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Abstract: In a class of mathematic competition in our school, Mr. Yang explained for us a problem
in 2006 Iranian Maths Olympics (Example 1) and the problem of the 176 in Medium Mathematics
2006.4.At the end of which he raised a question that whether we can make up an inequality chain,
which interested us very much. So with the instruction of Mr. Yang, we obtained Theorems 1-6 by
means of Bottema 2009 which is mdae by Professor Yang Lu ,a researcher of Chinese Academy of
Social Sciences ), computers and calculators. And in this line, we considered that whether they could
be extended to situations of high power. After making great endeavors, we endeavor Theorem 7.
Finally, we thought about whether it could be extended to high dimensional situation and obtained
the creative Theorem 8.

The objective of this paper is to further study a type of inequalities of the sum of equal powers
of right triangle’s 3 edges to the and has successfully obtained a series of inequalities to the power of
3 to 6 and some of higher order, among which some inequalities of lower order have been proved
true by means of the software of Bottema 2009 that developed by Doctor Yang Lu, who is a
researcher of Chinese Academy of Science. And we have obtained the inequalities about n
dimensional simplex. Meanwhile we studied the application of these inequalities in mathematical
competitions and teaching. In the last section, we also proposed two conjectures of more generality,
among which conjecture 2 is about n dimensional simplex, for those who are interested in it. The
study of this type of problems is beneficial to mathematical competitions and researches of primary
and advanced mathematics.

As for the application of these theorems, we can discover their value in geometries like

right-angled triangle, rectangle,round,ellipse, hyperbola,cube, hypocycloid,right-angled triangular

pyramid, globe, ellipsoid, hyperboloid of two sheet, elliptic cone and so on. We can also study
about their value in teaching and competitions.

In the end, we proposed more general conjectures while the second discusses about situations
of n dimensional simplex and both of which are for those readers who are interested in it. This type
of problems is beneficial for competitions and study of primary and advanced mathematics.

Highlight: We systematically study the inequality of the sum of 3 right-angled triangular sides

(Theorems1-6) and extend them to the right-angled tetrahedron and propose some difficult
conjectures.

Innovation: We get some inequalities of the sum of 3 right-angled triangular sides of high
order (4 and above(Theorem 7)), and extend them to the n dimensional space (theorem 8), and
proposed conjectures in n dimensional space (conjecture 1,2) with creative methods .

Key words: Right-angled Triangle, the Sum of Equal Power, Inequality Chain, N Dimensional
Simplex.
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1 Introduction and Main results

In a class of mathematics competitions in our school, Mr. Yang explained to us a problem in
2006 Iranian Maths Olympics (Example 1) and the senior 176 in Medium Mathematics 2006.4., at
the end of which he raised a question whether they can make up an inequality chain, which
interested us very much. So under the instruction of Mr. Yang, we obtained Theorems 1-6 by means
of Bottema 2009, computers and calculators. Along this line, what came to our minds was whether
they could be extended to situations of high order. After making great endeavors, we got Theorem 7.
Finally, we thought about whether they could be extended to situations of high dimensions and
then Theorem 8 is obtained .

Pythagorean is a great theorem in the history of mathematics
with a lot of applications in daily life. There are more than 400
approaches to the proof of Pythagorean, also called the Historic
Theorem ! The logo of the 2002 International Conference of
Mathematics (ICM2002) in Beijing is designed on the basis of Chord
Chart of Zhao Shuang, a Chinese mathematician, which consists of
four Congruent right-angled triangle and a square that make up a
larger square (shown in the picture). On October 4, 1957, on the first
satellite sent up by the Soviet Union included a picture of ICM2002
Pythagorean.

Some problems of the solutions and proofs of inequalities about Pythagorean(three right-angled

triangle edges: a’+b* =c?)
In some national and international Olympic competitions, there are many problems of

inequalities on 3 triangular sides ( a’+b?=c?, especially the problems of 3 sides to the power of

3 of 3 order.
Therefore we need to study this kind of problems, and got a series of inequality chain of
right-angled triangle.

Theorem 1:In RtAABC , if a® +b? =c? then
% +b7 +C? > (6—42)(a+b+c)’ 2%(8\5—4)(ab+bc+ac).

Theorem 2:In RtAABC , if a® +b? =c? then
a®+b*+c? 2?(a+b+c)(a2 +b®+c?)

> %(2\/5+1)[a(b2 +6?)+b(a® +¢%)+c(a’ +b?)]

1
25(3\/5—4)(a+b+c)3 > (2+~/2)abc.
By applying the conclusion above, we can also get the following inequality chain:

Theorem 3:In RtAABC , if a® +b? =c? then
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L 9vZ-12)(a+b+c)@® +b° + )
at+bt4ct>]?
g(a2 +b? +c?)?

> 5(24—15ﬁ)(a+ b+c)[a(b® +c?)+b(a® +c®)+c(a+b?)]
2%(51—36\@)(a+b+c)4 > 3(J2 —1)(a+b-+c)abe.
Theorem 4 In RtAABC , if a?+b? =c? then

1(3-&)(612 +b2 +c?)@ +b° +¢%)
2 +b° 45> 1‘ > (v/2 ~1)(ab+be +ca)(@® +b* +¢)
6(&5 —2)(a+b+c)@* +b* +c?)

Theorem 5 In RtAABC | if a®+b? =c?, let

A =a’+b®+c®, A =%(15—10\/§)(a3 +b%+c?)?,

A = i(zoﬁ—ZS)(aQ’ +b* +c®)[a(b® +c?) +b(a® +c®)+c(a’ +b?)],

A :%(85\/5—120)(a3 b +cY)(a+b+c),

A= %(10 —5J2)(a° +b® +¢%)abc,
A = 9—18(55—30x/5)[a(b2 +c?)+b(a® +c?)+c(a’ +b*)J,
1

= §(220—155\/§)[a(b2 +c?)+b(a?+c?)+c(a®+b*)](a+b+c)’,

A = i(le/E—lo)[a(b2 +c?)+b(a’® +c*)+c(a’ +b*)]abc,

A :%(495—350\/5)(a+b+ c)°,

A, = % (25v2 -35)(a+b+c)’abc, A, =5(abc)?:

then

A |2A [2A [2A | 2A
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Thus we get several inequality chains. Arrange them in the order in the table above. And then
we find that the chain holds in both horizontal and vertical order. (Note: the relationship between
the ending item of each line and the starting one of the next line is still uncertain. For example

A, could be smaller than A, ).
From Theorems 1-5, we can get the following inequality chain:

Theorem 6 In RtAABC , if a?+b? =c? then
ﬁ(zsﬁ —30)(a+b+c)(@ +b° +¢°)

a’ +b°+c® > %(a2 +b® +cH)(@" +b* +c)

%(15—10&)(513 +b? +¢%)?

> Zil(loﬁ _5)(ab+be+ca)(@’ +b* +c)
2%(80—55\/5)(a+ b+c)(ab +hbc + ca)(@® +b° + ¢
> ﬁ(lS\/E —20)(a+b+c)(ab +bc+ca)[a(b® +c?) +b(c* +a%) +c(a’ +b?)]
> ﬁ (2304/2 — 325)(ab + be + ca)(a + b + ¢)*

> %(25\/5 _35)abc(a+b+c)°

> %(25 —152)(a+b+c)(ab + bc + ca)abc .
To consider a bit further, we write the inequalities of 7 order or above as follows.

Theorem 7 In RtAABC | if a®+b* =c®,ne{}U[2, +) ,then

242"
@2++/2)

a"+b"+c" > (@+b+c)".

m
Theorem 8 If & eR",i=12--m+LmeN",m>2 and Zaik:a K k>t>0 or

m+1l !
i=1

t<k<0, then
t
m+1 1+ mk m+1 m+1
2> ———( a2 a").
i=1 2(m+mi) i=1 i=1

2 Lemmas and their proofs

Lemma 1™ ( Newton's formula) To a discretionary symmetric polynomial of n
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parameters f(Xy,Xp,:-:,X,) » they can all be represented as the polynomial

f(op,09,:++,0p) of basic symmetric polynomials o7,05,-:-,0y, » and the representation is
exclusive. Finally we introduce Newton's formula.
Assume that

1 2

fO)=(X=%)(X=X) - (X=%X) =X" —oqX" "+ 0oX" " 4t ()",

S =X+ XK+ %€ ke N*,
They are connected in:

Ktlx (X=X)(X=X2) - (X—Xp)
igi X=X

1) X

= (SOXk + Slxk_1 o+ S X+ S ) F(X)+9(x), and g(x) isa polynomial, degg<n.
2 to k>n, s,—o,S,_,+0,5 ,++(-1)"0,5,_,=0;
To 1<k<n, s —o8_ ++(-1)""0_s +(-D)ko, =0.

Detailed proof is available in paper[1] which is omitted here. Conclusion (2) is called Newton’s
sum of powers.

Deduction: f(n)=an+bn+cn,ne N*,n>2, then

f(n+2)=(a+b+c)f(n+1)—(ab+bc+ca)f(n)+abcf(n-1).

Lemma2To neN",n>3, then
1+sin”<9+cos”<9:1+[%(t+\/2—t2)]”+[%(t—\/2—t2)]”.
here, t:sin9+cosezﬁsin(e+%)e(1,&] (0e(0,90°)) .

Proof: Assumethat a, =1+sin" @+cos" @, t=sin@+cosd, then

2_
sinecosezt > 1,

a =1+sind+cosfd=1+t,
ay =1+sin®@+cos’ 6 =2,

2
ag :1+sin39+cos3¢9=1+M;

From the deduction above, we know

an+2 i bn+2 " Cn+2

= (a+b+c) @t +bML 4™ — (@b +be+ca)@" +b" +cM)+abc@™ +b" L+
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Get both sides of the equation divided by Cn+2 and we get

anso=(+sin@+cosd)-a,, 1 —(sin@+cosd+sindcosd)-a, +sin@cosé-a,_q,

t2 -1 t2 -1
namely an,o = (1+t)'an+1_(t+T)'an +T-an_1,

And the characteristic equation of Array {a,} is

3 2 t2 -1 t2 -1
X7 —(L+t)x°+(t+ > )X — > =0, the three roots of this formula are

t2t? et
2

X3=— .Supposing &, =C, X +C,X, +C;X; , We substitute

X1=1,Xp=

a,,a,,a, withitandweget ¢, =1,c,=1.c,=1.

Lemma 3™ (the deduction of Theorem of Remainders) the necessary and sufficient

condition for & which is the root of the polynomial f(x) is (X—a)| f(X).

Lemma 48 ( Chebyshev inequality ) If a <a,<---<a b <b,<---<h, or
a=a,>---2a,b>b,>--->b . then

1L 1L 1L
~Yab>(=>a)(=>h):
nzll 0, (n; ) (n;‘,.)
If & <a,<---<a,b>b,>--->D,, then
13 13 13
=Y ab<(=) a) (=) b).
nzl (niZ:l:.) (n;.)

Lemma 5° (an inequality for power mean) Supposing O<a<pf, neN',
a,,a,,~--,a,€R", then

1 1
a’+a’+--+a’ |« (a’+a’+--+a’ s

n

n n ’

Onlywhen a, =a, =---=a, is the equal sign tenable.

3 Proofs of Theorems

3.1 the proof of Theorem 1

Proof:Supposing a=cosd, b=sind, c=1,and t=cos@+sinbe(l, \/E] , from Lemma

2, we get
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a’?+b?>+c?=cos?@+sin*0+1=1+cos’H+sin*0=2,

(a+b+c)* =(cos@+sin+1)° = (t+1)°,
ab+bc+ac=cosésin 0+cos¢9+sin0:%(t2 -1)+t.

The inequality a’+b?+c? > (6—4v/2)(a+b+c)? equals

2> (6-4/2)(t+1)?

& 3+ 242 > (t+1)?

o (V2412 = (t+1)?

< 2 >t. Apparently.

The inequality (6—4+/2)(a+b+c)? > %(8\/5 —4)(ab+bc+ac) equals
(6—4~/2)(t +1)° 2%(8\/5—4)[%@2 ~1)+1]

& 73-2v2)(t +1)? = (V2 -D[(t> -1) + 2t]

& (11-8V2)t% + (22-164/2)t +10-64/2 > 0

o (11-8V2)(t+2+2)(W2 -1) > 0.

So the original inequality holds. Only when a =D is the equal sign tenable.

3.2 the proof of Theorem 2

Let A=a®+b’+c?,
B =%(2\E +1)[a(b? +c?) +b(a? +c2) +c(a’ +b?)],

C:%(Sﬁ—4)(a+b+c)3, D =(2++/2)abc.
May wishtosetup a=cosé, b=singd, c=1, then

A=a’+b’+c®=(cos’ @ +sin®6+1),
a(b®+c?)+b(c®+a’)+c(a’ +b?)
=sin #(cos® @ +1)+cosé(sin® @ +1) +1-(cos® 6 +sin’ )

=1+sin@+cosd+singcosd(sind+cosb) ,
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(a+b+c)® =(cos@+sind+1)°,

abc =cosdsiné ,
Toprove: A>B.

The original inequality is equivalent to

c0539+sin30+12%(2\/§+1)[1+sin 6+ cos @ +sin @ cosf(sin & +cosH)].
Also by Lemma 2 may, 1+sin36+00530=1+[%(t+\/2—t2)]3+[%(t—\/2—t2)]3

t+J2—t2+t—J2—ﬁ 42—t

e e e o G

=1+( > > ( > ) > > ( > )]
=1+t[(t+“22‘t 2t 2‘2+(t‘ s‘t )2]:%t(3—t2)+1

Therefore, the original inequality is equivalent to

%t(3—t2) +1> %(2ﬁ+1)[1+t+%t(t2 ~1)]
& —(4+/2)t° +(10-2)t +6-+/2>0.

(we can expand the polynomial by means of the expand function in Maple 12 and arrange the
items in the descending order of t’s power by means of factor function)

From the fact that A> B is a symmetric inequality abouta,b, we know that the condition for
A=Bis a=b, namely RtAABC is isosceles right triangle. Thus, & =45", t =cos@+sind
=c0s45° +sin 45 =+/2 .So only when t = J2 isthe equal sign in (*) is true. So from Lemma

3, t—\/E is a factor of the polynomial to power 3 on the left of (*). Using synthetic division, we

can put it thisway (by means of maplel2’s factor function)

(2 -t)(t+D)(t-1+~/2)>0.

Zt=sin H+c056=\/§sin(9+%) e (L2].

. The inequality is holds.

If and only if a =b the inequality becomes equation.
Toprove B>C.

The original inequality is equivalent to the

%(Zﬁﬂ)[cos O(sin® 0+1) +sin 0(cos? 0+1) +1]

z%(3ﬁ—4)(cose+sin 0+1)°.
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Also by Lemma 2 way: €0s@(sin® @+1)+sind(cos* @ +1) +1 = %t(t2 ~D+t+1,

(cos@+sinf+1)° = (t+1)°.
Then the original inequality is equivalent to

%(2ﬁ+1)[(%t(t2 ~)+t+1]> %(3& —4)(t+1)°

N %(2\5 +D( -t +2)(t+1) > (3V2 - 4)(t +1)°

St —t+2>(16-1142)(t +1)?

& (-15+11V2)t% + (-33+ 224/2)t —14+114J2 > 0.

Let f(t)=(-15+11J2)t? +(-33+224/2)t 14 +11/2 > 0,

Derivative obtained was: f (t) = (-30+22+/2)t —33+22+/2,

f't)< f(2)=11-8J2<0 , then to the minimum value is f(~2) , and

f (\/E) =0. The proof is over.

The results hold up, if and only @ = b when the establishment of an equal sign.
The last to proveC > D .

Then the original inequality is equivalent to

%(3\/5—4)(cose+sin 0+1)° > (2++/2)sinfcosé,

. . 1
From Lemma 2, we get that, (Cos 8 +sin 8 +1)° = (t +1)* ,sin@cos @ = E(t2 -1).
With t substitution, the original inequality is equivalent to

%(3&—4)(”1)3 > (2+\/§)%(t2 1),
o BV2-D)(t+1)7 - (2++/2)(t-1)>0
o BV2 -t + (5v2 -10)t +442 -2 >0.

Let f(t)=(3V2 -4t +(5v2 -10)t + 442 -2,

5\/§+5>ﬁ7

Axis of symmetry is X = >

Slet f(t)= (3v2 = )t? + (5+/2 —10)t + 44/2 — 2 ;and when in (1, \/E] is descending,

() = (ﬁ) =0.May permit.
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The result holds up, ifand only if a=Db when the establishment of an equal sign.

3.3 the proof of Theorem 3

Let E=a*+b*+c* F =%(9\/§—12)(a+b+c)(a3+b3+c3),
G =ﬁ(24—15ﬁ)(a+b+c)[a(b2+c2)+b(a2+cz)+c(a2+b2)],

H =%(51—36x/§)(a+b+c)4, | =3(v/2-1)(a+b+c)abc.

ToproveE>F .
May wish to set up
a=ccosé, b=csing,
Then the original inequality is equivalent to

cos* 6+sin* 0+12%(9\/§—12)(1+ sin @+ cos d)(cos® @ +sin® 6+1).
Know from Lemma 2, cos*@+sin*@+1=2— 2[%(t2 -1P,

(1+sin @+ cos d)(cos® 8 +sin®  +1) ={t[1—%(t2 ~D]+ 13t +1).
The original inequality is equivalent to

2— 2[% t*-DJ = %(9x/§—12){t[1—%(t2 D]+t +1)

o 4— (12 -1)? 2%(9\/5—12)(43 +3t—2)(t+1),

o (3-t7)(t? +1) z%(gﬁ—lz)(ul)s(z—t)

o (4+3V2)3-t)(E" +1)

>1
3(t+1)°%(2-1)

o (4+3V2)@E-t)(t? +1) -3t +1)°(2-1) = 0

& (=32 -Dt* +3t° + (6+/2 — Dt —15t + 6+ 932 > 0.(%)
(We can expand the polynomial by means of the expand function in Maple 12 and arrange the

items in the decreasing order of t’s power by means of factor function)

Known from Lemma 3, On the type decomposable (Can make use of the software factor
function maplel2) to

%(1+3x/§)(ﬁ—t)[17t3 + (34822 + (1242 21)t + 9+ 2442] > 0.
Owingto t=sin@+cosd e (1, \/E] , S0 we only need to prove

1782 + (3+8V2)t? + (124/2 - 21)t + 9+ 244/2 > 0,
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Let F(t)=17t>+(3+8V2)t? + (1242 - 21)t + 9+ 2442,
Then F'(t) =51t +(6+162)t +12+/2 - 21,
Also F'(t)>F'(1)=36+28J2>0, F(1)=8+442,

So F(t) Inthe definition domain is greater than 0. The proof is over.

The establishment of the original inequality, if and only if a =b, when the establishment of an
equal sign.

After proving E > F , Right triangle by the three parties before the conclusion of substitution
F>G>H >1 canbe shown, if and only ifa =b, when the establishment of an equal sign. (1)
is proved.

3.4 the proof of Theorem 4
Let A=a5+b5+c5,B=%(3—ﬁ)(a2+b2+c2)(a3+b3+c3),
C=%(3\E—2)(a+b+c)(a4+b4+c4), D = (v/2 —1)(ab +bc +ca)(a® +b* +¢?).

Toprove A>B.
Without loss of generality we assume that
a=ccosd, b=csind, Then the original inequality is equivalent to

cos® @ +sin® 9+1> %(B—xﬁ)(cos2 0 +sin? @ +1)(cos® 6 +sin® 6+1)
< (cos? @ +sin” )(cos® 8 +sin® @) —cos® Bsin® B(cos & +sin @) +1

2%(3—\@)@052 0 +sin? 0 +1)(cos® 6 +sin® 9 +1)
Know from Lemma 2,
(cos® 8 +sin’ )(cos® 6 +sin® ) —cos® @sin® B(cos 6 +sin ) +1

1 2 1 2 2
=M= 2 (€ D]t (¢ -F +1,

(cos® 8 +sin* @ +1)(cos’ @ +sin* O +1) = 2{t[1—%(t2 -D]+1}.
Then the original inequality is equivalent to
t[l—%(tz —1)]—t[% t*-DF +1> %(S—ﬁ){t[l—%(tz -]+
o P +@-V2t +BV2-Ht+242-2>0.
(we can expand the polynomial by means of the expand function in Maple 12 and arrange the

items in the decreasing order of t’s power by means of factor function)

Know from Lemma 3, On the type decomposable (Can make use of the software factor function
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maplel2) to

%(t—\/a)(Hl)z[tz _(2-2)t+2-+2]<0.

Owning to (t+1)>>0 , then to prove t° —(2—\/5)'[ +2-2>0 when in
te(l,\/a]set, Let F(t)=t? —(2—\/§)t+2—\/§,

. : 1
Then its axis of symmetry of t = 5(2—\/5) <1, And F(t)>F(@) =1,

The definition domain F (t) is greater than 0, so the original inequality

The inequality a°+b°+c°> %(3—\/5)(612 +b®+c®)(@° +b*+c*) set. If, and only

a=Db when the establishment of an equal sign.

To prove B> D. This is derived from Theorem 1.
Toprove A>C.

May wishtosetup a=ccoséd, b=csiné,
Then the original inequality is equivalent to

cos® @ +sin® 0+12%(Sx/E—Z)(coséhtsin¢9+1)(cos4 O+sin*6+1),

< (cos? 8 +sin® 8)(cos® @ +sin® ) — cos® Gsin’ H(cos @ +sin ) +1
> %(3\@—2)(cose+sin 0+1)(cos* 0+sin‘ 0+1)
< (cos® @ +sin® @) —cos? Gsin’ H(cos @ +sin ) +1

2%(3\@—2)(cose+sin 0+1)(cos* 0+sin‘ 0+1)
Know from Lemma 2,

(cos® @ +sin® ) —cos® @sin® B(cos O +sin G) +1
1 1
=—t(3-t*)—t[=(t*-1)])* +1,
2( ) [2( )]
(cos@ +sin @ +1)(cos* @ +sin* 6 +1)

=(t+1){1- 2[%(t2 -1)]* +1}.
The original inequality is equivalent to the:

t[l—%(tz —1)]—t[% t*-DJ +1z%(3ﬁ—2)(t+1){2—2[% t* -0’3},
& (32 -5)t° + (32 - t* + (4—642)t + (4— 6:/2)t°
+(21-92)t+18-942 >0.
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(we can expand the polynomial by means of the expanding function in Maple 12 and arrange

the items in the decreasing order of it’s power by means of factor function) .

By Lemma 3 we can see that the style can be broken down (can be a factor with maplel2
software function) for the

8i4(—5+3ﬁ)(t —V2)(E+ [Tt — (15+ 24/2)t + (27 +124/2)t +9+18/2]> 0.
18%(—5+3ﬁ) <0,

Toprove 7t° —(15+2+/2)t + (27 +12+/2)t + 9+18+/2 > O when set int e (1,\5} .

Let F(t) =7t —(15+2v2)t? + (27+124/2)t +9+18V2

Then F'(t)=21t? — (30+4/2)t+27+12/2 ,

Owningto F'(t) Symmetry axis is t=%(15+2\/§) <1, and F'(Q) =18+8J2>0,
So F(t)is in the last increment of te(l, \/E]

And F(t)>F(1)=28+282,

So 7t° —(15+ 2v/2)t2 + (27 +12+/2)t +9+182 > Osetin t 6(1,\5].

A>Csetwhen te (1, \/E] , Ifandonly if a=Db when the establishment of an equal sign.

The last to prove C>D.
Without loss of generality we assume that a =ccosé, b=csiné,
The original inequality is equivalent to

%(sf— 2)(cos @ +sin @ +1)(cos* 6 +sin* 6 +1)

> (/2 —1)(cos @sin 6+ cos O +sin 8)(cos® & +sin® G +1) .

Know form Lemma 2 ,

(cos@ +sin @ +1)(cos* @ +sin* 6 +1)
=(t+1){1- 2[%(t2 ~-D)? +1},
(cos@sin @+ cos @ +sin @)(cos® 8 +sin® 4 +1)

=[t+ %(t2 —1)][%t(3 -t%)+1].
The inequality is equivalent to

%(3&— 2)(t+D{1- 2[%@2 )P+ (V2 -1t +%(t2 —1)][%t(3—t2) +1].
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& —2t° + (642 —8)t* + (16 —12+/2)t% + (40— 36+/2)t?

+(124/2 - 6)t +302-24>0

(we can expand the polynomial by means of the expand function in Maple 12 and arrange the

items in the decreasing order of t’s power by means of factor function) .

By Lemma 3 we can see that the style can be broken down (can be a factor with maplel2
software function) for the

é(ﬁ—t)(t +D[t + (B—2+/2)t2 + (124/2 —15)t +15- 6+/2] > 0.

Toprove t%+(3—2+/2)t? + (124/2 —15)t +15—6+/2 > 0 setting whent e (l, \E} :
Let F(t)=t°+(3-2v2)t? + (1242 -15)t +15- 642,

Then F'(t) =3t> +(6—4/2)t + (124/2 —15) , the axis of symmetry is
t=%(3—2ﬁ) :

And F'(t) > F'(l):8\/§—6, so F(t)> F(l):4\/§+4>0, May permit.

So the inequality

1 4 WA Ab 3, K3, A3
E(3J§—2)(a+b+c)(a +b*+¢*) > (V2 -1)(ab+bc+ca)(@® +b® +¢°) set. If and only

if a=Db when the establishment of an equal sign.

3.5 the proof of Theorem 5
Toprove A >A,.

Without loss of generality we assume thata =ccosé@, b=csing.
The inequality is equivalent to

cos® @+sin® 9 +1> %(15—1&@)(0053 O+sin®0+1)%,
Know from Lemma 2, c0s® 8 +sin® @ +1= 2—%(t2 -1)?,

(cos® @ +sin® 6 +1)° ={t[%(3—t2)] +1¥.
The inequality is equivalent to

2—%@2 ~1)? 2%(15—10\5)[t%(3—t2)+1]2
& (1042 —15)t° + (84— 60/2)t* + (60 — 4/2)t° + (904/2 —123)t?

+(120+/2 —180)t + 40v/2 50> 0.
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(we can expand the polynomial by means of the expand function in Maple 12 and arrange the

items in the decreasing order of t’s power by means of factor function)

By Lemma 3 we can see that the style can be broken down (can be a factor with maplel2
software function) for the

é(-3+2¢§)(t J2)[BE 4542t + (L2~ )t + (A= 22)1° + (5 202)t + 20+ 54/2] 0.

Obviously, the establishment of an equal sign sets when t = \/E .

To prove 5t°+5v2t* + (12\/5 ~ 2t +(4- 2x/§)t2 +(5- 20\/§)t +20+5v2 >0 setting
when t e (1\/5] .

Let F(t)=5t° +5v2t* + (1242 = 2)t° + (4 — 24/2)t% + (5- 2042)t + 20+ 52,

Then F'(t) = 25t* + 20v/2t° + (36+/2 — B)t? + (8—44/2)t +5—204/2,

Owningto 36v/2-6>0. 8-4v2>0, F'(1)=32+324/2>0

So F'(t)>F'(M)>0, itsanincreasing function.

And F()=32>0,

S0 5t° +5v/2t* +12v/2t3 + (4 — 24/2)t + (5— 20v/2)t + 20+ 5+/2 > Oset when t e (1, J2 ] .

1
Foregoing, the original inequality a°®+b°®+c® > 5(15—10\/5)(a3 +b® +¢*)%set.
If and only if a = b when the establishment of an equal sign.

After proving A > A,, From Theorem 1-4, substituting into the table ranging from easy to

prove the relationship between the establishment of an equal sign if and only time, (2) may permit
several inequality chain.

3.6 the proof of Theorem 6
6 6 6 1 \/_ 5 5 5
Toprove & +b”+c Zﬂ(ZS 2-30)(a+b+c)(@ +b’+c’).

Without loss of generality we assume that a=ccosé, b=csiné.
The original inequality is equivalent to

cos® @ +sin® O +1> i(ZSx/E —30)(cos@ +sin @ +1)(cos® 6 +sin° @ +1) .

Know from Lemma 2,

101



cos‘349+sin649+1:2—§(t2 -1)°,

(cosé +sin @ +1)(cos’ 8 +sin® 6 +1)

1 2 1 2 2
=(t +1){t[1—§(t -1)] —t[E(t -] +1}.
So the original inequality is equivalent to t

3t? -1)° 25[ 30
4

2 —

o 2—%@2 —1)? zﬁ(zwi—e,oxt+1)[t-%(5—t4)+1]

< (25v2 = 30)t° + (25v/2 — 30)t° — 42t* + (234 —125\/2)t°

+(270 - 2254/2)t +190-100v/2 > 0.,

(we can expand the polynomial by means of the expand function in Maple 12 and arrange the

items in the decreasing order of t’s power by means of factor function)

By Lemma 3 we can see that the style can be broken down (can be a factor with maplel2
software function) for the

5—16(5/5 —6)(t—V2)[Bt + (5+5V2)t* —(10V2 +8)t> — (20+8J2)t> + (10V2 —5)t — 2552 >0,

Which 5v2-6>0.

Toprove 5t° + (5+5v/2)t* — (10v/2 +8)t> — (20 + 8/2)t? + (1042 —5)t — 25-52 <0
Let F(t)=5t° + (5+5v2)t* — (10v2 +8)t° — (20 + 8v/2)t? + (102 - 5)t —25-54/2 ,

Then E®(t) = 25t* + (20 + 20v/2)t° — (30+/2 + 24)t? — (40 +16~/2)t + (10v/2 — 5)

F® (t) =100t® + (60 + 60v/2)t2 — (60/2 + 48)t — (40 +16+/2)

F (t) = 300t? + (120 + 120+/2)t — (48+/2 + 60) .

Obviously , the axis of symmetry is t = %(120 +120\/§) = %(2 + 2\/5) <1

And FO()>F®@1) =372+ 602 , so F@(t) isincremental,

And te(L~/2], 100+60+60+2 —60v2 — 482 —40-164/2 =120~ 64+/2 > 0

So FO(t)>F?1)=72-168/2>0, and F®(t) isincremental.
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Owningto F®(1)=-24+16v2 <0, F®(/2)=95-502>0,

So F(t) has the existence of minimum.

And F(1)=-48-82 <F(2)=-65-22 , May permit.

5t° + (5+ 5v2)t* — (10v/2 + 8)t° — (20 + 8v/2)t? + (102 — B5)t — 25— 52 < 0 .,
Then the original inequality

1
a®+b®+ct> ﬁ(ZS\/E—BO)(aJr b+c)(@ +b°+c°) set. If and only if a=b When the

establishment of an equal sign.
2572 - 30

a+b+c)a +b’>+c’
" (@a+b+c)@ +b>+c’)

To prove

zwz—#(abmuca)(a“ +b* +¢*)

The original inequality equals

242
3

(a+b+c)@ +b°+c°) = (ab +bc +ca)(a* +b* +c¢*)

<> (1+c0s@ +sin ) (L+ cos® @ +sin® 6)

2442
3

>

(1+cosé +sin @ +sinfcosH)(1+ cos* @ +sin’ 6)

Noted that sin® & + cos” @ = (sin® 8 + cos® )* — 2(sin & cos §)*

tzz_ e Lo -1,

=1-2( ;

sin® @ + cos® @ = (sin® @ + cos® B)(sin® @ + cos® @) —sin® & cos” G(sin @ + cos )

=sin® @ + cos® @ —sin’ 8 cos® H(sin 6 + cos )

1 , tz—lz_l 42y 42 132
=131 - ()"t =126~ 1) - (* -],

Therefore , the formula above equals

(L+1) -{1+%t[2(3—t2) —(t* -’}

>

2++2 1., 1 o
LRI R G Cal G
o (VZ-Dt°+ (V24D - (6+3V2)t* - (8+4V2)°
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+(13—-/2)t? + (15-6+/2)t +18+ 3y/2 > 0
o (V2 -D[t° = (5+4V2)t* + (4 + 4J2)t° + (24 +16/2)t?

+H(21+124/2)t + 21+ 1242](v2 - 1) >0

So we should only prove

5 = (5+4V2)t" + (4+ 4V2)t° + (24 +162)t2
+H21+1242)t +21+124/2 >0

o PR-t)+@+V2)P 2 -t) + 212 (2 —t?) + (18 + 16+/2)t?
+H21+1242)t +21+124/2 >0

From te(d, \/E] , we know the inequality above is tenable.

Now prove (a°+b®+c?)* > 10 + ?\/_

> 2 (ab+bc+ca)(@* +b* +c*).

10+82

< (L+cos’ @ +sin®0)* > o1 2(1+coséhrsin6’+sin49cos¢9)(1+cos“6?+sin“¢9)

Noted that Sin® @ + cos® @ = (sin @ + cos d)(sin® @ + cos® & —sin & cos &)

t? -1

1 2
=t ) = 1@t

sin® @+ cos® @ = (sin” @ + cos® )* — 2(sin & cos B)°
t2 _1 2 1 2 2
==[2-(t* -1)?],
5 ) 2[ t"-1)°]
Therefore, the formula above equals

10+8\/§[
21

=1-2(

[1+%t(3—t2)]2 > t+%(t2—1)]-{l+%[2—(t2—1)2]}

o (31+8V2)t° + (20 +16+/2)t° — (156 + 24+/2)t* — (124 + 324/2)t°
+(178 - 8J/2)t? + (192 — 48/2)t +114 + 244/2 > 0

- ﬁ(su 8/2)[-119t° — (52 +167/2)t* + (302 —12/2)t?

+(228+ 302/2)t2 + (4682 — 207)t + 225v/2 — 24](+/2 - ) = 0

So we should only prove
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—119t° — (52 +167+/2)t* + (302 —124/2)t° + (228 + 302/2)t?
+(468y/2 — 207)t + 22542 — 24> 0
& [L10t* + (52 + 286+/2)t° + (270 +176v/2)t% + (124 - 3242)t](v/2 - 1)

(143-3444/2)(v/2 —1) + 664 +82:/2 > 0.
From Lemma 3, we know the inequality above equals

[119t* + (52 + 286/2)t + (270 +1763/2)t + (124 — 3242)t] (2 - 1)
(344+/2 —143)t + 225:/2 24> 0.
From te(l, \/E] , we know the inequality above is tenable.

The inequality a°®+b®+c¢c®> %(a2 +b?+c®)(@’ +b* +c*) is a deduction of Theorem 8,
and the inequality
% (@2 +b*>+c?)(a* +b* +c*) = %(10\/5 —5)(bc+ca+ab)(@*+b*+c*) is another

form of Theorem 1.
(2) Clearly, by Theorem 1 to 4 before the substitution, easy to get the remaining inequality

chain of certificates.

3.7 the proof of Theorem 7
Proof 1 :As the pending permit inequality on a and b symmetrical of a and b.

Without loss of generality we assume thata > b ,then a=ccosé, b=csing, 6<(0,457].

Then the original inequality is equivalent to

sin"@+cos" @+1 S 2+\/2_”
sin@+cosf+1)"  (2+2)"°

When n =1, the inequality is clearly established.
To prove the inequality is clearly established when n>2.

_sin"@+cos"@+1 o
(sin@+cos@+1)"’ 0 (0,90) then

Let f(0)

nsin @cosA(sin"™ > @—cos™ > @) +n(sin @—cos B)(sin" O+ cos” @ +1)(sin+cos 9 +1)

()= .
(sin@+cosf+1)"

When #e(0°,45], 0<sin@<cos@<1,sind—-cosd<0,sin"?H-cos"*6<0,

then f'(6) <0.
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2+\/2_"

=, M it.
(2+\/§)n ay permi

Proof 2: When n =1, the inequality is clearly established.
To prove the inequality is clearly established when n>2.
The original inequality equals

£(0)> f(45°) =

n 2
a"+b"+(a*+b?*)2 > 2+21 (a+b++a*+b?*)",
(2+22)"

n n
“From Lemma 5, we know a"+b">2 2(a®*+b’)2 (n>2),

n 2
. we should only prove (1+2 2)(a +b*)2 > 2+21 (a+b+~a*+b*)",
(2+22)"

+b2 " a+b++a’+b?

Namely ( )2 > ( )

)", which equals

a’ +b? S a+b++a%+b?

> 2 which equals
( 242 :

2
a?+b?_ Ja+b
>(—)°,
2 2

From Lemma 5, we know it’s tenable.

3.8 the proof of Theorem 8
Assumethat a <a, <---<a <a_,,

When k>t>0,weknow a <aj <---<a‘<a‘, , a<a <---<a <a' ;

m+1

—

When t<k<0, weknowa >a; >--->af>a’,, a >a,>--->a’ >a .
Know from Lemma 4,

m+1

Sarr =St va, v SanSa o
-2 an0) a:)gaik a,,

= (22 A a)
:Ziaik(iiai%lamﬂt)

=2’ G0 2+ A
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m+1
_Za (—Za += am+1

To thls end, to prove theorem, just to prove
t

18 1 l+mk 4

o a' 58 >———>"a'istoprove
m L
= 2(m+mk) =
t
1& ts 1+ mk
_Zai +am+1 = (Za +a‘m+1
m iz k i=1
m-+m
t
1+mk T+mk 1.8
o (l-—)a,, 2( - ——)Zait
K o Mia
m-+m m+m
m-1 (m 1)m" 4
m+mk m(m+m ) =
t
mk &
t t
< an, Z_Zal
m
t
t kK m
Kyk < M t
< (A, )" 2? 2 3
t
c kl mk & t
C>(Z:a'i )k Z_Zal
i1 m o
L3 ahyk s t
=D ak Za)

Finally a type shall Iemma 5, theorem 8 may permit.

4 Application

With the conclusions above, we can solve many relevant problems. For example, Theorem 2

can make Cj =6 inequalities and many problems can be quickly solved.

With the inequality chain of Theorem 2, we can get Cf =6 inequalities, which are applied in

many problems.

Example 1" to get the maximum which enables every set of the 3 triangular sides to make

a’+b®+c®>K(a+b+c)® tenable. (2006 Iranian Maths Olympic.)

Analysis: If we use regular methods, we need to substitute the parameters with triangular ones.

With Theorem 1, the problem will be solved.

3*/_4.

Key: K, .«

107



Proof: solution 1: first consider ¢ as the hypotenuse.

32-4
2

From the inequality of Theorem 2 a®+b®+c®> (a+b+c)®, itis clear that this

3WN2-4
inequality is tenable. Only when a =b is the equal-sign tenable. K, = \/_T .

Solution 2: using regular methods, as we prove Theorem 1, we need to substitute the
parameters with triangular ones twice.

Example 2%); Known that a,b,c are positive numbers that make a° +b? = c* tenable.

Try to prove:
242 +1
7

(Maths Olympics problem, senior 176, Medium Mathematics ) 2006.4.)
Proof: solution 1: From the inequality of the lemma, we can know

2\/§+1
7

a’+b’+c*> [a(b® +c®)+b(a® +c*)+c(a® +b?)] .

a+bi+ci>

[a(b® +c®)+b(a® +c?)+c(a® +b?*)] is tenable. Only when

a=b is the equal-sign tenable.

Solution 2: using regular methods, as we prove Theorem 1, we need to substitute the
parameters with triangular ones twice.

Example 30, supposing a,b,c are 3 triangular sides and c is the hypotenuse.Try to get the

a’+b®+c?
maximum of k that makes T >k tenable. (test questions of the 4th Northern China
anc
Math Olympic 2008
Key: K, ., = 2+/2.
Proof : solution 1: from the proved inequality, we know that

a®+b®+c% > (2+~/2)abc, Onlywhen a=b is the equal-sign tenable.

Solution 2: using substitution of the parameters with triangular ones
Example 4: supposing a <b <c and they are 3 triangular sides of RtAABC .Try to get the
maximum M that makes

1 11 M

—+—+—>———— tenable eternally. (test questions of national maths training team of China
a b c a+b+c

1991)

key: Mmax =2+\/§.

Proof : the original inequality equals (a+b+ C)(E+%+£) >2+4/3,
a c
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o (bc+ac+a§)(a+b+c) 5243,
abc

2 2 2 2 2 2
<:>a(b +C )+b(a;c )+c(a“+b )22+\/§’
abc

From the inequality of Theorem 1

2\/§+1

[a(b? +¢%) +b(a? +c?) +c(a? +b?)]= (2++/2)abc . 1t is known that

y
2, 2 24c? 2 4+b?
a(b®+c?)+b(a“+c°)+c(a“+b )2 2442 —2+43.
abc 242 +1
7

So M, =2+ \/5 .Only when a=b is the equal-sign tenable.

Example 5:shown in Picture 1, P(X,y) isa dot of

.’l\
i

astroid whose formula is x*° + y** =a*?(a>0). Try to

find the minimum of x° +Yy°. :

Solution: from Theorem 6, we know \ /

5
a®+b°+c® >= (@’ +b* +c*)(@" +b* +c"),
12
3
From Theorem 4, we know a‘*+b*+c’ Zé(a2 +b* +¢%),

1/3 1/3

5
Therefore, a®+b°+c® 2§(a2+b2+02)3,Let a=x"3b=y"® c=a"? then

5 5 5 1
X4y +a’ >— (xR +yP+a®P == (2a?®)* ==a’ then X +y*>=a’..
y 2% Y )y =5, =, Y=

1
So the minimum of X* + y? is Zaz.

Appedix: Star line is one of hypocycloid within the cycloid (circle spiral), n is 3. a hypocycloid

1
X =Cost+—cosnt,
(Circle spiral) is All in the form of Curve : n Where n is positive real

y =sint —lsin nt.
n

number.

Example 6: Shown in picture 2 is the emblem of the 7" International Conference of
Mathematical Education (ICME for short). Its body is developed by a series of right-angled triangles
in picture 3. And OA;=A1A=AAs=...A7Ag=1, if we keep making triangles that way and call off its

limitof OA =AA, =---=AA,,, =1, wegetwhatisin picture 4, and let
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OA =a,AA =3a,,---,AA, =a,A,0=a,,, trytoprove:

n+1
a +a;+---+a +a; >K(af+a§+--~+a§+a§+l)2.

n+l =

Fig.3

Fig.5

Proof: In picture 6, from Pythagorean, we know

OA’ + AN, =O0A’, (i=12,---,n),
Add the equations with ifrom 1to nand we get
OAiz + A1A22 + A2A32 et Ahszu :OA12+1’ then

2 2 2 _ a2
aj+a +---+a =a.,.

Intheorem 8, let K=t =2 then

n+1
a +a;+---+al+a’ >K(af+a§+--~+a§+a§+l)2.

n+l =

Example 7: In the cuboid shown in Picture 6, the length
is a ,the width b, the height c and the body diagonal d. Try to |
prove:

a4+b4+c4+d42%(a2+b2+02+d2)2. i B

Proof : From the fact that the square of the body
diagonal equals the sum of the squares of the length, width Fig.6

and height, we get a’ +b®+c*=d?.

In Theorem 8, let m=3,
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a =a,a =hba,=ca,=d.S0

a*+b*+c'+d* 2%(a2+b2+cz+d2)2.

Example 8: In the cuboid shown in Picture 7, the
angles that the body diagonal is at to the 3 surfaces ,
which are vertical toeach are o . £+ y,Try to prove |

4
cos4a+cos4ﬂ+cos4y2§.

Proof: Make the length a, the width b, the height c, 1/:[/%;;/
the body diagonal d, then a*+b*+c® =d?, X /; 777777777 T
2 2 2 2 ’
+C Ve +a e
coSq¢ =———, C0S ff = ——, ,/
d d
Ja v Fig.7
COSy = T , then

b*+c? c’+a® a’+b® 2@ +b*+c?)

T LT 2

cos’ o +¢0s” f+Cos’ y =
Intheorem 8, let m=3, a =coSsa,a, =C0SB,a,=C0Sy,a, = 2 then
4 4 4 4 2 2 2 272
cos” o +cos” S+ cos }/+(\/§) > 2[cos” « + C0S” 5+ COS 7/+(\/§)] =16 ,then
4 4 4 4
COS™ o +C0S” S +cCos ;/25.
6. .
Only when COS@ =CO0S fF =C0Sy = ? is the equal-sign tenable.

Example9: If S—ABC is a triangular pyramid whose sides are vertical to each other, O isa

dot in surface ABC, if £ OSA=a , £ OSB= f,/0SC=y, try to get the minimum of

cos® o +cos* f+cos’ y .

(adapted from Hunan mathematics competitions 2003)

Solution: Make a cube using SA. SB. SC as the basic vectors, and SO as the body

diagonal, then the direction angles that SO is at to SA. SB. SCare « . £ y, letthe length a, the

width b, the height c, the body diagonal d, then a’+b*+c’=d® , and

a b C
cCosag=—,C0S o =—,CO0Sy =—, then
g CosP=geosr =y

2 2 2 2 2 2

a~ b ¢ a“+b°+c

cos’ @ +¢C0s” f+C0S° y =—+—+—=—=1, then
d> d? d? d?

cos” o +cos” f+cos’ y =1.
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Intheorem 8, let m=3, a =Co0Sa,a, =C0S 3,8, =C0Sy,a, =1 then
4 4 4 4 1 2 2 2 272 4
Cos” ¢ +C0S” f+C0S” y +1 zg[cos o +C0s° f+cos” y+17] :5, then
4 4 4 1
CoS” a +cos” S +cos ;/25.
V3 .
Only when COS«a =C0S 3 =C0Sy = ? is the equal-sign tenable.

- 1
So, the minimum of cos’ & +cos* B+cos’ ¥ is 3

Example 10 In the geometry in planes, there is Pythagorean: ‘If AC is vertical to BC in

AABC,and a,b,c are length of 3 sides opposite A.B and C,

then a?+b? =c?’. Extended to space, in comparison with it,

a correct conclusion that the areas of side surface S, S,,S;

and the bottom surface S, can be drawn in the right-angled

tetrahedron, Fig.8
S2+S,2+S.7=S.2.

(1) Trytoprove: S*+S,°+S,”=S,”;

(2) Trytoprove:S*+S,* +S,*+5,* > %(Sl2 +8,2+S82+S,%)%.

(adapted from 2003 Xinkechengjuan fill-in adaptation)
Proof: (1) Shown in picture 8, from Helen’s Formula,

Si=p(p—a)p-b)p-c)

T, .. .., . . .1, . .1 . . .
:E(a+b+c)-E(—a+b+c)-5(a—b+c)-5(a+b—c)
:%[(a'+b'+c')-(—a'+b'+c')]-[(a'—(b'—c')]-[a'+(b'—c')]
1 2 ! "\ 2 2 ! "\ 2
ZE[(a -0 +c) ] [@ - -c)]
= i(a'zb'2 +b%?+c?%a?-a*-b* -c*)?

16
:%[(az+b2)(b2+cz)+(b2+cz)(cz+a2)+(c2+a2)(a2+b2)

_(a2+b2)2_(b2+C2)2_(C2+a2)2]

:%(azb2 +b%*c® +c*a’) =S2+S,°+S;’
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i)2 Jr(i)2 =1, simplifyitthisway: S°+S,°+S.>=S%.

S 2
L)+
G+

(2) Intheorem8, let m=3, a =S;,a,=S,,a,=35;,a, =S, then
1
S +S, +S,"+5,' > 5(812 +8,2+5,7+5,%)%.
Example 11 In the first of Octant shown in picture 4,on Unit ball there is adot M (X, Y, z) ,try

1+ +y* +7°

to get the minimum of
1+ Xx+y+z

Solution: From the definition of a globe, we know |OM |=1, then

X2 +y +2% =1, then X*+y*+12°=1.

Intheorem8, let m=3 k=2,t=1,

a,=Xa,=Y,38,=22a,=1, then

1

1@+ V478> 1+32 2,2, 52
Y+ 22—+ X+ Y + 7)1+ X+ Y +2),

2(3+3?)

then

1+x°+y +2° _ 1
>
1+x+y+z 23

A+ x> +y*+2°)=—.

|

3
Onlywhen X=y=12z= ? is the equal-sign tenable.

1+x°+y*+72° . ﬁ

So the minimum of .
1+ Xx+y+z 3

%1 12 shown in Picture 10 is a ellipsoid whose standard formula

X2 y2 22
is ¥+F+C—2=1, to any dot on ellipsoid M (X, ¥,,Z,) » try to
4 4 4
.. X Z
get the minimum of %+y—°4+% .
as b ¢
X 2 y 2 7 2
Solution: From the problem, we know L2+bL2+L2 =1.
a C
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X, z
InTheorem 8, let m=4,k=2,t=2, a = | | a, |y°|,a3=| °|,a4=1, then
C

a b

4 4 4 2 2 2
1 x Z,
0, Yo +=2-+1)?, namely
c?

4 1
—+y—°+—+1>—, which equals —+y° +—2—.

a® b* c¢* 3 a® b* ¢* 3

1
So the minimum of —+y—°+— is =.
a

b* ¢’ 3
5] 13 shown in Picture 11 is a hyperboloid of one sheet whose standard formula is
X,y z

3.2+F_C2 =1, to any dot on hyperboloid of one sheet

N (X, Yo Zy) » try to prove:

X' Yo €+ 202)3 5 % Yo . % 3
2o 40 4 07 > +29 420 41)3,
a® bt ct 32 2 a? b* c? )

. X
solution: from the problem, we know —-+-—=-=
a

In Theorems 6 and 3,

2 2
X \JC+12
Ieta=| °|,b=|y°|c= O, then

a b ' c
X % Cr) v ()
a® bt ct a® b6 c®

(,/c +2,)* ][ (‘/c +2, )
a’

12[ b4
.5 §[x_ Yol (\/c +2,°)° ., ][ (,/02+202)2]
12 8°a? b2 a? c?
yO o 3
32[a2 b2 c? —
_S Xy’ yO Zy’ 13
_32(a2 b2 c? 7

Besides, we may find out the applications of the theorems in ellipse,hyperbola,hyperboloid pairs:
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2 2 2 2 2 2
X VA .. X Z X
—2+y—2——2:—1 (a,b,C>0) ,eulpthCOﬂe: —2+y—2——2 2 y
bs ¢ a~ b” c a

o]

on. Due to the limit of size, we can’t illustrate more..

5 Two Conjecture

To prove Theorems 1-6, we use maple 12 and Bottema2009,and its operation is as follows:
>read "bottema2009*;

> a~(m+n)+b~r(m+n)+cr(m+n)-2+sqre(2™r(m+n)))/(2+sqre(2™m)) /(2
+sgre(2™n))* (@™ m+b~m+cm)*(a”™n+b”n+c™n)>=0;

OSa(m+n)+b(m+n)+C(m+n)_ (2+/\/ 2(m+n)) (am+bm+c”‘) (a”+b”+c”)

(2+4/27) (2+,/2")

>subs(c=1,a=cos(A),b=sin(A),%);
0< cos(A)(mm) + sin(A)(mm) +1
(242" (cos(A)" +sin(A)" + 1) (cos(A)" +sin(A)" + 1)
(2+./2™) (2+4/2")

>subs(m=3,n=2,%);

5. avs, g (2+4/32) (cos(A)’+sin(A)° +1) (cos(A)* +sin(A)*+1)
0<cos(A)’+sin(A)>+1 (2+./8)(2+.4)

> prove(%, [aa]);

[O <cos(A)® +sin(A)° +1

~ (2+432) (cos(A)*+sin(A)* + 1) (cos(A)” +sin(A)* + 1) 0<23—p—10}

(2+8)(2+/4)

[O < cos(A)® +sin(A)° +1

~ (2+432) (cos(A)’+sin(A)* + 1) (cos(A)” +sin(A)* + 1) 0<23—p—10}

(2+8)(2+/4)

Found border curves..

(x=1)(y-1)(xy-y-x-1)(xy-1)
(x®+4x5+22x"—64x3+100x*—64x+17) (x*=2x—-1)xy

Start to project curves.. , 73.250

[y, x]
do 1-th partition...
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Start to find the sample points. , 73.296
in 1-dimensional space....
finished in 1-dimensional space.
in 2-dimensional space....
finished in 2-dimensional space.

number(s) of sample points: , 2, 73.421

[y, ]

5773
2,21153
[2342]

_ 2212000 35200 . 17600 /32
1419857 © 4913 (2+./8) (2+/4) 4913 (2+/8)(2+./4)
OK

4392 864 ) 432./32
3125  125(2+./8) (2+,/4) 125(2+,/8)(2++/4)
OK

The inequality holds !

5
5 32(y+ x+y)

2y xy-1

0<[1(x —1y[ 2 +x:]+ y(x+y) . (x+y)x :
y (xy—l ) (xy—l + Xy -1 +xy—1j

+1

5

2
2{1 Xy 1)(X¥<y+_yl +XJJ

(2+/8) (2+4)

[y | 7]

xy—-1

2

2+ f8) 2+ ) (L3P + S ey 1)

3

2
2{1 (xyl)(xz,(;—yl +X]J

(2+/8) (2+4)
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2

16(y+xxy+—y1]3[1_(xy—1)fi+y +xj]

xy—-1

3

2+ f8) 2+ ) (L3P + Eo ey 1)

5
X+Y
M(y+xy_lJ
5

(2+ﬁ)(2+ﬁ)(yx(§f{) g (i;f)ﬁxy—l)

3
X+Yy
Jﬁ(y+xy_lJ
3

2+ f8) ) (N 1+ G D ey 1)

2y ?
211- X+Yy
(Xy_l)(xy—1+xj

(2+/8) (2+4)

2
X+y
8(y+xy—1j 2

2 (2+4/8) (2+4/4)
2+ f8) ) (N 1+ G D ey 1)

5
[32(1- 2y
{ (xy—l)[:;?&+x]
) (2+:/8) (2+/4)
2y : X+Yy ?
44321~ X+y (y+xy—1]
(xy—l)(xy_1+x]

. Y(X+y) | (x+y)x :
(2+v@)(2+¢4)(xy_1 Py +xy—1j
V32 |1~ 2i+ 3

(xy—l)[xy)&+x]

(2+./8) (2+./4)
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8@(3/* Xxy+_y1]3[1- (xy-1) (2>>/<+y+x)}2

xy—-1

2+/8) 2+ ) (57 G ey 1)

3

5
32@(y+ XX +_y1J
5
2+/8) 2+ (L1 G ey 1)
3
8@(y+xx+_y1j
3
2+/8) 2+ (51 G ey 1)
2y ?
J32|1-
(Xy_l)(xx;yl x]
) (2+:/8) (2+/4)
2
X+Yy
. 4@(y+x _1j ) 3z
2 (2+/8)(2+4)
2+ f8) ) (N 1+ G D ey 1)
when
y (X+y)x (x+y)x y (x+Y) X+y
0< Xy—1 —XYy- Xy—1 + X — Xy—1 +y+Xy_1—l,1<xy

And we have every reason to provide the following 2 conjectures for readers.

Conjecture 1: In RtAABC, a?+b?>=c?* m>2>n> 0 then

m+n bm+n m+n > 2 + \ 2m+n
Q2 +32")(2++2")

More generally, what if it’s a problem about dimensions of n(n > 3) ?

@"+b™+cm)@"+b" +c") .

Conjecture 2: In simple forms of m(m > 3) dimensions,

m
a,eR"i=12,---,m+1,and Zaik:am+lk,n2k2t>0,or n<k<t<0, then
i=1

st
m+1 m+1 m+1

Yare ML Ganda)

= (M +mk )(m+m ) !
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6 Conclusion and Prospect

Pythagorean is an ancient but charming research subject which people spend much time and
energy to study. The problems about the sum of equal power of natural numbers are also heat topics
and being studied. So we firmly believe that problems about the sum of equal powers about 3
triangular sides are also new subjects with bright future and broad prospects. So we establish this
subject. It’s delightful that we can get a series of propositions about the inequality of the sum of 3
right-angled triangular sides through great efforts.

As for the application of these theorems, we can discover their value in geometries like
right-angled triangle, rectangle, round, ellipse, hyperbola, cube,hypocycloid,right-angled triangular
pyramid, globe, ellipsoid, hyperboloid of two sheet, elliptic cone and so on.

Although our conjecture 1 and 2 remains to be solved, we believe that we can figure them out

through protracted and unremitting efforts and we hope to extend it to simplex of m(m > 3)

dimensions.

At present, we have three thoughts of solution toward this problem: The first is to use the
mathematical induction of primary mathematics; The second is to use step-by-step adjustment in
math competition; The third is to use higher mathematics in the number of Lagrange's least squares
method to deal with. However, these 3 methods require much operation.

7 Thanks

Shing-Tung Yau we first participated in Grand Middle School Mathematics Prize Papers Race,
given our limited ability, lack of papers there are many Where the judges were invited to the
exhibitions.

Like to take this opportunity, we sincerely thank you for helped us The experts and professors,
teachers and students, as well as to our support Holding parents.
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