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Abstract: The problem of the existence of infinitely many prime values of a number-theoretic function ( )f x  

has been one of the most important topics in Number Theory. Note that if ( )f x  represents infinitely many 

primes, then we can get this necessary condition: for any positive integer h , there exists a positive integer k such 

that and . Naturally, we are interested in the number-theoretic functions ( ( ), ) 1f k h = ( ) 1f k > ( )f x  that 

satisfy the aforementioned necessary condition. Thus, there must exist the least positive integer such 

that and . Denote this least positive integer by . In this paper, we mainly 

focus on three famous number-theoretic functions:

n

( ( ), ) 1f n h = ( ) 1f n > n ( )fF h

2( ) 2 1
x

f x = + , ( ) 2 1xm x = − and , 

proving they satisfy the aforementioned necessary condition respectively. Furthermore, we approximately estimate 

the upper bound of  respectively, and obtain some interesting results.  

2( ) 1l x x= +

( ) ( ) ( )( ), ( ), ( )f x m x l xF h F h F h

Ⅰ．Introduction 

Let ( )f x be a number-theoretic function. Whether ( )f x  represents infinitely many primes has 

always been a problem that attracts great interests among many famous mathematicians. As early 

as 2000 years ago, Euclid has proved that ( )f x x= represents infinitely many primes. In 1837, 

Dirichlet proved that ( )f x ax b= + also represents infinitely many prime values, where 

and are integers with , either ora b ( , ) 1a b = 0, 0a b> ≠ 1, 0a b= = . By proving this, he 

completely solved this problem in the case of linear polynomial with integral coefficients. Apart 
from this case of linear polynomial, however, the problem becomes complex and there is still no 
complete solution by now. For example, whether functions such as 

, and2( ) 2 1
x

f x = + ( ) 2 1xm x = − 2( ) 1l x x= + represent infinitely many primes has not been 

verified until today. Actually, these functions are respectively related to the problem of Fermat 
number, Mersenne number and the first conjecture of Landau. Readers can refer to [6] for some 
other information. [6] is a paper that summaries the research history from Euclid to Green-Tao 
Theorem, studies the infinitude of some special kinds of prime and brings up some interesting 
questions. Our paper is just based on one of these questions. I thank Doctor Shaohua Zhang here 
for suggesting this interesting topic to us. 

Note that if a number-theoretic function ( )f x represents infinitely many primes, we can get the 
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following necessary condition: for every positive integer , there exists a positive integer , such 

that , . Consequently, we are interested in functions that satisfy this 

necessary condition. Thus, if

h k

( ( ), ) 1f k h = ( ) 1f k >

( )f x  satisfies this condition, there exists the smallest integer such 

that , . Denote by . In this paper, we mainly focus on the three 

aforementioned functions, proving that they all satisfy this necessary condition, and approximately 

estimate the upper bound of . Here are the results obtained. 

n

( ( ), ) 1f n h = ( ) 1f n > n ( )fF h

( ) ( ) ( )( ), ( ), ( )f x m x l xF h F h F h

Theorem 1 If ( ) 2 1xm x = − , then for every positive integer , there exists a least positive integer 

such that and . In addition, there exists a constant such that for 

every

h

n ( ( ), ) 1m n h = ( ) 1m n > C

h C> , ( ) 2
3( ) log
4m xn F h h= < . 

Theorem 2 If , then for every positive integer , there exists a least positive 

integer such that for every

 2( ) 2 1
x

f x = + h

n 5h > , ( ) 2( ) log ( 1) 1f xn F h h= ≤ − . −

Theorem 3 If 2( ) 1l x x= + , then for every positive intege , there exists a least positive 

integer , such that . In addition, for every

r h

n ( ( ), ) 1l n h = , ( ) 1l n > 2h > , ( ) ( )
2l x
hn F h= ≤ . 

Ⅱ．Proof of the theorems 

In this paper, we denote the gre

1j

 

atest common divisor of a and b by ( , )a b . 

Lemma 1[5] For every positive integer ,m n , ( ,(2 1, 2 1) 2i j i )− − −

is a prime factor of p

= . 

f q 2 1− , 1(mod 2 )q p≡Lemma 2[4,5] Let p be an odd prime. I . 

m Lemm every positive integer  , Remark 1: Fro a 2, we can get that for h

( )
1( ) 1

2m x
hn F h +⎡ ⎤= ≤

Lemma 3[1] For integer

+⎢ ⎥⎣ ⎦
.We give a stronger bound in the proof of Theorem 1. 

487381, log 0.998p x>x ≥
p x≤
∑ , where log p represents the nature log 

m a 4[2]  For every integer , there exists at least one prime in

of p . 

Le m 117x >
14( , ]
13

x x . 

Lemma 5[3] For 1k > , the small e factor of ( ) 2 1f kest prim
k2= + is no less than 22 1k+ + . 
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Proof of theorem emark 1 actually indicates that  theorem 1 is tr 1: R  the first half of ue, so we only 

eed to prove that there exists a constant such that for n C

every h C> , ( ) 2
3( ) log
4m xn F h h= < here. Let rp be the thr prime. If 3/ 42 rp h= , there is only 

one so plution 3r = , and, 16h = ( )
3( ) log
4m xF h h= < . Thus, w22n = e can let 14r rp ph

3

2 2 +< < . 

If there exists  that (2 1, ) 1ip h− = an i ,1 i r≤ ≤ , such , the As a result,n 3/ 41 2 1 2i rp p h< − < < .  

( ) 2
3( ) log
4m x i rn F h p p h= ≤ ≤ <

every 1 i r≤ ≤ , (2 1, ) 1ip h− >

. This means we only have to consider the case that for 

. From Lemma 1 we know that for every , 

)ji pp − −  Lemm

1  is no less then ip i
i=

, it leads t

. As we have already assumed before, we lead t  contradiction by 

proving tha 2 r

r
p

ip +>∏ , thus finishing our proof. But to prove this was then beyond my 

ability. Thank to my teacher Jinsong Li, who introduced some beautiful results of analytic number 

theory to me, especially on the bound of Chebyshev function

1 i j r≤ ≠ ≤

(2 1,2 1 1= . And from a 2, we know that for every 2i ≥ , the smallest prime factor 

of 2 1+ . Hence, 3 (2 1)
r

h p≥ +∏ . When 2r ≥ o 

1i=

p x

ip − 2
2

1

r

i
i

h p
=

>∏ 14 /32 rph +<  can o a

t 14 /3

( ) logx pθ =
≤
∑ , which shed new 

light on my proving this problem. From Lemma 3, we know that 

for 487381rp ≥ ,
1

log 0.998i r
i r

p p
≤ ≤

>∑ . Because
0.998 13 4

14
log 2

3
×

> , and

wh

 from Lemma 4: 

en 117rp > , 1
14
13r rp p+ ≤ , we have that 1

1

4
3≤ ≤

log 0.998 log 2i r r
i r

p p p +> >∑ . Thus, 

for . Because 487381 is a prime, let , then for every 487381rp ≥ , 14 /3

1

2 r

r
p

i
i

p +

=

>∏ 1949524/32C =

h C> , ( ) 2
3( ) log
4m xn F h h= < . 

Rema n pr not easy to strengthenrk 2: we ca ove that it is 
3

, for instance, to
2
3

.
4

 F

get th

rom [1], we can 

at 1
1

3 3log 1.001102 ( log 2) ( log 2)
2 2i r r

i r
rp p p p +

≤ ≤

< < <∑ . This result increase the 

3



difficulty of strengthening this bound. 

From the proof above we also know tha p
i

i

t 13 / 2

1

2 n

n

p+

=

>∏ . Hence, for we have this 

result: 12 2 2 2 2n n n n n

n
p p p p p

ip+ + +> > > > >∏ . This inequality again demonstrates the 

487381np ≥ , 

1 12 3 / 2 3 / 2 4 /3

1i=

famous result that for every 1x > , ( , 2 )x x contains at lea . 

Besides, our inequality strengthens the inequality in [4, pp389]. 

Proof of theorem 2: When , we can let

st one prime

3 / 2
12 ...np

np p> 2
12 ...np

np p>

5h > 2[log ( 1)] 1k h= − − , and 

 that e sm

[log ( 1)] 122( ) 2 1
h

f k
− −

= +

From Lemma 5, we know  th allest divisor of ( )

. 

f k is greater than . Hence we 

= . Therefor ( )f x h k

h

have
[log ( 1)] 122(2 1, )

h

h
− −

+ e, when 5h > , 2log ( 1) 1n F h1 ( )= ≤ ≤ . 

e that t

rem e 

prove that when

− −

When1 5h≤ ≤ , we can prov he first half is 
 
Proof of theorem 3: The proof of the first half of the theo is obvious, so w only need to 

true directly.  

2h > , ( ) ( )
2
h

l xn F h= ≤ . Whe is odd, n h ( ) ( ) 1
2l x
hn F h= = < . When is even, 

 consider t

h

we first he case when 4 | h . Let 4h t= , where is a positive integer. t

Because , we have 2((2 ) 1, 4 ) 1t t+ = ( ) ( ) h2
2l xn F h t= ≤ = . If 2 || h , because 2h > , we 

let 4 2h t= + , where t tt is a positive integer. Since 2((2 ) 1, 4 2) 1+ + = , ( ) ( ) hn F 2
2l x h t= ≤ < . 

 

hav hed verifying this. 

to the smallest prime divisor of 

Thus we have proved theorem 3. 

Ⅲ．Some related questions 

Question 1: In the proof of Theorem 1, is obviously a very approximate bound. 

By observation and computation, howev re tha is very likely to be 84, yet we 
e not finis

Question 2: We don’t know how to strengthen the result in Theorem 2, but we know it is related 
Fermat number. Up to now, however, Lemma 5 has not been 

improved. Besides, it is easy to prove tha cannot be always less than

Question 3: By calculating, we conjecture that for

1949524/32C =  

er, we conjectu tC

t ( ) ( )f xF h  2 2log log ( 1)h + . 

10h > , ( ) ( ) 1l xn F h h= < − . We will 

nerally, Doc

k  

consider this problem further. More ge tor Shaohua Zhang pointed out that if 

( ) kl x a x a x a= + + + represents infinitely many primes, there might be 1 0
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( )l x k for every sufficiently large h . He also told me it is interesting to study the 

primality of ( )F h  , ( ( ))

( ) /kn F h h a= <

f ff F h , ( !)F h , ( ( !))f ff F h . For example, for every positive integer h , 

( ) ( )m xF h is a prime while )) is not ays one; and ) are not 

always prime. As for

( )( (m xm F h  alw  ( ) ( )l xF h ( )( ( )l xl F h

( ( !))ff F h , we don’t know whether ))m F h  and l F h  are 

always primes now. However, 

( )m x ( )l x

we know that ( )( ( !))f x

( ( ! ( ( !))

f F h is not always a prime.  

, I want to first thank Professor Shing-Tung Yau for offering middle 
school student s va further into math. Although the result I’ve 
obtained is atic study. It is an experience completely 

from tests in school, nderstood both the hard d hap esearch. 
ant to thank my e who helped me proofread pa e of the 

data, adjust the format, and ccess to many papers and ber the ding 

 

 
In the end of my paper

s thi luable opportunity
a small one, it is my first try in mathem

different in which I u ship an piness of r
Here I also w mother. It is sh  the per, test som

 get a books of num ory. By rea
these, I deeply appreciated the beauty of Number Theory. 

 of exploring 
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