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Abstract

We generalize the results of Adams–Schoenfeld [2], finding large
classes of totally geodesic Seifert surfaces in hyperbolic knot and
link complements, each covering a rigid 2-orbifold embedded in
some hyperbolic 3-orbifold. In addition, we provide a uniqueness
theorem and demonstrate that many knots cannot possess totally
geodesic Seifert surfaces by giving bounds on the width invariant in
the presence of such a surface. Finally, we utilize these examples to
demonstrate that the Six Theorem is sharp for knot complements
in the 3-sphere.

1. Introduction

Define a knot or link in S3 to be hyperbolic if its complement is
a hyperbolic 3-manifold of finite volume. This implies that there is a
covering map p from H3 to S3 − K such that the covering translations
are isometries of H3. We say that an embedded or immersed surface S
in S3−K is totally geodesic if it is isotopic to a surface that is covered by
a set of geodesic planes in H3. Throughout this paper, we will be using
the upper half-space model of H3, where the pre-image of a particular
cusp neighborhood is a union of horoballs. In particular, we employ
pictures generated by Jeff Weeks’ program SnapPea [8] displaying the
pattern of horoballs in the pre-images of the cusps by looking down at
the {xy}-plane from above.

In Adams–Schoenfeld [2], the first examples of totally geodesic Seifert
surfaces in knot complements were produced. The main idea of these
examples is that certain knot complements cover hyperbolic 3-orbifolds.
If a surface S in the knot complement projects to a rigid 2-orbifold
under the covering map, then S must indeed be totally geodesic.

Section 2 generalizes this class of examples, utilizing spherical 3-
orbifolds as listed in Dunbar [4], and rigid 2-orbifolds as appear in
Thurston [7]. A spherical 3-orbifold O has universal cover S3, so if
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we drill out appropriate curves from O to obtain a hyperbolic 3-orbifold
O′, then O′ will be covered by a hyperbolic knot or link complement in
S3. Any rigid 2-orbifold embedded in O′ will be covered by a totally
geodesic surface in the knot or link complement. We will be particularly
interested in surfaces which are bounded by the knot or link.

Definition 1.1. A Seifert surface for a knot or link is an orientable
surface whose boundary is the knot or link. A nonorientable surface
which is bounded by the knot or link is called a nonorientable Seifert

surface.

We often consider Seifert surfaces in the knot or link exterior, S3 −
N(L). In this case, the boundary of S is a union of l-curves, one in
each cusp boundary, where an l-curve is defined to be a closed curve
in the boundary of a cusp neighborhood which intersects the meridian
exactly once. It is a fact that the boundary of a Seifert surface in a
knot complement is a longitude, defined as the l-curve which has linking
number 0 with the missing core curve of the cusp.

Additionally, we often need to distinguish between different types of
surfaces using the following categorization:

Definition 1.2. Let S be an embedded surface in the complement
of a link L. Then S is free if S3 − N(L) − N(S) is a handlebody.
We say S is totally knotted if S3 − N(L) − N(S) has incompressible
boundary. We say S is semifree if there exists a compressing disk for
∂(S3 − N(L) − N(S)). Note that free implies semifree.

In Subsection 2.3 we provide a series of examples of orientable and
nonorientable totally geodesic Seifert surfaces (both free and totally
knotted) in knot and link complements using the methods described in
Section 2. It remains an open question as to whether a knot can have a
nonorientable totally geodesic Seifert surface.

Additionally, in Adams–Schoenfeld [2] the search for further examples
was narrowed through a proof that there are no totally geodesic Seifert
surfaces in two-bridge knot complements. With the same goal of limiting
the existence of totally geodesic Seifert surfaces in mind, we have the
following theorem of Section 3:

Theorem 3.3. Given a semifree totally geodesic Seifert surface S
embedded in the complement of a knot or link L, there exists no other

totally geodesic Seifert surface embedded in S3−L with the same bound-

ary slope on each component of L.

Indeed, knowing that all Seifert surfaces in knot complements have
the same boundary slope leads us to the following corollary:

Corollary 3.4. Given a semifree totally geodesic orientable Seifert

surface S embedded in the complement of a knot K, there exists no other

totally geodesic orientable Seifert surface embedded in S3 − K.
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With a similar goal in mind, Section 4 defines the width invariant
for surfaces, which is itself motivated by a definition of width for an
l-curve.

Definition 1.3. Given a nontrivial, minimal length closed curve γ
on a maximal cusp boundary C, we call the length of the shortest path
in C which starts and ends on γ, but which is not isotopic into γ, the
width with respect to γ, sometimes denoted wγ . We sometimes discuss
the width of a knot K, denoted w(K), by which we mean the width
with respect to the longitude of K.

Definition 1.4. Let S be a Seifert surface or a nonorientable Seifert
surface in the complement of a hyperbolic knot or link L. Then, by
definition, ∂S is a union of l-curves, with exactly one l-curve on each
cusp. We can choose the cusps to be disjoint from one another such
that the widths of all the l-curves are equal. We can then expand the
cusps while keeping the widths of the l-curves equal, until there is a
cusp tangency. We call the resulting width the balanced width of
the surface S. Note that by definition, the width of a knot must be
balanced.

It turns out that the balanced width of a totally geodesic surface has
a very predictable behavior, leading to the following series of theorems.

Theorem 4.1. Consider a hyperbolic knot or link L. If there exists a

semifree totally geodesic Seifert surface S, orientable or nonorientable,

with balanced width w in S3 − L, then w < 2.

This bound is actually the best possible, as demonstrated by the free
totally geodesic surfaces in the (p, p, p)-pretzel knots (Example 2.2),
which have width approaching 2 from below as p approaches infinity.
On the other hand, the semifree restriction is indeed necessary, as shown
by the totally knotted totally geodesic surface in Example 2.3 which has
width greater than 2.

Theorem 4.2. Consider a hyperbolic knot or link L. If there exists

an embedded totally geodesic Seifert surface S, orientable or nonori-

entable, with balanced width w in S3 − L, then w ≥ 1.

Indeed, knowing that w(S) ≥ 1 for any totally geodesic Seifert surface
allows us to eliminate a very large class of knots from having totally
geodesic Seifert surfaces via the following theorem.

Theorem 4.5. Consider a hyperbolic knot K with an oriented pro-

jection P . Form a sequence of knots {Ki} by twisting similarly oriented

strands incident to the same region in the projection plane about each

other so as to add an even number of crossings, as in Figure 13. If, for

some N > 0, n > N implies Kn is hyperbolic, then

lim
i→∞

w(Ki) = 0.
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Corollary 4.6. With Kn as above, for some positive integer N and

all n > N , the complement of Kn does not possess a totally geodesic

Seifert surface.

Note that in the case that the initial projection is a reduced prime
alternating projection that does not correspond to a 2-braid knot, and
we twist to create alternating knots, all of the knots will be hyperbolic
by results of Menasco. And if the twist makes the resulting projection
nonalternating, it is still true that for enough twists, the resulting knots
will all be hyperbolic.

The final theorem regarding width requires a technical definition that
will be useful throughout the paper.

Definition 1.5. Let S be a semifree surface with boundary in the
complement of a link L, and let D be a compressing disk for ∂(S3 −
N(L) − N(S)). Since S is itself incompressible and boundary incom-
pressible, ∂D alternates between n arcs in S and n arcs in the cusp
boundaries for some n > 1. Then if n cannot be reduced through iso-
topy while preserving the property that D is a compressing disk, we say
that D is an essential n-gon in the complement of S.

Theorem 4.3. Let L be a hyperbolic knot or link and S a totally

geodesic Seifert surface, orientable or nonorientable, embedded in S3−L
with balanced width w. Then w = 1 if and only if there is an essential

3-gon in the complement of S.

Finally, in Section 5, we look at an application of the examples. The
Six Theorem, proven independently by Ian Agol [3] and Mark Lack-
enby [5], shows that for a finite volume hyperbolic 3-manifold N with
single embedded horocusp C, performing Dehn surgery on a curve α
such that the length of α is strictly greater than six, always yields a
hyperbolike manifold. (See Section 5 for more details.) Moreover, Agol
demonstrated that this bound is sharp by giving an explicit example of
a hyperbolic 3-manifold with two cusps and a curve in its cusp boundary
of length exactly six. Dehn fillings with high coefficients on the remain-
ing cusp yields manifolds with one cusp and a curve on the boundary
of length arbitrarily closer to six such that Dehn surgery on the curve
yielded a non-hyperbolike manifold. His example was not a knot com-
plement in the 3-sphere. In this section, we prove:

Theorem 5.3. The Six Theorem is sharp for knot complements in

the 3-sphere, with (p, p, p) pretzel knots as examples, for every odd p ≥ 3.

Acknowledgements. Thanks to Ian Agol for his generous help in im-
proving the exposition of this paper.
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2. Generating Totally Geodesic Seifert Surfaces

2.1. Background on 2-Orbifolds and 3-Orbifolds. An n-orbifold
is a Hausdorff space Xn, along with neighborhoods locally modelled on
Rn/Γ where Γ is a finite group action. We define the singular set of an
orbifold to be the set of points in Xn that are locally modelled on Rn/Γ
where Γ is not the identity. Specifically, the singular set of a 2-orbifold
may contain the following:

• Cone points of order n - modelled on R2/Zn, where Zn acts by
rotations,

• Corner reflectors of order n - modelled on R2/Dn, where Dn is the
dihedral group of order n, and

• Mirrors - modelled on R2/Z2, Z2 acts by reflection.

Likewise, the singular set for an orientable 3-orbifold consists of a
trivalent graph. The edges of order n are modelled on R3/Zn, where Zn

acts by rotations. We label each such edge by n, except when the edge
is modelled on R3/Z2. The vertices are modelled on the quotient of
R3 by either the dihedral group of order 2n, the tetrahedral group, the
octahedral group, or the icosahedral group. Thus the edges emanating
from a vertex must be one of the following combinations: (2, 2, n), (2, 3,
3), (2, 3, 4), or (2, 3, 5). For more details on orbifolds, see [7, Chapter
13] or [4].

In this paper we will denote 2-orbifolds as X2(; ), where X2 is the
underlying Hausdorff space, the numbers before the “;” are cone points
and numbers after the “;” are the corner reflectors. In our notation all
points in the boundary of X2 which are not corner reflectors are mirror
points.

We are specifically interested in spherical 3-orbifolds and rigid 2-
orbifolds. A spherical 3-orbifold is an orbifold with an orbifold covering
map from S3. The spherical 3-orbifolds are partitioned into a finite
number of classes and the complete list of these classes can be found in
[4]. Figure 1 contains examples of spherical 3-orbifolds.

f g

3

3

4

3 5

3

Figure 1. A few examples of spherical 3-orbifolds. On
the left, f, g ∈ Z+.



6 ADAMS/BENNETT/DAVIS/JENNINGS/KLOKE/PERRY/SCHOENFELD

A 2-orbifold is rigid if it is hyperbolic and its Teichmüller space has
dimension 0. In other words, the orbifold has a unique hyperbolic struc-
ture. In a hyperbolic 2-orbifold, the dimension of the Teichmüller space
can be obtained from the function −3χ(X2)+2k+ l [7], where χ(X2) is
the Euler characteristic of the underlying space, k is the number of cone
points, and l is the number of corner reflectors. The orbifolds in Table 1
are the only 2-orbifolds for which the Teichmüller space has dimension
0.

Table 1. Table of Rigid 2-Orbifolds.

Hyperbolic Rigid 2-Orbifolds Exceptions (these are not hyperbolic)

S2(n, m, p) S2(2, 2, n), S2(2, 3, 3),

S2(2, 3, 4), S2(2, 3, 5),

S2(2, 3, 6), S2(2, 4, 4), S2(3, 3, 3)

D2(n; m) D2(2; n), D2(3; 2), D2(3; 3), D2(4; 2)

D2(; n, m, p) D2(; 2, 2, n), D2(; 2, 3, 3),

D2(; 2, 3, 4), D2(; 2, 3, 5),

D2(; 2, 3, 6), D2(; 2, 4, 4), D2(; 3, 3, 3)

Note that a cone point labeled with a positive integer n corresponds
to an elliptic isometry of order n. A cone point labeled with “∞”
corresponds to a parabolic isometry and can be thought of as a puncture
in the interior of the 2-orbifold. Similarly, a corner reflector point labeled
“∞” is thought of as a puncture on the boundary of the 2-orbifold.
We define the infinity set of a hyperbolic 2-orbifold to be the set of
infinity cone points and corner reflectors. For instance, the 2-orbifold
S2(2, 3,∞) is equivalent to an open disk (a sphere with a puncture)
with cone points of order 2 and 3, and its infinity set is the boundary
of this disk.

2.2. Embedding of 2-Orbifolds inside 3-Orbifolds.

Theorem 2.1. Let J be a collection of disjoint arcs and simple closed

curves in a spherical 3-orbifold N , such that their complement is a hy-

perbolic 3-orbifold Q containing a rigid 2-orbifold O with non-empty

infinity set. If the prei-mage of J in the covering of N by S3 is a knot

or link and if the pre-image of O is a Seifert surface S for that knot or

link then S is isotopic to a totally geodesic Seifert surface.

This appears as Corollary 2.2 in [2]. Note that when we speak of a
2-orbifold embedded in a 3-orbifold, we are assuming that the 2-orbifold
inherits its singular set from the 3-orbifold.
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To apply this theorem, we need to consider rigid 2-orbifolds with
nonempty infinity set. Since we consider a sphere with one “∞” cone
point to be the same as an open disk, we think of a puncture from
an “∞” cone point in a 2-orbifold as removing a closed disk from the
interior of the 2-orbifold. We will often represent “∞” cone points as
“∞” closed loops. Likewise, an “∞” corner reflector can be thought
of as removing a closed disk, centered at the corner reflector, from the
2-orbifold. We will often represent an “∞” corner reflector as an “∞”
arc in the 2-orbifold.

Because we want the pre-image of the infinity set in S3 to be a link,
any “∞” arc in a 2-orbifold must end on a 2-axis of the 3-orbifold. When
a 2-orbifold embedded in a 3-orbifold has two “∞” corner reflectors with
a path connecting them that consists of only mirror points, then their
corresponding “∞” arcs must end on a common 2-axis in the 3-orbifold.
An orbifold with three infinity corner reflectors will have three “∞”
arcs where each pair of arcs end on a common 2-axis in the 3-orbifold.
Since D(n;∞) has only one corner reflector, its “∞” arc must start and
end on the same 2-axis in the 3-orbifold. Cone points that are not in
the infinity set, say of degree n, are realized in the 2-orbifold by an
intersection with an axis of order n in the 3-orbifold. Corner reflectors
of order n are realized in the 2-orbifold as the intersection point of two
2-axes in the 3-orbifold. Examples of these can be seen in Figure 2. The
order of the corner reflector corresponds to the angle π/n between the
2-axes.

Figure 2. Left: cone point of order n. Right: Corner
reflector of order n.

Finally, we must ensure that the resulting link is hyperbolic. The
creation of essential tori, annuli and spheres must be avoided.

Immersed totally geodesic surfaces can also be generated from a sim-
ilar process using immersed rigid 2-orbifolds. Examples of immersed
surfaces appear in the following examples section.
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2.3. Examples. Now that we have the background, we can look at a
few interesting examples of totally geodesic surfaces generated with this
method.

Example 2.2. Pretzel knots.

An (n, n, . . . , n) pretzel knot is a knot with some number of arms, each
of which contains n crossings. The (n, n, . . . , n) pretzel knot is shown
in Figure 3 with a generating orbifold. The grey surface in the figure
is a totally geodesic Seifert surface in the knot complement. Note that
there is more than one way to embed a rigid 2-orbifold in a hyperbolic
3-orbifold such that it is covered by the (3, 3, 3) pretzel knot: in Figure 3
the rigid 2-orbifold is a S2(∞, 3, 3), while in Figure 4 it is a D2(;∞, 2, 3).
In Figure 4, the knot is drawn with symmetry axes corresponding to the
axes of the generating 3-orbifold.

n

p

n

p

Figure 3. The (n, n, . . . , n) pretzel knot, and a gener-
ating orbifold.

Similar surfaces can be made in any (p, p, . . . , p) pretzel knot comple-
ment.

Example 2.3. A totally knotted surface.

Another way to make more complicated knots is to knot up the
S2(∞, 3, 3) orbifold, as in Figure 5. The result is a totally knotted
totally geodesic surface. This surface, as in the previous example, is
orientable. It is of note that this knot has width greater than 2; thus
2 as an upper bound on width for semifree surfaces from Theorem 4.1
does not hold in the totally knotted case.

Example 2.4. The Whitehead link.

An example of a nonorientable totally geodesic checkerboard surface
in a link complement is found in the Whitehead link, shown in Figure 7.
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3

Order 3 axis

8

Figure 4. Another view of the (3, 3, 3) pretzel knot with
another generating orbifold.

3

8

Figure 5. A totally knotted surface.

Figure 6. The horoball diagram for the totally knotted surface.
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8

8

Figure 7. The Whitehead link.

It is not known whether nonorientable totally geodesic Seifert surfaces
exist in knot complements.

By twisting up the two infinity arcs, or by twisting one arc around
the 2-axis it ends on, we can create a family of links containing totally
geodesic surfaces. These are (2p, 2q + 1, 2p) pretzel links. These orb-
ifolds will always have link complement covers, and they always generate
nonorientable totally geodesic surfaces in those link complements.

Example 2.5. Multiple totally geodesic surfaces.

The link in Figure 8 is of particular interest because it has two totally
geodesic checkerboard surfaces. The link can be realized as the cover
of a 3-orbifold containing two rigid orbifolds at once–a D2(3;∞) and
a D2(4;∞). Two other links are known to have two totally geodesic
checkerboard surfaces; they are generated by a similar configuration:
by orbifolds sitting in a spherical 3-orbifold with axes labelled (2, 3, 3)
(this gives the Borromean rings) and (2, 3, 5).

There is also an immersed totally geodesic surface in this link comple-
ment. The surface that comes from D2(3;∞) also covers the S2(∞, 3, 3)
shown in Figure 9. The surface in grey is a self-intersecting S2(2,∞,∞).
It is covered by a set of four thrice-punctured disks, all intersecting each
other, each with with a different link component as boundary.

Pre-images of all three of these totally geodesic surfaces can be seen
in the horoball diagram in Figure 10. Vertical planes covering the im-
mersed surfaces have boundary lines that cover the meridian and longi-
tude, while vertical planes covering the embedded surface have bound-
aries given by the lines drawn in white.
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3
4

8

Figure 8. A link with two embedded totally geodesic
checkerboard surfaces.

3

3

8

Figure 9. Another orbifold that is covered by this link.

Figure 10. Horoball diagram.
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3. Using Topological Means to Disprove the Existence of

Totally Geodesic Surfaces

There are some properties, both in knot and link complements and
in the surfaces themselves, that allow us to eliminate surfaces from
contention as totally geodesic candidates, and eventually to prove a
fact about the uniqueness of totally goedesic surfaces in a given knot or
link complement. In [2], the authors use the topological properties of
totally geodesic surfaces to show that no such surface can have a bigon
in its complement.

Theorem 3.1. Any surface S with an essential bigon in its comple-

ment cannot be totally geodesic.

Proof. Cut the manifold open along the totally geodesic surface and
double it. The essential bigon doubles to an essential annulus, contra-
dicting the hyperbolicity of the doubled manifold. q.e.d.

In the case of a checkerboard surface for an alternating knot or link,
these bigons can occur in any reduced alternating projection.

Theorem 3.2. An n-gon region R in the projection plane of a reduced

alternating diagram in the complement of a totally geodesic checkerboard

surface S must correspond to an essential n-gon.

Proof. Each of the crossing arcs corresponding to this projection is
an essential arc in the surface S. Since S is totally geodesic, they must
isotope to geodesics, and two of the geodesics are isotopic in the link
complement if and only if they are isotopic on S. Two of these geodesics
are isotopic on S if and only if the corresponding crossing arcs are re-
lated through a sequence of bigonal regions making up the checkerboard
surface S. Each geodesic arc lifts to a collection of geodesics in hyper-
bolic 3-space, each of which connects two distinct horoballs in H3. Since

the pre-image of R is a collection of disks in H3, a given component R̃
is a disk that is bounded by an alternating sequence of n horoballs and
geodesics connecting the horoballs. If S consists of no bigonal regions
when realized as a checkerboard surface, then the geodesics correspond-
ing to the crossing arcs are all distinct. If there is at least one bigon
making up S, then two crossing arcs that share a bigon will be iso-
topic to the same geodesic. However, the boundary of R will then run
up the geodesic from one end to the other, around a meridian on the
cusp boundary and then down the same geodesic before continuing on.

Hence, the boundary of R̃ will run along a lift of the geodesic, then along
an arc on a horosphere covering a meridian, and then along a distinct

lift of the geodesic. Hence all n of the geodesics in the boundary of R̃
are distinct and R cannot be isotoped to decrease n. Hence, it is an
essential n-gon. q.e.d.
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Observe that in a given reduced alternating projection P of a link L,
the checkerboard surfaces can only be totally geodesic if they contain no
bigons in their complement in P . Since checkerboard surfaces are com-
plementary in P , any projection P for which both checkerboard surfaces
contain bigons cannot generate a totally geodesic checkerboard surface,
although a different reduced alternating projection may generate such.
However, since all reduced alternating projections are related through
flypes, it is straightforward to check whether or not every reduced al-
ternating projection has this property. Note that Example 2.5 yields an
example of an alternating link with no bigons in a reduced alternating
projection, and both of the corresponding checkerboard surfaces are in
fact totally geodesic.

3.1. Uniqueness of Totally Geodesic Seifert Surfaces for Knots

and Links. In many cases, if there exists a totally geodesic Seifert sur-
face, it is unique.

Theorem 3.3. Given a semifree totally geodesic Seifert surface S
embedded in the complement of a knot or link L, there exists no other

totally geodesic Seifert surface embedded in that complement with the

same boundary slope on each component of L.

Proof. Since S is semifree, there exists a compressing disk D. Let D̃

be a particular component of p−1(D). The boundary of D̃ is a curve that
lies alternately on a cyclic sequence of geodesic planes in p−1(S) and the
series of horoballs, not necessarily distinct, that occur at their points

of tangency. Let that cyclic sequence of geodesic planes be denoted S̃1,

. . . , S̃n, where n ≥ 3. Denote the horoball that occurs at the point of

tangency between S̃i and S̃i+1 as Hi, and let Pi be that tangency point.
We consider H1 to be the horoball at infinity. (See Figure 11.)

2

~

H1

H3

P
2

P
3

Pn

1

~

n

HnH
2

3

~

D

SS

SS
~

~

Figure 11. The disk D̃ borders on a series of geodesic
planes and horoballs.

Now, assume there exists another totally geodesic Seifert surface T
embedded in S3 − L which has the same boundary slope as S for each
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component of L, but is distinct from S. A meridian of L thus intersects
the boundaries of T and S exactly once each. As we continue to trace
the meridian multiple times, we alternate between intersections with the
boundary of T and intersections with the boundary of S. Thus, for any

two geodesic planes S̃i and S̃i+1 tangent at Pi, there must be a geodesic

plane T̃i covering T that contains Pi, is distinct from each of S̃i and

S̃i+1, and that separates them. Note that these planes may coincide
for distinct values of i. Since the resulting collection of hemispheres is
finite and disjoint, there exists one that contains no others in the ball
that it bounds in H3. However, because it cannot coincide with either
of the two geodesic planes it is separating, it must contain some Pj in
the interior of the disk that is its projection. However, this contradicts
the fact that there must be a separating geodesic plane in p−1(T ) with
Pj on its boundary. q.e.d.

In the case that L is a knot, and S is orientable, we have the following
corollary:

Corollary 3.4. Given a semifree totally geodesic orientable Seifert

surface S embedded in the complement of a knot K, there exists no other

totally geodesic orientable Seifert surface embedded in S3 − K.

Proof. Since S is an orientable Seifert surface in a knot complement,
it has boundary slope parallel to the longitude. Any other such surface
must also have the same boundary slope. By the previous theorem,
there can be no such surface distinct from S. q.e.d.

4. The Width Invariant for Totally Geodesic Surfaces

In this section, we consider how width can impact the possible exis-
tence of totally geodesic Seifert surfaces.

4.1. Bounds on Width.

Theorem 4.1. Consider a hyperbolic knot or link L. If there exists a

semifree totally geodesic Seifert surface S, orientable or nonorientable,

with balanced width w in S3 − L, then w < 2. This upper bound is best

possible.

Proof. Since S is semifree, there is a compressing disk D in S3 −
(N(K) ∪ N(S)). The boundary of D consists of arcs which alternate
between lying in the boundary of the cusp set {Ci} and lying in the
surface. Indeed, the set ∂D ∩ (∪{Ci}) is a collection of arcs each of
which travels on some element of {Ci} nontrivially from S back to S.
Thus, the length of each arc in this set is greater than or equal to the
balanced width w of the cusp set {Ci}. Choose D so that the number
of arcs in ∂D ∩ (∪{Ci}) is minimized.
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The disk D is covered by a collection of closed disks in H3. Let D̃ be

one such copy. Then ∂D̃ alternates between travelling along the bound-
aries of horoballs covering the cusp set and geodesic planes covering the
surface. Choose one such horoball to be centered at {∞}, similar to
Figure 11.

Since there are only a finite number of horoballs in this chain, there
must be some horoball A with Euclidean height less than or equal to
the Euclidean height of every other horoball in the chain, excluding

the horoball at infinity. Then ∂D̃ enters A from a geodesic plane with a
boundary point that is the center of A and leaves A on a distinct geodesic

plane with a boundary point that is the center of A. Let ∂D̃ ∩ A = γ.

Since ∂D̃ must have come from a horoball that is no bigger than A and
it must go to a horoball that is no bigger than A, γ starts and ends at
or above the equator of A. By the triangle inequality and the fact that
the distance from the top of a horoball to the equator is always exactly
1, we see that |γ| ≤ 2. But w ≤ |γ| and so we see that w ≤ 2.

Now consider the case where w = 2. Then |γ| = 2, and since no
other horoball can be strictly smaller than A we see that the horoballs
on either side of A in the sequence are actually both the same height as
A and tangent to A. In fact, we are forced to have a sequence of equal
height, tangent horoballs. But now consider a horoball B adjacent in

the sequence to the horoball at {∞}. Then ∂D̃ ∩ B is a curve which
starts at the equator of B and ends at the top of B, forcing w to be less
than or equal to 1, contradicting the assumption that w = 2.

The (n, n, n) pretzel knots of Example 2.2 yield a sequence of hy-
perbolic knots with width approaching 2 from below and with free (and
hence semifree) totally geodesic Seifert surfaces, demonstrating that the
upper bound of 2 is best possible. q.e.d.

Theorem 4.2. Consider a hyperbolic knot or link L. If there exists

an embedded totally geodesic Seifert surface S, orientable or nonori-

entable, with balanced width w in S3 − L, then w ≥ 1.

Proof. Assume w < 1. The totally geodesic surface S has boundary
a union of l-curves. We maximize the cusps while forcing the widths
with respect to these l-curves to be equal. Hence, not every cusp will
necessarily have a point of tangency. Let C be a cusp with a point of

tangency with itself or another cusp and let C̃ be a horoball covering C
centered at {∞}, and normalized to have boundary a horizontal plane

of Euclidean height 1. There is a horoball A tangent to C̃.
The surface S is covered by a set of geodesic planes containing two

vertical planes that are a distance w apart. The width curve with respect
to the resulting l-curves on the horosphere at infinity has a well defined
direction. If we travel along a great circle in this direction from the top of

A a distance at most w, we will have reached a hemisphere S̃ contained
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in the pre-image of S. Since w < 1 and the hyperbolic distance from

the top of A to the equator is 1, S̃ must intersect A above the equator,

and hence S̃ has radius that is greater than 1

2
. The surface is embedded,

thus S̃ is contained between two vertical planes contained in the pre-
image of S. The distance between the two vertical planes is equal to w,
both in the Euclidean and hyperbolic length since the maximal cusp is

normalized to height 1. But since the radius of S̃ is greater than 1

2
, this

implies that w > 1, which contradicts the assumption. q.e.d.

Theorem 4.3. Let L be a hyperbolic knot or link and S a totally ge-

odesic Seifert surface, orientable or nonorientable, embedded in S3 − L
with balanced width w. Then w = 1 if and only if there is an essential

3-gon in the complement of S, and this can occur only if S is nonori-

entable.

Proof. First, assume there is an essential 3-gon D in the complement.
Note that this implies S is nonorientable, since otherwise, let S+ and
S− be the two copies of S on the boundary of the regular neighborhod
of S. Arcs in ∂D ∩ ∂N(S) must alternate between lying in S+ and S−.
Hence there must be an even number of them, contradicting the fact D
is a 3-gon.

A component in the pre-image of the essential 3-gon D is a disk D̃

in H3 bounded by two vertical planes V1 and V2 and a hemisphere S̃
covering the totally geodesic surface and three horospheres covering the

cusp boundary, one of which is centered at ∞ and is denoted C̃ and the
other two of which are denoted A and B. (See Figure 12.)

The hemisphere S̃ meets each vertical plane only at the center of A
and B since the totally geodesic surface is embedded. The 3-gon D
has arcs in its boundary that lie in the surface. These boundary curves
cannot be isotoped to the surface since the number of boundary curves
of D would then not be minimal and so D would not be essential. Hence
for the lifts, ci, of the boundary curves, |ci| ≥ w for all i. Let the origin
of the upper-half space model of H3 be taken as the center of A on

the boundary of the xy plane such that A and S̃ are centered on the
y axis. Simple calculations show that for the height, z, of the point of

intersection, (x, y, z), of A with S̃ and the yz plane, z = r
a
y, where r is

the radius of S̃ and a is the radius of A. Since C̃ is at Euclidean height
1, 2r ≥ w. Therefore 1

2
≤ r ≤ 1, and 0 < a ≤ 1

2
. Hence z ≥ a. Since

w is also realized as a segment of a great circle running from the top of
A to (x, y, z), it follows from the lower bound on z that w ≤ 1, since
the segment of a great circle on A to the equator of A is 1 in hyperbolic
distance and (x, y, z) is above or at the equator of A. Theorem 4.2 then
implies that w = 1.
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Figure 12. The case when an essential 3-gon is present.

Now, assume there is an embedded totally geodesic surface S and
w = 1. Let C be a cusp with a point of tangency with itself or another

cusp and let C̃ be a horoball covering C. Center C̃ at {∞} and normalize

it to height 1. There is a horoball A tangent to C̃. The surface S is
covered by a set of geodesic planes containing two vertical planes that
are a distance w apart. The width curve with respect to the resulting
l-curves on the horoball at infinity has a well defined direction.

If the cusp does not touch itself in S, we may travel along a great
circle on A in the well defined direction a distance at most w and we will
have come to a hemisphere. Since we assume a vertical plane does not
intersect the top of A, there must be a hemisphere intersecting A above
its equator, as the hyperbolic distance from the top of A to the equator
is 1. This implies that the radius of the hemisphere is greater than
1

2
. But since S is embedded, the hemisphere is also contained between

two vertical planes a Euclidean and hyperbolic distance of w = 1 apart,
which is impossible.

Thus the cusp must touch itself in the surface S. Hence, there is a

vertical plane, V1, containing a boundary curve of C̃, centered on A.
If we travel along a great circle on A in a well defined direction with
respect to the resulting l-curve on the horoball at {∞} from the top of
A a hyperbolic distance of 1 we will have reached a geodesic plane, since

the width, w, is equal to 1. Thus there is a hemisphere, S̃, intersecting
A at Euclidean height 1

2
. If we travel in the same direction as the great
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circle along a straight line in C̃ a distance of 1, we will again have
reached a geodesic plane, and hence there is a second vertical plane,
V2, a distance of 1, both in Euclidean and hyperbolic distance, from

V1. The surface is embedded, therefore S̃ does not intersect V1 or V2

except perhaps at a point. It follows that the radius of S̃ is 1

2
, and

V1, V2, and S̃ then bound a disk that is an essential 3-gon in H3 with

V1 and V2 intersecting S̃ at distinct points on the boundary of H3 and
meeting each other at {∞}. This disk projects to an essential 3-gon in
the manifold. q.e.d.

4.2. An Application of Width.

Definition 4.4. A minimal l-curve for the maximal cusp C of a
hyperbolic knot K is its l-curve of shortest length.

Under the above definition, a minimal l-curve always exists, although
there could potentially be two l-curves of shortest length. We will use
minimal l-curves to show that the width for certain knots is small. (Re-
call that when we speak of the width of a knot, without regard to a
particular l-curve, we mean width with respect to the longitude.)

..
.T T

2n

Figure 13. The second knot is obtained from the first
by adding an even number of crossings to two similarly
oriented strands.

Consider a knot K in an oriented projection P . Given two similarly
oriented strands of the knot that are both on the boundary of the same
region within the projection, we can form a sequence of knots {Kp} by
twisting the strands about each other so as to add an even number of
crossings, as in Figure 13.
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Theorem 4.5. If, for some N > 0, n > N implies Kn is hyperbolic,

then

lim
p→∞

w(Kp) = 0.

Proof. We first describe a method for obtaining the knots Kp de-
scribed above. Begin with the knot K and create a link L by drilling
out a curve γ which bounds a disk D that is punctured by the two
strands of K we wish to twist, so that the strands have the same ori-
entation as they pass through D. Then, upon performing (1, p) Dehn
filling on γ, we obtain the knot Kp. Working directly with the link L
will help us to show that the width for these knots becomes small.

From the link L, before the Dehn filling, we can form a series of links,
the complements of which are all homeomorphic. Let L0 denote L and
let Lp denote the result of adding 2p twists to L0 in the above manner.
The complements are indeed homeomorphic, because they are formed
by cutting the complement of L open along the disk D, twisting one
copy of D p times, and gluing together again in the original manner.

Let α denote K’s longitude and β denote K’s minimal l-curve. Let
αp and βp denote respectively the images of α and β under the home-
omorphisms hp from L0 to Lp. Mostow’s Rigidity Theorem guarantees
that the hyperbolic structures of the link complements are the same.
For this reason, the image of L0’s minimal l-curve under hp will also be
the minimal l-curve for Lp. However, this does not hold true for the
longitude. Let ηp denote the longitude of Lp.

Assume the intersection number of α with β is x. Computations show
that the linking number of αp with the core curve of K’s image is ±4p,
where the sign depends on the direction in which the twisting is done.
(This computation does not work if the strands are oppositely oriented,
in which case the linking number is zero.) The above core curve has by
definition linking number zero with ηp. Thus, the intersection number
of βp with ηp is x ± 4p, because homeomorphisms preserve intersection
number. So, as p approaches infinity, the linking number of the curve
βp (which remains constant on the cusp) with ηp approaches infinity.
Therefore, |ηp| → ∞ as p → ∞. Because the cusp area A must remain
constant under the homeomorphisms, and because A is equal to the
product of the longitude length and the width, we must have wp → 0,
where this width is with respect to ηp.

Performing (1, 0) Dehn filling on the image of γ under the map hp,
which corresponds to performing (1, p) surgery on the original γ, gives a
knot complement which, in general, could have a quite different hyper-
bolic structure from S3−Lp. However, if we take p large enough, then
these structures get arbitrarily close by Thurston’s Hyperbolic Dehn
Surgery Theorem [7]. In particular, we can choose p so that the width
after the filling also gets arbitrarily close to zero, as required. q.e.d.
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The above construction of knots Kp relies on the fact that all of them
past a certain point are hyperbolic. One instance where this occurs is
when the knot K is a reduced prime alternating knot that is not a two
braid knot. Then, twisting similarly oriented strands in any reduced al-
ternating projection so that the resulting knots are alternating will yield
a sequence of knots, all of which are hyperbolic, by results in Menasco
[6]. Hence, the knots will have width approaching zero. Moreover, in the
same case, if we twist in the direction that yields nonalternating knots,
the resulting knots will still be hyperbolic for large enough twists, since
they will be limiting toward an augmented alternating link, which was
shown to be hyperbolic in Adams [1].

Note that if the orientations of the two strands do not match, the
resulting sequence of knots need not have width approaching 0, as occurs
for the sequence of twist knots.

Our main interest in Theorem 4.5 lies in the following corollary:

Corollary 4.6. Consider, as above, a sequence of knots {Kp} ob-

tained by twisting similarly oriented strands about each other in a pro-

jection of a knot K, as in Figure 13. If, eventually, all knots past a

certain point in the sequence are hyperbolic, then we can find N > 0
so that n > N implies the knot Kn cannot possess any totally geodesic

orientable Seifert surfaces.

Proof. This follows immediately from Theorem 4.2 and Theorem 4.5,
since we can make width arbitrarily small. q.e.d.

5. Application: The Six Theorem is Sharp for Knot

Complements

A manifold is said to be hyperbolike if it is irreducible with infinite
word-hyperbolic fundamental group. Under this definition, hyperbolic
and hyperbolike manifolds are very similar: for instance, neither can
possess an essential torus. In fact, a proof of Thurston’s geometrization
conjecture would imply that hyperbolic and hyperbolike manifolds are
exactly the same.

The Six Theorem, proven independently by Ian Agol [3] and Mark
Lackenby [5], showed that, for a finite volume hyperbolic 3-manifold N
with single embedded horocusp C, performing Dehn surgery on a curve
α in the cusp boundary such that the length of α is strictly greater than
six always yields a hyperbolike manifold. Moreover, Agol demonstrated
that this bound is sharp by giving an explicit example of a hyperbolic
3-manifold of two cusps such that high surgery on one of the cusps
yields a curve of length approaching six on the other cusp such that
Dehn surgery on that curve yields a non- hyperbolike manifold. In this
section, we demonstrate that, furthermore, the bound is sharp for hy-
perbolic knot complements, in the sense that there is a hyperbolic knot
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complement with a curve of length exactly six in the cusp boundary,
such that surgery along that curve yields a non-hyperbolike manifold, a
case that was not covered by Agol’s example. Our first task is to find a
candidate curve on which we can perform the surgery.

Lemma 5.1. For all (p, p, p) pretzel knots, with odd p ≥ 3, the lon-

gitude length is greater than or equal to six.

Proof. Figure 4 from an earlier section shows symmetries of a (3, 3, 3)
pretzel knot. The (p, p, p) case with odd p ≥ 3 is completely analogous.
The vertical axis represents a rotational symmetry of order three, and
the circular axis running horizontally along the equator is a rotational
symmetry of order two. (There are other symmetries, but these are
the two that will concern us.) These correspond to isometries of H3.
Because these symmetries preserve the totally geodesic surface which
has boundary along a longitude, they must send longitude to longitude.
Since neither of the symmetry axes touches the knot, they must both
correspond to parabolic isometries. Combining this information, we
have that the parallelogram corresponding to the fundamental domain of
the cusp should contain symmetries realized as longitudinal translations
of order two and order three.

As usual, consider the horoball at infinity to be normalized so that its
height is one, and consider any full-sized horoball tangent to it. Because
the symmetries preserve the horoball diagram, they force a minimum
of six full-sized horoballs with centers along a line that is in the pre-
image of the longitude. As mentioned in the preceding paragraph, these
symmetries all occur within one fundamental domain of the cusp, and so
the longitude length must have room for all six full-sized balls. Because
they all have diameter one, this forces the longitude length to be greater
than or equal to six, as desired. q.e.d.

We can see this phenomenon explicitly in Figure 14, provided by
SnapPea (see [8]).

Figure 14. The horoballs do indeed satisfy an order
six translational symmetry along a longitude.
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One more lemma is needed before the main result, which will follow
immediately.

Lemma 5.2. Performing Dehn surgery on the longitude of the (p, p, p)
pretzel knot, for odd p ≥ 3, yields a non-hyperbolike manifold.

Proof. Consider the totally geodesic surface in the (p, p, p) pretzel
knot complement. It is a once-punctured torus. Theorem 7.1 in Agol
[3] guarantees that the punctured torus, which is Fuchsian, remains
essential under Dehn filling along the puncture. This filling results in
an essential torus, which shows that the resulting manifold cannot be
hyperbolike. q.e.d.

By the Six Theorem, Lemma 5.2 shows that the longitude must have
length at most six, which combines with the result of Lemma 5.1 to
give that the longitude length for all of these knots is precisely six. We
obtain the following:

Theorem 5.3. The Six Theorem is sharp for knot complements, with

(p, p, p) pretzel knots all as examples, for every odd p ≥ 3.
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