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Abstract

In this paper, we will discuss some upper bound formulas for Ramsey numbers.
At first, we will derive a more unified form from two parameter formulas which was
obtained by Yiru Huang etc. Then, similar to their methods, we introduce two new
bound formulas for Ramsey numbers in this paper. At last, as the applications of
our new bound formulas, some upper bounds for small Ramsey numbers will be
obtained.

1 Introduction

1.1 Ramsey numbers

It is well known that of any six persons in the world, three of them must be either
acquainted to each other or totally unfamiliar with. Somehow, there are lots of other
similar interesting cases, like of any nine persons in the world, three of them should know
each other well, while four of them are strangers; of fourteen people, three of them must
know each other, while five are strangers. Now let us generalize these cases to find out
the rules behind them.

Let p ≥ 2 , q ≥ 2 be two given positive integers, define R(p, q) as the minimum value
of integer n which satisfies the following statement: if we randomly color each side of an n
order’s complete graph with red or blue, then there must be a wholly red complete graph
of p order Kp or a totally blue complete graph of q order Kq . Such R(p, q) is called the
Ramsey number of Kp and Kq.

Here are some Ramsey numbers: R(3, 3) = 6, R(3, 4) = 9, R(3, 5) = 14. And a
Ramsey number meets two qualities: 1. For any positive integer p ≥ 2, q ≥ 2, we have
R(p, q) = R(q, p). 2. For any positive integer q ≥ 2, we also have R(2, q) = q.

So far, only a few Ramsey numbers have been discovered. Except for R(2, q) = q, we
can easily find out some rather small Ramsey numbers, such as R(3, 3), R(3, 4), R(3, 5),
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however the exploration of Ramsey numbers still has a long way to go. Let us take a look
at R(3, 3) = 6 first.

To prove that of any six persons in the world, three of them must be either acquainted
to each other or totally unfamiliar with. The assignment equals to prove that if we color
every side of a six order complete graph K6 with red or blue, than there must be a single
colored triangle. (In short, the assignment means to prove R(3, 3) ≤ 6.)

Demonstration: we choose a vertex v of K6 randomly, and v has 5 attaching sides,
which are either red or blue. According to the average number principle, there are at
least 3 same colored sides. And we suppose vv1, vv2, vv3 are red.

Consider the sides attached by v1, v2, v3, if one of them are red, then a red triangle
will appear in the graph. On the other hand, if v1v2, v2v3, v3v1 are all blue, then v1v2v3

is a blue triangle. Thus proves that there must be single colored triangles in the graph.
(In fact, we can prove the two-colored K6 must have at least 2 single colored triangles.)

Since it is easy to find a graph of 5 order which contains neither K3 nor E3 (a graph
has only 3 vertices, but no sides), we can say R(3, 3) > 5. Thus R(3, 3) = 6.

For some small Ramsey numbers R(k, l), S.P. Radziszowski has compiled all the results
we have known by now in his survey paper [7].

From S.P. Radziszowski’s surgery paper, we only know 9 exact values for Ramsey
numbers. For other Ramsey numbers, despite don’t know their exact values, people are
interested in estimating their bounds. This paper will only focus on the upper bounds for
Ramsey numbers.

1.2 Classical upper bound formula

For the general upper bound formulas of Ramsey numbers, we have know the following
classical results:

1. In 1935, P.Erodös and G. Szekeres got

R(k, l) ≤ R(k − 1, l) + R(k, l − 1).

2. In 1968, Walker[8] obtained

R(k, k) ≤ 4R(k, k − 2) + 2.

3. In 1983, Griggs [1] obtained

R(3, n) ≤ Cn2/ln(n), for n ≥ 15

where C is some positive constant.
Besides the above formula, many upper bound formulas appear in recent decades, we

recommend the survey paper [7] for a review.

1.3 Main results

In this paper, we will introduce the following two new upper bound formulas
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Theorem 1.1. Let m ≥ 4, n ≥ 4, R(Gm−2
1 , G2) ≤ a + 1, R(G1, G

n−2
2 ) ≤ b + 1,

R(Gm−1
1 , G2) ≤ c + 1 and R(G1, G

n−1
2 ) ≤ d + 1, then we have the following upper bounds

for R(G1, G2):

R(G1, G2) ≤ 3c + b + 2

Furthermore, if b ≥ a, then we have

R(G1, G2) ≤ 5

2
+

a

2
+

√
1 + 2a + a2 + 12cd + 4bd− 4ad

2

The notations G1, G2, G
m−2
1 , Gn−2

2 will be explained in section 2. As the application,
we get the upper bounds R(5, 13) ≤ 1139, R(5, 15) ≤ 1878, R(6, 13) ≤ 3705, these are
the same best upper bounds we have known by now showed in [7].

Besides, we also have R(10, 13) ≤ 145975, R(10, 14) ≤ 233569, and R(10, 15) ≤
388645. It is clear that these upper bounds are better than which derived from the
formula

R(k, l) ≤ R(k − 1, l) + R(k, l − 1)

Thus, they can be considered as the new upper bounds.

2 Upper bound formulas for Ramsey numbers

In this section, at first, we will introduce some parameter theorems obtained by Y. Huang
etc. in recent years [5, 3, 6]. Then, we will derive two upper bound formulas by the similar
methods.

We need some notations followed from [3], the Ramsey number R(G1, G2) for two
given graphs G1, G2 is the smallest positive integer p + 1 such that for any graph G of
order p + 1 either G contains G1 or Gc contains G2, where Gc is the complement of G. A
graph H of order p is called a (G1, G2; p)-Ramsey graph if H does not contain G1 and Hc

does not contain G2. Thus R(Km, Kn) is R(m,n) described in the introduction. When an
edge e is removed from G, we denote the graph by G− e. Let di be the degree of vertex
i in G of order p, and let di = p − 1 − di, where 1 ≤ i ≤ p. And let f(Kr) (g(Kr),resp.)
denote the number of Kr in G(Gc,resp.). We always assume that G1 = Km or Km − e,
G2 = Kn or Kn − e, Gm−i

1 = Km−i or Km−i − e, Gn−i
2 = Kn−i or Kn−i − e.

Moreover, we need two lemmas:

Lemma 2.1. [2] For any graph G of order p, we denote i as its vertex, di as the degree
of vertex i, di = p− 1− di, 1 ≤ i ≤ p, Then

f(K3) + g(K3) =

(
p

3

)
− 1

2

n∑
i=1

didi (2.1)

Lemma 2.2. [6] For any (G1, G2; p)-Ramsey graph G of order p, the following inequalities
hold:

(s + 1)f(Ks+1) ≤ f(Ks)[R(Gm−s
1 , G2)− 1] (2.2)

(t + 1)g(Kt+1) ≤ g(Kt)[R(G1, G
n−t
2 )− 1] (2.3)
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By the above two lemmas, we have the following main theorem which appears in series
papers of Y. Huang etc. [5, 3, 6].

Theorem 2.3. [3] Let m ≥ 4, n ≥ 4, R(Gm−2
1 , G2) ≤ a + 1, R(G1, G

n−2
2 ) ≤ b + 1,

R(Gm−1
1 , G2) ≤ c + 1 and R(G1, G

n−1
2 ) ≤ d + 1, then we have the following parameter

formulas for R(G1, G2):
(i)Let t ≥ 0, A = 2c − 2 − 1

3
(4a + 2b), B = (a + b + 2)2 + 1

3
(b − a)2, and F (t) =

a + b + 4− t +
√

4
3
t2 + 2At + B, Then R(G1, G2) ≤ F (t). Moreover, when 4B− 3A2 > 0,

we have

R(G1, G2) ≤




a + b + 4 +
3A

4
+

1

4

√
−3A2 + 4B, t0 = 3

4
(
√

4B − 3A2 − A) > 0,

a + b + 4 +
√

B, t0 = 3
4
(
√

4B − 3A2 − A) ≤ 0.

(ii) Let two parameters x ∈ (0, 3), y ∈ R. And let

f(x, y) = C +
√

C2 −D, g(x, y) = C −
√

C2 −D,

C =
3(y + a− b)− 2(1 + a)x

9− 4x
,D =

(3− x)(y + a− b)2 + xy2

(3− x)(9− 4x)

Then
(a)R(G1, G2) ≥ 2 + f(x, y) or R(G1, G2) ≤ 2 + g(x, y) if 0 < x < 9

4
;

(b)R(G1, G2) ≤ 2 + f(x, y), if x ∈ (9
4
, 3);

(c)R(G1, G2) ≤ a + b + 4 + 2
3

√
(a + 2b + 3)(2a + b + 3) + (b− a)2 if x = 9

4
.

Remark 2.4. In fact, theorem 2.3 is a unified form for the main results of paper [3]. The
theorem 1 in [3] is the first part of theorem 2.3, and theorem 2 in [3] is a special case of
second part of theorem 2.3.

Proof. We will follow the method introduced in paper [3]. Let p = R(G1, G2)− 1, and G
is a (G1, G2; p)-Ramsey graph G. Let s = 2 in Lemma 2, we have

3f(K3) ≤ 1

2
a

p∑
i=1

di,

3g(K3) ≤ 1

2
b

p∑
i=1

di

where we have used f(K2) ≤ 1
2

∑p
i=1 di, g(K2) ≤ 1

2

∑p
i=1 di, and R(Gm−2

1 , G2) ≤ a + 1,
R(G1, G

n−2
2 ) ≤ b + 1.

By lemma 1, we have,

3

((
p

3

)
− 1

2

p∑
i=1

didi

)
≤ 1

2

(
a

p∑
i=1

di + b

p∑
i=1

di

)
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After recollecting, by di + di = p− 1, then

p(p− 1)(p− 2− a) ≤
p∑

i=1

(p− 1− di)(3di + b− a) (2.5)

≤
p∑

i=1

(−3d
2

i + (3p− 3 + b− a)di)

The next thing we need to do is to get an upper bound of −3d
2

i + (3p− 3 + b− a)di, then
by (2.5), through solving the inequality of (2.5), we can obtain an upper of p.

At first, we note that when 0 ≤ di ≤ p− 1,

−3d
2

i + (3p− 3 + b− a)di ≤ (3p− 3 + b− a)2

12
.

Thus, by (2.5), we have

(p− 1)(p− 2− a) ≤ (3p− 3 + b− a)2

12
(2.6)

Solving the inequality (2.6),

3 + a + b−
√

B ≤ p ≤ 3 + a + b +
√

B

where B is defined above. Hence

4 + a + b−
√

B ≤ R(G1, G2) ≤ 4 + a + b +
√

B (2.7)

which is a bound of R(G1, G2). However, unfortunately, 4 + a + b−√B ≤ 2 and 4 + a +
b +

√
B ≥ 2a + 2b + 6, so the bounds of R(G1, G2) obtained from (2.7) is not better than

the results we have known in [7].
Now, we will introduce the parameters to deal with right hand side of (2.5). In paper

[3] has used the following two methods:
(i)let t ≥ 0, then

p(p− 1)(p− 2− a) ≤
p∑

i=1

(−3d
2

i + (3p− 3 + b− a)di)

≤
p∑

i=1

(−3d
2

i + (3p− 3 + b− a + t)di − t(p− 1) + tc)

≤ p

(
1

12
(3p− 3 + b− a + t)2 − t(p− 1) + tc

)

In the last ”≤”, we have used the fact [4] that

di ≤ c, di ≤ d (2.8)
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Thus, we have

a + b + 3− t−
√

4

3
t2 + 2At + B ≤ p ≤ a + b + 3− t +

√
4

3
t2 + 2At + B

i.e.

a + b + 4− t−
√

4

3
t2 + 2At + B ≤ R(G1, G2) ≤ a + b + 4− t +

√
4

3
t2 + 2At + B

Let G(t) = a + b + 4− t−
√

4
3
t2 + 2At + B and F (t) = a + b + 4− t +

√
4
3
t2 + 2At + B.

In order to get a better upper bound of R(G1, G2), we need to estimate the minimal
value of F(t) when t ≥ 0.

Calculate the derivation of t,

d

dt
F (t) = −1 +

24t + 18A

6
√

12t2 + 18At + 9B

d2

dt2
F (t) =

−(24t + 18A)2 + 48(12t2 + 18At + 9B)

12(12t2 + 18At + 9B)

When, 4B− 3A2 ≥ 0, the may solution of d
dt

F (t) = 0 in t ≥ 0 is t0 = 3
4
(
√

4B − 3A2−A),

and d2

dt2
F (t0) = 1

3
√−3A2+4B

> 0, hence t0 is the minimal point of F(t). Thus, if t0 =
3
4
(
√

4B − 3A2 − A) ≥ 0, we have

R(G1, G2) ≤ F (t0) = a + b + 4 +
3A

4
+

√−3A2 + 4B

4

We obtain the part (i) of theorem 2.1.
(ii)In the second way, we introduce two parameters x, y,

p(p− 1)(p− 2− a) ≤
p∑

i=1

(−3d
2

i + (3p− 3 + b− a)di)

≤
p∑

i=1

(−xd
2

i + (3p− 3 + b− a− y)di − (3− x)d
2

i + ydi)

≤ p

4x
(3p− 3 + b− a− y)2 +

y2p

4(3− x)

Then, by an easy discussion, we have the part 2 of theorem 2.1.

Motivated by the proof of theorem 2.3, now we will give two upper bound formulas.
Our main results is

Theorem 2.5. Let m ≥ 4, n ≥ 4, R(Gm−2
1 , G2) ≤ a + 1, R(G1, G

n−2
2 ) ≤ b + 1,

R(Gm−1
1 , G2) ≤ c + 1 and R(G1, G

n−1
2 ) ≤ d + 1, then we have the following upper bounds

for R(G1, G2):

R(G1, G2) ≤ 3c + b + 2 (2.9)
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Furthermore, if b ≥ a, then we have

R(G1, G2) ≤ 5

2
+

a

2
+

√
1 + 2a + a2 + 12cd + 4bd− 4ad

2
(2.10)

Proof. In the proof of above theorem 2.1, we have got

p(p− 1)(p− 2− a) ≤
p∑

i=1

(p− 1− di)(3di + b− a)

by (2.8), we know 0 ≤ di ≤ c, hence

p(p− 1)(p− 2− a) ≤ p(p− 1)(3c + b− a)

i.e.

p ≤ 3c + b + 1 (2.11)

by the definition p and R(G1, G2), (2.11) is just (2.9) in theorem 2.3.
Furthermore, if b ≥ a, then (3di + b− a) ≥ 0, thus by (2.8)

p(p− 1)(p− 2− a) ≤
p∑

i=1

di(3di + b− a)

≤
p∑

i=1

d(3di + b− a)

≤
p∑

i=1

d(3c + b− a)

= pd(3c + b− a)

so, we have

p2 − (a + 3)p + a + ad + 2− 3cd− bd ≤ 0 (2.12)

solving (2.12),

3

2
+

a

2
−
√

1 + 2a + a2 + 12cd + 4bd− 4ad

2
≤ p ≤ 3

2
+

a

2
+

√
1 + 2a + a2 + 12cd + 4bd− 4ad

2

Therefore, we get the upper bound

R(G1, G2) ≤ 5

2
+

a

2
+

√
1 + 2a + a2 + 12cd + 4bd− 4ad

2
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3 Some calculations

In this section, we will discuss the applications of our new upper bound formulas intro-
duced in this paper. In fact, we have made a computer program to calculate the upper
bounds from our new upper bound formulas combining the result of the latest version of
Radziszowski’s survey paper [7].

For the classical two color Ramsey numbers R(k, l), we have the following results
calculated from our upper bound formula (2.10) in theorem 2.5.

R(5, 13) ≤ 1139, R(5, 15) ≤ 1878, R(6, 13) ≤ 3705, these are the same best upper
bounds we have known by now showed in [7].

Furthermore, from our calculation, we also have that
R(10, 13) ≤ 145975, R(10, 14) ≤ 233569, and R(10, 15) ≤ 388645. It is clear that

these upper bounds are better than which derived from the classical upper bound formula

R(k, l) ≤ R(k − 1, l) + R(k, l − 1)

Thus, they can be considered as the new upper bounds.

4 Further directions

In the last section, we will point out some further researches in the future.
(1). How to get better lower bound formulas by the methods showed in this paper?
In fact, in the proof of theorem 2.1, we have gotten G(t) ≤ R(G1, G2), thus to calculate

the maximal value of G(t), we can get some lower bound of Ramsey numbers.
(2). How to generalize the upper bound formula to multi-Ramsey numbers R(G1, .., Gn)’s

case?
It is interesting to generalize lemmas used in this paper to multi-color’s case, and then

to derive the same type upper bound formulas for multi-Ramsey numbers.
(3). How to generalize the bound formula to other types graphs Ramsey number?
In this paper, we only consider the particular graphs Kn and Kn − e. In [7], many

small Ramsey numbers results for other types graphs are also listed. It is also interesting
to generalize the method in this paper to these graphs.
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