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The Generalized Mean and Error Analysis 
 
 

Abstract:  In this paper, the definition of generalized mean ])(
1

[
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1 ∑
=

−=
n

i
if xf

n
fx  is 

introduced. It summarizes the common characterizations and also expands the 
meaning of arithmetic, geometric and harmonic means. Secondly, the definition of 
average error is introduced, and the method of reducing error by averaging the values 
out is discussed. Based on the properties of convex function and the Jensen Inequality, 

the judgment of gf xx ≤  and the necessary and sufficient condition of gf xx = are 

discussed. Finally, the definition of effect coefficient which measures the effect of 
extreme values on a generalized mean is introduced. Some applications are contained 
in the paper as well. 
 
 
Keywords: Mean; Error; Convex function; Jensen Inequality. 
 
 
The aim and background of the research:  What are the similarities of arithmetic, 
geometric and harmonic means? Whether the meaning of mean could be expanded? In 
scientific experiments, we often reduce errors by averaging the values. Are the effects 
different if we choose different means? In order to reduce the effect of extreme values, 
how to choose a kind of mean? 
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【Main results】 
 

The notations used in this paper are listed as follows. 
 

I. Let  and U  be continuous random variables which satisfy (0，

1]-uniform distribution. 

nUUU ,...,, 21
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III. For a continuous random variable X , let  and   denote the 

distribution function and the density function of 

)(xFX )(xpX

X , respectively. 
 
 

1. Generalized mean 

Definition 1. If the inverse function of  exists, then )(xf ])(
1

[
1

1 ∑
=

−=
n

i
if xf

n
fx  is 

called the -mean of )(xf 1x , 2x ,…, nx . 

 
Theorem 1. The arithmetic mean is x-mean, the geometric mean is -mean, and 

the harmonic mean is 

xln

x
1

-mean. 

Proof. (1) Let . Then xxa =)( xxa =− )(1 ∑
=

=⇒
n

i
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n
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1

1
, that is, the arithmetic mean 

of 1x , 2x ,…, nx . 

(2) Let . Then . For xxg ln)( = xexg =− )(1
1x , 2x ,…, ),0( +∞∈nx , 
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which is the geometric mean of 1x , 2x ,…, nx . 
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x
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)( = . Then 
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which is the harmonic mean of 1x , 2x ,…, nx . ■ 
 

Theorem 2. If the inverse function of  exists, and )(xf bxafxg += )()(  ( ), 

then 

0≠a

fg xx ≡ . 

Proof. Note that the inverse function of  is )(xg )()( 11

a
bxfxg −

= −− . Then 

]})([
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that is, fg xx = . ■ 

 

2. Average error 
The variance and standard deviation usually used in mathematical statistics can 
characterize the data volatility, but the meaning of their specific value is not so 
straightforward. Therefore, the definition of average error is introduced. Moreover, we 
shall study some problems by using this definition. 
 

Definition 2. For a random variable X , ))(( XEXEeX −=  is defined to be the 

average error of X . Moreover, ))(()( XExExe ff −=  is called the -average 

error of 

)(xf

X . 
 

2.1. Basic properties of average error 

Obviously, for a continuous random variable X , dxxpXEXe XX ∫
+∞

∞−
−= )()( . 

 
Theorem 3. If the standard deviation of a random variable X  exists, then 

)(XeX σ≤ . 

Proof. If X  is a continuous random variable, then . 1)( =∫
+∞

∞−
dxxpX

Since x2 is a convex function, then by the Jensen Inequality, we have 
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             ∫∫
+∞

∞−

+∞

∞−
−≤− dxxpXEXdxxpXEX XX )()]([])()([ 22 ， 

that is,                             )(
2

XVarex ≤ . 

Hence                              )(XeX σ≤ . 

If X  is a discrete random variable, the result can be proved similarly. ■ 
 
Theorem 4. If the mathematical expectation and average error of a random variable X 
both exist, then for any constant ε> 0, we have 

ε
ε XeXEXP ≤≥− ))(( . 

Proof. If X  is a continuous random variable, then  

∫∫
≥−≥−

−
≤=≥−

})(;{})(;{
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X
XEXx

X dxxp
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εε
X

X
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1
. 

If X  is a discrete random variable, then the result can be proved similarly. ■ 
 
The result of Theorem 4 is similar to Chebyshev’s Inequality. They both give the 
upper bound of large deviation probability of occurrence. Since the probability of any 
events is no more than 1, we call “the above upper bound is less than 1” “meaningful”. 

For Theorem 4, when Xe>ε , the upper bound is meaningful; for Chebyshev’s 

Inequality, when 1
)(

2
<

ε
XVar

 (namely, )(Xσε > ), the upper bound is meaningful. 

If follows from )(XeX σ≤  that the meaningful scope of Theorem 4 is large than 

that of Chebyshev’s Inequality. 
 
Example 1. The average error of . U
Solution. Since  
                               0 （x≤0 or x>1）, 

        1 （ 10 ≤< x ）, 
)(xpU =

and 
2

1
)( =UE , hence 
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0
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Answer. The average error of  is U
4

1
.  

 

Example 2. Let X ~ . Then ),( 2σμN σ
π
2

=Xe . 

Proof.                     dxexe
x

X
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Theorem 5. Let , , , ~  and 1X 2X ⋅⋅⋅ nX ),( 2σμN xxa =)( . Then σ
πn

Xe a
2

)( = . 

Proof. By the additivity of normal distribution, ~ . Then ∑
=

n

i
iX

1

),( 2σμ nnN

X ~ ),(
2

n
N σμ ，and )()( iXEXE = （ ni ,...,2,1= ）. 

Hence                  σ
π

σ
π nn

XeXe 22
)( =⋅== . ■ 

It can be seen that the average error of （iX ni ,...,2,1= ）reduced n -times by 

solving X .  

 
Example 3. The accuracy of an analytical balance is 5mg. But the accuracy in a 
chemical analysis need to be 1mg. Suppose the measured value satisfies normal 
distribution. How many times do the parallel measures need and then obtain the mean 
of x satisfying the requirement? 
 

 
182



Solution. Suppose we need n times the parallel measures. From the above example, 

the error reduce 5-times implies 5=n , and it follows that 25=n . 

 

Theorem 6. Let  be random variables with independent and identical 

distribution. Then 

}{ nX

)(
1

lim
1

i

n

i
in

XEX
n

=∑
=

+∞→
. 

Proof. Let μ=)( iXE  and . Since , , … ,  are independent 

and identical distribution, by Lindberg-Levy Central Limit Theorem,  

2)( σ=iXVar 1X 2X nX

n

nX
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i
i
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i
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X
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XVar
n

σ
, 

μ=X ，that is, )(
1

lim
1

i

n

i
in

XEX
n

=∑
=

+∞→
. ■ 

It shows that the number of parallel measures tends to positive infinity, the 

arithmetic mean of  tends to . For most surveying instruments with 

uniform scale,  is the true value. 

iX )( iXE

)( iXE

Let  be random variables with independent and identical distribution. Let }{ nX

fX  be the mean of , , , . By Theorem 4, 1X 2X ⋅⋅⋅ nX ))](([lim 1
ifn

XfEfX −

+∞→
= . 

    For example, if  satisfies (0，1]-uniform distribution, then . It 

follows that 

iX xxf ln)( =

)1ln(^lim
1

0
dxxeX fn

⋅= ∫+∞→
. 

Since 1)ln(lim1)ln(ln
0

1

0

1

0
−=−−−=−=

+→∫ xxxxxxdxx
x

, 

  
2

1
)(

1
lim =≠=

+∞→ ifn
XE

e
X . 

It can be seen that if the number of parallel measures tends to positive infinity, 

then the -mean of  is not always equal to the true value. )(xf iX
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Theorem 7. If baXY += , then XY eae = , where a and b are constants. 

Proof. Since bXaEbaXEYE +=+= )()()( ，we have 

dxxpbxaEbaXe XY ∫
+∞

∞−
+−+= )(])([)(  

dxxpXEXa X∫
+∞

∞−
−= )()(  

                        Xea= . 

If the variation of  over )(xf }0)({ ≠xpx X  is small, then for the random 

variable , we have （)(XfY = bXxfY +≈ )( 0
' }0)({0 ≠∈ xpxx X ,  is a constant）. 

By Theorem 5，

b

XY exfe )( 0
'≈ . ■ 

 
Example 4. Let the hydrogen ion concentration of a bottle of dilute hydrochloric acid 
be 0.056mol/L（the error is no larger than 0.001mol/L）. Question: How many decimal 
places should the PH value of such dilute hydrochloric acid retain? 

Solution. Suppose the hydrogen ion concentration is x, then  and xpH lg−=

10ln

1'

x
pH x −= . Since , then , the 

variation of '  is relatively

]057.0,055.0[∈x 619.7896.7 ' −≤≤− xpH

xpH   small. Hence xpH ee 7.7≈ ，and the pH value retains 

two decimal places, that is,  

25.1056.0lg =−=pH . 

 

2.2. The average errors of  222 ,, HGA

2.2.1. The properties of  2A

)2()
2

( 12
21

2 UxUPxUUFA −≤=≤
+

= . 

Establish the plane rectangular coordinate system with abscissa axis U1 and 

vertical axis U2. Note that  locate in the field surrounded by ,  

and abscissa axis, vertical axis (except the origin) is an equally likely event. Then it 
satisfies the condition of geometric probability model. 

),( 21 UU 11 =U 12 =U

See Fig. 1. (a), when 
2

1
0 ≤< x , 2

2

12 2
2

)2(
1/)2( xxSUxUP ABC ===−≤ Δ . 
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See Fig. 1. (b), when 1
2

1
<< x ,  

2
2

12 )1(21
2

)22(
11/)1()2( xxSUxUP DEF −−=

−
−=−=−≤ Δ . 

12 =U

11 =U  

12 =U  

12 2 UxU −=
12 2 UxU −=

11 =U  
 
                                   1

（a） （b） 

Figure 1. 
 

Since                       1
2

0
21
≤

+
<

UU
, 

then                            0 （ 0≤x ）; 

                              （22x
2

1
0 ≤< x ）;         

                               （2)1(21 x−− 1
2

1
<< x ）; 

                              1 （ ）. 1≥x

                      
2

1
)

2

1
())((

22
== AA FUEF . 

                              （0 0≤x  or ）; 1≥x

                      =)(2 xpA    （x4
2

1
0 ≤< x ）;      

                               x44−  （ 1
2

1
<< x ）. 

=)(2 xFA  

                 dxxpxExAe A∫
+∞

∞−
−= )()()( 22  

     dxxxdxxx )44()
2

1
(4)

2

1
(

1

2

1
2

1

0
−−+⋅−= ∫∫  

                     
6

1
)23

3

4
()

3

4
(

1

2

1

23
2

1

0

23 =−+−++−= xxxxx . 

2.2.2. The properties of  2G

)()()(
1

2

2212

U
xUPxUUPxFG ≤=≤= . 

                                                        
1 The density functions of the random variables corresponding to the vertices in the figure of the function may be 
equal to zero. Such vertices can not be attained, and the same below. 
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When 10 << x , we establish the plane rectangular coordinate system with 

abscissa axis U1 and vertical axis U2 (see Fig. 2.). Note that  locate in the 

field surrounded by , 

),( 21 UU

11 =U 12 =U  and abscissa axis, vertical axis (except the origin) 

is an equally likely event. Then it satisfies the condition of geometric probability 

model. Since 
1

2

2
U
xU ≤  is the field surrounded by 

1
2

U
xU = , ,  and 

abscissa axis, vertical axis, then 

11 =U 12 =U

1
2

U
xU =  intersects with 1=y  at the intersection 

point . Hence )1,( 2x

    1/)()( 2
1

1

1

2

1

2

2
2

xdU
U
x

U
xUP

x
+=≤ ∫  12 =U

11 =U  
  21

1
2

2
ln xUx

x
+=  

1

2

2
U
xU =  

222 ln xxx −= . 

Since , then 10 2 ≤< G
Figure 2.  

                             0 )0( ≤x ; 

                                xxx ln2 22 − )10( << x ; 

                                1 ; )1( ≥x

and                 5966.02ln
4

1
)

2

1
())(( 22 =+== GG FUEF ,  

                                    0 )10( ≥≤ xorx ; 

                                    xx ln4−  )10( << x ; 

F )(2 x =  G

== )()( '
22 xFxp GG  

dxxxxGe )ln4(
2

1
)(

1

02 −−= ∫ .  

Let 
2

ln)
3

4
(

9

4
)(

2
323 xxxxxxg −−+= . It can be checked that 

)ln4)(
2

1
()(' xxxxg −−= . 

Hence               1989.0)](lim)
2

1
([)]

2

1
()1([)(

0
2 =−−−=

→
μ

μ
ggggGe . 
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2.2.3. The properties of  2H

)
2

()
11

2
()(

1

1
2

21

2

xU
xUUPx

UU

PxFH
−

≤=≤
+

= . 

    When 10 << x , we establish the plane 
rectangular coordinate system with abscissa axis U1 

and vertical axis U2 (see Fig. 3.). Note that  

locate in the field surrounded by 

),( 21 UU

11 =U , 12 =U  and abscissa 

axis, vertical axis (except the origin) is an equally likely event. Then it satisfies the 

condition of geometric probability model. Since 
xU

xUU
−

≤
1

1
2

2
 is the field surrounded 

by 
xU

xUU
−

=
1

1
2

2
, , 11 =U 12 =U  and abscissa axis, vertical axis, then 

xU
xUU
−

=
1

1
2

2
 intersects with 12 =U  at the intersection point )1,

2
(

x
x
−

. Hence 

12 =U

11 =U  

xU
xUU
−

=
1

1
2

2
 

Figure 3. 

x
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x
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2 1
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1
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x
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x
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−

+
2

)]24ln(
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[
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1

2

1 )1
2

ln(
2

2

−+=
x

xx . 

Since ，         0 10 2 ≤< H )0( ≤x ; 

                        )1
2

ln(
2

2

−+
x

xx  )10( << x ; 

                         1 ; )1( ≥x

then                6373.0
8

3ln

2

1
)

2

1
())(( 22 =+== HH FUEF , 

                                0 )10( ≥≤ xorx ; 

                                
2

)1
2

ln(1
−

+−+
x

x
x

x  )10( << x . 

=2F )(xH  

= )()( '
22 xFxp HH =

The average error is dxxpxxExEHe H )(
2

1
))(()( 2

1

02 ∫ −=−= .  

Let 
63

2
)2ln(

3

4
)1

2
ln()

43
()(

223 xxx
x

xxxf ++−−−−= . It can be checked that 
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)()
2

1
()( 2

' xpxxf H−=  （ 10 << x ）. 

Hence 2221.0
3

1
3ln

8

21
2ln4)]([)()( 2

1

0

1

2

12 =+−=−+= xfxfHe . 

2.2.4. Conclusions 

In conclusion, UeHeGeAe <<< )()()( 222 . It can be seen that choosing different 

means, the effect of reducing the error may be different. 
 
 

2.3. -average error for small error numbers )(xf

The small error number is defined to be a number which is largely greater than 
its error. If a set of small error numbers satisfies uniform distribution in the error 

range, without loss of generality, suppose )( U
b
abbUaX i +=+= . Let 

b
an = . Then 

. It is easy to see that n is very large for small error numbers. Now we 

discuss the properties of the means when 

)( UnbX i +=

+∞→n . 
 

Lemma 1. If the inversion function of  exists,  and  are both 

derivable, then . 

)(xf )(xf )(1 xf −

1)()]([ ''1 =⋅− xfxff
)(xfy =

Proof. See Fig. 4.  is equal to the slope  of the tangent line  of  at 

the point , and  is 

equal to the slope  of the tangent line  

of  at the point .  

)(' xf y = x
1k l )(xf

))(,( xfxA )](['1 xff −

2k m

)(1 xf − )),(( xxfB

)(1 xfy −=

The images of  and  

(resp. A and B) are symmetric with regard to 

the line 

)(xfy = )(1 xfy −=

xy = . Then by the symmetry,  

Figure 4. 

 

I. If ，then 、  are both parallel to the lineml // l m xy = . Hence 

121 == kk , and then 121 =kk . 

II. If  intersects with , then ,  intersect with the line l m l m xy =  at a point C . 

Draw two lines at the point C which are parallel to x-axis and y-axis, respectively. 
Since 5431 ∠+∠+∠=∠ ， 32 ∠=∠ ， 54 ∠=∠ , 
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 then °=°×=∠+∠=∠+∠ 90452)43(221 , 

and                          12tan1tan21 =∠⋅∠=⋅ kk . 

    Consequently， . ■ 1)()]([ ''1 =⋅− xfxff

 

Lemma 2. Suppose the inversion function of  exists,  and  are 

both derivable. If  is an increasing (resp. decreasing) function over 

)(xf )(xf )(1 xf −

)(xf I , then 

 is an increasing (resp. decreasing) function over )(1 xf − })({ IxxfM ∈= . 

Proof. Suppose  is an increasing (resp. decreasing) function over )(xf I ,  

is an increasing (resp. decreasing) function over （ ）. Let . Then 

 and  have different signs. Then 

)(1 xf −

N MN ⊆ Nx ∈0

)( 0
' xf )]([ 0

'1 xff −

0)]([)( 0
'1

0
' <⋅ − xffxf , 

which is a contradiction to Lemma 1. This completes the proof. ■ 
 

Lemma 3.  If the inverse function of  exists,  and  are both 

derivable,  then 

)(xf )(xf )(1 xf −

fx = ]
)(

)(
1

[
1

2

1

n
xfxf

n
f

n

i
i +∑

=

−  is monotonically increasing, where 1x  

is a variable，and 2x , 3x , ..., nx  are constant values.

Proof. Since  is a continuous function and has the inverse function, then  )(xf

)(xf  is monotonical.  

I.  is monotonically increasing. )(xf

Then  and )(1 xf −

n
xfxf

n

n

i
i

)(
)(

1 1

2

+∑
=

 are  monotonically increasing. 

Therefore ]
)(

)(
1

[
1

2

1

n
xfxf

n
f

n

i
i +∑

=

−  is monotonically increasing, i.e., fx  is 

monotonically increasing. 

II.  is monotonically decreasing. )(xf
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Then  and )(1 xf −

n
xfxf

n

n

i
i

)(
)(

1 1

2

+∑
=

 are monotonically decreasing. 

Therefore ]
)(

)(
1

[
1

2

1

n
xfxf

n
f

n

i
i +∑

=

− is monotonically increasing, i.e., fx  is 

monotonically increasing. 
    The result follows. ■ 
 

Theorem 8.  Suppose  a  function   has  the inverse function  .  

If  and  are both derivable, then

)(xf )(1 xf −

)(xf )(1 xf − )(lim nxL f
n

−=
+∞→

 and 
2

21 UU +
 have 

the same distribution, where 11 Unx += ， 22 Unx += , and fx  is the -average 

mean of  and . 

)(xf

1x 2x

Proof. Note that ]
2

)1()1(
[]

2

)()(
[ 11 +++

≤<
+ −− nfnffxnfnff f , i.e., 1+≤< nxn f . 

Then                1)(lim0 ≤−<
+∞→

nxf
n

, 

and         （0)( =xFL 0≤x ）， 1)( =xFL （ ）. 1≥x

For ，we have 10 << x

        )]
2

)()(
[()(

211 xnxfxffPxFL ≤−
+

= −  

       =  (By Lemma 3). )])()(2[( 1
1

2 xfxnffxP −+≤ −

Let two dimensional Cartesian coordinate system consist of the abscissa axis 1x  

and  vertical axis 2x . Note that  locate in the field surrounded by  ),( 21 xx

nx = , ,ny = 1+= nx  and 1+= ny  (except ) is an equally likely event. Then 

the conditions of geometric probability model are satisfied.  

),( nn

)]()(2[ 1
1

2 xfxnffx −+≤ −  is the region surrounded by nx = , , , 

 and the below area of . 

ny = 1+= nx

1+= ny )]()(2[ 1
1 xfxnff −+−

Then . )()]()(2[)]}()(2[{ 1
'

1
'1'

1
1

1
xfxfxnffxfxnff x ⋅−+−=−+ −−

When , then , +∞→n )()( nfxnf =+ )()( 1 nfxf = ,  and )()( '
1

' nfxf =

            . 1)()]([)]}()(2[{ ''1'
1

1 −=⋅−=−+ −− nfnffxfxnff
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Hence  is the straight line ： )]()(2[ 1
1 xfxnff −+− l

        , where the line  passes the point  

with slope -1. 

12 )()( xxnxnx −+=+− l ),( xnxn ++

Then the line passes point )2,( xnnA +  and point )12,1( −++ xnnE . 

When
2

1
0 ≤< x （see Figure 5.（a））, 

we obtain 

22
1

1
2 2)2(

2

1
1/)])()(2[( xxSxfxnffxP ABC ===−+≤ Δ

− . 

When 1
2

1
<< x （see Figure 5.（b））, we have 

2
2

1
1

2 )1(21
2

)22(
11/)1()])()(2[( xxSxfxnffxP DEF −−=

−
−=−=−+≤ Δ

− , 

     i.e.,      0 （ ）; 0≤x

              （22x
2

1
0 ≤< x ）;        

              （2)1(21 x−− 1
2

1
<< x ）; 

             1 （ ）. 1≥x

Hence    )()( 2 xFxF AL = . ■ 

 

   It is shown that the distribution of )(lim nxf
n

−
+∞→

 is independent from . 

Combining Theorem 5, for any continuous function  which has the inverse 

function and ，

)(xf

)(xf

11 Unx += 22 Unx += , we have 
 

6

1
)()(lim 2 ==

+∞→
Aexe fn

. 

 
Example 5. Let 1R  and 2R  be two same resistances labeled by “ （ ）”. 
Suppose 

Ωk2 %1.0±
1R  and 2R  are both uniform distribution within the error scope. Try to 

estimate the error of the resistance R  raised from the parallel of 1R  and 2R . 

Solution. Since  （Unit：]20021998(, 21 ，∈RR Ω）, then 

Figure 5.（b） 

Figure 5.（a） 

=)(xFL  

1+= ny  

1+= nx  

lnx =

ny =  

1+= ny

1+= n
 

x
l

nx =

ny =  
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)5.499(441998 111 UUR +=+= . 

Similarly, we obtain )5.499(441998 222 UUR +=+= . 

Let 
x

xf 1
)( =  and fR  be the -mean of  and . Then  )(xf 1R 2R

221

21 fR
RR

RRR =
+

= . 

Note that  is relatively large. Therefore 5.499=n
2

5.499
2

21 UUR +
≈− , i.e., 

. Hence  9992 2 +≈ AR Ω=×=≈
3

1

6

1
22 2AR ee . 

 

3.  The effect of Large numbers and Small numbers on means 
    For four numbers 1, 1, 1, 4,  the x-mean is 1.75 and the -mean is xln

414.12 = . Obviously, the effects of the two means raised by extreme value （4） are 

different. Extreme value（4） has more affect on the x -mean than the -mean. 
Naturally, a problem is raised that how to compare the effect of a kind of mean from 
extreme value conditions? 

xln

Theorem 9. Let be a continuous function and )(xf fU  the -mean of  and 

. Then 

)(xf 1U

2U 22 )1(1)( xxFx
fU −−≤≤ . 

Proof. When xU ≤1  and ，then  xU ≤2

xxfxffUfxffxf =
+

≤
+

≤ −− ]
2

)()(
[]

2

)()(
[ 121  and 

2
21 )()()( xxUPxUPxUP f =≤⋅≤≥≤ . 

When  and , then xU >1 xU >2 xxfxffUfxffUf =
+

>
+

> −− ]
2

)()(
[]

2

)()(
[ 121  

and 

        2
21 )1()()()(1)( xxUPxUPxUPxUP ff −=>⋅>≥≤−=> , 

i.e.,     2)1(1)( xxUP f −−≤≤ . 

Hence   22 )1(1)( xxFx
fU −−≤≤ . ■ 

    Especially, when , we have )(UEx =
4

3
)(

4

1
≤≤≤ xUP f . 

    Let 
4

1
))(( =≤ UEUP f  and if one of  and  is larger than , then 1U 2U )(UE

 192



fU  is larger than . It is shown that )(UE fU  has enormous implications by large 

numbers.  Let 
4

3
))(( =≤ UEUP f  and if one of  and  is smaller than , 

then 

1U 2U )(UE

fU  is smaller than . It is shown that )(UE fU  has enormous implications by 

small numbers. 
Let two dimensional Cartesian coordinate system consist of the abscissa axis U1 

and vertical axis U2. (See Figure 6.). Note that  locate in the field 

surrounded by  、  and the two axis (except the origin) is an equally 

likely event. Then the conditions of geometric probability model are satisfied. 

Generally，let 

),( 21 UU

11 =U 12 =U

))(( UEUPd f ≤= , )(1 UEU ≤  and , then  )(2 UEU ≥

the probability of  )(UEUf ≤  is equal to  

2

1
2

4
1

)
4
1

(
2
1

SABCD

I
−=

−
== d

dSp   

Figure 6. 

2

1
=fU

and the probability of )(UEUf >  is p−1 .  

Definition 3. The impact coefficient of the -mean is defined as )(xf

2

1
)

2

1
(2 −= Uff Fp （ ]

2

)()(
[

211 UfUffUf
+

= − ）. 

It is obvious that . If  is more larger, then the -mean acted by 

small numbers has more impactions; if  is more smaller, then the -mean 

acted by larger numbers has more impactions. If 

10 ≤≤ p fp )(xf

fp )(xf

5.0=fp , the -mean acted by  

larger numbers and small numbers has the same impactions. 

)(xf

  

4.  The necessary and sufficient condition of comparing values and 

identical equality of means  

 
4.1.  Comparing values of means  
 

Mean inequality shows the relationship of sizes between arithmetic mean, 

geometric mean and harmonic mean. For the generalized -mean and )(xf
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)(xg -mean, what are the relationship of their sizes? 

Theorem 10. If  is monotonically increasing and  is a concave 

function，then 

)(xf )]([ 1 xgf −

gf xx ≤  with equality holds if and only if nxxx =⋅⋅⋅== 21 . 

Proof.  Let . )]([)( 1 xgfxh −=

Since  is monotonically increasing, then  is monotonically increasing. 

Then  and  are both monotonically increasing. 

)(xg )(1 xg −

)(xh )(1 xh−

Note that  is a concave function. By Jensen Inequality,  )(xh

∑∑
==

≥
n

i

i

n

i

i yh
n

y
n

h
11

)(
1

)
1

( , where the equality holds if and only if . nyyy =⋅⋅⋅== 21

Then       ])(
1

[
1

1

1

1
∑∑
=

−

=

≥
n

i

i

n

i

i yh
n

hy
n

. 

Suppose （ ）, then )(1
ii ygx −= ni ...,21 ，，= )( ii xgy = . 

We have ])(
1

[)(
1

1

1

1
∑∑
=

−

=

≥
n

i

i

n

i

i xf
n

hxg
n

.  

Then ∑∑
==

− ≥
n

i

i

n

i

i xf
n

xg
n

gf
11

1 )(
1

)](
1

[{ , and ])(
1

[)](
1

[
1

1

1

1 ∑∑
=

−

=

− ≥
n

i

i

n

i

i xf
n

fxg
n

g , i.e., 

gf xx ≤  with equality holds if and only if nxxx =⋅⋅⋅== 21 . ■ 

If  is monotonically decreasing，then the same conclusion is also obtained. )(xg

Similarly, it is easy to obtain the following: 

If is monotonically decreasing and is a concave function, then  )(xf )]([ 1 xgf −

gf xx ≥ . 

If  is monotonically increasing and  is a convex function, then  )(xf )]([ 1 xgf −

gf xx ≥ . 

If  is monotonically decreasing and  is a convex function, then  )(xf )]([ 1 xgf −

gf xx ≤ . 
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(The equality holds if and only if nxxx =⋅⋅⋅== 21 .) 

 

Example 5. （Mean inequality）

∑
∏∑

=

==

≥≥ n

i i

n
n

i
i

n

i
i

x

nxx
n

1

1

11 1
)(

1
（ ）. 0>ix

Proof.  Let xxa =)( ,  and xxg ln)( =
x

xh 1
)( = . By Theorem 1, it only needs to 

prove hga xxx ≥≥ . 

Since , then  is a convex function. 0)()]([ ''1'' >==− xx eexga )]([ 1 xga −

Note  that  is monotonically increasing. Then we have )(xa ga xx ≥ . 

By 0
1

)
1

()
1

(ln)]([
2

'''1'' >=−==−

xxx
xhg ,  is a convex function.  )]([ 1 xhg −

And  is monotonically increasing. Then  )(xg hg xx ≥  holds.  

From the above discussions, we have hga xxx ≥≥ . 

The proof is completed. ■ 
 

4.2. The relationship of sizes and impact coefficients of means 
  

Theorem 11. If gf xx ≤  holds, then gf pp ≥ . 

Proof. If  and  satisfy 1U 2U
2

1
≤gU , then  and  shall satisfy 1U 2U

2

1
≤fU .  

Then          )
2

1
()

2

1
( gf UU FF ≥ . 

Hence            gf pp ≥ .  ■ 

 
By Theorem 8 and its generalized version and Theorem 9, we obtain the following 
conclusion: 

Corollary 1. Let . If , then ; if 

, then . 

)]([)( 1 xgfxh −= 0)()( ''' <⋅ xhxf gf pp ≥

0)()( ''' >⋅ xhxf gf pp ≤

Example 6.  Let n（ ， ）. Then  is monotonically decreasing 

on . 

xxf =)( 0>x 0>n fp

n
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Proof. Let , and . Then 012 >> nn 1)(1
nxxf = 2)(2

nxxf =

1

2

)]([)( 1
12

n
n

xxffxh == − .  

Therefore, 
2

1

2

1

2'' 1

2

)1()(
−

−= n
n

x
n
n

n
nxh . 

Since 1
1

2 >
n
n

 and , then  holds. 0>x 0)('' >xh

Note that . Then . 0)( 1
2

'
2

2 >= −nxnxf 0)()( ''' >⋅ xhxf

We have . 
12 ff pp ≤

Hence  is monotonically decreasing on . ■ fp n

For （ ）and nxxf =)( 1>n pp f = ( is a constant), the value of  may be 

searched by the following program（Pas Language）: 

p n

{$N+} 
var i,j,d:longint; 
    n,a,b,p,dx,s:extended; 
function f(x,n:extended):extended; 
begin 
  if x=0 then f:=exp(ln(0.5)*(n-1)/n) 
  else f:=exp(ln(exp(ln(0.5)*(n-1))-exp(ln(x)*n))/n); 
end; 
begin 
  readln(p,a,b,d); 
  repeat 
    n:=(a+b)/2; 
    dx:=f(0,n)/d; 
    s:=0; 
    for j:=1 to d-1 do 
    begin 
      s:=s+f(j*dx,n)*dx; 
    end; 
    s:=2*s-0.5; 
    if s=p then 
    begin 
      writeln(n); 
      break; 
    end; 
    if s>p then a:=(a+b)/2 
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    else b:=(a+b)/2 
  until b-a<1E-5; 
  writeln(n:0:4); 
end. 
 
    In the practical application, we may reference the following table. By selecting 
the functions which have small impact coefficients, the impact of extreme small value 
can be reduced; By selecting the functions which have large impact coefficients, the 
impact of extreme large value can be reduced. 

)(xf  

)0( >x  

46.6x  
02.3x  

88.1x  
33.1x  

    
x  

  xln   x
1

 

fp  0.1 0.2 0.3 0.4 0.5 0.693 0.775 

 
 

4.3. The necessary and sufficient condition of gf xx ≡   

Lemma 4. ([3])  If , then  is constant or a linear function. 0)('' =xf )(xf

Theorem 12.  If  and  are both continuous functions and )(xf )(xg gf xx ≡ , then  

bxafxg += )()( （ 0≠a ）. 

Proof.  Let . Suppose , then is a concave or convex 

function. Since there exists 

)]([)( 1 xgfxh −= 0)('' ≠xh )(xh

fx ,  has the inverse function. )(xf

Note that  is a continuous function. Then  is a monotonical function. )(xf )(xf

By Theorem 8 and its generalized version,  

for , we have nn xxxx ≠=⋅⋅⋅== −121 gf xx ≠ , a contradiction. Hence . 0)('' =xh

By Lemma 4,  we may assume 

a
bxxh −

=)( （ ）or 0≠a cxh =)( （ c  is a constant）. 

Suppose , i.e., . Then  and  . cxh =)( cxgf =− )]([ 1 )()( 11 cfxg −− = )()( cfxg =

Hence  has no inverse functions. Therefore, )(xg gx  does not exist, a contradiction. 

Then 
a

bxxgf −
=− )]([ 1 . 
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We have y
a

bxfxg =
−

= −− )()( 11  and byafx += )( . 

Hence （ ）. ■ bxafxg += )()( 0≠a

   Combining Theorem 2, we obtain that for the continuous functions and , 

if  and  have both the inverse function, then 

)(xf )(xg

)(xf )(xg gf xx ≡ holds if and only if 

（ ）.  bxafxg += )()( 0≠a

Corollary 2.  Let . Then  holds if and only if  )]([)( 1 xgfxh −= 0)()( ''' <⋅ xhxf

gf xx ≤  (The equality holds if and if nxxx =⋅⋅⋅== 21 ); 

And  holds if and only if  0)()( ''' >⋅ xhxf gf xx ≥  (The equality holds if and 

only if nxxx =⋅⋅⋅== 21 ). 

Proof. By Theorem 8 and its generalized version,  let . If 

 holds, then 

)]([)( 1 xgfxh −=

0)()( ''' <⋅ xhxf gf xx ≤ ; if  holds, then 0)()( ''' >⋅ xhxf gf xx ≥ . (The 

equalities hold if and only if nxxx =⋅⋅⋅== 21 . ) 

If gf xx ≤  holds （The equality holds if and only if nxxx =⋅⋅⋅== 21 ）, then we 

can suppose .  0)()( ''' ≥⋅ xhxf

By the proof course of Theorem 10, we have . Note that 

（Since the definition of 

0)('' ≠xh 0)(' ≠xf

fx  requires that  has the inverse function,  is 

not a constant.）. Then ，i.e., . 

)(xf )(xf

0)()( ''' ≠⋅ xhxf 0)()( ''' >⋅ xhxf

From the above discussions, gf xx ≥  holds（The equality holds if and only if 

.）, a contradiction. Hence nxxx =⋅⋅⋅== 21

0)()( ''' <⋅ xhxf . 

Therefore, we have 

0)()( ''' <⋅ xhxf  holds if and only if  gf xx ≤ （The equality holds if and only if 

.）. nxxx =⋅⋅⋅== 21
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Similarly,  holds if and only if  0)()( ''' >⋅ xhxf gf xx ≥ （The equality holds if 

and only if .）. ■ nxxx =⋅⋅⋅== 21
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