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The Research on Circle Family and Sphere Family 

【Abstract】 

A circle family is a group of separate or tangent circles in the plane. In this paper, 
we study how many parts at most a plane can be divided by several circle families if 
the circles in a same family must be separate (resp. if the circles can be tangent). We 
also study the necessary conditions for the intersection of two circle families. Then we 
primarily discuss the similar problems in higher dimensional space and in the end, 
raise some conjectures. 
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【Changes】 

1. Part 5 ‘Some Conjectures and Unsolved Problems’ has been 

rewritten. 

2. Lemma 4.2 has been restated. 

3. Some small mistakes have been corrected. 
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1 The Definitions and Preliminaries 
   To begin with, we introduce some newly definitions and related preliminaries. 
Definition 1.1 Circle Family   A circle family of the first kind is a group  of 
separate circles；A circle family of the second kind is a group of separate or tangent 
circles. The capacity of a circle family is the number of circles in a circle family，the 
intersection of circle families means there are several circle families and any two 
circles in different circle families intersect. 
Definition 1.2 Compaction   If the capacity of a circle family is no less than 3，and 
it intersects with another circle family with capacity 2，we call such a circle family  
compact. 
Definition 1.3 n-connected   If the capacity of a circle family is 2，and it  
intersects with another circle family with capacity n, we call such a circle family  
n-connected. 
Definition 1.4 n-dimensional sphere  The n-dimensional sphere is the set of all 
points that has a fixed distance r to a fixed point O in the n-dimensional space. The 
fixed point O is called the centre of the sphere，and the fixed value r is called the 
radius of the sphere. 
Definition 1.5 n-dimensional spheroid   The n-dimensional spheroid is the set of 
all points that has a distance no more than a fixed value r to a fixed point O in the 
n-dimensional space. The fixed point O is called the centre and the fixed value r is 
called the radius of the spheroid, respectively. 
Definition 1.6 n-dimensional sphere family  An n-dimensional sphere family is a 
group of separate spheres in n-dimensional space. The number of spheres is defined as 
the capacity of the sphere family. 
Definition 1.7 Intersect   For two n-dimensional spheres，we define that they  
intersect if and only if they have common points (if a circle is completely inside 
another circle in the plane，they’re also called intersecting)；for two n-dimensional 
sphere families，we define that they intersect if and only if any two spheres intersect 
in different families.  
Definition 1.8 n-dimensional plane   The set of points in n-dimensional space 
which satisfy：they＇re the end points of all the vectors that start from a fixed point and 
are vertical to a fixed vector. 
Definition 1.9 n-dimensional intersecting line    The intersection set of two 
n-dimensional planes which are not parallel. 
Definition 1.10 Generalized Inversion   Define O is the centre of a fixed 
n-dimensional spheroid with radius r. The transformation in n-dimensional space 
satisfies：any point A (except O) and its corresponding point A＇by the transformation 

satisfy  and O, A, A＇are collinear. Define such transformation as 

Generalized Inversion. 

2OA OA r′⋅ =

Preliminary 1.11 Planar Graph[1]   A graph is planar if and only if it can be drawn 
in the plane such that every two curves are either disjoint or meet only at a common 
endpoint. 
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Preliminary 1.12 Euler＇s Formula[1]  For a connected graph in the plane or on the 

spherical surface，it satisfies 2f e v− + = ,where f ，  and v  are the numbers of 

faces，edges and vertices of the graph, respectively. 

e

 

2   The Division Problem of Circle Families in the Euclidean Plane 

During the time we think about how many parts at most can the 3-dimensional 
space be divided by several convex polyhedrons，we introduce the definition of circle 
family. When a convex polyhedron intersects with several other convex polyhedrons，
it forms several group of closed figures on the surface，and every two closed figures in 
the same group do not intersect. We want to calculate how many parts at most can the 
surface of the convex polyhedron (it can be regarded as the surface of a spheroid) be 
divided by several convex polyhedrons，and the equivalent problem is how many 
parts at most can a 3-dimensional sphere be divided by several circle families on it. 
According to the close property of a spherical surface，we can easily arrange the 
position of the circles such that every two circles in different circle families intersect. 
However，in the Euclidean plane the case is not so simple .The problem we＇re 
interested in is that how many parts at most can the Euclidean plane (we call it ‘plane’ 
for short ) be divided by several circle families. 
 Firstly we prove the following proposition. 

Proposition 2.1  If several circle families (at least 2) can at most divide the plane 

into S parts，and they get T points of intersection or tangency，then 
 S T 2= +  (1) 

Proof:  As we＇re considering at least two circle families，we can assume that any 
three circles don＇t have a common point and every circle at least intersects with 
another circle. For such figure we have  

 2f e v− + =  (2) 

Since no three circles intersect at a common point，the degree of each vertice is 

4，hence ，namely . Combining this with 2 4e = v v2e = (2) we get 2f v= + ，thus 

. ▋ max max 2 2S f v T= = + = +

Proposition 2.1 shows that we just need to know how many points of intersection 
or tangency can several circle families get at most，and for the circle family of first 
kind，the most number of pairs of intersecting circles should be considered. We define 

it as 1 2( , , , )mf x x x ， and ( , )f k l  for the situation 2m = . It＇ s clear that 

( , )f k l kl≤ ，and the equality holds if and only if the two circle families intersect，the 

further discussion of this issue will be placed in the third part of the thesis. In order to 
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get the expression of 1 2( , , , )mf x x x ，we introduce the definition of structure graph. 

For two circle families in the plane，let the centers of the circles be the vertices of the 
graph, respectively. If two circles intersect，we draw a line segment between the two 
vertices which correspond the two circles；for a circle family of the second kind，let 
the centers of the circles be the vertices of the graph, respectively. Two vertices are 
connected by a line segment if and only if the two circles that correspond to them are 
tangent. Such a graph is called the Structure Graph of the circle family (resp. circle 
families). We have found the following lemma about the structure graph. 

Lemma 2.2 The structure graph of any two circle families or a circle family of the 

second kind is planar. 
Proof:  Suppose the contrary, then there exist two edges AB and CD of the graph that 
intersect at a point different the vertices of the graph, see the following figures:     

  
        （Ⅰ）                  （Ⅱ）                  （Ⅲ） 

Without loss of generality, assume that the radii of the circles A, B, C, D are a, b, 
c, and d, respectively. We further assume that circles A, C and circles B, D are in the 
same family, respectively. On one hand, the definition of circle family shows 

AC a c≥ + , BD b d≥ + , hence AC BD a b c d+ ≥ + + + . On the other hand, by the 

definition of the structure graph, circles A, B and circles C, D are intersecting or 

tangent, respectively. Hence AB a b≤ + , CD c d≤ + , AB CD a b c d+ ≤ + + + . 

Synthesize the two sizes, the inequality AC BD AB CD+ ≥ +  holds. 

But in (Ⅰ) , it is clear that AC BD AB CD+ < + ; in（Ⅱ）（Ⅲ）(Ⅱ is the 

situation D=O in Ⅲ) ,  

AB CD AO OC BO OD AC BD+ = + + + > + , 

which is a contradiction. Therefore our assumption was wrong and Lemma 2.2 is 
proved. ▋ 

Theorem 2.3  m circle families of the first kind in the plane with capacities 

1 2, , , ( , 2,1 )m i ix x x x N x i m∈ ≥ ≤ ≤  can divide the plane into 

1 22 4( 1)( )mm x x x m+ − + + + −  
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parts at most. 
Proof: We firstly discuss the situation of m=2. By Lemma 2.2, the structure graph of 
these two circle families is planar. We further assume that it is connected. By Euler’s 

Formula and  in bipartite graph, we have 2 4e ≥ f 42e v≤ − . As every edge of the 

graph corresponds to a pair of intersecting circles, we have  

max( , ) 2( ) 4f k l e k l= ≤ + −  

For the general problem, every two circle families with capacities , ( )i jx x i j≠  

can at most add  pairs of intersecting circles to the whole number of 

pairs of intersecting circles, hence 

2( ) 4i jx x+ −

 1 2 1 2
1

( , , , ) 2( ) 4 2( 1)( )m i j m
i j m

f x x x x x m x x x m
≤ < ≤

≤ + − = − + + +∑ −  (3) 

Now we construct a figure to show that the equality can hold. We temporarily 
assume that the circles in a same family can be externally tangent (then we can 
decrease the radii of the circles properly to make them separate from each other). 

Draw m lines ( 1, 2, , )il i m=  passing a fixed point P in the plane. In each line  

we take two points 

il

,i iM N  different from P which satisfy P lies in the line segment 

i iM N . Then draw a circle with centre iM  and radius iM P  and another circle with 

centre  and radius (iN iN P 1, 2,i m= ). It is clear that ⊙ iM  and ⊙  are 

tangent, and for 

iN

1 i j m≤ ≠ ≤ , ⊙ iM  and ⊙ jM  intersect at P, and , ,i jM M P  are 

not collinear points, hence ⊙ iM  and ⊙ iM  are not tangent, namely they intersect. 

Similarly, ⊙ iM  and ⊙ , ⊙  and ⊙  intersect, respectively, for 

. Let ⊙

jN iN jN

1 i j m≤ ≠ ≤ iM  and ⊙  be two circles of the iiN th circle family 

( ), they have already produced 1, 2,i = m 2 ( 1)m m −  pairs of intersecting circles, 

hence it suffices to get 

[ ]1 2 1 22( 1)( 2 ) 2( 1) ( 2) ( 2) ( 2)m mm x x x m m x x x− + + + − = − − + − + + −  

more pairs of intersecting circles. 
Note that the number in the bracket is the number of circles we have to add, 

hence it suffices to insure that every time we add a circle, we add  pairs of 

intersecting circles as well, and the original pairs of intersecting circles maintain. As 

2( 1)m −
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⊙  intersects with every circle except ⊙1N 1M , we can decrease the radius of ⊙  

by a sufficiently small positive real number 

1N

1ε  such that ⊙  still intersects with 

every circle except ⊙

1N

1M . Assume that the decreased circle ⊙  intersects with 

line  at Q, draw ⊙N

1N

1l 13 with diameter PQ, and add it to the first circle family (it is 

clear that ⊙N13  is externally tangent to ⊙N1 and ⊙M1). As P is on the 

circumference of ⊙N13 , and all the centers of the circles are not in  except  M1l 1, 

N1, hence ⊙N13 intersects with all the circles that are not in the same family, and we 

get  pairs of intersecting circles while the original pairs of intersecting 

circles maintain. Similarly, decrease the radius of ⊙N

2( 1)m −

13 by a sufficiently small  

positive real number 2ε  such that all the circles intersecting with ⊙N13 still 

intersect with it. Assume that the decreased circle ⊙N13 intersects with  at R. 

Draw a circle N

1l

14 with diameter PR and add it to the first circle family, then ⊙N14 

intersects with  circles which pass the point P in other circle families. 

Repeat such operations, every time we add a new circle to the figure, we maintain the 
pairs of intersecting circles, and insure that there are always 2m circles passing the 
point P, one of which is a newly added one. Continuing in this way we can add all the 
circles which satisfy the conditions. Hence we have  

2( 1)m −

[ ]1 22 ( 1) 2( 1) ( 2) ( 2) ( 2)mm m m x x x− + − − + − + + − 1 22( 1)( )mm x x x m= − + + + −  

pairs of intersecting circles and the equality in (3) can hold. Thus by Proposition 2.1, 
the m circle families can divide the plane into 

1 22 2 ( , , , )mf x x x+ = 1 22 4( 1)( )mm x x x m+ − + + + −  

parts at most. ▋ 
As for the second kind of circle family, circles in a same family can be tangent, 

thus the parts of division will increase.  

Proposition 2.4  A circle family of the second kind with capacity v can at most 

get  points of tangency. 3( 2)v −

Proof: Every point of tangency corresponds to an edge of the structure graph of the 

circle family. Since the structure graph is planar, by Euler’s Formula and  

we have , hence the number of points of tangency is no more than 

2 3e f≥

3( 2)e v≤ −
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3( 2)v − . ▋ 

Theorem 2.5  m circle families of the second kind in the plane with capacities 

1 2, , , ( , 2,1 )m i ix x x x N x i m∈ ≥ ≤ ≤  can divide the plane into at most 

  (4) 1 2(4 1)( ) 3 2mm x x x m m− + + + − − +

parts. When the upper bound is attained, the number of points of tangency and the 
number of pairs of intersecting circles attain the maximum simultaneously. 

Proof: To begin with, by Propositions 2.1, 2.4 and the expression of , 

it is not difficult to verify that 

),,,( 21 mxxxf

(4) is the upper bound of the number of parts that m 
circle families of the second kind divide the plane into. Moreover, the upper bound is 
attained if and only if the number of points of tangency produced by each circle 
family and the number of pairs of intersecting circles between different circle families 
attain the maximum simultaneously. Now we give such a graph as follows. 

The inversion is needed to consider the case of m=2. 
Without loss of generality, suppose the capacities of two circle families are k≥m

≥2. Draw two parallel lines l1, l2 (they will form circles after the inversion). Between 

these two parallel lines, draw k−2 circles  with equal size (from left to 

right) such that they are both tangent to l

221 ,,, −kSSS

1, l2, and Si and Si−1 are tangent (2≤i≤k−2). 

It can be seen that  and  form a circle family. Suppose the point 

of tangency between S

221 ,,, −kSSS 21,ll

1 and l1 is A, and the point of tangency between Sk−2 and l2 is B. 
Rotate l1 and l2 by a small angle θ  around the point A  and B  clockwise, then we 

get two parallel lines  which intersect with . Draw a circle  

which is tangent to  at 

'
2

'
1 ,ll 221 ,,, −kSSS 1T

'
1l A  and , and then we can draw circles  

such that  is tangent to  and  (

'
2l 232 ,,, −mTTT

iT '
2

'
1 , ll 1−iT 22 −≤≤ mi ). These m−2 circles and 

 form another circle family. (See the following graph, one circle family is 

colored green, while the other is painted red.) 

'
2

'
1 ,ll

 

It is easy to see that there are )2(3 −k  points of tangency (including the one 
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obtained from  at infinity. It will be the inversion center after the inversion.) 

produced by the first circle family, and there are 

21,ll

)2(3 −m  points of tangency 

produced by the second circle family. When 0→θ , . For sufficiently small ii ST →

θ ,  intersects with  and a circle which is tangent to  in the first circle 

family. (Especially, by the fact that  passes through the point 

iT iS iS

1l A  on  but is not 

tangent to , we have  intersects with .) In addition,  intersect with all 

circles in the first circle family. Then there are 

1T

1T 1T 1l
'

2
'

1 , ll

)2(2 −+ mk  pairs of intersecting 

circles. Hence two circle families constructed above satisfy that the number of points 
of tangency and the number of pairs of intersecting circles attain the maximum 
simultaneously. Note that there exist four lines. Choose a interior point P from the 

intersection of the unbound region formed by  and the unbound region 

formed by . Now let P be the center and any positive real number be radius, 

then the inversion of the two circle families constructed above is what we need 
(Because the center lies outside all circles, the tangent (resp. intersecting) circles are 
still tangent (resp. intersecting) after the inversion). Finally, note that the number of 
circles pass through the inversion of A (resp. the center) are greater than two. In order 
to insure any three circles share no common vertices, we can shift these two circle 
families along sufficiently small vectors with different directions and maintain the 
number of pairs of intersecting circles. After these operations, we obtain the desired 
result. 

121 ,, Sll

1
'

2
'

1 ,, Tll

Obviously, rearrange the circle families according to the number of circles from 
largest to smallest, and do the construction before the inversion as above (namely, 

rotate  and  by different angles around the point 1l 2l A  and B  clockwise, and for 

each pair of parallel lines we obtain, draw some circles which are tangent to them, 
where one of these circles passes through point A). Then after the inversion we can 
shift each of these circle families along sufficiently small vectors with different 
directions and maintain the number of pairs of intersecting circles to insure any three 
circles share no common vertices. Therefore, we get some circle families such that the 
number of points of tangency and the number of pairs of intersecting circles attain the 
maximum simultaneously. This completes our construction. ▋  

Notice that if the radius of each circle in the construction of Theorem 2.5 
decreases by a sufficiently small positive real number, we will get another maximal 
division scheme for the circle families of the first kind. 
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3   Intersecting Circle Families 
     If there exist two intersecting circle families with capacities k, l, respectively, 

then . Thus either k=2 or l=2. In fact this is also the ( , ) 2( ) 4kl f k l k l= = + −

=

sufficient condition (see Corollary 3.2). Furthermore, the following two theorems 
discuss the geometric properties that two intersecting circle families should satisfy. 

Theorem 3.1   A circle family is compact if and only if there exists a line which 

intersects with every circle in the family.  
Proof : Suppose that two separate circles ⊙O1, ⊙O2 intersect with the given circle 
family, then there exists a line l that separates ⊙O1 and ⊙O2. Because all circles in 
the given circle family intersect with both ⊙O1 and ⊙O2, they have common points 
with the two half planes excluding line l to both sides of it. Hence all these circles 
intersect with l. That’s the proof of necessity. 
     Now assume that there exists a line l 1 which intersects with all the circles in 
the given family, then there exists another line l 2 parallel to and sufficiently close to 
l 1 which also intersects with all the circles in the given family. Let 2h (h>0) be the 

distance from l 1 to l 2. For  where n is the capacity of the circle family, 

let 

1, 2, ,i n

iA , iB  be the feet of perpendiculars from the centers of the circles in the family 

to l 1 and l 2, respectively. We further assume that 1A , 1B , nB , nA  are the vertices 

of the convex hull of these feet of perpendiculars. Because l 1, l 2 intersect with all 

the circles, iA  and iB  are located inside the ith circle (denoted as iω ) for 

. 1, 2, ,i n=

 

     Assume that 1 1 2 ( 0)n nA A B B d d= = >  and the perpendicular bisector 

intersect with 1 nA A , 1 nB B  at point M, N, respectively. Let P, Q be two points on the 
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prolongation of NM and MN, respectively, such that PM NQ l= =  where l  is a 

undetermined parameter. Draw a circle at center P with radius 1 nPA PA= . Draw 

another circle at center Q with radius 1 nQB QB= . Since ⊙P contains 1A  and nA , 

it also contains points iA ( ) on line segment 1, 2, ,i = n 1 nA A  by its convexity. 

Similarly, ⊙Q contains 1, , nB B . Since 

2 2
2 2

1 1 2 2
(2 2 ) 2 2( ) 2( )

2

d dPQ PA QB l h d l h h
ld l l

− − = + − + = − > −
+ +  

and h>0, d>0, substitute with 
2dl

h
=  it follows that 1 1 2 0

2

hPQ PA QB− − > ⋅ > . 

Hence 1PQ PA QB> + 1

i

 and ⊙P is separate from ⊙Q. Combining this with 

,i i iA Bω ω∈ ∈  ( 1, 2,i n= ) and iA ∈⊙ , iP B ∈⊙Q, it shows that there exists a 

circle family, namely ⊙P and ⊙Q, which intersects with 1, , nω ω . That’s the 

proof of sufficiency.  ▋ 

Corollary 3.2   For any positive integer , there exist two intersecting circle 

families with capacities 2, k, respectively. 

2k ≥

Proof: It suffices to draw k separate circles that intersect with a fixed line, since by 
Theorem 3.1, there exists a circle family with capacity 2 that intersects with them. ▋ 

Theorem 3.3  Suppose that two separate circles ⊙A and ⊙B in the plane are 

k-connected(k≥3), then 2 tanAB m n mn θ< + + , where 
1

4
2

k
πθ =

−⎡ ⎤
⎢ ⎥⎣ ⎦

 and  

are the radii of ⊙A and ⊙B, respectively. As k tends to infinity, these two circles 
tend to contact. 

,m n

Proof: Assume that ⊙O1、⊙O2、…、⊙Ok are k separate circles, which intersect with 
⊙A and ⊙B. Apply homothetic transformation to ⊙O1 at center O1 such that ⊙O1 
becomes tangent to one of ⊙A and ⊙B while it intersects the other. Then with this 
point of tangency as the center, apply homothetic transformation again to  ⊙O1 such 
that ⊙O1 is tangent to both ⊙A and ⊙B. Note that the area ⊙O1 covers doesn't 
expand, we therefore assume that ⊙O1、⊙O2、…、⊙Ok are all tangent to both ⊙A 
and ⊙B. 
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     Let  be the radius of ⊙ ( i =1，2，…，k). Let the midpoint of AB be the 

origin and line AB be the X-axis, build up the XY-coordinate system. Assume that 

ir iO

2 , 0, ( ,0), ( ,0),AB c c A c B c m= > − n≥  and 
2

m na −
= . 

     If a>0,  will lie on the right half of the hyperbola iO
2 2

2 2
1

x y
a b

− = (x>0), where 

. So we can write 2 2b c a= − 2
i( sec , tan )i iO a bθ θ  where ( ,

2 2i )
π πθ ∈ −  

for . If a=0, then 1, 2, ,i = k a xsec 0i i= i(=θ x  is the X-coordinate of ), hence 

the expression above for  still works. 

iO

iO

     By Pigeonhole Principle, at least 
1

2

kt +⎡ ⎤= ⎢ ⎥⎣ ⎦
 terms among 1 2, , , kθ θ θ  have 

the same sign. Assume without loss of generality that 1 20
2t
πθ θ θ≤ < < < < . 

Simple calculating shows  

sec (1 )
2 2i i i

c m n m nr x c i k
a

θ+ +
= − = − ≤ ≤  

Since 1i i i iO O r r+ > + 1+

2
1 n−

1

,we have 

2 2
1 1( sec sec ) ( tan tan ) ( sec sec )i i i i i ia a b b c c mθ θ θ θ θ θ+ + +− + − > + −  

It follows that 
 

2 2 2 2 2
1 12( ) cos( ) 2( ) 2 ( )(cos cos ) ( ) cos cosi i i i i ic a a c c m n m nθ θ θ θ+ +− − + + < + + − + θ θ +

  (5) 

    For , let 1,2, 1i t= −…, 1 (0, )
2i i i
πϕ θ θ+= − ∈  and define  

( ) 2 (cos cos( )) ( ) cos cos( ),0
2i i if x c x x m n x x x i
πϕ ϕ ϕ= + + − + + ≤ < −

i

 

Then ( ) 2 (sin sin( )) ( )sin(2 )i if x c x x m n xϕ ϕ′ = − + + + + +  

2sin( ) ( ) cos( ) 2 cos
2 2

i ix m n x c
2

iϕ ϕ ϕ⎡ ⎤= + + + −⎢ ⎥⎣ ⎦
 

Since 0
2 2 2 2

i i ix
2

ϕ ϕ ϕπ π
< ≤ + < − <  when 0

2 ix π ϕ≤ < − , we have  

sin( ) 0,0 cos( )
2 2

i ix x
2

iϕ ϕ ϕ
+ > < + ≤ cos  
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Because ⊙A and ⊙B are two separate circles, we have 2 0c AB m n= > + > , hence 

( )cos( ) 2 cos
2 2

i im n x c 0
ϕ ϕ

+ + − <  and ( ) 0if x′ < . So ( )if x  is monotone decreasing 

when x∈ 0,
2 i
π ϕ⎡ − ⎟⎢⎣ ⎠

⎞ , implying that ( ) (0)i if x f≤ . Combining this with (5) it follows 

that 

2 2 2 2 22( ) cos 2( ) ( ) ( ) ( ) (0) 2 ( )(1 cos ) ( ) cosi i i i ic a a c m n f m n f c m n m n iϕ θ ϕ− + + < + ≤ + = + + − + ϕ

2
iϕ <

which is equivalent to  

2 22(1 cos ) 2( )(1 cos ) 2 (1 cos ) ( ) cos 0i i ic m n c a m nϕ ϕ ϕ+ − + + + − + +  

Hence 

2 2 2 2( ) (1 cos ) 4 (1 cos )(1 cos ) 2( ) cos (1 cos )

2 2(1 cos )
i i i i

i

m n a m nm nc iϕ ϕ ϕ ϕ
ϕ

+ + − − + − + ++
< +

+
ϕ

2 21
( ) 4( ) (1 cos )(1 cos )

2 2(1 cos ) 2 i i
i

m n m nm n ϕ ϕ
ϕ

+ −⎡ ⎤   = + + − + −⎢ ⎥+ ⎣ ⎦

sin
tan , 1, 2, , 1

2 1 cos 2 2
i i

i

m n m nmn mn i tϕ ϕ
ϕ

+ +
   = + ⋅ = + ⋅ = −

+
 

Because 1 2 1 1 2t t
πϕ ϕ ϕ θ θ−+ + + = − < , there exists iϕ  that is less than  

2
12( 1)

2
2

kt
π π θ= =

−− ⎡ ⎤
⎢ ⎥⎣ ⎦

 

For this iϕ , 2 2 tan 2
2

ic m n mn m n mn tan
ϕ θ< + + < + + . 

     When , k → +∞ 0θ → . Let kL  be the supremum of AB , by the Squeeze 

Rule we have . This completes the proof of Theorem 3.3. ▋ lim kk
L m n

→+∞
= +

 

4   Primary Research on Sphere Family 
     As we generalize the idea of circle family in the plane to sphere family in 
higher dimensional space and consider the similar problems, we obtain the following 
results. 

Lemma 4.1   Suppose P, Q are two spheres in the n-dimensional space that do not 

intersect, and point O lies on P. By the generalized inversion at center O with any 
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positive radius, P is transformed into an n-dimensional plane p while Q becomes an  
n-dimensional sphere q that doesn’t meet O. Besides, sphere q and point O are located 
to the same side of plane p. 
Proof：Let M be the center of Q. Assume that line OM intersects sphere Q at A and B, 
which are antipodal points to each other. Let A′ , B′  be the inverse points of A, B, 
respectively. For any point R different from O on sphere Q, we have 

MA MB MR= = , hence . Let 90ARB∠ = ° R′  be the inverse point of R. By 

definition OR OR OA OA OB OB′ ′ ′⋅ = ⋅ = ⋅ , so ORA OA R′ ′Δ Δ∽ , ORB OB R′ ′Δ Δ∽ . 

Hence , which means 
 lies on the sphere with diameter 

90A R B OR A OR B OAR OBR ARB′ ′ ′ ′ ′ ′ ′∠ = ∠ − ∠ = ∠ − ∠ = ∠ = °
R′ A B′ ′ . Therefore the image of Q by the inversion 
is an n-dimensional sphere. Similarly, we obtain that P is transformed into an 
n-dimensional plane. 
     Note that the image of spheroid (not sphere this time) P by the inversion 
doesn’t contain point O, it must be the very side of plane p that doesn’t contain O. 
Since spheroid Q doesn’t intersect with P, its image by the inversion doesn’t intersect 
with the image of P by the inversion, so sphere q and point O are located to the same 
side of plane p.  ▋ 

Lemma 4.2   Suppose P, Q are two intersecting spheroids in the n-dimensional 

space, and p, q are two n-dimensional planes. Plane p is separate from Q and 
intersects with P while q is separate from P and intersects with Q. Plane p and q 
intersect at intersecting line k. Then p, q divide the space into four parts and exactly 
one of them contains the intersection of p and q. Let Ω  denote this part. Its opposite 
part is separate from P, Q. Suppose plane r contains intersecting line k, passes through 
region  and intersects with both P and Q, then Ω

P Q r ≠ ∅∩ ∩ . 

Proof：Build up the rectangular coordinate system in the n-dimensional space. Then 
the equation of an n-dimensional plane can be written in terms of 

1 2( , , , )nF x x x = 1 1 2 2 0n na x a x a x b+ + + + = . 

And each side of the plane corresponds n-element arrays satisfying F>0 and F<0, 
respectively. As for two planes p, q, each value of their corresponding polynomials F, 
G has 2 possible signs on different arrays, resulting 4 different outcomes in total. 
Hence the space is divided into 4 parts. Since p is separate from Q and q is separate 
from P, the signs of F, G on the region containing the intersection of P, Q are 
uniquely determined. Hence there is exactly one such region. And because its opposite 
region also has opposite signs of F, G to region Ω , it is separate from both P and Q. 
That’s the former part of the lemma, now we prove the latter part. 
     Intersecting line k divides each of plane p, q into two half planes. For the two 
half planes that enclose , we still call them p, q. Since Ω Ω 's opposite region 
intersects with neither P nor Q, we only need to consider the half plane of r (we still 
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call it r) in . Ω
     Because p intersect with P while q doesn’t, there exists a half plane m with 
boundary k which is tangent to spheroid P at point M. Similarly, there exists another 
half plane n with boundary k which is tangent to spheroid Q at point N. Obviously, the 
region enclosed by half planes m, n (denoted as Σ ) contains the intersection of P, Q 
and r is in  definitely. As half planes m, n, r have the same boundary k, line 
segment MN will intersect with r. Let R be the point of intersection, then R∈r. Since 

an n-dimensional spheroid is convex, we have 

Σ

R P Q∈ ∩ , hence 

  ▋ R P Q r P Q r∈     ⇒    ≠ ∅∩ ∩ ∩ ∩

     The following picture is an explanation of Lemma 4.2 in the plane. 

 
     According to our analysis in Part 3, there exists one of two intersecting circle 
families that has the capacity 2. Generalize this conclusion we have 

Theorem 4.3   If two sphere families with capacities a, b, respectively, intersect 

in the n-dimensional space, then 

min{ , }a b n≤  

Proof：We will prove this statement by induction on n. 
     For case n=1, we need to prove that min{a,b}≤1 when there exist two 
intersecting line segment families with capacities a, b in the number axis. It is obvious 
that this argument is true. 
     We now assume that we have proven the statement for (n−1)-dimensional space 
and consider the case for n-dimensional space. 
     If there exists a spheroid P which contains another spheroid Q, then they are in 
different families. Since spheroids in the same family as P are separate from P, they 
are also separate from Q. Hence spheroid P itself constitutes a sphere family, 
min{a,b}=1≤n as desired. Consequently, we may assume that no spheroid contains 
any other spheroid and that a, b are both greater than 1. 
     Let P, Q be two spheroids which belong to different families. By our 
assumption, their surfaces intersect. Let O be a point on their intersection. Exert the 
generalized inversion at center O with any positive radius. By Lemma 4.1, P, Q 
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becomes two n-dimensional planes p, q while other spheroids become two new sphere 
families P1, P2, …, Pa−1 and Q1, Q2, …, Qb−1. Assume that p, q intersect at 
intersecting line r. By inversive property, Q1, Q2, …, Qb−1 intersect with plane p and 
are separate from plane q. By Lemma 4.1, they are to the same side of plane q as point 
O. Thus their intersection with p is located in the same half plane of p divided by 
intersecting line r. Let p denote the half plane as well. Similarly, P1, P2, …, Pa−1 
intersect with plane q and are separate from plane p, and their intersection with q is 
located in the same half plane of q divided by intersecting line r. 
     Since half plane p intersect with Q1, Q2, …, Qb−1 while half plane q is separate 
from them, there exists a half plane R’ with boundary r between p and q which is 
tangent to one of Q1, Q2, …, Qb−1 (assume that it is Qj) and intersects with the other 
b−2 spheres. Assume that there exists a Pi among P1, P2, …, Pa−1 that doesn’t 
intersect with R’. Since Pi intersects with q and is separate from p while Qj intersects 
with p and is separate from q, these two spheroids (namely Pi and Qj) is located to 
different sides of R’, implying that they will not intersect, a contradiction. Therefore 
our assumption was wrong and R’ intersects with P1, P2, …, Pa−1. Now rotate the half 
plane R’ by a sufficiently small angle to obtain a new half plane R that intersects with 
all of P1, P2, …, Pa−1 and Q1, Q2, …, Qb−1. 
     Consider the intersections of R and each of P1, P2, …, Pa−1 and Q1, Q2, …, 
Qb−1, which constitute two (n−1)-dimensional sphere families with capacities a−1, 
b−1, respectively. By Lemma 4.2, 

( ) ( ) 1 1,1i j i jP Q R P R Q R i a j b≠ ∅  ⇔  ≠ ∅             ∀ ≤ ≤ − ≤ ≤ −∩ ∩ ∩ ∩ ∩ 1 

So these two sphere families intersect. Using the induction hypothesis we have 

. Hence min{a,b}≤n. Therefore we finish our inductive step 

and our proof is completed.   ▋ 

min{ 1, 1} 1a b n− − ≤ −

Theorem 4.4   Define ( , )a n θ  as the maximum number of points on the surface 

of an n-dimensional unit ball such that the spherical distance between any pair of 
them is greater than or equal to θ . Suppose a sphere family with capacity 3 intersects 

with another sphere family in the n-dimensional space. Let nM  denote the maximum 

capacity of the latter sphere family. Then ( 1,
3nM a n )
π

= −  or ( 1, )
3nM a n 1
π

= − − . 

Which value nM  equals to depends on whether the points are arranged compactly. 

Proof：For a group of separate spheres, choose one of them, increase its radius such 
that it is tangent to exactly one of the other spheres and is separate from the left ones, 
and then exert generalized inversion with the point of tangency as center and with any 
positive radius. Such operation is called tangent expansion. Thus, if two 
n-dimensional sphere families intersect and the capacity of one of them is 3, then by 
the tangent expansion these three spheres become two parallel n-dimensional plane A, 
B and an n-dimensional sphere O in between, while the other sphere family becomes a 
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sphere family which intersect with A, B and O. Obviously their radii are all greater 
than that of sphere O. 
     For convenience we assume that the two parallel planes A and B are both 
tangent to sphere O and that each sphere of the other family is tangent to at least one 
of A, B (after applying homothetic transformation to each of them) because such 

operation doesn’t increase nM . Let ∂  denote the plane parallel to A, B which passes 

the center of sphere O. Assume that  is the center of sphere in the other family and 

 is its projection on  . We claim that  

iO

iP ∂ (1 )ni M≤ ≤

 { }max , (1 )i j i j nPP OP OP i j M> ≤ < ≤

n

 (6) 

     Build up the rectangular coordinate system with O as the origin in the 

n-dimensional space. Assume that , then plane  is 

an (n−1)-dimensional subspace that passes point O and the coordinates of  in 

this subspace are 

1 2 1 2,( , , , ), ( , , )i n jO x x x O y y y ∂

,i jP P

1 2 1( , , , )nx x x −  and 1 2, 1( , , )ny y y − , respectively. In addition, 

,i i n j j nO P x O P y= = . Assume that 1, iR , jR  are the radii of sphere O, , ,  

respectively. Since sphere  is tangent to at least one of A and B, it follows that 

iO jO

iO

2 21, 1 2i n i n i i nR x OO x OP R x= + = + ≤ + = +  

Hence 24 4 n ix OP+ ≥ . Similar reasoning shows 24 4 ny OP+ ≥ j . Besides, we have 

2 2 ( )i j i j n nO O PP x y≤ + + 2  

And 2 2 2 2( ) ( 2) ( ) 4( )i j i j n n n n n nO O R R x y x y x y> + = + + = + + + + 4  

Combining these two inequalities to yield 

{ } { }2 2 24( ) 4 max 4 4, 4 4 max ,i j n n n n i jPP x y x y OP OP> + + ≥ + + ≥  

Hence the inequality (6) holds. Then  is the longest side of i jPP i jOPPΔ , implying 

that 
3i jPOP π

∠ > , which follows that 

( 1,
3nM a n )
π

≤ −  

     If the point arrangement corresponding to ( 1,
3

a n )
π

−  is compact, the upper 

bound won’t be attained. Hence 
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( 1, )
3nM a n 1
π

= − −  

Such as in the case n=3. 

     If the point arrangement corresponding to ( 1,
3

a n )
π

−  is not compact, the 

points can be rearranged such that the flare angle of any pair of them to the point O is 

greater than 
3

π
, thus the upper bound is attained, that is,  

( 1,
3nM a n )
π

= − , 

such as the ‘12 balls problem’ in the case n=4.[5]  ▋ 
 

 

5   Some Conjectures and Unsolved Problems 
On one hand, for the division problem of two sphere families in higher 

dimensional space, we propose some conjectures as follows. Although these 
conjectures still need to be proved strictly, they point out our research direction. 

Definition 5.1   For integers k, m≥2, define ( , )nF k m  as the maximum number of 

pairs of intersecting spheres produced by two sphere families with capacities k, m in 

n-dimensional space and  as the maximum number of pairs of intersecting 

spheres produced by two unit ball families (that is, sphere families which consist of 
unit balls only) with capacities k, m in n-dimensional space. 

( , )nP k m

Definition 5.2   For two sphere families in n-dimensional space, let the centers of 

the spheres be the vertices of a graph, two vertices are connected if and only if their 
corresponding spheres intersect. Such a graph is called the structure graph of two 
sphere families. A simple graph is called available if and only if there exist several 
separate or tangent spheres corresponding to the vertices of the graph, respectively, 
and two spheres are tangent if and only if their corresponding vertices are connected 
in the graph. 

Conjecture 5.3   The structure graph of any two sphere families in n-dimensional 

space(n≥2) is available. 
Reasons：We begin with the case n=1. The structure graph of any two line segment 
families is available if no line segment contains any other line segment (we don’t need 
such restriction in higher dimensional space, since that if sphere A contains sphere B, 
we can replace B with a sufficient small sphere which intersects with A). In fact, for 
any two intersecting line segments, we may choose a common endpoint for them in 
their intersection and we will be done. So the conjecture is true for some cases for 
n=1(We consider them best cases, since we are calculating the maximum number of 
pairs of intersecting line segments).  
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  As for n=2, by Lemma 2.2, the structure graph of two circle families is planar, 
and by Circle Packing Theorem (also known as the Koebe-Andreev-Thurston 
Theorem) [2], it is available. Hence the conjecture is also true for n=2. 

Moreover, if we continuously shift the spheres or change their sizes until they all 
get separate, there should be a situation in between where all pairs of intersecting 
spheres become pairs of tangent spheres. Consequently we think that the conjecture 
holds.  ▋ 
  This conjecture helps us to simplify the configuration of sphere families (see the 
following corollary whose proof is based on Conjecture 5.3). It also makes a little step 
in proving Conjecture 5.5. 

Corollary 5.4    is not the structure graph of any two sphere families in 

3-dimensional space, where 

eK −4,4

eK −4,4  denotes the graph obtained from by 

deleting an edge. 

4,4K

Proof：For the sake of contradiction we assume that eK −4,4  is the structure graph of 

two sphere families. Then by Conjecture 5.3, it is available, that is, there exist two 

sphere families { , , , }A B C Dα =  and { , , , }E F G Hβ =  such that any two spheres in 

different families are tangent except for D and H. By increasing the radii of A, B, C, D 
and decreasing the radii of E, F, G, H by an identical positive real number, all the 
pairs of tangent spheres maintain and we can further assume that there exist two 
tangent spheres in family α . Essentially there are two cases. 
  Case 1   A and B are tangent. Exert the generalized inversion with the point of 
tangency as the center, and A, B become two parallel planes. Since E, F, G, H are all 
tangent to A, B, they have a same radius (assume that it is 1) and their centers are in a 
same plane . Since C is tangent to E, F, G, H and D is tangent to E, F, G, we have ∂

, ,CE CF CG CH DE DF DG= = =   = =  

And CD⊥plane ∂ . Assume that line CD intersects with plane ∂  at P, CP d 

r is the radius of C. We have  

h= , an

2 2(1 )PE PF PG PH r h= = = = + −  

But since EF , FG , GH , HE , EG  and HF  are all greater than 2 while  

min{ , , } 90XPY X Y X Yβ∠ ∈ ≠ ≤ °  

We have 2 2(1 ) 2r h+ − <  or (1 )(1 ) 2r h r h+ + + − < .Combining this with 

(since C doesn’t intersect with plane A, B) we have , hence . 
Similarly , and therefore C D

1r h+ < r h> P C∈
P D∈ ≠ ∅∩ , which contradicts the definition of 

sphere family. 
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  Case 2   A and D are tangent. Exert the generalized inversion with the point of 
tangency as the center, and A, D become two parallel planes. Note that E, F, G are 
tangent to A, B, C, D, it follows that any sphere tangent to sphere B, C and plane D 
(resp. A) is also tangent to plane A (resp. D). Hence sphere H is tangent to all of A, B, 

C, D and the structure graph of such sphere families is . However, this is 

impossible by Theorem 4.3(n=3). 

4,4K

Overall we show that our assumption was wrong and Corollary 5.4 is proved.  
 ▋ 

Conjecture 5.5   1 1( , ) max{ ( 2, ) 2 , ( , 2) 2 }n n nF k m P k m m P k m k− −= − + − +  

If , we guess  2k m≥ ≥

  (7) 1 1( 2, ) 2 ( , 2) 2n nP k m m P k m k− −− + ≤ − +

Reasons：On one hand, there exist two unit ball families with capacities k, m−2 in the 

(n−1)-dimensional producing 1( , 2)nP k m− −  pairs of intersecting spheres. Draw an 

n-dimensional unit ball at the center of each of these (n−1)-dimensional unit balls and 
then draw two n-dimensional planes parallel to those n-dimensional unit balls. Then 
we increase the radius of the unit balls in the family with capacities k by a sufficiently 

small positive real number and we get 1( , 2) 2nP k m k− − +  pairs of intersecting 

spheres in n-dimensional space. Similarly 1( 2, ) 2nP k m m− − +  is also obtainable as 

the number of pairs of intersecting spheres. Since the inequality (7) holds for n=2, 3, 
we wonder whether it holds for all positive integer n. 
     On the other hand, it is easy to obtain 

1

2 (
( , )

2 1 (

m k
P k m

m k m
        >⎧

= ⎨ −    =⎩

)

)

m
 

Combining this with Theorem 2.3, Conjecture 5.5 holds for n=2. As for n=3, by 

Theorem 4.4 we have 3 ( ,3) min{3 , 2 5}F k k k= +  and it is easy to obtain 

, implying that Conjecture 5.5 holds for n=3, m=3. Moreover, by 

Corollary 5.4 we have 

2 ( ,1) min{ ,5}P k k=

3 (4, 4) 14F = . Since 2 (4, 2) 6P = , Conjecture 5.5 is also true 

when n=3, k=m=4. 
     Combining the two sides, we think that the conjecture is true.  ▋ 

 

On the other hand, we raise some unsolved problems as follows and hope to 
discuss them with the readers. 

① The value of . According to the discussion of 2-dimensional case, we ( , )nP k m
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think such a problem can be evaluated but does not have exact answer, and the 
result will change in terms of the number of circles (or spheres). 

② For the problem of n-dimensional sphere family, we hope to find more maximal 
forbidden subgraph of the structure graph, where maximal forbidden subgraph is 
defined to be the graph can not be a structure graph, but the resultant graph by 
deleting an edge can be a structure graph. For two 3-dimensional sphere families, 

by Theorem 4.4 and Corollary 5.4,  and 6,3K eK −4,4  are two maximal 

forbidden subgraphs. Since the set of maximal forbidden subgraphs for planar 

graphs is { }53,3 , KK [1], we want to know that whether { }eKK −4,46,3 ,  is the 

maximal forbidden subgraph set of the bipartite structure graph of two sphere 
families. 

③ Note that there are only two techniques used to handle the problem of sphere 
family, namely, homothetic transformation and inversion. We hope to find some 
new methods to solve the above problems, and discuss the division problem of m 
sphere families. It is worth mentioning that if we solve the division problem of 
two circle families, then it can be generalized to general cases smoothly (since we 
just need to consider the number of pairs of intersecting circles). But it is different 
for the case of 3-dimension. Since we shall consider the division in the 
intersection of some sphere families, it is not as simple as just counting the 
number of pairs of intersecting spheres. So such a problem is very challenging. 

④ The division problem about convex polyhedrons in the space is the derivation of 
circle family, sphere family and their generalizations. However, this problem itself 
still needs to be solved. 

 

Appendix 
 The title of the former edition of our paper is ‘The Research and Generalizations 
on Several Kinds of Partition Problems in Combinatorics’. We studied some partition 
problems about the Catalan Number under certain constraints. We also developed the 
idea of circle family and sphere family. However, afterwards we were told that some 
of our research on the Catalan Number has already been studied by former 
mathematicians, so we state those result in this appendix and place our research on 
circle family and sphere family in the main text. Then we change the title so as to fit 
the current edition of our paper. 
 
Definition 1   The triangular partition of a convex polygon is the partition that 
divides the polygon into most parts by several diagonals which don’t intersect inside 
the polygon. An isolated triangle is a triangle three sides of which are the diagonals of 
a convex polygon in its triangular partition. Define Gk(n) (n≥3，k≥0，n, k∈Z) as the 
number of different kinds of triangular partition of a convex polygon with n sides 
which has k isolated triangles. 

Definition 2   The function ),,2,0)(2( ZknnknRk ∈≥≥  denotes the number of 
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different ways to pair the vertices of a convex polygon with 2n vertices and join each 
pair with line segments such that the n line segments produce k points of intersection. 
It requires that any three diagonals of the polygon share no common point inside it. 

Definition 3   Let ( )nB k  denote the number of different ways to divide a polygon 

with n sides into several k-sided polygons by its diagonals. Let  denote the 

number of different ways to divide the vertices of an n-sided polygon into several 
k-element group such that any pair of k-sided polygons formed by two such groups 
don’t intersect. We only consider these partition problems in the case that the polygon 
can be divided in such ways. 

( )nb k

Definition 4   For positive integers m, n, define a [ ],m n  broken line as a broken 

line in the coordinate plane which starts from the origin and is formed by vectors 

 or  end to end. If it has no intersection with the X-axis except its 

starting point and its end point, we call it a broken line with property U (short for 
‘up’). 

(1, )m (1, )n−
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Theorem 4   There are ( )
s
s tC s nt

s t
+ −

+
 [ ]1, n  broken lines with property U whose 

end point is , where ,( ,P s t s nt+ − ) s , 0t N s nt∈ − > . 

Theorem 5   Let ( , )f s t  be the number of [ ,  broken lines with property U 

whose end point is . Then 

1]n

( ,Q s t ns t+ − )

( 1) 1
1 ( 1)

1

( , )
( 1)

ik
i nt s i

s t s t i n
i

C
f s t C C

i n
+ −−

+ − + − +
=

= −
1+ −∑  

where 
tk
n

⎡ ⎤= ⎢ ⎥⎣ ⎦
 and , . s , 0t N ns t∈ − >
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