The Generalized Mean and Error Analysis

The Affiliated High School of South China Normal University
Author: Ketian Zhang

Faculty Adviser: Yiwen Huang

177



The Generalized Mean and Error Analysis

Abstract: In this paper, the definition of generalized mean X =f [lz f(x)] is
n55

introduced. It summarizes the common characterizations and also expands the
meaning of arithmetic, geometric and harmonic means. Secondly, the definition of
average error is introduced, and the method of reducing error by averaging the values
out is discussed. Based on the properties of convex function and the Jensen Inequality,

the judgment of Z < Z and the necessary and sufficient condition of Z :Eare

discussed. Finally, the definition of effect coefficient which measures the effect of
extreme values on a generalized mean is introduced. Some applications are contained
in the paper as well.

Keywords: Mean; Error; Convex function; Jensen Inequality.

The aim and background of the research: What are the similarities of arithmetic,
geometric and harmonic means? Whether the meaning of mean could be expanded? In
scientific experiments, we often reduce errors by averaging the values. Are the effects
different if we choose different means? In order to reduce the effect of extreme values,
how to choose a kind of mean?
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[ Main results]
The notations used in this paper are listed as follows.

I. Let UL,U2,...,Un and U be continuous random variables which satisfy (0,

1]-uniform distribution.

" noy
I1. Denote by An=12ui, Go=| [TUI |, Ho=
n 45 .
I=1

II. For a continuous random variable X , let F (X) and p,(X) denote the

distribution function and the density function of X , respectively.

1. Generalized mean

Definition 1. If the inverse function of f(X) exists, then X = f’l[lz f(xi)] is
n55

called the f(X)-mean of Xi,X2,...,%n.

Theorem 1. The arithmetic mean is X-mean, the geometric mean is In X -mean, and

the harmonic mean is — -mean.
X

Proof. (1) Let a(x)=X.Then a'(X)=X = Xa=

S|

n
Z Xi, that is, the arithmetic mean
i1

of Xi,Xz2,...,%n.

(2)Let g(X)=Inx.Then g '(x)=e*.For Xi,Xaz,..., % € (0,+0),

Xo = eA(lzln X) = eA(lloni) = e’\(lnn\/HXi) = ”\/H Xi ,
N n i i1 i=1
which is the geometric mean of Xi,X2,..., Xn.

(3) Let h(X)zl.Then h’l(x)zl. For Xi,X2,...,%n € (0,+0),
X X
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which is the harmonic mean of Xi,X2,...,%. W

Theorem 2. If the inverse function of f(X) exists, and g(x)=af(x)+b (a=0),
then X_gE;.

Proof. Note that the inverse function of g(x) is g~'(x)=f (X—_b) . Then
a

n

Xa=g 'Y faf () +b]}

i=1

= gl[a%if(Xi)+b]

= fl[%g f(x)]=xr,

thatis, Xo=xr. H

2. Average error

The variance and standard deviation usually used in mathematical statistics can
characterize the data volatility, but the meaning of their specific value is not so
straightforward. Therefore, the definition of average error is introduced. Moreover, we
shall study some problems by using this definition.

Definition 2. For a random variable X, ex = E(|X - E(X)|) is defined to be the
average error of X . Moreover, E(Z) = E(‘Z— E(X)‘) is called the f(X)-average

error of X .

2.1. Basic properties of average error

Obviously, for a continuous random variable X, ex = fm| X —-E(X )| px (X)dx .

Theorem 3. If the standard deviation of a random variable X exists, then

e, <o(X).

Proof. If X is a continuous random variable, then fﬂ P, (X)dx =1.

Since X?is a convex function, then by the Jensen Inequality, we have
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[[ X =EO|px (0dxT” < [ TX = E(X)T* py ()dlx ,
that is, e <Var(X).
Hence e, <o(X).
If X 1isa discrete random variable, the result can be proved similarly. B

Theorem 4. If the mathematical expectation and average error of a random variable X
both exist, then for any constant £> 0, we have

P(X — E(X)| 2 &)< 2x.
&

Proof. If X is a continuous random variable, then

X —E(X
P(X-E(X)28)= | pyodxs | Mpx(x)dx

(x| X—E(X)[2¢} (x| X—E(X)[2¢}

1 (o e,
<= [IX =EX)[py (0dx ==X
g &
If X 1isa discrete random variable, then the result can be proved similarly. W

The result of Theorem 4 is similar to Chebyshev’s Inequality. They both give the
upper bound of large deviation probability of occurrence. Since the probability of any
events is no more than 1, we call “the above upper bound is less than 1” “meaningful”.

For Theorem 4, when ¢ >§, the upper bound is meaningful; for Chebyshev’s

Var(X)

2
&

Inequality, when <1 (namely, &> o(X)), the upper bound is meaningful.

If follows from a < o(X) that the meaningful scope of Theorem 4 is large than

that of Chebyshev’s Inequality.

Example 1. The average error of U .
Solution. Since
0 (x<0 or x>1) ,

pU(x)={1 (0<x<1) ,

and E(U)= % , hence

— 1ld_;1 e [ ox— Ny )
ey _IO X—E- x_.[o (E_X) X+J-;(x—5) X=—.

4
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Answer. The average error of U is % )

Example 2. Let X ~N(u, ). Then a = \/za.
T

— i ] e
Proof. eX:J' x4 e 2 dx

2z
- f:|x| L 2oy

\N27wo

=2.[+°°x ! e_ZXTzzdx.

0 \J2ro

Let t= L. Then

V2o

— 2 o, _ 1 e
eX _ﬁjo te dt\/za—(—ge )

~2\/§0:\/§0. [ |
0 s T

Theorem 5. Let X, X,,---, X, ~N(i,0%) and a(x)=x. Then E(X_a)zwfia.
Nz

Proof. By the additivity of normal distribution, z X;~N(ng,nc?). Then

i=1

2
O

n

Hence E(Y):e_fz\/z-i: ia. |
7z Jn \nz

It can be seen that the average error of X, (i=12,...,.n) reduced Jn -times by

X ~N(,Z), and E(X)=E(X,) (i=12,..,n) .

solving X.

Example 3. The accuracy of an analytical balance is 5mg. But the accuracy in a
chemical analysis need to be 1mg. Suppose the measured value satisfies normal
distribution. How many times do the parallel measures need and then obtain the mean
of X satisfying the requirement?
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Solution. Suppose we need n times the parallel measures. From the above example,

the error reduce 5-times implies Jn =5, and it follows that n=25.

Theorem 6. Let {X,} be random variables with independent and identical

distribution. Then lim lz X, =E(X,).

nN—-+o0o n =

Proof. Let E(X;)=x and Var(X,)=o". Since X,,X,, ... ,X, are independent

and identical distribution, by Lindberg-Levy Central Limit Theorem,

z X, —nu
lim =-———~N(0,1), and

nN—+w O-\/ﬁ

J— n 2
X = 1imlz X, ~N(u, 2.
n

N—+oo n i-1

2

Since Var(X) = lim Z- =0,

nN—+oo n

X =, thatis, limlzxi:E(Xi). [ |
n—>+ocn o1

It shows that the number of parallel measures tends to positive infinity, the

arithmetic mean of X, tends to E(X;). For most surveying instruments with
uniform scale, E(X,) is the true value.

Let {X,} be random variables with independent and identical distribution. Let
X_f be the mean of X, X,,---, X . By Theorem 4, nlirgox_fz fTE(F(X))].

For example, if X, satisfies (0, 1]-uniform distribution, then f(x)=Inx. It

follows that lim X , = e"( jol In x-1dx) .

nN—+o0

Since [ nxdx = (xIn x =), = ~1 lim (xIn x=x) =1,
x—0"
lim X, =L E(X,)=1.
N—>-+o0 e 2

It can be seen that if the number of parallel measures tends to positive infinity,

then the f(X)-mean of X, isnotalways equal to the true value.
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Theorem 7. If Y =aX +b, then ey = |a|&, where a and b are constants.
Proof. Since E(Y)=E(aX +b)=aE(X)+b, we have
ey = f:|(ax +b)—[aE(X) +b]| px(x)dx
=[al[]X = ECO| px (x)dx
= |afex .
If the variation of f(X) over {X|px (x)#0} is small, then for the random
variable Y = f(X), wehave Y ~ f (x,)X +b (x, e {X|px (X)#0}, b isaconstant).

By Theorem 5, e, ~ ‘ f '(XO)‘E. |

Example 4. Let the hydrogen ion concentration of a bottle of dilute hydrochloric acid
be 0.056mol/L (the error is no larger than 0.001mol/L). Question: How many decimal
places should the PH value of such dilute hydrochloric acid retain?

Solution. Suppose the hydrogen ion concentration is X, then pH =-Igx and

pH, =- 1110. Since X €[0.055,0.057] , then -7.896<pH, <-7.619 , the
XIn

variation of pH, is relatively small. Hence a ~7.7e, » and the pH value retains

two decimal places, that is,

pH =-1g0.056 =1.25.

2.2. The average errors of A,G,,H,

2.2.1. The properties of A,

FAZZ(UH—Uz

<X)=PU:2<2x-U).
Establish the plane rectangular coordinate system with abscissa axis U; and
vertical axis U, Note that (U1,U2) locate in the field surrounded by U, =1, U, =1

and abscissa axis, vertical axis (except the origin) is an equally likely event. Then it
satisfies the condition of geometric probability model.

. 1 (2x)? 5
See Fig. 1. (a), when 0<XS5, P(U2£2X—U1):SAABc/1:T:2X .
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See Fig. 1. (b), when %< x<1,

_ 2
P(uzs2x—U1):(1—SADEF)/1=1—M=1—2(1—x)2.
D F U, =1
U, =1
U, =2x-U,
(a) (b) vi=t
Figurel.1
Since 0<U1;U2£1,
then 0 (x<0);
2x2 (0<x£l);
Fa(X) =< 2

1-2(1-x)* (%<x<1) ;

1 (x=>1).

1 1
FuEU)=F, ()=
0 (Xx<0 or x=1) ;

paA(X)=J 4x (0<x£%);
4 —4x (%<x<1).

e(A) = f:|x —E(x)| pa(x)dlx

% 1 1 1
:IO (E—x)-4xdx+j;(x—5)(4—4x)dx

1
1

2

’ +(—§x3 +3%x° —2X)

= (—ix3 +Xx%)
3 0

2.2.2. The properties of G,

Fo:(x) = P(WUWU:2 < X) = PU: sl’j—z).

! The density functions of the random variables corresponding to the vertices in the figure of the function may be
equal to zero. Such vertices can not be attained, and the same below.
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When 0<x<1, we establish the plane rectangular coordinate system with

abscissa axis U; and vertical axis U, (see Fig. 2.). Note that (U,U2) locate in the

field surrounded by U, =1, U, =1 and abscissa axis, vertical axis (except the origin)

is an equally likely event. Then it satisfies the condition of geometric probability

2

model. Since UzSX— is the field surrounded by Uzzui, U =1, U,=1 and

1 1

abscissa axis, vertical axis, then U2=— intersects with y =1 at the intersection

U
point (x*,1). Hence
U< X ( X004 %Y1 T \
<-)= + X s =
’ U Ui 1
1 U =1
=x’InUi|, +X°
' Uzzx—2
=x’=x*Inx’. T
Since 0<G2<1, then )
Figure 2.
0 (x<0);

Fe:(X) =4 x> -2x*Inx (0<x<1);
I (x=1);
and Fe.(E(U)) = FGz(%) =%+1n\/§ =0.5966,
0 (x<0 or x=1);

pPe(X) = Fe: (X) :{

—4xInx (0<x<l);

&Gy =]

X— %‘(—4x In x)dx .

2
Let g(x)= g X +(x° —% x*)In x —X? . It can be checked that

g'(x)= (x—%)(—4xln X) .

Hence e(G.) =[9() - 9()1-[9(;) - limg ()] =0.1989.
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2.2.3. The properties of H,

xU1 =
U,

Fi(X) = P( o0

] <x)=PU:<
7+7
Ui U:
When 0<x<1 , we establish the plane
rectangular coordinate system with abscissa axis U,

and vertical axis U, (see Fig. 3.). Note that (U1,U>2)

Figure 3.
locate in the field surrounded by U, =1, U, =1 and abscissa

axis, vertical axis (except the origin) is an equally likely event. Then it satisfies the

is the field surrounded

condition of geometric probability model. Since U:<

Ui—x
xU1 . . ) .
by Uz:2U i U =1, U,=1 and abscissa axis, vertical axis, then
-
U: ZL)J(UI intersects with U>=1 at the intersection point (——,1). Hence
- _
PU-< XU )= I XU X
2U1—X L 2U1—X 2—X
1
X . X X X 2
=[=U1+—In(4U1—-2x +—— =X+—In(—-1).
Uug @ =20) e =X G
2—-Xx
Since 0<H:2<1, (0 (x<0);
B N
Fr:(X) ={ x+—In(=-1) (0<x<1);
2 X
\ 1 (x=1);
then Fr(EU)) = Fm(%) :%+lr1?3 =0.6373,

0 (x<0 or x2=1);
sz(X) = FHZV(X) _{ 2 X
I+XIn(—-1)+—— (0<x<1).
X X—=2

The average error is E(Hz) = E(|X — E(X)|) = J:)l X —% pH2(X)dx .

x> x? 2x* X
Let f(x)= (———)1 (——1)——1 n(2- X)+T+g It can be checked that
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f'(x)z(x—%)pm(x) (0<x<1) .

— 1
Hence e(H,)= f(x)|11 +[-f (02 = 41n2—%1n3+% =0.2221.
2

2.2.4. Conclusions
In conclusion, E(Az) < E(Gz) < E(H ,) < a. It can be seen that choosing different

means, the effect of reducing the error may be different.

2.3. f(x)-average error for small error numbers

The small error number is defined to be a number which is largely greater than
its error. If a set of small error numbers satisfies uniform distribution in the error

range, without loss of generality, suppose X, =a-+bU = b(%+U ).Let n= % Then

X, =b(n+U). It is easy to see that n is very large for small error numbers. Now we

discuss the properties of the means when n— +o.

Lemma 1. If the inversion function of f(X) exists, f(x) and f'(X) are both

derivable, then f'[f(X)]- f (X)=1. f
y=100
X

Proof. See Fig. 4. f'(x) is equal to the slope ki of the tangent line | of f(x) at

the point A(X,f(x)) , and f'[f(X)] is N
=)
equal to the slope k2 of the tangent line m

of f'(x) atthepoint B(f(X),X).

The images of y=f(X) and y=f"(x) /flfg
/

(resp. A and B) are symmetric with regard to . y

the line y = X. Then by the symmetry,

LIf I//m, then |. m are both parallel to the line y = X. Hence
ki=k2=1, and then kik2=1.

II. If | intersects with m, then |, m intersect with the line y=x at a point C.

Draw two lines at the point C which are parallel to x-axis and y-axis, respectively.
Since L1=/3+44+2/5, £Z2=/3, Z4=/5,
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then A1+ /£2=2(£3+44)=2x45°=90°,
and ki-k2=tan Z1-tan £2 =1.
Consequently, f'[f(x)]-f'(x)=1. W

Lemma 2. Suppose the inversion function of f(x) exists, f(x) and f~'(x) are
both derivable. If f(X) is an increasing (resp. decreasing) function over |, then
f 7'(X) is an increasing (resp. decreasing) function over M = {f (X)|X el}.
Proof. Suppose f(X) is an increasing (resp. decreasing) function over |, f~'(X)
is an increasing (resp. decreasing) function overN (N <M ) . Let Xoe N. Then
f'(xo) and f"[f(x0)] have different signs. Then

f(x0)- f [ f(x0)]<0,

which is a contradiction to Lemma 1. This completes the proof. H

Lemma 3. Ifthe inverse function of f(X) exists, f(x) and f'(x) areboth

: — a1l f(x), . . : .
derivable, then xi=f 1[—2 f(xi) +(—1)] is monotonically increasing, where Xi
n4< n
1s a variable, and X2, X3, ..., Xn are constant values.

Proof. Since f(X) is a continuous function and has the inverse function, then
f(X) is monotonical.
I. f(x) is monotonically increasing.

f(x1)

Then f~'(x) and lz f(xi)+ are monotonically increasing.
n

i=2

f(xi), . . —

] is monotonically increasing, i.e., Xi 1is
n

Therefore [%Z f(x)+
i

monotonically increasing.

II. f(x) is monotonically decreasing.
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Then f '(x) and lz f(xi)+ f(x) are monotonically decreasing.
n< n

f(x1) . —

] is monotonically increasing, i.e., Xr 1is
n

Therefore ' [%z f(xi)+
i

monotonically increasing.
The result follows. W

Theorem 8. Suppose a function f(X) has the inverse function f ().

Ui+U2

If f(x) and f'(x) are both derivable, thenL = lim (;—n) and

n—+co

have

the same distribution, where Xxi=n+U1, x2=n+U2, and X is the f (x) -average

mean of X, and X,.

Proof. Note that fI[Mstfl[f(””);f(n”)],i.e., n<x<n+l.
Then 0< lim(x —n)<1,
and Fux)=0 (x<0), Fu(x)=1 (x>1) .

For 0<x<1, wehave

Fu(x)=P(f7[

f(X1)42- f(Xz)]_n <%)

=P(x2< f'[2f(n+Xx)— f(x1)]) (By Lemma 3).
Let two dimensional Cartesian coordinate system consist of the abscissa axis Xi

and vertical axis X2 . Note that (Xi,X2) locate in the field surrounded by

X=n,y=n,X=n+1 andy=n+1 (except (n,n)) is an equally likely event. Then
the conditions of geometric probability model are satisfied.

x2< f7'[2f(n+x)— f(x1)] is the region surrounded by x=n, y=n, x=n+1,
y=n+1 and the below area of f'[2f(n+x)— f(x)].
Then {f '[2f(n+x)— f(x)]}, =—F "[2Ff(n+x)— F(x)]- f'(x).
When n— 4o, then f(n+x)=f(n), f(x)="f(n), f'(x)="Ff(n) and

FR2fm+x) - fO]Y =—f [F)]- f'(n)=-1.
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Hence f'[2f(n+X)— f(x1)] is the straight linel :

X2—(N+X)=(n+X)— X1, where the line | passes the point (nN+X,N+X)

with slope -1.

Then the line passes point A(n,n+2X) and point E(n+1,n+2Xx-1).

1 y=n+l1
When0<X£§ (see Figure 5. (a)) ,
we obtain A(n,N+2x)
X=n+1
X=n |
C(n,n y=n
1 Figure 5. (a)
P(x2< f'[2f(n+X)— f(x1)]) = Samec/1 :E(Zx)2 =2x%°.
When%<x<1 (see Figure 5. (b)) , we have
_ 2
P(x2< f[2f(N+x)— f(xl)])=(1—SADEF)/1=1—@=1—2(l—x)2,
ie., r 0 (x<0) ; _
2x? (0<x£l) ; D F y=n+l
FL(X):< 12 X=n X=n+l1
2 .
1-2(1-x) (E<X<l)’ N
v1o(x=1) .
Hence  Fi(X)=Fa(x). W bnn y=n
Figure 5. (b)

It is shown that the distribution of lim (Z—n) is independent from f(X).

nN—+oo
Combining Theorem 5, for any continuous function f(x) which has the inverse

function and xi=n+U1, X2=n+U2, we have
Lo = 1
llme(xf):e(AZ)ZE.

Example 5. LetR, and R: be two same resistances labeled by “2kQ (£0.1%) ”.
Suppose Ri and R: are both uniform distribution within the error scope. Try to
estimate the error of the resistance R raised from the parallel of R, and R:.

Solution. Since Ri,R2€(1998,2002] (Unit: Q) , then
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Ri=1998+4U1=4(499.5+U)).
Similarly, we obtain R2=1998+4U2>=4(499.5+U?).

Let f(X)zl and R, bethe f(X)-meanof R and R,.Then
X

R _RiR: _Re
Ri+R2 2
Note that n=499.5 is relatively large. Therefore ;—499.5zU1;U2 , le.,

R ~2A:+999 . Hence &zzazzxézég.

3. The effect of Large numbers and Small numbers on means

For four numbers 1, 1, 1, 4, the X-mean is 1.75 and the InX-mean is

J2=1414. Obviously, the effects of the two means raised by extreme value (4) are

different. Extreme value (4) has more affect on the x-mean than the InX-mean.
Naturally, a problem is raised that how to compare the effect of a kind of mean from
extreme value conditions?

Theorem 9. Let f (X) be a continuous function and Ur the f(X)-mean of Ui and
U:.Then X’ <Fy(x)<1-(1-X)".

Proof. When Ui<x and U2<Xx, then
< 1H[f(x)+ f(Uz)]S f,l[f(x)+ f(x)

]=X and
2 2

PUr<x)2PUI<X)-PU2<x)=x.

When Ui>x and U2>Xx, then G>f1[W]>fl[w]zx
and

PUr>x)=1-PUr <x)=PU:>Xx)-PU2>X) =(1-x)?,
ie., PUr <x)<1-(1-x)%.

Hence X°< FE(X)SI—(I—X)z. |
. 1 — 3
Especially, when x=E(U), we have 2 <PUr<x)< R

Let P(LTS EU ))=i and if one of U: and U: is larger thanE(U), then
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Ur is larger thanE(U). It is shown that Ur has enormous implications by large
numbers. Let P(GS EU ))23 and ifone of U: and U: issmallerthan E(U),

then Ur is smaller than EU). It is shown that Ur has enormous implications by

small numbers.
Let two dimensional Cartesian coordinate system consist of the abscissa axis U,

and vertical axis U,. (See Figure 6.). Note that (U1,U2) locate in the field

surrounded by U, =1. U, =1 and the two axis (except the origin) is an equally
likely event. Then the conditions of geometric probability model are satisfied.

Generally, let d =P(Ur<EU)), Ui<EU) and U2>E(), then

the probability of Ur < E(U) isequalto

co,1) B{0.5,1)

1 1
— —_ \“‘-—-_._
S[ 2 (d 4) 1 I:% .ﬁﬁ\[o.s 0.5)
p = = = 2d —_— | ]
Sascp 1 2
4

and the probability of Ur > E(U) is 1-p. Figure 6.

Definition 3. The impact coefficient of the f(X) -mean is defined as

fUN+ fU>2)

1.1  —
D, :2FW(E)_E (Ur=f7[ 5

.
Itis obvious that 0< p<1.If p, is more larger, then the f(X)-mean acted by

small numbers has more impactions; if p, is more smaller, then the f(X)-mean

acted by larger numbers has more impactions. If p, =0.5, the f(X)-mean acted by

larger numbers and small numbers has the same impactions.

4. The necessary and sufficient condition of comparing values and

identical equality of means

4.1. Comparing values of means

Mean inequality shows the relationship of sizes between arithmetic mean,

geometric mean and harmonic mean. For the generalized f(X) -mean and
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g(x) -mean, what are the relationship of their sizes?

Theorem 10. If f(X) is monotonically increasing and f[g~'(X)] is a concave
function, then xr <Xy with equality holds if and only if X, =X, =---= X .
Proof. Let h(x)= f[g~'(X)].

Since g(x) is monotonically increasing, then ¢g~'(X) is monotonically increasing.

Then h(x) and h~'(x) are both monotonically increasing.

Note that h(x) is a concave function. By Jensen Inequality,

1 z lz h(yi), where the equality holds ifand only if y, =y, =---=y,.
N N
1< 1<
Then HZ yi>h [Hz (y)].
i=1 i=1

Suppose xi=g '(yi) (i=12,.,n) ,then Yyi=g(X).

We have %i g(x)>h" [%i f(xi)]

Then f{g’l[lig(Xi)]Zli f(xi), and g’l[lzn:g(Xi)]Z f’l[lif(Xi)] , le
ns ns n 4 n 4

Xi < Xq with equality holds if and only if x, =x,=---=x,. H

n

If g(x) is monotonically decreasing, then the same conclusion is also obtained.
Similarly, it is easy to obtain the following:

If f(X)is monotonically decreasing and f[g~'(X)]is a concave function, then
X > Xg.

If f(x) is monotonically increasing and f[g~'(X)] is a convex function, then
X > Xg.

If f(x) is monotonically decreasing and f[g~'(X)] is a convex function, then

X< Xg.

194



(The equality holds if and only if X, =X, =---=X,.)

n n 1
Example 5. (Mean inequality) lz X, > (H X)" >
N+

i Z

Proof. Let a(X)=x,g(X)=Inx and h(X)zl. By Theorem 1, it only needs to
X

prove X, ZEZX_h.
Since a'[g'(x)]=(e*) =e*>0,then a[g'(X)] isa convex function.

Note that a(x) is monotonically increasing. Then we have X_a > g

By g'[h™(x)]= (lnl)" = (—l)' = iz >0, g[h™(x)] isa convex function.
X X X

And g(X) is monotonically increasing. Then EZX_h holds.

From the above discussions, we have X, > X, > X .

The proof'is completed. W

4.2. The relationship of sizes and impact coefficients of means

Theorem 11. If xs < Xg holds, then pr> pg.

Proof. If Ui and U: satisfy U_gS%,thenU1 and U2 shall satisfy Gs%.
Then Fo)> Fal)
Ui\—) =2 Ul —) .
2 2
Hence pi>p;. M

By Theorem 8 and its generalized version and Theorem 9, we obtain the following
conclusion:

Corollary 1. Let h(x)=f[g™(0)] . If f(x)-h'(x)<0 , then p >p, ; if
f'(x)-h"(x)>0, then p, <p,.

Example 6. Let f(x)=x" (x>0, n>0).Then p, ismonotonically decreasing

on n.
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Proof. Let n,>n, >0, f(x)=x"and f,(x)=x™.Then

n

h0 = £, 001 = x" |

,, n, n 2
Therefore, h (x) =—2%(—%-1)x"
1 1

Since Ny >1 and Xx>0,then h'(x)>0 holds.
nl

Note that f, (x) =n,x"™" >0.Then f'(x)-h’"(x)>0.
We have p; <p; .
Hence p; is monotonically decreasingon n. W

For f(x)=x" (n>1) and p, = p(pis a constant), the value of n may be

searched by the following program (Pas Language) :
{$N+}
var 1,j,d:longint;
n,a,b,p,dx,s:extended;
function f(x,n:extended):extended;
begin
if x=0 then f:=exp(In(0.5)*(n-1)/n)
else f:=exp(In(exp(In(0.5)*(n-1))-exp(In(x)*n))/n);
end;
begin
readln(p,a,b,d);
repeat
n:=(atb)/2;
dx:=f(0,n)/d;
s:=0;
for j:==1to d-1 do
begin
s:=s+f(j*dx,n)*dx;
end;
s:=2%*s-0.5;
if s=p then
begin
writeln(n);
break;
end;
if s>p then a:=(a+b)/2
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else b:=(atb)/2
until b-a<1E-5;
writeln(n:0:4);
end.

In the practical application, we may reference the following table. By selecting
the functions which have small impact coefficients, the impact of extreme small value
can be reduced; By selecting the functions which have large impact coefficients, the
impact of extreme large value can be reduced.

f(x 1

( ) X6.46 X3.02 X1.88 X1.33 X 111 X _

(x> 0) X
P 0.1 0.2 0.3 0.4 0.5 0.693 0.775

4.3. The necessary and sufficient condition of x, =x,

Lemma4. ([3]) If f'(x)=0,then f(X) isconstantor a linear function.

Theorem 12. If f(x) and g(X) are both continuous functions and Z = X_g , then
gx)y=af(x)+b Ca=0) .

Proof. Let h(x)= f[g~'(x)]. Suppose h'(x)#=0,then h(X)is a concave or convex

function. Since there exists Z , f(x) has the inverse function.

Note that f(x) is a continuous function. Then f(X) is a monotonical function.
By Theorem 8 and its generalized version,

for X, =X, ==X, #X,, we have X, # X, , a contradiction. Henceh'(x) = 0.
By Lemma 4, we may assume

h(X)=%b (a#0) or h(x)=c (c isaconstant) .

Suppose h(x)=c,i.e., f[g”'(X)]=c.Then g'(x)=f'(c) and g(x)= f(c).
Hence g(X) has no inverse functions. Therefore, g does not exist, a contradiction.

Then f[g‘(x)]:%b.
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We have ¢~ (X) = fl(%b) =y and x=af(y)+b.
Hence g(x)=af(x)+b (a=0) . A
Combining Theorem 2, we obtain that for the continuous functions f (X) and g(x),
if f(x) and g(X) have both the inverse function, then Z = gholds if and only if
gx)=af (x)+b Ca=0) .
Corollary 2. Let h(x)=f[g™'(x)]. Then f'(X)-h'(x)<0 holds if and only if
X; £X, (The equality holds if and if X =X, =---=x,);
And f'(x)-h"(x)>0 holds if and only if X, >X, (The equality holds if and
only if X, =X, =---=X,).
Proof. By Theorem 8 and its generalized version, let h(x)= f[g™'(x)]. If
f'(x)-h"(x)<0 holds, then x, <x ;if f'(x)-h'(x)>0 holds, then X, > X, . (The
equalities hold if and only if X, =X, =---=X,.)
If x, < E holds (The equality holds if and only if x, =X, =---=X, ), then we
can suppose f (X)-h'(x)>0.
By the proof course of Theorem 10, we have h'(x)=0. Note that f'(x)=0
(Since the definition of Z requires that f(X) has the inverse function, f(Xx) is
not a constant.) . Then f'(X)-h'(X)#0, ie., f (X)-h'(x)>0.
From the above discussions, Z > X_g holds (The equality holds if and only if
X, =X, =---=X,.) ,acontradiction. Hence

f'(x)-h"(x)<0.
Therefore, we have

f'(x)-h"(x)<0 holds ifand only if X, <X, (The equality holds if and only if
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Similarly, f'(x)-h'(x)>0 holds if and only if X, >x, (The equality holds if

andonly if X, =x,=---=x,.) . W

n
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