XK in the above proposition is that the two collections of subsets
DŜK

ε,t,W , CSK
ε,t,V of X are co-final when ε → 0, t → +∞, and V ranges

over a neighborhood basis of z∞ in XP , and W over the intersection

with XPJ2
of a neighborhood basis of (H ′

∞, z∞) in XPJ2

K
. It does not

seem to be easy to prove this co-finality directly. The reason is that
there is an extra factor nP in SK

ε,t,V which does not appear in DŜK
ε,t,W .

Since naP

P ∈ BNP
(ε) and nP aP = aP naP

P , it is intuitively clear and
basically implied by the above co-finality that this factor nP (or rather
naP

P ) can be absorbed into C, i.e., nP aP zP = ka′P z′P , where k ∈ C and
a′P , z′P satisfy similar conditions to those satisfied by aP , zP ; but it is
not obvious how to do this, because aP naP

P 6= naP

P aP . The issue is how
to relate the two basic decompositions: the Cartan decomposition and
the Iwasawa (or Langlands, horospherical) decomposition. This is also
the basic difficulty in [GJT, Chap. III] to show that the G-action on
X extends continuously to the dual-cell compactification X ∪∆∗(X) as
mentioned in the introduction.

q.e.d.
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