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Abstract

In this thesis, the following problem is considered.

Let S be a point set in a three-dimensional Euclidean space, and it consists

of n (greater than 1) points.

We define that

D (S) = max
A,B∈S,A 6=B

|AB|

d (S) = min
A,B∈S,A 6=B

|AB|

λn,3 = inf
D (S)

d (S)

And we prove that

3

√√
18

π
3
√
n− 1 ≤ λn,3 <

3

√√
18

π
3
√
n+ 4

lim
n→∞

λn,3
3
√
n

=
3

√√
18

π

We also design a program to get approximate solutions for certain cases

of small “n”s.



Chapter 1

Introduction

The following problem is called the “Heilbronn Problem”:

Consider a point set S, which consists of n (great than 1) distinct points

in a plane. Connect each two of them and we get
(
n
2

)
line segments.

Let D (S) be the length of the longest one and d (S) the shortest.

The problem is to find

λn,2 = inf
D (S)

d (S)

Fejes Toth in 1940 proved that

lim
n→∞

λn,2√
n

=

√√
12

π

Tian Zhengping in [3] and [4] proved that√√
12

π

√
n− 1 ≤ λn,2 ≤

√√
12

π

√
n

Our thesis focuses on a problem of the same type, but it comes to a three-

dimensional Euclidean space. (See Abstract for more details of the problem)

In Chapter 2 we give λn,3 (defined in Abstract) a lower bound

λn,3 ≥
3

√√
18

π
3
√
n− 1
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CHAPTER 1. INTRODUCTION

which is more optimal than the lower bound given in [8]

λn,3 ≥ γ3
(

3
√
n− 1

)
where γ3 =

[ √
2

12 arctan
(
1/
√

2
)
− 2π

]1/3
≈ 1.0865.

In Chapter 3 we get our inspiration from the face-centered cubic packing

and use a polyhedron to fill the space, which gives λn,3 an upper bound for

n > 1024, say

λn,3 <
3

√√
18

π
3
√
n+ 4

Then we use a program with the same structural method to verify the up-

per bound for 2 ≤ n ≤ 1024, and we are glad to find out that the upper bound

holds for 2 ≤ n ≤ 1024. Thus we prove that ∀n ≥ 2, λn,3 <
3

√√
18

π
3
√
n+ 4.

Still, it’s more optimal than the following upper bound given in [8] when

it comes to a three-dimensional space,

λn,k ≤ δk
k
√
n− 1 +

√
k (k + 1)

2

where δk =

√
2

π

[
k
√
k + 1Γ

(
k

2

)]1/k
.

In Chapter 4 we use the Squeeze Rule, the lower bound and the upper

bound of λn,3 to get the limit of
λn,3
3
√
n

when n→∞, which is

lim
n→∞

λn,3
3
√
n

=
3

√√
18

π

And this proves the conjecture Zhu Yuyang posed in 1995.

In Chapter 5 we use the Steepest Descent Approach to design a program

to get some approximate solutions for cases where 5 ≤ n ≤ 13
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Chapter 2

A New Lower Bound

Hong Yi, Wang Guoqiang and Tao Zhisui in [8] give λn,3 a lower bound,

which is

λn,3 ≥ γ3
(

3
√
n− 1

)
where γ3 =

[ √
2

12 arctan
(
1/
√

2
)
− 2π

]1/3
≈ 1.0865.

Here in this chapter, we give λn,3 a more optimal lower bound,

λn,3 ≥
3

√√
18

π
3
√
n− 1

Theorem 2.1. Let S ∈ R3 and

λn,3 = inf
maxA,B∈S,A 6=B |AB|
minA,B∈S,A 6=B |AB|

∀n ≥ 2, we have

λn,3 ≥
3

√√
18

π
3
√
n− 1

Proof. To prove this theorem, we need to know the following two lemmas

first.

Lemma 2.2. (the Bieberbach inequality) For any set A ∈ Rn, we have the

inequality

V (conv A) ≤ vn
2n

(diam A)n (2.1)
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CHAPTER 2. A NEW LOWER BOUND

where conv A is a convex hull of A, and diam A is the diameter of A, while

vn is the volume of the unit ball in Rn. Here the equality sign in (2.1) holds

if and only if A is a ball (in Rn) from which a zero-dimensional set may have

been removed. (see [9])

Lemma 2.3. (the Kepler Conjecture) No packing of congruent balls in Eu-

clidean three space has density greater than that of the face-centered cubic

packing. This density is
π√
18

. (see [7])

For a point set S, without losing generality, we assume that d (S) = 1.

With these n points being the centers, we draw n spheres whose radii

equal to
1

2
. Since d (S) = 1, it is obvious that no two spheres may intersect.

Let G be the convex hull of the n spheres, and d = diam G.

Because a convex set and its convex hull has the same diameter, there

must be two points, P and Q, while P is on �A, and Q is on �B, and PQ

is a diameter of G. Here A and B are two points in S and �A and �B are

two spheres we draw.

Thus we have ∣∣∣−→PQ∣∣∣ ≤ ∣∣∣−→PA∣∣∣+
∣∣∣−→AB∣∣∣+

∣∣∣−−→BQ∣∣∣ (2.2)

Here
∣∣∣−→PQ∣∣∣ = d, and

∣∣∣−→PA∣∣∣ =
∣∣∣−−→BQ∣∣∣ =

1

2
.

Obviously we have
∣∣∣−→AB∣∣∣ ≤ D (S), hence

d ≤ D (S) + 1 (2.3)

According to Lemma 2.2, we have the inequality

V (G) ≤
4
3
π

23
· d3 =

1

6
πd3 (2.4)

where V (G) is the volume of G.

We all know that
1

6
πd3 is the volume of a sphere of diameter d, so (2.4)

implies that of all convex hulls of diameter d, the sphere bounds the greatest

volume.
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CHAPTER 2. A NEW LOWER BOUND

According to Lemma 2.3, we have

nV0
V (G)

≤ π√
18

(2.5)

where V0 =
π

6
, denoting the volume of each sphere we draw.

Use (2.4) to eliminate V (G) in (2.5), and we have

n · π
6

1

6
πd3
≤ π√

18

which can be transformed to be

d ≥ 3

√√
18

π
3
√
n (2.6)

Use Inequality (2.3) to eliminate d in (2.6), and it gives

D (S)

d (S)
= D (S) ≥ d− 1 ≥ 3

√√
18

π
3
√
n− 1 (2.7)

Therefore, we can draw the conclusion that

λn,3 ≥
3

√√
18

π
3
√
n− 1

And that completes the proof of Theorem 2.1
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Chapter 3

A New Upper Bound

Hong Yi, Wang Guoqiang and Tao Zhisui in [8] give λn,3 an upper bound,

which is

λn,k ≤ δk
k
√
n− 1 +

√
k (k + 1)

2

where δk =

√
2

π

[
k
√
k + 1Γ

(
k

2

)]1/k
.

When in a three-dimensional space, it comes to be

λn,3 ≤ δ3
3
√
n− 1 +

√
6

where δ3 ≈ 1.685.

Here in this chapter, we give λn,3 a more optimal upper bound

λn,3 <
3

√√
18

π
3
√
n+ 4

3.1 An Upper Bound for n greater than 1024

Here we give an upper bound of λn,3 ∀n > 1024.

Theorem 3.1. Let S ∈ R3 and

λn,3 = inf
maxA,B∈S,A 6=B |AB|
minA,B∈S,A 6=B |AB|
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CHAPTER 3. A NEW UPPER BOUND

∀n > 1024, we have

λn,3 <
3

√√
18

π
3
√
n+ 4

Proof. To prove this theorem, we need to structure a polyhedron.

Figure 3.1: The center cube and the

side cubes

Figure 3.2: The structural method

of the polyhedron

Firstly, we draw seven cubes (see Figure 3.1). The center one of them

is called the Center Cube and the other six ones are called the Side Cubes,

while each Side Cube has a common face with the Center Cube. Then, we

connect the center of each Side Cube with the vertices of its corresponding

common face with the Center Cube, and we get a red polyhedron (let’s call

it a Super Cube) marked out in Figure 3.2.

Figure 3.3 shows how the Super Cube looks like when separated from the

cubes. It is easy to know its central symmetry.

Now, for each integral point P (x, y, z) in the space, we use it as a center

to draw a unit cube whose faces are parallel to the coordinate planes.

We say that an integral point Q (x, y, z) is an Even Point if x+ y + z ≡
0 (mod 2). And for each Even Point we use its unit cube as a Center Cube to

structure a Super Cube. Finally we get a space thoroughly filled with Super

Cubes.
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CHAPTER 3. A NEW UPPER BOUND

Figure 3.3: Super Cube

Furthermore we draw a sphere, T , whose center is O (0, 0, 0), of diameter

d.

Let A and B be two Even Point sets. We say that an Even Point P is in

A if it is inside or on T . We say that an Even Point Q is in B if it is out of

T and its Super Cube intersects with T . If we use H (P ) to denote the Super

Cube of an Even Point P and V (X) to denote the volume of a solid figure

X, we can easily get the following equation.

V (T ) = V

((⋃
P∈A

H (P )

)⋂
T

)
+ V

((⋃
Q∈B

H (Q)

)⋂
T

)
(3.1)

Obviously ∀P ∈ A, V (H (P )
⋂
T ) ≤ V (H (P )). We know Super Cubes

are central symmetrical, so ∀Q ∈ B, V (H (Q)
⋂
T ) <

1

2
V (H (Q)), which is

proved in Lemma 3.2 as follow.

Lemma 3.2. ∀Q ∈ B, V (H (Q)
⋂
T ) <

1

2
V (H (Q)).

Proof. We say that a plane is an Equatorial Plane if it passes through Q

(Q ∈ B).

Because Super Cubes are central symmetrical, if we divide H (Q) into two

parts with an Equatorial Plane, they bound the same volume.

Since Q ∈ B, the Equatorial Plane with
−→
OQ being its normal vector won’t

intersect with T . And this Equatorial Plane divides H (Q) into two isometric

parts, one of which has H (Q)
⋂
T inside. This implies that V (H (Q)

⋂
T ) <

1

2
V (H (Q)).
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CHAPTER 3. A NEW UPPER BOUND

That completes the proof of Lemma 3.2.

Because we use unit cubes to structure the Center Cubes, it is easy to

know that the volume of a Super Cube is 2. So we get the following inequality

from (3.1) and Lemma 3.2

V (T ) < |A| · 2 + |B| · 1 (3.2)

Here we consider |A| as n, that is, we consider S = A. Now we’re to

prove that |B| < π
(
d+
√

3 +
√

6
)2

Draw an inscribed cube whose faces are parallel to the coordinate planes,

of T (see Figure 3.4). Here �T ′ is the circumcircle of Square ABCD, and we

get a spherical crown above Plane ABCD.

Figure 3.4: Inscribed cube of T and circumcircle of Square ABCD

Let C be a subset of B. We say that a point is in C if it’s an Even Point

above Plane ABCD and its Super Cube intersects with the spherical crown.

To continue our proof, we need to prove a very important lemma.

Lemma 3.3. If two points, for example P (xP , yP , zP ) and Q (xQ, yQ, zQ),

are in C, they can’t have the same objection on Plane xOy.

Proof. We use proof by contradiction to prove this lemma.
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CHAPTER 3. A NEW UPPER BOUND

If this lemma is not true, there must be two points, P and Q, in C. Here

Q is above P , while they have the same objection on Plane xOy.

Here comes the first part of the proof.

Draw a circumscribed sphere, E, of H (Q). And X is a point inside

E. Connect X and P . We assume
−−→
PX = (x, y, z) and we’re to prove that

z2 > 2 (x2 + y2). (see Figure 3.5)

Figure 3.5: P ’s and Q’s Super

Cubes

Without losing generality, we assume that P (0, 0, 0) in this part of the

proof, which can simplify it. According to the description of structuring a

Super Cube, we know that the radius of E equals to 1. So we have Q (0, 0, t)

where t ≥ 2, and that X (x, y, z) must satisfy x2 + y2 + (z − t)2 ≤ 1 because

X is inside E. To prove z2 > 2 (x2 + y2), we only need to prove

1 <
z2

2
+ (z − t)2 (3.3)

since we know x2 + y2 + (z − t)2 ≤ 1.
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CHAPTER 3. A NEW UPPER BOUND

Because t ≥ 2 , it’s easy to know that 1 <
z2

2
+ (z − t)2 holds for ∀z ∈ R,

which implies that for each point X inside E, we have z2 > 2 (x2 + y2), and

then for each point X inside H (Q), we also have

z2 > 2
(
x2 + y2

)
(3.4)

The following is the second part of the proof.

Let K (xK , yK , zK) be any point of intersection ofH (Q), and the spherical

crown. Let P ′ be the objection of P on Plane xOy. If line PP ′ intersects

with the spherical crown, let W (xW , yW , zW ) be the point of intersection.

Otherwise, let W be the objection of P on Plane ABCD.

We assume that
−−→
PK = (x, y, z0) and

−−→
WK = (x, y, z). Since Q is above

P , we know K is above P . And obviously P is either above W or the same

point as W , hence

z0 ≤ z (3.5)

Here we are to prove that z2 ≤ 2 (x2 + y2). Since the value of z2 and

x2 + y2 won’t change no matter how we rotate Plane xOy, circling round the

Z-axis, there is no harm in assuming that yW = 0, xW > 0.

Hence, we have

z2 − 2 (x2 + y2) = (zW − zK)2 − 2
[
(xW − xK)2 + (0− yK)2

]
≤ (zW − zK)2 − 2

[(
xW −

√
x2K + y2K

)2
+ (0− 0)2

]
(3.6)

Here we define that K ′ (xK′ , yK′ , zK′) which is also on the spherical crown,

while (xK′ , yK′ , zK′) =
(√

x2K + y2K , 0, zK

)
. And (3.6) implies that for

−−−→
WK ′ =

(x1, y1, z1) , (y1 = 0)

z21 − 2
(
x21 + y21

)
≥ z2 − 2

(
x2 + y2

)
(3.7)

Let’s consider the situation where W is a point on the spherical crown

first.

Specially, when W is the same point as K ′ which implies the fact that
−−−→
WK ′ = (x1, y1, z1) = (0, 0, 0), we have z21 ≤ 2 (x21 + y21).
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CHAPTER 3. A NEW UPPER BOUND

Figure 3.6: Sectional plane passing through K ′, W and O

Otherwise, K ′ and W are two distinct points. Let’s see Figure 3.6 for

instance. Figure 3.6 shows the sectional plane passing through K ′, W and

O.

Here, according to the properties in geometry

|OU | : |OV | : |UV | =
√

3 :
√

3 : 2
√

2 (3.8)

Let M (xM , yM , zM) , (yM = 0) be the midpoint of WK ′. So
−−−→
WK ′ ⊥

−−→
OM ,

and then
zK′ − zW
xK′ − xW

· zM − 0

xM − 0
= −1 (3.9)

It is the case where xM 6= 0.

According to (3.8), we have
zM − 0

xM − 0
∈
(
−∞,− 1√

2

]
∪
[

1√
2
,∞
)

. Then

according to (3.9) we have
zK′ − zW
xK′ − xW

∈
[
−
√

2,
√

2
]
, that is,

z1
x1
∈
[
−
√

2,
√

2
]
.

And this still holds when xM = 0, because in that case zK′ = zW , which

means z1 = 0.

Hence, we have z21 ≤ 2x21 = 2 (x21 + y21). According to (3.5) and (3.7), we

have

0 ≥ z21 − 2
(
x21 + y21

)
≥ z2 − 2

(
x2 + y2

)
≥ z20 − 2

(
x2 + y2

)
(3.10)

As for the situation where W is a point on Plane ABCD, let’s see Figure

3.7 for instance, which is similar to Figure 3.6. It shows the sectional plane

which contains K ′, W and O.
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57

Figure 3.7: The sectional plane of another situation

Here V is a point on �T ′ (defined above) and it is the closest point to

W . We assume that
−−→
V K ′ = (x2, y2, z2). Obviously we have

z2 = z1 (3.11)

x22 + y22 < x21 + y21 (3.12)

where
−−−→
WK ′ = (x1, y1, z1) which is mentioned above.

If we use the method which is similar to the previous one, we can prove

that

z22 ≤ 2
(
x22 + y22

)
(3.13)

According to (3.5), (3.7), (3.11), (3.12) and (3.13), we have

0 ≥ z22 − 2
(
x22 + y22

)
> z21 − 2

(
x21 + y21

)
≥ z2− 2

(
x2 + y2

)
≥ z20 − 2

(
x2 + y2

)
(3.14)

We see (3.10) and (3.14) are contradictory to (3.4).

And thus we prove Lemma 3.3.

Now let’s prove |C| < 1

6
π
(
d+
√

3 +
√

6
)2

Lemma 3.4. |C| < 1

6
π
(
d+
√

3 +
√

6
)2

Proof. Look at Figure 3.8. It shows Plane ABCD while T ′ is the center of

Square ABCD.
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Figure 3.8: A view of Plane ABCD

It is easy to know that T ′A = T ′B = T ′C = T ′D =
d√
6

. If we draw a

larger circle �T ′ with radius of
d√
6

+
1√
2

+1, we can cover all the unit squares

which are objected from the unit cubes of points in C. Hence, according to

Lemma 3.3, we have the inequality

|C| · S0 < S (�T ′) (3.15)

where S0 = 1, denoting the area of a unit square. And S (�T ′) = π(
d√
6

+

1√
2

+ 1)2, denoting the area of �T ′.

Hence we have |C| < 1

6
π
(
d+
√

3 +
√

6
)2

, which proves Lemma 3.4.

To prove |B| < π
(
d+
√

3 +
√

6
)2

, we only need to prove |B| ≤ 6 |C|

Lemma 3.5. |B| ≤ 6 |C|

Proof. Let’s again consider the inscribed cube of T, see Figure 3.4. Here

the six faces of the cube are in six distinct planes. For each plane, it divides

the space into two regions, one of which doesn’t have O, the center of T , in

it.

We say a point is beyond a plane if this point is on the plane or in the

region this plane makes that doesn’t have O in it. For each plane, we use a
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point set to describe all the points in point set B that are beyond it, and we

get six point sets, say C1, C2, · · · , C6.

According to the symmetry of the sphere, the cube and the Super Cube,

we know that all the six sets have exactly the same number of points, and

that one of the six sets is C, we have

|C1| = |C2| = · · · = |C6| = |C| (3.16)

Obviously, every point in B is in at least one of the six sets. (If not,

there must be a point in B being in the inscribed cube of T , and that is

contradictory to the definition of B) So we have

B ⊆
6⋃
i=1

Ci (3.17)

and that gives

|B| ≤

∣∣∣∣∣
6⋃
i=1

Ci

∣∣∣∣∣ ≤
6∑
i=1

|Ci| = 6 |C| (3.18)

which completes the proof of Lemma 3.5

Now according to Lemma 3.4 and Lemma 3.5, we have

|B| < π
(
d+
√

3 +
√

6
)2

(3.19)

Use (3.19) to eliminate |B| in (3.2), we have

1

6
πd3 < 2n+ π

(
d+
√

3 +
√

6
)2

(3.20)

Expend and rearrange it, we have

12

π
n+ 18

(
3 + 2

√
2
)
> d3 − 6d2 − 12

(√
3 +
√

6
)
d (3.21)

To make it simpler, we assume that

d3 − 6d2 − 12
(√

3 +
√

6
)
d ≥ d3 + 3ad2 + 3a2d (3.22)

Here, a is a parameter. Transform (3.22) into another equivalent inequal-

ity, and we have

− (3a+ 6) d ≥ 3a2 + 12
(√

3 +
√

6
)

(3.23)
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This inequality won’t hold for all cases. But since 3a2+12
(√

3 +
√

6
)
> 0,

d > 0, so for d and a satisfying the following conditions, inequality (3.22)

holds.

a < −2 (3.24)

d ≥
3a2 + 12

(√
3 +
√

6
)

− (3a+ 6)
(3.25)

According to (3.21) and (3.22), we have

12

π
n+ 18

(
3 + 2

√
2
)

+ a3 > (d+ a)3 (3.26)

Hence

d <
3

√
12

π
n+ 18

(
3 + 2

√
2
)

+ a3 − a (3.27)

For a simpler inequality, we let a = − 3

√
18
(
3 + 2

√
2
)
< −2, and we have

d <
3

√
12

π
3
√
n+ 3

√
18
(

3 + 2
√

2
)

(3.28)

We know that the shortest distance between two Even Points is
√

2, so

according to Theorem 2.1, we have

d√
2
≥ D (S)

d (S)
≥ λn,3 ≥

3

√√
18

π
3
√
n− 1 (3.29)

Therefore, for each n satisfying

3

√√
18

π
3
√
n− 1 ≥ 1√

2
·

3a2 + 12
(√

3 +
√

6
)

− (3a+ 6)
(3.30)

a = − 3

√
18
(

3 + 2
√

2
)

(3.31)

the inequality (3.28) holds. That is, ∀n > 1024, we have

λn,3 ≤
D (S)

d (S)
≤ d√

2
<

3

√
12
π

+ 3

√
18
(
3 + 2

√
2
)

√
2

<
3

√√
18

π
3
√
n+ 4 (3.32)

Thus we prove Theorem 3.1.
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3.2 An Upper Bound for n not greater than

1024

Theorem 3.6. Let S ∈ R3 and

λn,3 = inf
maxA,B∈S,A 6=B |AB|
minA,B∈S,A 6=B |AB|

∀2 ≤ n ≤ 1024, we have

λn,3 <
3

√√
18

π
3
√
n+ 4

Proof. For these cases, we design a program to simulate the structural

method (see Section 3.1 ) to get the solutions for cases where 2 ≤ n ≤ 1024

to see if the upper bound holds.

The algorithm goes like this:

1. Let the initial value of R be zero. Here R

is the radius of the sphere.

2. Consider the point set S as an empty set,

and consider all the Even Points as un-

marked.

3. Add the unmarked Even Points in the

sphere into S one by one. Each time renew

f|S|,3 (f|S|,3 =
maxA,B∈S,A 6=B |AB|
minA,B∈S,A 6=B |AB|

) and mark

the point.

4. If |S| > 1024, exit.

5. Use R + r to renew R. Here r is a small

positive number.

6. Go to 3.

Figure 3.9: Flowchart of

the simulating program

The figure on the right shows the flowchart of the program.
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Use this program we get some solutions and we find that for each 2 ≤

n ≤ 1024, λn,3 <
3

√√
18

π
3
√
n+ 4 (see Appendix A).

Thus we prove Theorem 3.6.

3.3 A New Result on Upper Bound

Theorem 3.7. Let S ∈ R3 and

λn,3 = inf
maxA,B∈S,A 6=B |AB|
minA,B∈S,A 6=B |AB|

∀n ≥ 2, we have

λn,3 <
3

√√
18

π
3
√
n+ 4

Proof. According to Theorem 3.1, we have ∀n > 1024, λn,3 <
3

√√
18

π
3
√
n+

4.

According to Theorem 3.6, we have that for each n between 2 and 1024,

λn,3 <
3

√√
18

π
3
√
n+ 4.

Hence, we have ∀n ≥ 2, λn,3 <
3

√√
18

π
3
√
n+ 4.

That completes the proof of Theorem 3.7.



Chapter 4

The Limit of
λn,3
3
√
n

Zhu Yuyang in 1995 posed the following conjecture:

Use congruent k-dimensional balls to fill any convex figure in Rk. And

let Pk be the supremum of the density. We have

lim
n→∞

λn,k
k
√
n

= P
− 1

k
k

When it comes to a three-dimensional space, the conjecture is

lim
n→∞

λn,3
3
√
n

=
3

√√
18

π

which is to be proved as follow.

Theorem 4.1. Let S ∈ R3 and

λn,3 = inf
maxA,B∈S,A 6=B |AB|
minA,B∈S,A 6=B |AB|

We have

lim
n→∞

λn,3
3
√
n

=
3

√√
18

π

Proof. According to Theorem 2.1 and Theorem 3.7, we have

3

√√
18

π
3
√
n− 1 ≤ λn,3 <

3

√√
18

π
3
√
n+ 4 (4.1)
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Divide (4.1) through by 3
√
n. This gives

3

√√
18

π
− 1

3
√
n
≤ λn,3

3
√
n
<

3

√√
18

π
+

4
3
√
n

(4.2)

Obviously

lim
n→∞

3

√√
18

π
− 1

3
√
n

= lim
n→∞

3

√√
18

π
+

4
3
√
n

=
3

√√
18

π
(4.3)

According to the squeeze rule and (4.2), (4.3), we have

lim
n→∞

λn,3
3
√
n

=
3

√√
18

π

Thus we prove Theorem 4.1.



Chapter 5

Near Optimal Solutions for

some cases

For cases where 5 ≤ n ≤ 13, we design a program using the Steepest

Descent Approach to give some near optimal solutions.

Without losing generality, we assume that d (S) = minA,B∈S,A 6=B |AB| =

1. And we are to find the distribution of all points in S which will minimize

D (S) = maxA,B∈S,A6=B |AB|.
We define that S = (A1, A2, · · · , An) andAi = (xi, yi, zi), (i = 1, 2, · · · , n).

Here (xi, yi, zi), (i = 1, 2, · · · , n) are randomly valuated. Let’s consider the

vector
−→
V = (x1, x2, · · · , xn, y1, y2, · · · , yn, z1, z2, · · · , zn)

which describes how the points distribute in the space.

Each time we find another vector

~u = (∆x1,∆x2, · · · ,∆xn,∆y1,∆y2, · · · ,∆yn,∆z1,∆z2, · · · ,∆zn)

which will make
−→
V ′ =

−→
V + ~u a more optimal vector. Here we say that a

vector is more optimal if the distribution of points it describes has a smaller

D (S).

Because we assume that d (S) = 1, we have∣∣∣−−−→AiAj

∣∣∣2 = (xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≥ 1, (1 ≤ i < j ≤ n) (5.1)
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To emphasize this, we define a function

F (S) = D (S) +
∑

1≤i<j≤n

M ·max
(

1−
∣∣∣−−−→AiAj

∣∣∣ , 0)2 (5.2)

to see if the vector is optimal or not. Here M is a very large positive number.

That means, if the distance of two points, for example Ai and Aj, is smaller

than 1, the value of F (S) can be very bad. So there’s no need to consider

(5.1) any more.

And now it’s the matter of finding ~u.

According to the Steepest Descent Approach, we can use the gradient

vector, ~z, to get ~u. That is

~z =

(
∂F

∂x1
,
∂F

∂x2
, · · · , ∂F

∂xn
,
∂F

∂y1
,
∂F

∂y2
, · · · , ∂F

∂yn
,
∂F

∂z1
,
∂F

∂z2
, · · · , ∂F

∂zn

)
(5.3)

~u = λ~z (5.4)

Here λ is parameter which can lead us to a locally optimal solution. We

use the Newton Iteration Method to find it.

After we find ~u, we use
−→
V ′ =

−→
V + ~u to renew

−→
V , and then we repeat

these steps until
−→
V ′ =

−→
V .

Here goes the algorithm of our program:

1. Give each point in S a random coordinate. And we have
−→
V for current

distribution.

2. Find the gradient vector ~z, of F (S).

3. Use the Newton Iteration Method to find a λ and then we get ~u.

4. If ‖~u‖ < ε (ε is a very small positive number), exit.

5. Use
−→
V ′ =

−→
V + ~u to renew

−→
V .

6. Go to 2
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Figure 5.1: Flowchart

of the program us-

ing the Steepest Decent

Approach

Figure 5.1 shows the flowchart of the algorithm of the program.

If we repeat this program many times, we can get solutions which are

very close to the optimal solutions.

We use this program to get solutions for the problem of both the two-

dimensional version and the three-dimensional version and we all get so-

lutions better than what we currently know. Since the problem of two-

dimensional space has little relevance to this thesis, we only provide with the

solutions of the three-dimensional version.

The figures in the following pages are our solutions which show the dis-

tribution of the points.

Here the blue segments indicate the shortest segments and the yellow

segments indicate the longest ones. Other segments are not shown in the

figures below.

The coordinates of the points are given in Appendix B.
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λ4,3 = 1.0000000000 λ5,3 ≤ 1.3093073414

λ6,3 ≤ 1.4142135624 λ7,3 ≤ 1.5144098705

λ8,3 ≤ 1.5537739740 λ9,3 ≤ 1.5952200746
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λ10,3 ≤ 1.7611433799 λ11,3 ≤ 1.8396119135

λ12,3 ≤ 1.9021130326 λ13,3 ≤ 1.9869300892
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Appendix A

Solutions of Theorem 3.6

See the file named “Solutions for Theorem 3.6.CHM”.

This file shows the solutions of Theorem 3.6.

For each data, the first line contains a single number n, which is the

number of points.

The second line contains one real number, F (S), which is produced by

our program; while the third line contains one real number evaluated by

g (n) =
3

√√
18

π
3
√
n+ 4

By comparing to these two numbers, we can see that the inequality

λn,3 <
3

√√
18

π
3
√
n+ 4

holds for each n between 2 and 1024.

There are three numbers in each of the following n lines, which describe

the coordinate of a point.

The Results is a list containing all the results:

Here each line contains three numbers. The first one is n; the second one

is F (S) and the third one is g (n).
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Appendix B

Coordinates of the points of

Chapter 5

Here are the coordinates of the points of Chapter 5.

Each line contains three numbers, x, y and z, describing the coordinate

of a point.

n=5 n=6

1 0.02640565 0.47082748 0.70935508 1 0.13866487 0.09988526 0.24880232

2 1.14044094 1.02950948 0.30800043 2 1.17732454 1.05841808 0.29780221

3 0.18743911 1.23705693 0.08729346 3 0.55190626 1.17504645 1.06932654

4 0.75495466 0.92235001 1.22447039 4 0.19034870 1.09267226 0.14062281

5 0.80787614 0.09109850 0.21426943 5 1.12564071 0.06563110 0.40598172

6 0.50022243 0.18225947 1.17750605

n=7 n=8

1 0.46525659 0.13403324 0.01388199 1 0.24190822 0.93449382 1.34384298

2 1.02653540 0.08468258 0.84003611 2 1.08806203 0.40481066 1.28502532

3 1.22320082 0.77357495 0.14236138 3 1.07047160 0.09112966 0.33565983

4 0.04058807 1.22647975 0.97286821 4 0.24244123 0.04132261 0.89412648

5 0.29402360 1.11926088 0.01147621 5 1.06971782 1.35426449 0.97165503

6 0.03964921 0.22822181 0.91387470 6 0.21649859 1.38405308 0.45095395
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7 1.02000251 1.05542889 1.08005473 7 0.21703160 0.49088188 0.00123745

8 1.05212738 1.04058348 0.02228954

n=9 n=10

1 0.04194232 1.31764800 0.64738748 1 1.01282818 0.03415419 0.79846398

2 0.26312890 0.92735593 1.54111485 2 1.71034610 0.66622963 1.61379364

3 0.00708895 0.32750925 0.78307294 3 1.72793608 0.70862116 0.61484742

4 0.86660717 0.04396587 0.35782996 4 0.67989495 1.76050317 0.69599084

5 0.99877143 1.57701820 0.77855592 5 1.65882920 1.67054574 0.87928142

6 0.79698687 0.10282055 1.35366586 6 1.18743229 1.50827719 1.74614582

7 1.53262940 0.75248282 0.59110693 7 0.24217212 0.65170313 0.64122989

8 1.26211902 0.97056528 1.52879783 8 0.74970946 0.39947715 1.69138487

9 0.74273148 0.97717153 0.02051401 9 0.27079653 1.24274254 1.44736455

10 0.96131131 1.03847029 0.06395177

n=11 n=12

1 0.03164170 1.08221090 1.21505707 1 1.44401188 0.89184615 1.68272620

2 1.15685873 1.21112982 0.00523577 2 0.84740217 1.67149455 1.49244937

3 0.65380961 1.69162734 0.72361155 3 0.88410409 1.85624832 0.51035007

4 0.67264426 1.65775559 1.72286025 4 1.11052653 0.28023702 0.22233042

5 1.30854893 0.02754000 1.15523847 5 1.84943888 0.59475073 0.81822444

6 1.66828855 1.73579934 1.67185369 6 0.10848982 1.35698084 0.89655535

7 0.67543145 0.59301259 0.62665261 7 0.24842659 0.38295230 0.71854941

8 1.78113734 0.74218759 1.67093127 8 0.45453187 0.76094753 1.62112364

9 0.78549306 0.66414381 1.72193783 9 0.51391681 1.05988542 0.03205359

10 1.64945389 1.76967111 0.67260499 10 1.07382460 0.09548325 1.20442972

11 1.76230269 0.77605936 0.67168255 11 1.70950211 1.56877929 0.99623039

12 1.50339683 1.19078404 0.09365615

n=13

1 1.17636130 0.75834125 1.09553218

2 0.49207113 1.06967029 0.36516313

3 1.76440028 0.21086506 0.49186067
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4 1.49969758 1.81328778 1.17262166

5 1.80858641 0.08754194 1.48324305

6 0.77015465 0.11276394 0.44882813

7 1.82652438 1.06366413 1.83726699

8 1.45855540 1.08248463 0.10875726

9 0.82682575 0.00721339 1.65556065

10 0.19063267 0.64233862 1.21752604

11 2.10037910 1.07105138 0.87552427

12 0.83971236 1.03301761 1.99620994

13 0.52763839 1.58383004 1.22211981
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