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Abstract: The problem of the existence of infinitely many prime values of a number-theoretic function f (X)

has been one of the most important topics in Number Theory. Note that if f (X) represents infinitely many
primes, then we can get this necessary condition: for any positive integer N, there exists a positive integer K such
that (T (k),h)=1and f (k) >1. Naturally, we are interested in the number-theoretic functions f (X) that
satisfy the aforementioned necessary condition. Thus, there must exist the least positive integer N such

that (f (n),h) =1and f (N) >1. Denote this least positive integer N by F, (). In this paper, we mainly

focus on three famous number-theoretic functions: f (X) =2% +1, m(x) =2* —land I(X) = X" +1,
proving they satisfy the aforementioned necessary condition respectively. Furthermore, we approximately estimate

the upper bound of F¢ (), F ) (), Fy(,, (N) respectively, and obtain some interesting results.

[ . Introduction

Let f (X) be a number-theoretic function. Whether f (X) represents infinitely many primes has
always been a problem that attracts great interests among many famous mathematicians. As early

as 2000 years ago, Euclid has proved that f (X) = X represents infinitely many primes. In 1837,
Dirichlet proved that f(X)=ax+b also represents infinitely many prime values, where

aandb are integers with (a,b)=1, eithera>0,b#0o0ra=1b=0. By proving this, he

completely solved this problem in the case of linear polynomial with integral coefficients. Apart
from this case of linear polynomial, however, the problem becomes complex and there is still no
complete  solution by now. For example, whether  functions such as

f(x)=2% +1,m(x) = 2* —Land I (x) = x* +1represent infinitely many primes has not been

verified until today. Actually, these functions are respectively related to the problem of Fermat
number, Mersenne number and the first conjecture of Landau. Readers can refer to [6] for some
other information. [6] is a paper that summaries the research history from Euclid to Green-Tao
Theorem, studies the infinitude of some special kinds of prime and brings up some interesting
questions. Our paper is just based on one of these questions. | thank Doctor Shachua Zhang here
for suggesting this interesting topic to us.

Note that if a number-theoretic function f (X) represents infinitely many primes, we can get the
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following necessary condition: for every positive integer h, there exists a positive integerk , such

that (f (k),h) =1, f(k) >1. Consequently, we are interested in functions that satisfy this
necessary condition. Thus, if f (X) satisfies this condition, there exists the smallest integer n such

that (f (n),h) =1, f(n) >1. Denoten by F, (h). In this paper, we mainly focus on the three

aforementioned functions, proving that they all satisfy this necessary condition, and approximately

estimate the upper bound of F; , (h), F,,, (), F,, (h) . Here are the results obtained.

Theorem 1 Ifm(X) = 2* —1, then for every positive integer h , there exists a least positive integer

nsuch that(m(n),h)=1andm(n)>1. In addition, there exists a constant C such that for
3

everyh>C ,n=F_, (h)< Zlog2 h.

Theorem 2 If f(X)= 2% +1, then for every positive integerh, there exists a least positive

integer nsuch that foreveryh>5, n=F, ., (h)<log,(h-1)-1.

f(x)

Theorem 3 Ifl(X) = x* +1, then for every positive integerh, there exists a least positive

integer n, such that (I(n),h) =1, 1(n) >1. In addition, for everyh > 2, n=F,,(h) Sg.

Il . Proof of the theorems

In this paper, we denote the greatest common divisor of a andb by (a,b).
Lemma 1[5] For every positive integerm,n, (2' =1,27 —1) =209 _1.

Lemma 2[4,5] Let p be an odd prime. If q is a prime factor of 2” —1,q =1(mod 2p) .

Remark 1: From Lemma 2, we can get that for every positive integer h

h+1
n=F,,h)< [T} +1.We give a stronger bound in the proof of Theorem 1.

Lemma 3[1] For integer X > 487381, z log p >0.998x , where log p represents the nature log
p<x

of p.
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Lemma 4[2] For every integer X >117, there exists at least one prime in (X, E X].

Lemma 5[3] Fork > 1, the smallest prime factor of f (K) =22 +Lis no less than 2“2 +1.



Proof of theorem 1: Remark 1 actually indicates that the first half of theorem 1 is true, so we only
need to prove  that there  exists a  constant C such that  for

3
everyh>C ,n=F_, (h)< Zlog2 hhere. Let p, be the r, prime. If 27 =h**, there is only

3
one solution p, =3,h =16 ,andn=F (h)=2 <%Iog2 h. Thus, we can let2” <h* < 2P,

If there exists ani,1<i<r, such that(2" =1 h) =1, thenl< 2" —1< 2™ <h**. As a result,
3 . .

n=F ,0)<p<p, <Zlog2 h. This means we only have to consider the case that for

everyl<i<r, (2" -1,h)>1. From Lemma 1 we know that for everyl<i= j<r,

(27 —1,2" —1) =1. And from Lemma 2, we know that for everyi > 2, the smallest prime factor

of 27 -1 is no less then2p;+1. Hence, h>3] [(2p,+1). Whenr=>2, it leads to

i=2

.
h>]]p: . As we have already assumed h < 2*P+* before, we can lead to a contradiction by
i=1

;

proving that | | p; > 2*P"*, thus finishing our proof. But to prove this was then beyond my
i=1

ability. Thank to my teacher Jinsong Li, who introduced some beautiful results of analytic number

theory to me, especially on the bound of Chebyshev function 8(X) = z log p, which shed new

p<x

light on my proving this problem. From Lemma 3, we know that

for p, > 487381, z log p, >0.998p, . Because%>%log& and from Lemma 4:

1<i<r

when p, >117, p,,, S% p, . we have that Z log p, >0.998p, >% P,., 1092 . Thus,

1<i<r

i
forp, > 487381,1_[ p, > 2*"4/3 Because 487381 is a prime, letC = 2'%%*?  then for every

i=1
3
h>C,n= Fm(x)(h)<zlogzh.

. 3 . 2
Remark 2: we can prove that it is not easy to strengthenz, for instance, tog. From [1], we can

get that Y log p; <1.001102p, <(§

I<i<r 2

log2)p, < (glog 2)p,,, - This result increase the



difficulty of strengthening this bound.

n
From the proof above we also know that 23"/ > H p, . Hence, for p, > 487381, we have this
i=1

n
result: 2°P > 2°P2 5 23 /2 5 T p > 24P’ 5 2P This inequality again demonstrates the

i=1

famous result that for every X >1, (X, 2X) contains at least one prime.

Besides, our inequality 2°™'? > p,...p, strengthens the inequality 2*™ > p,...p, in [4, pp389].

olloga (h-1)1-L

Proof of theorem 2: When h>5, we can letk =[log,(h—-1)]-1, and f(k) =2 +1.

From Lemma 5, we know that the smallest divisor of f (k) is greater thanh. Hence we

zzllogz(h—l)H

have ( +1,h)=1. Therefore, when h>5, n=F, (h)<k<log,(h-1)-1.

Whenl<h <5, we can prove that the first half is true directly.

Proof of theorem 3: The proof of the first half of the theorem is obvious, so we only need to

h h
prove that whenh >2,n=F, (h) < > Whenhis odd, n=F (h)=1< > When h is even,
we first consider the case when 4|h . Let h=4t , where t is a positive integer.
h
Because ((2t)* +1,4t) =1, we have n= Fo(h) <2t =5 If 2||h, because h>2, we

leth = 4t + 2, wheretis a positive integer. Since ((2t)* +1,4t+2)=1,n= Feo(h)<2t< g

Thus we have proved theorem 3.

[II. Some related questions

Question 1: In the proof of Theorem 1, C = 2'9%?*% s obviously a very approximate bound.

By observation and computation, however, we conjecture thatC is very likely to be 84, yet we
have not finished verifying this.

Question 2: We don’ t know how to strengthen the result in Theorem 2, but we know it is related
to the smallest prime divisor of Fermat number. Up to now, however, Lemma 5 has not been

improved. Besides, it is easy to prove that F , (h) cannot be always less thanlog, log, (h+1).

Question 3: By calculating, we conjecture that forh>10,n=F (h) <vh-1. we will
consider this problem further. More generally, Doctor Shaohua Zhang pointed out that if

I(x)=a x“+---+ax+a, represents infinitly ~many primes, there might be



n=F(h) <{h/a forevery sufficiently large h . He also told me it is interesting to study the
primality of F, (h) , f(F, (h)),F, (h!), f(F, (h!)). For example, for every positive integerh,
Fo(h)is a prime while m(F, ., (h))is not always one; F,,, (h)andI(F,,(h))are not
always prime. As for f (F; (h!)), we don’t know whether m(F,,(h!)) and I(F, (h!)) are

always primes now. However, we know that f (F; ,, (h!)) is not always a prime.

In the end of my paper, | want to first thank Professor Shing-Tung Yau for offering middle
school students this valuable opportunity of exploring further into math. Although the result I’ve
obtained is a small one, it is my first try in mathematic study. It is an experience completely
different from tests in school, in which | understood both the hardship and happiness of research.
Here | also want to thank my mother. It is she who helped me proofread the paper, test some of the
data, adjust the format, and get access to many papers and books of number theory. By reading
these, | deeply appreciated the beauty of Number Theory.
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