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Abstract

In this paper, we continues to investigate the properties of symmetric
inequalities. We study the necessary condition for the extremum to be at-
tained in a semi-algebraic system. From which, we partly solve the problem
of the further generalization of Jensen inequality which the author brought
up in the previous article. Namely, by using the sign of the (n+1)tℎ deriva-
tive while fixing the value of the sum of power of n variables, we get a
dimension-descending method. Further, we prove that the necessary and
sufficient condition for the symmetric inequality of degree m with n vari-
ables to hold on R+

n is that it holds when the number of nonzero variables
does not exceed max{1, [m2 ]}.
Key words: symmetric inequality, dimension-descending method, Jensen
inequality
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1 Introduction

Symmetric inequality has become a research focus of inequality [1;2]. The
dimension-descending method is a good example of the thought of mathemat-
ics mechanization: reduction of the difficulty in quality to the complexity in
quantity [3]. Over the past year, some dimension-descending methods are devel-
oped in the National Basic Research Program(973 Program) [4;5]. We have studied
the criterion on equality and its proof of a class of symmetric inequalities in the
previous paper [6]. In this article, we study some properties of symmetric inequali-
ties and try to partially solve the problem and respond to the prospect mentioned
in the previous article, that is we obtain a new dimension-descending method
which is the further generalization of Jensen inequality. We also apply this result
to our proof in the case of symmetric inequality.

2 Notation

For the rigor and convenient of the redaction,we begin with introducing some
definitions in common use.

Definition 2.1. Let R be the real field, Rn the n-dimensional real vector
space.

Rn
+ = [0,+∞)n;Rn

++ = (0,+∞)n;

Definition 2.2. A function of the form f : R++ → R, f(x) =
n∑
i=1

aix
�i ,

where m ∈ N, ai ∈ R, ai ∕= 0, �i ∈ R and �i’s pairwise different, is called a
generalized polynomial.

Definition 2.3. A polynomial f(x1, x2, . . . , xn) is said to be symmetric ,if

f(x1, x2, . . . , xn) = f(�(x1, x2, . . . , xn))

for all � ∈ Sn, where Sn is the symmetric group of degree n.

Definition 2.4. Let �(n,1), �(n,2), . . . , �(n,n) be the n elementary symmetric
polynomials of (x1, x2, . . . , xn).

Definition 2.5. Let n, k ∈ ℕ, s(n,k) stands for the sum of ktℎ power of
xn = (x1, x2, . . . , xn),namely

s(n,k)(xn) =
n∑
i=1

xki (k = 1, 2, . . .)

Definition 2.6. For any xn = (x1, x2, . . . , xn) ∈ Rn
+, we note

v(xn) = ∣{xj∣j = 1, 2 . . . , n}∣ , v(xn)∗ = ∣{xj∣xj ∕= 0, j = 1, 2 . . . , n}∣

Definition 2.7. Let A = [a1, a2, . . . , an],ai ∕= 0(i = 1, 2, . . . , n) be a real
sequence and sgn(x) the sign function. Let CA be the number of −1 in the sequence
[sgn(a1a2), sgn(a2a3), . . . , sgn(an−1an)]. We call CA the sign-changing number of
A.
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3 Lemmas

Lemma 3.1. Any polynomial of degree m with n variables is uniquely ex-
pressed as a polynomial of s(n,1), s(n,2), . . . , s(n,d),where d = min{n,m}.

Proof It suffice to notice that

k!�(n,k) =

∣∣∣∣∣∣∣∣∣
s(n,1) 1 0 ⋅ ⋅ ⋅ 0
s(n,2) s(n,1) 2 . . . 0

...
...

...
. . .

...
s(n,k) s(n,k−1) s(n,k−2) . . . s(n,1)

∣∣∣∣∣∣∣∣∣ (k = 1, 2, . . . , n)

The lemma follows from the fact that any polynomial of degree m with n variables
is uniquely represented as a polynomial of �(n,1), �(n,2), . . . , �(n,d),d = min{n,m}.

Lemma 3.2. [5] Let a1, a2, . . . , an, �1, �2, . . . , �n be real constants,�1 < �2 <
. . . < �n,ai ∕= 0(i = 1, 2, . . . , n), Zf be the number of positive roots of f(x) =
n∑
i=1

aix
�i, and CA the sign-changing number of [a1, a2, . . . , an]. Then Zf ≤ Cf .

Lemma 3.3. Let �1, �2, . . . , �n ∈ ℝ satisfying �1 < �2 < . . . < �n, 0 <
x1 < x2 . . . < xn. Then we have

Dn =

∣∣∣∣∣∣∣∣∣
x�1
1 x�1

2 . . . x�1
n

x�2
1 x�2

2 . . . x�2
n

...
...

. . .
...

x�n
1 x�n

2 . . . x�n
n

∣∣∣∣∣∣∣∣∣ > 0

Proof We prove firstly that Dn never vanishes.
We prove it by reductio ad absurdum. Suppose (x�1

i , x
�2
i , . . . , x

�n
i )(i =

1, 2, . . . , n) linearly dependent. Then there exist a1, a2, . . . , an not all zero, such
that a1x

�1 + a2x
�2 + ⋅ ⋅ ⋅ + anx

�n = 0 has n positive solution. x = x1, x2, . . . , xn.
then Zf ≥ n. On the other hand, it’s obvious that the sign-changing number of
the sequence [a1, a2, . . . , an], Cf ≤ n− 1. By lemma 3.2, Zf ≤ Cf ≤ n− 1, which
is contradiction! This shows that Dn ∕= 0.

Next,we prove by induction that Dn > 0.
When n = 1,D1 = x1

�1 > 0. Suppose that the proposition holds for n = k, namely
Dk > 0.
Then for n = k + 1, we regard xk+1 as a variable. Dk+1 ∕= 0 when xk+1 is in-
creasing in (xk,+∞), so Dk+1 has a definitive sign. When xk+1 → +∞, the sign
of Dk+1 is also that of the ktℎ principal minor determinant in order and hence is
Dk+1 > 0.

So the proposition holds for all n ∈ ℕ, and the lemma is proved.

Lemma 3.4. Consider the following semi-algebraic system⎧⎨⎩
F1(x1, x2, . . . , xn+1) = x1

�1 + x2
�1 + . . .+ xn+1

�1 − P1 = 0
F2(x1, x2, . . . , xn+1) = x1

�2 + x2
�2 + . . .+ xn+1

�2 − P2 = 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Fn(x1, x2, . . . , xn+1) = x1
�n + x2

�n + . . .+ xn+1
�n − Pn = 0

0 ≤ x1 ≤ x2 ≤ ⋅ ⋅ ⋅ ≤ xn+1

(3.1)
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where �1, �2, . . . , �n ∈ ℝ, �1 < �2 < . . . < �n. If �i = 0 for some i,we define

x1
�i + x2

�i + . . .+ xn+1
�i = x1x2 ⋅ ⋅ ⋅xn+1

Then all the solutions (x1, x2, . . . , xn+1) of (3.1) form a compact subset of Rn+1.
Let (y01, y

0
2, . . . , y

0
n+1) be a solution of (3.1), where 0 ≤ y01 ≤ y02 ≤ . . . ≤ y0n+1, and

the equality holds in no more than one place.
(1) If �i > 0(i = 1, 2, . . . , n),
then there exist a, b,a ≤ y01 ≤ b,such that for any x1 ∈ (a, b)
there exist x1, x2, . . . , xn+1 which satisfy (3.1), and x1 < x2 < . . . < xn+1.
if a ∕= 0, then for x1 = a,there exist x2, . . . , xn+1 satisfying (3.1) with x2i = x2i+1

for some i(2 ≤ 2i ≤ n).
For x1 = b, there exist x2, . . . , xn+1 satisfying (3.1) with x2i = x2i−1 for some
i(2 ≤ 2i ≤ n+ 1).
(2) If �i ≤ 0 for some i,
then there exist a, b,a ≤ y01 ≤ b, such that for all x1 ∈ (a, b)
there exist x1, x2, . . . , xn+1 satisfying (3.1), with x1 < x2 < . . . < xn+1.
For x1 = a, there exist x2, . . . , xn+1 satisfying (3.1) with x2i = x2i+1(2 ≤ 2i ≤ n).
For x1 = b, there exist x2, . . . , xn+1 satisfying (3.1) with x2i = x2i−1(2 ≤ 2i ≤
n+ 1).

Proof Clearly, the set of solutions for any equation of the system (3.1) is
compact in Rn+1, and the set of all xi for which 0 ≤ x1 ≤ x2 ≤ ⋅ ⋅ ⋅ ≤ xn+1 is a
close subset of Rn+1. Their intersection is therefore a compact subset of Rn+1.
We argue only for the case where y02 < y03 . . . < y0n+1. The reasoning is similar in
the other cases.

Obviously, if there is a solution to (3.1) for which x1 → 0, we have �i > 0.If
y01 = 0, we take a = 0, then �i > 0.

If y01 > 0,a positive solution of (3.1) with x2 < x3 < ⋅ ⋅ ⋅ < xn+1 is called
required solution. It is clear that (y01, y

0
2, . . . , y

0
n+1) is a required solution.

Taking (y01, y
0
2, . . . , y

0
n+1) as an example , we prove firstly that for all required

solutions, there exist � > 0,such that for all x1 ∈ (y01 − �, y01], there exist a corre-
sponding required solution.

Consider the Jacobi determinant at point (y01, y
0
2, . . . , y

0
n+1) of the function Fi

of x2, x3, . . . , xn+1. If �i ∕= 0(i = 1, 2, . . . , n), we have

∂(F1, F2, . . . , Fn)

∂(x2, x3, . . . , xn+1)
=

n∏
i=1

�i

∣∣∣∣∣∣∣∣∣
x�1−1
2 x�1−1

3 . . . x�1−1
n+1

x�2−1
2 x�2−1

3 . . . x�2−1
n+1

...
...

. . .
...

x�n−1
2 x�n−1

3 . . . x�n−1
n+1

∣∣∣∣∣∣∣∣∣
If there exist i, such that �i = 0, then

∂(F1, F2, . . . , Fn)

∂(x2, x3, . . . , xn+1)
=

n∏
j=1
j ∕=i

�i ⋅
n+1∏
i=1

xi

∣∣∣∣∣∣∣∣∣
x�1−1
2 x�1−1

3 . . . x�1−1
n+1

x�2−1
2 x�2−1

3 . . . x�2−1
n+1

...
...

. . .
...

x�n−1
2 x�n−1

3 . . . x�n−1
n+1

∣∣∣∣∣∣∣∣∣
In all these two cases, we see by Lemma 3.3 that the determinant > 0.

As it doesn’t change the result whether �i = 0 or not, in which follows we
only treat with the case that �i ∕= 0.
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As the function Fi(i = 1, 2, . . . , n) is continuous and continuously differen-

tiable for ∣xi − y0i ∣ ≤
y01
2

(i = 1, 2, . . . , n + 1), according to the implicit function

theorem [7], there exists �, satisfying
y01
2
≥ � > 0, such that for x1 ∈ (y01−�, y01], an

continuously derivable implicit function of vectorial value is uniquely determined
by the system of equations ⎛⎜⎜⎜⎝

x2
x3
...

xn+1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x2(x1)
x3(x1)

...
xn+1(x1)

⎞⎟⎟⎟⎠
and then x1, x2, . . . , xn+1 is a required solution.

Thus, we see that the connected component with y01 as the right endpoint, of
the solution with the first coordinate x1, must be an left hand half open interval
(otherwise the solution should have been prolonged at the left endpoint). We set
(a, y01] for this interval. Thus there exist a corresponding required solution for
x1 ∈ (a, y01], while there doesn’t exist a required solution for x1 = a.

On the one hand, we take the sequence {x(1,m)},x(1,i) = a + 1
i
. Since

lim
n→+∞

x(1,n) = a, there must be a positive integer N such that for all m > N ,

x(1,m) ∈ (a, y01).
On the other hand, as is similar to the proof of existence of �, we see clearly

that for x1 ∈ (a, y01), there exist unique implicit functions x2, x3, . . . , xn+1 of x1
satisfying⎛⎜⎜⎜⎝

�1x
�1−1
2 �1x

�1−1
3 . . . �1x

�1−1
n+1

�2x
�2−1
2 �2x

�2−1
3 . . . �2x

�2−1
n+1

...
...

. . .
...

�nx
�n−1
2 �nx

�n−1
3 . . . �nx

�n−1
n+1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x′2(x1)
x′3(x1)

...
x′n+1(x1)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−�1x

�1−1
1

−�2x
�2−1
1

...
−�nx�n−1

1

⎞⎟⎟⎟⎠
By Cramer rule,

x′i(x1) =
Di

D1

, i = 2, 3, . . . , n+ 1

where

D1 =
n∏
i=1

�i

∣∣∣∣∣∣∣∣∣
x�1−1
2 x�1−1

3 ⋅ ⋅ ⋅ x�1−1
n+1

x�2−1
2 x�2−1

3 ⋅ ⋅ ⋅ x�2−1
n+1

...
...

. . .
...

x�n−1
2 x�n−1

3 ⋅ ⋅ ⋅ x�n−1
n+1

∣∣∣∣∣∣∣∣∣
Di =

n∏
j=1

�j

∣∣∣∣∣∣∣∣∣
x�1−1
2 ⋅ ⋅ ⋅ x�1−1

i−1 −x�1−1
1 x�1−1

i+1 ⋅ ⋅ ⋅ x�1−1
n+1

x�2−1
2 ⋅ ⋅ ⋅ x�2−1

i−1 −x�2−1
1 x�2−1

i+1 ⋅ ⋅ ⋅ x�2−1
n+1

...
. . .

...
...

...
. . .

...
x�n−1
2 ⋅ ⋅ ⋅ x�n−1

i−1 −x�n−1
1 x�n−1

i+1 ⋅ ⋅ ⋅ x�n−1
n+1

∣∣∣∣∣∣∣∣∣
=(−1)i−1

n∏
j=1

�j

∣∣∣∣∣∣∣∣∣
x�1−1
1 x�1−1

2 ⋅ ⋅ ⋅ x�1−1
i−1 x�1−1

i+1 ⋅ ⋅ ⋅ x�1−1
n+1

x�2−1
1 x�2−1

2 ⋅ ⋅ ⋅ x�2−1
i−1 x�2−1

i+1 ⋅ ⋅ ⋅ x�2−1
n+1

...
...

. . .
...

...
. . .

...
x�n−1
1 x�n−1

2 ⋅ ⋅ ⋅ x�n−1
i−1 x�n−1

i+1 ⋅ ⋅ ⋅ x�n−1
n+1

∣∣∣∣∣∣∣∣∣
25
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Then from Lemma 3.3, sgn(Di) = (−1)i−1(i = 1, 2, . . . , n+ 1).
Thus for x1 ∈ (a, y01), x2k+1(x1) is strictly increasing, and x2k(x1) strictly decreas-
ing.
That is to say, for the sequence {x(1,m)}, when x(1,m) ∈ (a, y01), there exist a corre-
sponding sequence {x(i,m)}(i = 2, 3, . . . , n + 1) such that x(i,m)(i = 1, 2, . . . , n + 1)
is a required solution with x(2k+1,m) strictly decreasing and x(2k,m)(x1) strictly in-
creasing. Further more, xi has the lower bound 0, and upper bound P1. Thus x(i,k)
is monotone on k and bounded, hence convergent.
Let lim

k→+∞
x(i,k) = yi, then

P1 = lim
k→+∞

(x�1

(1,k) + x�1

(2,k) + ⋅ ⋅ ⋅+ x�1

(n+1,k)) = a�1 + y�1
2 + ⋅ ⋅ ⋅+ y�1

n+1

P2 = lim
k→+∞

(x�2

(1,k) + x�2

(2,k) + ⋅ ⋅ ⋅+ x�2

(n+1,k)) = a�2 + y�2
2 + ⋅ ⋅ ⋅+ y�2

n+1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Pn = lim

k→+∞
(x�n

(1,k) + x�n

(2,k) + ⋅ ⋅ ⋅+ x�n

(n+1,k)) = a�n + y�n
2 + ⋅ ⋅ ⋅+ y�n

n+1

Namely, (a, y2,1, . . . , yn+1) is also a solution of (3.1).
If there are two equal numbers among yi, they must be y2i = y2i+1 for some i, 2 ≤
2i ≤ n. Then a satisfies the requirement.
If y′is pairwise different, then we must have a = 0. Otherwise, for x1 = a, we
would get a required solution, which leads to a contradiction !

If y01 = y02, we take b = y01. Otherwise, we can prove in a similar way that
there exist b, such that for x1 ∈ [y01, b), there exist x2, x3, . . . , xn+1 satisfying (3.1),
and x1 < x2 < ⋅ ⋅ ⋅ < xn+1. When x1 = b, there exist x2 ≤ x3 ≤ ⋅ ⋅ ⋅ ≤ xn+1

satisfying (3.1) with x2i = x2i−1 for some i(1 ≤ 2i ≤ n+ 1).
The lemma is proved.

Lemma 3.5. [8] Suppose that ℎ1(x), ℎ2(x), . . . , ℎn−1(x) satisfying∣∣∣∣∣∣∣∣∣
ℎ1(x) ℎ′1(x) ⋅ ⋅ ⋅ ℎ

(i−1)
1 (x)

ℎ2(x) ℎ′2(x) ⋅ ⋅ ⋅ ℎ
(i−1)
2 (x)

...
...

. . .
...

ℎi(x) ℎ′i(x) ⋅ ⋅ ⋅ ℎ
(i−1)
i (x)

∣∣∣∣∣∣∣∣∣ > 0 (i = 1, 2, . . . , n− 1)

Let f(x) be an arbitrary function, we term the determinant∣∣∣∣∣∣∣∣∣∣∣

ℎ1(x) ℎ′1(x) ⋅ ⋅ ⋅ ℎ
(n−1)
1 (x)

ℎ2(x) ℎ′2(x) ⋅ ⋅ ⋅ ℎ
(n−1)
2 (x)

...
...

. . .
...

ℎn−1(x) ℎ′n−1(x) ⋅ ⋅ ⋅ ℎ
(n−1)
n−1 (x)

f(x) f ′(x) ⋅ ⋅ ⋅ f (n−1)(x)

∣∣∣∣∣∣∣∣∣∣∣
= W (x)

the Wronskian determinant of the system of function. If x1 < x2 < ⋅ ⋅ ⋅ < xn,
then there exist a number �, x1 < � < xn, such that

sgn

∣∣∣∣∣∣∣∣∣∣∣

ℎ1(x1) ℎ1(x2) . . . ℎ1(xn)
ℎ2(x1) ℎ2(x2) . . . ℎ2(xn)

...
...

. . .
...

ℎn−1(x1) ℎn−1(x2) . . . ℎn−1(xn)
f(x1) f(x2) . . . f(xn)

∣∣∣∣∣∣∣∣∣∣∣
= sgn(W (�))
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4 Main Result

Theorem 4.1. Suppose that 0 ≤ x1 ≤ x2 ≤ ⋅ ⋅ ⋅ ≤ xn+1(n ∈ ℕ), and
the equality holds in no more than one place. Let f(x1;x2, . . . , xn+1) be a func-
tion of x1, x2, . . . , xn+1, symmetric with respect to x2, x3, . . . , xn+1. We note
f(x1;x2, . . . , xn+1) simply as f(x1). Analogously, we define f(xi)(i = 2, 3, . . . , n+
1). Let �i ∈ R be given reals, satisfying �1 < �2 < . . . < �n.
Fixing the following system of generalized polynomials, with the value of Fi invari-
ant ⎧⎨⎩

F1(x1, x2, . . . , xn+1) = x1
�1 + x2

�1 + . . .+ xn+1
�1

F2(x1, x2, . . . , xn+1) = x1
�2 + x2

�2 + . . .+ xn+1
�2

⋅ ⋅ ⋅
Fn(x1, x2, . . . , xn+1) = x1

�n + x2
�n + . . .+ xn+1

�n

As a function of xi, if f(x) is (n+ 1)tℎ derivable on (0,+∞), and continuous on
[0,+∞). Let

F (xn+1) = f(x1) + f(x2) + ⋅ ⋅ ⋅+ f(xn+1)

and W (x) the Wronskian determinant of the system of functions
(x�1−1, x�2−1, . . . , x�n−1, f ′(x)).
(1) If (−1)nW (x) ≥ 0, there exists xn+1 with x2i−1 = x2i for some
i(2 ≤ 2i ≤ n + 1), at which point F attains its maximum, and there exists
xn+1 with x2i = x2i+1 for some i(2 ≤ 2i ≤ n + 1) or x1 = 0, at which point F
attains its minimum.
(2) If (−1)nW (x) ≤ 0, there exists xn+1 with x2i−1 = x2i for some
i(2 ≤ 2i ≤ n + 1), at which point F attains its minimum, and there exists
xn+1 with x2i = x2i+1 for some i(2 ≤ 2i ≤ n + 1) or x1 = 0, at which point F
attains its maximum.

Proof We prove only (1) for the case that x2 < x3 ⋅ ⋅ ⋅ < xn+1, in the other
cases, the proof is similar.

By Lemma 3.4, there exist a, b, a ≤ x1 ≤ b. For x1 ∈ [a, b], F is considered
as a function F (x1) of x1. For x1 ∈ (a, b), x1 < x2 < ⋅ ⋅ ⋅ < xn+1 and F (x1) is
derivable. So we have

F ′(x1) =
n+1∑
i=1

∂xi(x1)

∂x1
⋅ f ′(xi) =

n+1∑
i=1

f ′(xi)Di

D1

=

∣∣∣∣∣∣∣∣∣
f ′(x1) f ′(x2) . . . f ′(xn+1)
x�1−1
1 x�1−1

2 . . . x�1−1
n+1

...
...

. . .
...

x�n−1
1 x�n−1

2 . . . x�n−1
n+1

∣∣∣∣∣∣∣∣∣
D1

= (−1)n

∣∣∣∣∣∣∣∣∣
x�1−1
1 x�1−1

2 . . . x�1−1
n+1

...
...

. . .
...

x�n−1
1 x�n−1

2 . . . x�n−1
n+1

f ′(x1) f ′(x2) . . . f ′(xn+1)

∣∣∣∣∣∣∣∣∣
D1
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We note (xk)(m) as the mtℎ derivative of xk. By Lemma 3.3 we have∣∣∣∣∣∣∣∣∣
(x�1−1)(0) (x�1−1)(1) ⋅ ⋅ ⋅ (x�1−1)(i)

(x�2−1)(0) (x�2−1)(1) ⋅ ⋅ ⋅ (x�2−1)(i)

...
...

. . .
...

(x�i−1)(0) (x�i−1)(1) ⋅ ⋅ ⋅ (x�i−1)(i)

∣∣∣∣∣∣∣∣∣
=x(

∑i
j=1 �j− i(i+1)

2
)

∣∣∣∣∣∣∣∣∣
1 �1 − 1 ⋅ ⋅ ⋅

∏i−1
j=1 (�1 − j)

1 �2 − 1 ⋅ ⋅ ⋅
∏i−1

j=1 (�2 − j)
...

...
. . .

...

1 �i − 1 ⋅ ⋅ ⋅
∏i−1

j=1 (�i − j)

∣∣∣∣∣∣∣∣∣
=x(

∑i
j=1 �j− i(i+1)

2
)

∣∣∣∣∣∣∣∣∣
1 �1 − 1 ⋅ ⋅ ⋅ (�1 − 1)i−1

1 �2 − 1 ⋅ ⋅ ⋅ (�2 − 1)i−1

...
...

. . .
...

1 �i − 1 ⋅ ⋅ ⋅ (�i − 1)i−1

∣∣∣∣∣∣∣∣∣ > 0 (i = 1, 2, . . . , n)

As D1 > 0, we see from Lemma 3.5 that there exist �, x1 < � < xn, such that

(−1)nsgn

∣∣∣∣∣∣∣∣∣∣∣

x�1−1
1 x�1−1

2 . . . x�1−1
n+1

x�2−1
1 x�2−1

2 . . . x�2−1
n+1

...
...

. . .
...

x�n−1
1 x�n−1

2 . . . x�n−1
n+1

f ′(x1) f ′(x2) . . . f ′(xn+1)

∣∣∣∣∣∣∣∣∣∣∣
= (−1)nsgn(W (�))

As we are in case (1), (−1)nW (x) ≥ 0, namely F ′(x1) ≥ 0. Thus F (x1) is
increasing on (a, b).
Since F is continuous on [a, b], there exists xn+1 with x2i−1 = x2i for some i(2 ≤
2i ≤ n + 1), at which point F attains its maximum, and there exists xn+1 with
x2i = x2i+1 for some i(2 ≤ 2i ≤ n + 1) or x1 = 0, at which point F attains its
minimum.

The theorem is proved.

Putting n = 2 in Theorem 4.1, we have

Corollary 4.2. Suppose that 0 ≤ x ≤ y ≤ z. Let f(x; y, z) be a function of
x, y, z, symmetric with respect to y and z. We note f(x; y, z) simply as f(x). And
we similarly define f(y), f(z). �1 < �2. We fix the value of x�1 + y�1 + z�1,x�2 +
y�2 + z�2. As a function of x, if f(x) is 3rd derivable on (0,+∞), and continuous
on [0,+∞), let F (x, y, z) = f(x) + f(y) + f(z),∣∣∣∣∣∣

x�1−1 (�1 − 1)x�1−2 (�1 − 1)(�1 − 2)x�1−3

x�2−1 (�2 − 1)x�2−2 (�2 − 1)(�2 − 2)x�2−3

f ′(x) f ′′(x) f ′′′(x)

∣∣∣∣∣∣ = W (x)

(1) if W (x) ≥ 0, F attains its maximum when x = y ≤ z, and its minimum when
x ≤ y = z or x = 0.
(2) if W (x) ≤ 0, F attains its minimum when x = y ≤ z, and its maximum when
x ≤ y = z or x = 0.

Remark In particular, let g(xm−1) = f ′(x),�1 = 1, �2 = m(m > 1) or
�1 = m,�2 = 1(m < 1) in Corollary 4.2, we obtain Theorem 3 [6] in the previous
article.
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Theorem 4.3. Let f(x1;x2, . . . , xm) be a function of x1, x2, . . . , xm, sym-
metric with respect to x2, x3, . . . , xm, we note f(x1;x2, . . . , xm) simply as f(x1).
And we similarly define f(xi)(i = 2, 3, . . . ,m). Fixing the value of s(m,i)(i =
1, 2, . . . , n;m ≥ n+ 1), if f(xi) is a function of xi, (n+ 1)tℎ derivable on (0,+∞),
and continuous on [0,+∞), let

F (xm) = f(x1) + f(x2) + ⋅ ⋅ ⋅+ f(xm)

(1) If (−1)nf (n+1)(x) ≥ 0, there exists xm with v(xm)∗ ≤ n − 1 or at least
m− n+ 1 variables to be equal, at which point F attains its maximum, and there
exists xm with v(xm)∗ ≤ n− 1 or d variables to be zero and at least m−n+ 1− d
positive variables to be equal, at which point F attains its minimum.
(2) If (−1)nf (n+1)(x) ≤ 0, there exists xm with v(xm)∗ ≤ n − 1 or at least
m− n+ 1 variables to be equal, at which point F attains its minimum, and there
exists xm with v(xm)∗ ≤ n− 1 or d variables to be zero and at least m−n+ 1− d
positive variables to be equal, at which point F attains its maximum.

Proof We prove only for the minimum of F in (1), in the other cases the
proof is similar.

As s(m,i)(i = 1, 2, . . . , n;m ≥ n+1) is invariant, (x1, x2, . . . , xm) is a compact
subset of Rm

+ . Since F is continuous on Rm
+ , the minimum of F must exist.

When F attains its minimum at xi, we can suppose without loss of generality
that x1 ≤ x2 ≤ . . . ≤ xn+1. Let m − n − 1 variables xn+2, xn+3, . . . , xm be fixed,
we see from Theorem 4.1 that, if v(xn+1)∗ ≥ n, there exist xn+1 with x2i−1 = x2i
for some i or x1 = 0, at which point F attains the minimum. So we know there
exists xm with v(xm)∗ ≤ n− 1 or d variables to be zero and at least m−n+ 1− d
positive variables to be equal, at which point F attains its minimum.

The theorem is proved.

Corollary 4.4. Let f(x1;x2, . . . , xm) be a function of x1, x2, . . . , xm, sym-
metric with respect to x2, x3, . . . , xm. We note f(x1;x2, . . . , xm) simply as f(x1).
Fixing the value of s(m,i)(i = 1, 2, . . . , n;m ≥ n + 1), if f(xi) is a function of xi,
(n+ 1)tℎ derivable on (0,+∞), and continuous on [0,+∞), let

F (xm) = f(x1) + f(x2) + ⋅ ⋅ ⋅+ f(xm)

(1) If (−1)nf (n+1)(x) ≥ 0, there exists xm with v(xm) ≤ n, at which point F
attains its maximum, and there exists xm with v(xm)∗ ≤ n at which point F
attains its minimum.
(2) If (−1)nf (n+1)(x) ≤ 0, there exists xm with v(xm) ≤ n, at which point F
attains its minimum, and there exists xm with v(xm)∗ ≤ n at which point F
attains its maximum.

Remark The Jensen inequality consist of fixing the value of s(m,1), and
adjusting the m variables by observing the sign of f ′′(x) until that v(x)∗ ≤ 1. As
we are now able to adjust the variables by observing the sign of f (n+1)(x) until
that v(x)∗ ≤ n, all along with the value of s(m,i)(i = 1, 2, . . . , n;m ≥ n + 1) fixed,
this could be regarded as a generalization of Jensen inequality (in fact, this is just
the Jensen inequality when n = 1). It also answers Question 7.2 raised in the
previous article [6].
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Corollary 4.5. Let p ∈ ℝ,p ∕= 1, 2, . . . , n,xi ≥ 0(i = 1, 2, . . . ,m) and the
value of s(m,i)(i = 1, 2, . . . , n;m ≥ n+ 1) be fixed. Let

g(m, p) =
m∑
i=1

xpi

There exists xm with v(xm)∗ ≤ n, at which point g(m, p) attains its maximum,
and there exists xm with v(xm)∗ ≤ n, at which point g(m, p) attains its minimum.

Theorem 4.6. A symmetric inequality with n variables of degree m,
F (xn) ≥ 0 holds on Rn

+ if and only if it holds on {xn∣xn ∈ Rn
+, v(xn)∗ ≤

max([m
2

], 1)}.
Proof The ’only if ’ part is trivial. Let’s prove the ’if ’ part.
When m ≥ 2n or m = 1, the theorem holds obviously. Now we prove it for

2 ≤ m ≤ 2n− 1.
Let [m

2
] = t. We fix the value of s(n,i)(i = 1, 2, . . . , t). Then (x1, x2, . . . , xn)

is a compact subset of Rn
+. As F is continuous on Rn

+, the minimum of F must
exist.

When F attains its minimum, for any t + 1 ones among all the xi’s, say
x1, x2, . . . , xt+1, we fix the value of n − t − 1 variables xt+2, . . . , xn. According to
Lemma 3.1, F is uniquely expressed as a polynomial of s(t+1,i)(i = 1, 2, . . . , t+ 1).
As s(t+1,i)(i = 1, 2, . . . , t) is invariant, 2(t + 1) > m. Thus F is a function of
one single variable s(t+1,t+1), and deg(F ) ≤ 1. By Corollary 4.5, we see that there
exists xt+1 with v(xt+1)∗ ≤ t, at which point F attains its minimum.

The theorem is proved.

5 Summary and Prospect

In this paper, we continue to investigate the properties of symmetric inequal-
ities. By use of the monotonicity and the property of Wronskian determinant,

we obtain a sufficient condition for the extremum of the function F =
n+1∑
i=1

f(xi) is

attained when xi ≥ 0, and
n+1∑
i=1

x
�j

i (j = 1, 2, . . . , n) is a constant. This result partly

solved the problem of further generalization of Jensen inequality. Namely, fixing
the value of the sum of power of n variables, by dimension descent depending on
the sign of order n + 1 derivative, we obtain a necessary and sufficient condition
for F (xn) ≥ 0, a symmetric inequality with n variables of degree m, to hold on
Rn

+, that is, it holds when {xn∣xn ∈ Rn
+, v(xn)∗ ≤ max([m

2
], 1).

Besides, we still have the following problems worthy discussing:
1. In the condition of Lemma 3.4, ’if (3.1) has a solution (y01, y

0
2, . . . , y

0
n+1),

with 0 ≤ y01 ≤ y02 ≤ . . . ≤ y0n+1 where the equality holds in no more than one
place’, can we eliminate the additional demand ’where the equality holds in no
more than one place’? If we can, shall we obtain the same result? If the answer is
positive, the following Theorem 4.1, Theorem 4.3 will be improved. What’s more,
the semi-algebraic system studied in the lemmas, has it a solution connected?

30



Criterions on Equality of Symmetric Inequalities(II) REFERENCES

2. The conclusion of Theorem 4.6, is it optimal?
Here are some special examples.
Taking the homogeneous inequality with 2 variables of degree 4

F (x, y) = (x2 + y2 − 2xy)(x2 + y2 − 4xy) ≥ 0

F (1, 2) < 0,namely it doesn’t hold on R2
+. However, when v(x2)∗ ≤ 1, F (1, 1) ≥

0, F (1, 0) ≥ 0: the inequality then does hold. So the result could not be improved
in this situation.
Taking the homogeneous inequality with 3 variables of degree 6

F (x, y, z) = (�3 +
2

27
�3
1 −

1

3
�1�2)

2 − (�2
1 −

36

11
�2)

2(
41

10
�2 − �2

1) +
9

110
�3
2 ≥ 0

f(12, 1, 16) < 0, namely it doesn’t hold on R3
+. However, when v(x3)∗ ≤ 2,

f(1, 1, x) ≥ 0, f(x, 1, 0) ≥ 0(x ∈ R+): the inequality then does hold. So the result
could not be improved in this situation, either.
Can we find an example in each case to show that the conclusion of Theorem 4.6
could not be improved? Or can we find in contrary a counterexample?
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