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Abstract 

 
In this paper we extend and deepen a shortlist for the 37th International Mathematical 

Olympiad (IMO) [1] and propose the Frog Leap Commute Theorem and the Queue Polynomial.  
We explore the problem from the following aspects: 
(1) Make use of semi-invariants and propose the Frog Leap Commute Theorem.  
(2) Make extensions regarding frogs leaping to opposite directions on a straight line.  
(3) Research frogs leaping to the same direction on a straight line and solve the minimum number 

of frogs satisfying an infinite leap. 
(4) Extend the problem to leaps on a plane or in space. 
(5) Research and extend problems regarding frogs leaping on a circle. 
(6) Estimate the function  and calculate the order of the function. ( )c n
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1. Original Problem  

The original problem in The 37th IMO Shortlist is as follows: 
A finite number of beans are placed on an infinite row of squares.  A sequence of moves is 

performed as follows: at each stage a square containing more than one bean is chosen.  Two 
beans are taken from this square; one of them is placed on the square immediately to the left, and 
the other is placed on the square immediately to the right of the chosen square.  The sequence 
terminates if at some point there is at most one bean on each square.  Given some initial 
configuration, it shows that any legal sequence of moves will terminate after the same number of 
steps and with the same final configuration [2].   

For the convenience of description and further extension, we change the original problem 
above into the following one: A finite number of frogs are on a straight line.  If two frogs are at 
the same point, one of them will leap one unit to the left and the other one unit to the right.  Will 
the frogs leap infinitely or terminate after some sequence of steps?  

Suppose there are  frogs and their coordinates are n 1 2, ,..., ( )n ix x x x Z∈  respectively. 

When two frogs on coordinate x  leap, one coordinate changes into 1x + , while the other into 
1x − . 
We consider a semi-invariant (a variable that monotonically increases or decreases during the 

whole leaping progress) .  Since2 2
1 2 ... nS x x x= + + + 2 22 2 2( 1) ( 1) 2x x x+ + − − = ,  

increases by 2 for each leap.  If the frogs can leap infinitely,  increases continuously. 

S

S

Consider two adjacent points.  If there were frogs on them, there will always be frogs on 
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them, regardless to the leaps.  As a result, if the frogs keep leaping in one direction, they will 

leave at least one frog on every two adjacent points.  Thus ix  is bounded, and  is bounded.  

The frogs must stop after a finite number of leaps.  

S

For an initial state , there are many leaping possibilities, each of which ends after a finite 
number of leaps.  We find that any legal sequence of moves will terminate after the same number 
of steps and with the same final configuration.  This is true because leaps can be commuted. 

P

 
Theorem 1: Leap Commute Theory  

Under the condition that each leap can be executed, for two adjacent leaps A and B, 
leaping at A and then B or leaping at B and then A will result in the same final state. 

 
Proof: Leaping at point A results in the decrease of frog number at A by 2, and the increase of 

frog number at A+1 and A-1 by 1; leaping at point B results in the decrease of frog number at B by 
2, and the increase of frog number at B+1 and B-1 by 1.  Therefore, both leaping first at points A 
then B and leaping first at B then A results in the decrease of frog number at A and B by 2 each, 
and the increase of frog numbers at 1A± and 1B ± by 1 each.  

Now that two adjacent leaps can be exchanged, we can prove that any number of successive 
leaps can be exchanged. 

 

Corollary: For an original state P, a series of leaps on the points 1 2, ,..., nx x x  generate 

the final state Q.  If we exchange the sequence of points from 1 2, ,..., nx x x  to , 

we get a series of leaps on the points .  Under the condition that each leap can 

be executed, the new leaping sequence will also result in the final state of Q.  

1 2, ..., ny y y

1 2, ..., ny y y

 
Proof: Consider the number of frogs on a certain point A.  If a leap occurs at point A, the 

number of frogs on that point decreases by 2.  If a leap occurs at point A-1 or A+1, the number of 
frogs on point A increases by 1.  If a leap occurs at any other points, the number of frogs on point 
A remains the same.  Thus the number of frogs on a certain point is determined by a series of 
“-2”s and “+1”s.  Because these “-” and “+” operations can be commuted, we can say that the 
final number of frogs on point A is certain, regardless of any leaping sequence.  

For the same original state , consider two kinds of leap X and Y: 0P

1 2

1 2

: ...
: ...

m

n

X T T T
Y J J J

→ → →

→ → →
 

iT  represents the leap at ix ,  represents the leap at  iJ iy

The first leap in X is  which means the two frogs at 1T 1x  leap to the opposite direction.   
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WithinY , the frogs at 1x  must leap, or else the leaps will not terminate.  So there must be one 

of  that is equal to 1 2, ,..., ny y y 1x , suppose that the one whose subscript is minimal as .  

Thus , 

1ky

1 1ky x=
1 1kJ T= . 

We can now adjust Y by moving the leap  at 
1kJ

1 1ky x=  to the beginning of the leaping 

sequence.  In other words, the first part of Y that  turns into 

.  Because  is the first leap at point 

11 2 1... kJ J J J−→ → → →
1k

11 11 2 ...k kJ J J J −→ → → →
1kJ 1x , the number of frogs 

at other points will not decrease, and the circumstances where frogs that can leap before cannot 
leap later due to the lack of frogs will not occur.  According to the deduction above, we can 
conclude that the two different leaping sequences will result in the same final state.  So if we 

name the new commuted leaping sequence  

by ' , we can see that '  and Y share the same final state. 

1 1 11 2 1 1... ...k k kJ J J J J− +→ → → → → → → nJ

Y Y

Now ' and Y X  has the same first leap.  We can commute , the second leap of2T X , in 

the same manner.  Since there must be a same leap with  in the leaps of ' , we can find the 

one with the minimal subscript, , and place it behind  to obtain the new leap sequence 

.  We can repeat this commuting progress until the leaping 

sequence becomes the same as 

2T Y

2kJ
1kJ

1 2 1 2'' : ...k kY J J J J→ → → →

X .  As a result, sequence Y is only the rearrangement of 
sequence X , so X and must have the same final state and leaping steps.  Thus we have 
proved the Corollary.  In conclusion, for an initial state, any legal sequence of leaps will 
terminate after the same number of steps and with the same final state.  

Y

 

first leap to rightfirst leap to left

end

forth leap

third leap

second leap

first leap

initial condition

Figure 1: The Same Initial Condition Resulting into the Same End by Different Modes of Leaps 
 
2. Two Extensions on Leaping to Opposite Directions on a Straight Line 

    We promote the following two extensions in this section:  
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1. The length of leaps to opposite sides are extended to “ units left, units right.” a b
Now that the two frogs on point x  leap to x b+  and x a− respectively, the same 

question arises: will the frogs leap infinitely? 

The answer is also no.  Suppose the coordinates for the  frogs are n 1 2, ,..., ( )n ix x x x Z∈  

respectively. We consider another semi-variable: 1 2 ... nS x x x= + + + . As 

( ) ( ) 2 ( )x a x b x b a− + + − = − , supposing that a b< , the formula above will increase by 

 for each leap executed.  If the frogs leap infinitely,  increases unlimitedly.  

Consider  consecutive points, if there are frogs on the points, there will always be frogs 

on them.  This shows that for any leaping sequence, a frog cannot be more than  units 

away from its initial position, which means that 

(b a− )

)

)

S

(a b+

(n a b+

ix  is bounded, and  is also bounded. 

Therefore, the frogs cannot leap infinitely. 

S

 

2. The number of frogs in one leap extends from “two frogs” to “k frogs.” 

Assume that there are  frogs on coordinate k x .  After each leap the coordinates of the 

 frogs change to k 1 2, ,..., kx a x a x a+ + +  (  may be positive or negative, regarding leaping 

left or right respectively).  Suppose

ia

1 2 ... ka a a≤ ≤ ≤ .  Since the frogs leap to opposite 

directions, .  Consider a set of consecutive points with the number of 1 0, 0ka a≤ ≥

1k ka a a a− = + 1 , we can prove, similar to extension 1 above, that if there are frogs on these 

points, there will always be frogs on them, so ix  is bounded.  Consider a variable 

.  The change of after each leap is:  1 2 ... nS x x x= + + + S

1 2 1 2( ) ( ) ... ( ) ...k kS x a x a x a kx a a aΔ = + + + + + + − = + + +  

If , will continue to increase or decrease, but is bounded.  We 

have found a contradiction!  Therefore the frogs cannot leap infinitely.  

1 2 ... 0ka a a+ + + ≠ S S

If , consider a new variable , the change of 1 2 ... 0ka a a+ + + = 2 2
1 2 ... nK x x x= + + 2 K   

with each leap is: 
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2 2 2 2 2 2 2
1 2 1 2( ) ( ) ... ( ) ... 0k kK x a x a x a kx a a aΔ = + + + + + + − = + + + > , which 

means K  keeps increasing, but K is bounded.  Contradiction!  Thus the frogs cannot leap 

infinitely.  

To sum up, as long as the frogs leap to opposite sides on a straight line, they will end up in 

the same final state after a finite amount of leaps. 

 

3. Leaping in the Same Direction on a Straight Line 

Now we have proved that the frogs cannot leap infinitely when they leap in two directions.  

From direct observation, we can see that the frogs become more dispersed after every leap, thus 

the leaping process must stop after a finite amount of steps.  If the frogs leap in the same 

direction, well they manage to leap infinitely? 

For example, let us assume that two frogs on the same point will leap one and two units to the 

right respectively.  Suppose there are three frogs initially, two of which are located on 1x =  

while the third one is located on 2x = .  Note this state as .  After the two frogs on (1,1, 2)

1x = leap one and two units to the right respectively, the coordinates of the three frogs change 

into , which is equivalent to shifting the three frogs to the right by one unit.  Then the 

frogs on  continue to leap to 

(2, 2,3)

2x = 3x =  and 4x = , rendering the coordinates of the three 

frogs into , which is equivalent to shifting the three frogs by another one unit to the right.  

In this way, the frogs can leap on forever. 

(3,3, 4)

    Now that the frogs can leap infinitely, our task is to find the least amount of frogs that can 

satisfy an infinite leap.  Suppose the two frogs on a point leap and steps to the right,  

and they are relatively prime (if the length of leaps is amplified or reduced by the same factor, the 

circumstances are equivalent).  We can also suppose the least amount of frogs is . 

p q p q<

n

 

Definition 1: 

Positive State: a state where there exists at least one infinite leaping sequence.  

Negative State: a state where there is no infinite leaping sequence.  

Dead State: a state where no more leaps can be executed.  

 

Theorem 2: Any leaping sequence following a Positive State is an infinite leaping sequence.  

 

Proof: If a Positive State changes into a Dead State after a series of leaps, we can consider 

the first Negative State that appeared.  Assume a Positive State  changes into a Negative 1P
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State  after , a leap on point 2P 0T 0x .  Then assume one of the infinite leaping sequences of 

the Positive State  is .  Now let’s consider whether a leap on 1P 1 2 ... ...nJ J J→ → → → 0x  

exists in . 1 2, ..J J .

If a leap on 0x  exists, we can assume the first one to be .  We can move to the 

beginning of the sequence because leaping  first will not reduce the number of frogs on points 

other than 

kJ kJ

kJ

0x  and hamper the leaps on those points.  Thus the leaping sequence of 

 that started from the Positive State  is an infinite 

leaping sequence, and the leaping sequence of  that started 

from the Negative State  is also an infinite leaping sequence.  This contradicts with  

being a Negative State. 

1 2 1 1... ...k kJ J J J J− +→ → → → → k 1P

1 2 1 1... ...k kJ J J J− +→ → → →

2P 2P

If a leap on 0x  does not exist, there will always be at least two frogs on 0x , and the leaping 

process will never terminate.  This also contradicts with  being a Negative State.  The 

Theorem has been proved. 

2P

Theorem 2 states that for an initial state, if there is an infinite leaping sequence, every leaping 

sequence will be infinite.  Therefore, for an initial Positive State, we can arrange the leaping 

sequence on our own to shorten the length of the frogs’ queue.  We can accomplish this by 

leaping the frogs on the very left every time.  Since  is the minimum number,  frogs 

cannot leap infinitely, so no frogs can leap for a finite number of steps and then stop dead.  This 

means that there must be an even number of frogs on the point in the very left, or else there will be 

one frog that remains unable to leap in the end.   

n 1n−

In this way, the length of the frogs’ queue continues to shorten until it reaches .  Since 

there is only a finite amount of arrays within a queue of the length , we can find a state and a 

state  that share the same array of frogs, which means that one state is only the shift of another.  

q

q P

Q

Now we can use a polynomial to represent the state of the  frogs. n

 

Definition 2: Queue Polynomial 

Suppose the coordinates of the  frogs are  (some of which may be the n 1 2, ,..., na a a
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same), define 1 2( ) ... naa af x x x x= + + +  as the Queue Polynomial.  In this way, the 

coefficient of iax represents the number of frogs on point , and ia (1)f , which is the sum of 

all coefficients, represents the total number of frogs . n

 

For two states and  that share the same array of frogs, suppose that will be 

equivalent to  after shifting a length of 

P Q P

Q L .  Thus the Queue Polynomial for the two states 

must satisfy:  ( ) ( )Lg x x f x= ⋅

Meanwhile, two frogs at point x a=  will leap to points x a p= +  and x a q= + .  

Thus the variation of the Queue Polynomial for every leap is 

.  Let2 (a p a q a a p qf x x x x x x+ +Δ = + − = + − 2) ( ) 2p qh x x x= + − , and for every leap, 

fΔ is multiply of .  Thus from state to state , the variation of the Queue Polynomial is 

also a multiple of : 

( )h x P Q

( )h x ( ) ( ) ( ) ( 1) ( )Lh x g x f x x f x− = − ⋅ . 

In order to find the greatest common factor of and ( )h x ( 1Lx )− , consider their common 

roots.  The roots of  are unit roots on a unit circle.  Then consider the roots of 

on a unit circle.  

1 0Lx − =

( ) 2p qh x x x= + −

1x = , , ( ) 2 0p qh x x x= + − = 2p qx x+ = .  

Since 1x = , 1, 1p qx x= = , 1 1 2p q p qx x x x+ ≤ + = + = . 

This equation holds if and only if 1p qx x= = .  Since  and  are relatively prime, 

according to the Bezout Theorem, we know that

p q

1x = . 

In this way, ,  thus ( ( ), 1) ( 1)Lh x x x− = −
( ) ( )

1
h x f x
x −

,  

1 1( ) (1 ... ) (1 ... ) ( )
1

p qh x x x x x f
x

− −= + + + + + + +
−

x . 

When 1x = , 1 2(1) 1 1 ... 1 naa af n= + + + = . 

Thus ( )p q n+ , the minimum  should be n p q+ . 

In fact,  can equal ton p q+ : 
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Suppose there are two frogs on points , and one frog on points .  During 

the leap, two frogs on point 1 leap to point 

1 ~ p ( 1) ~p + q

1p +  and point 1q + .  Now there are two frogs on 

points  each, and one frog on points 2 ~ 1p + 2 ~ 1p q+ +  each.  We have shifted the queue 

of the frogs to the right by one unit, and by repeating this process, the frogs can leap infinitely.  

The conclusion above is also applicable when  frogs leap together： k

Suppose the  frogs leap  units to the right respectively.  Suppose  is a 

group of positive integers that are relatively prime, with 

k 1 ~ ka a 1 ~ ka a

1 2 ... ka a a< < < .  Then the minimum 

value of  is .  The array of the frogs is as follows: frogs on point 

each,  frogs on point 

n 1 2 ... kn a a a= + + + k

11 ~ a 1k − 1( 1) ~a 2a+  each… one frog on point  each. 

Every leap is equivalent to shifting the frog array one unit rightwards, so the frogs can leap forever 

now.  Figure 2 below shows the situation when 

1( 1) ~k ka a− +

3k = , 1 2 31, 2, 3a a a= = = . 

654321

654321

 

Figure 2： Infinite Leaps on a Straight Line  

4. Leap on a plane and in space nR  

If two frogs on the same point leap in two different directions on a plane, we can project the 

two frogs on the exterior angle bisector of the two leaping directions.  Consequently, the leaps of 

frogs are equivalent to the leaps of frog shadows.  We notice that the leaps of the shadows are 

equivalent to the leaps to opposite sides on a straight line and therefore they cannot leap infinitely.  

Thus the frogs cannot leap infinitely either. 

For an Euclidean space nR , we define the leaps of frogs as  vectors, .  If the k k 1 ~ kb b
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vectors  are not on the same line, we can find a line 1 ~ kb b L , such as the exterior angle 

bisector of any two vectors that are not on the same line, so that the projections of vectors on L  
lie in two opposite directions.  Thus the leaps of frogs are equivalent to the leaps of frog shadows, 
and since the shadows cannot leap infinitely, the frogs cannot leap infinitely either. 
 
5. Leap on a Circle 

Now that we have solved the leaping problems on lines, we turn our focus to leaps on circles.  
Suppose the perimeter of the circle is  (the point on the circle is designated as 1,2,…, n ), 

two frogs on the same point leap to the two adjacent points respectively.  Since there is only a 
limited number of points, the frogs are sure to leap on forever if there is enough of them.  So our 
question remains how many frogs needed at least to leap infinitely. 

n

The answer is .  As leaping one step to the left is equivalent to leaping  steps to the 
right on a circle, our problem is similar to leaping 1 unit and 

n 1n−
1n− units in the same direction on a 

straight line.  From the conclusions earlier in the paper, we can say that it is possible for 

 frogs to leap infinitely.  But is  the minimum number?  1 ( 1)n+ − = n

0

n

Since there is only a limited amount of points on a circle, according to the Drawer Principle, 
there must be at least one state that will appear twice after a number of leaps.  Assume it took 

steps for the state to appear the second time, a cycle of states will emerge:  

. 

m 0P

0 1 2 ... mP P P P P→ → → → =

For any state in the cycle ( ), there should be at least one frog on any two adjacent points 

on the circle.  Else, we can assume that no frogs are on point 1 or 2, which means that, for any 
state, there will never be frogs on point 1 or 2.  Since neither point1 nor point 2 will ever have 
frogs, we can “cut” the circle into a straight line from between point 1 and 2.  Thus the frogs 
cannot leap infinitely. 

iP

Then we can prove that there will be at least two frogs on three adjacent points.  Suppose 
that only one frog is on point 1, 2, or 3.  According to the paragraph above, that frog can only 

stay on point 2.  Thus the number of frogs on point 1, 2 and 3 is .  Consider the leap 

that resulted in the state (0  and define it as .  Right now there are no frogs are point 1 

and 3, so leap cannot happen at point 2 or 4.  Neither can it happen at point further than 2 and 
4.  Thus T must have happened on point 1 or 3.  Assume that  happened on point 1, then 

the number of frogs on point 1, 2 and 3 changed from  to .  Under this 

condition, there are no frogs on the two consecutive points 2 and 3.  This contradicts with the 
conclusion in the paragraph above.  Thus there will be at least two frogs on three adjacent points. 

(0,1,0)

,1,0) T

T
T

(2,0,0) (0,1,0)

Likewise, we can prove that there will be at least k-1 frogs on k adjacent points.  For the 
initial state P, there are two frogs on one point to start the leap, and one frog on the rest n-1 points.  
These n frogs on the circle with n points can leap infinitely.   
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6. Extension of Leap on A Circle 

We have figured out the circumstance of leap one step to the left and right in circle, then how 
about leaping “left a right b”? The same question is at least how many frogs are needed to leap 

infinitely.  Note that the least number of frogs on the circle with perimeter n is ( , , )f a b n , it’s 

difficult to deduce the accurate result of the least number, we could just make estimation. 
If we magnify a, b, and n to the same multiple and the method of frog leap is the same, the 

number of frogs for infinite leap is the same as well ( ( , , ) ( , , )f ka kb kn f a b n= ). Therefore, if a, 

b and n aren’t relatively prime, we can divide them with greatest common divisor and the result is 
the same.  

Supposing , we need to make out whether a and b are relatively prime, if not, 

we should turn it relatively prime and treat coordinates of n points as remainders of model n. In 
the light of model n, the coordinate of leaping a steps to the left is –a, and –b with leaping b steps 
to the right. Then multiply all the remainders of model n with k which is relatively prime with n, 
we can make one-to-one correspondence, so the result is that –a turns to –ka, +b turns to +kb, and 
“a steps to the left with b steps to the right” turns to “ka steps to the left with kb steps to the right”. 
In a circle with perimeter of n, the two methods of leap is corresponding in which the least number 

figured out is the same. When (k, n) =1, 

( , , ) 1a b n =

( , , ) ( , , )f ka kb n f a b n= .  If the greatest common 

factor d of a and b is d, on assumption of ( , ) 1d n = , 

( , , ) ( , , ) ( , , )a b a bf a b n f d d n f n
d d d d

= × × = , then the greatest common factor d will be 

removed  

If a and b are relatively prime, and a b≤ , to figure out ( , , )f a b n , we should make 

estimation of how many at least are needed. If there are several frogs can leap infinitely and they 

have limited states, there must be a state of circulation ( ).  It’s 

similar with leaping in a circle to leap “left a right b” on a straight line. If there is at least one frog 
at the consecutive a+b points, then at least one should be stayed.  Due to the state of circulation, 
if no frogs on a+b point, then there won’t be forever. The circle is cut here, and there is no way to 
leap definitely.  Therefore, at least one frog is at any point on the consecutive a+b points. 

0 1 2 ... mP P P P P→ → → → = 0

Then we will make use of mathematical induction to prove there are at least k frogs on the 
consecutive  points, or else, if k-1, according to the assumption, these frogs must be 

grouped on the segment , which is in the middle of 

a kb+

( 2)a k b+ − ( ( 2) )b a k b b+ + − + .  

Because there should be frogs in section b which is in the terminal (the circle will be cut and it’s 
impossible for indefinite leap), at least k frogs should be in a kb+ .  Considering the last leap, 
there are k frogs before leap and k-1 after it, but where is the exact leaping point?  It couldn’t 
occur out of , otherwise it will result in more frogs. Meanwhile, it couldn’t occur in a kb+
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segment , which will make two less frogs in the middle but one more both in the 

terminal and the inner switch won’t change the total number.  If we suppose it occur in the line b 
in the left terminal, two frogs must be in b before the leap and k-2 in the middle, with zero in the 
right b section.  Therefore it’s contradictory with assumption that k-2 frogs are in the middle 

. 

( 2)a k b+ −

( ( 2) ) ( 1)a k b b a k b+ − + = + −

We do a division with the remainder ......n b q r÷ = , so n bq r= + .  Take a point with at 

least two frogs, remaining  points. Because of 1n− 1 1 1 ( 1n bq r bq b q ) a− = + − ≥ − ≥ − +  

and there being at least frogs on 1q − 1n−  points, there are at least 1q +  frogs together.  So 

( , , ) 1 1nf a b n q
b
⎡ ⎤≥ + = +⎢ ⎥⎣ ⎦ . 

We know if two frogs leap to the same side A and B , A B+ frogs can infinitely leap.  In 
The line is like this, but the circle may be less, but A B+  is enough.  We take consideration as 

this thinking.  Because  and n  are relatively prime, k ( , , ) ( , , )f ka kb n f a b n= , if left a and 

right b multiplied by , it may make both left leap  and right leap mean right moving a 
short distance(may be leap around the circle some times).  Left leap  means right 

leap ; right leap means

k ka kb
ka

(mod )ka A n− ≡ kb (mod )db B n≡ , 0 ,A B n< < .  In this condition, 

we know A B+ frogs are enough, ( , , )f ka kb n A B≤ + .  Now we should find a suitable  

which make

k

A B+ not large.  

Simply estimate, (mod )A ka n≡ − ,  (mod )B kb n≡ , so 

( ) ( ) 0(modbA aB b ka a kb n+ ≡ − + = )  

bA aB+  is a multiple of n , the smallest is , , so 

. 

n bA aB n+ ≥

( )b A B bA aB n+ > + >
nA B
b

+ > , so the A B+  at least is 
n
b

.  But this is not our 

purpose.  We want a suitable k  make A B+ almost be 
n
b

.  

At first, let’s identify some inequalities, A B+ is almost equal to
n
b
，so is almost 

equal to . And >=n, which is multiple of n. Consequently, 

 approximates to 0 . That equation means 

(b A B+ )

n bA aB+

( ) ( ) ( )b A B bA aB b a B+ − + = − B is so little that it 

is merely little greater than zero.  ThenbA aB n= ，so A is little less than
n
b
⎡ ⎤
⎢ ⎥⎣ ⎦

. +
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  Because on the assumption that kb cn B= + ，
cn Bk

b
+

= ，an equation can be drawn： 

( ) (mod )a cn B ac aBA ak n n
b b b

− + −
≡ − = = −

 

A is little less than 
n
b
⎡ ⎤
⎢ ⎥⎣ ⎦

，so the decimal part of 
ac
b
−

 is 
1
b

.In this case, , which is 

limited by equation that  ,exists and consist with an inequality  

due to . 

c

1 0(mod )ac b+ ≡ 0 c b< <

( , ) 1a b =

However k is integer little greater than 
c n
b

 and meets the equation , so we 

find out the suitable k from

( , ) 1k n =

1c n
b
⎡ ⎤ +⎢ ⎥⎣ ⎦

.  Assuming 
ck n
b
⎡ ⎤ L= +⎢ ⎥⎣ ⎦

,which is the minimum 

relatively prime with  n, then ( c )B b n L
b
⎡ ⎤= ⋅ +⎢ ⎥⎣ ⎦

 the balance of n is less than .  b L⋅

Additionally, , ( ) ( ) ( ) ( ) ( )b A B n b A B bA aB b a B b a bL+ − = + − + = − ⋅ ≤ − ⋅

So ( )nA B b a L
b
⎡ ⎤+ ≤ + − ⋅⎢ ⎥⎣ ⎦

. If L is small, it is possible for A B+ to be equal to 
n
b
⎡ ⎤
⎢ ⎥⎣ ⎦

. 

But what is L  equal to? The answer is L must be infinitesimal.  

 

Definition 3:  The maximum of consecutive numbers within 1 ~  that are not 

relatively prime with . 

( )c n n

n

Since the numbers in 1 ~ ( 1)n n L
b b
⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−

)

 are relatively prime with , we can 

conclude that 

n

1 (L c n− ≤ , namely ( ) 1L c n≤ + . 
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1 ( , , ) ( ) ( ) ( ( ) 1n n nf a b n A B b a L b a c n
b b b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ≤ ≤ + ≤ + − ⋅ ≤ + − ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

)  

As  increases，  becomes infinitesimal compared to n，namely n ( )c n ( )lim 0
n

c n
n→∞

= .  In 

fact, we can prove that  is smaller than any mathematical power of n. ( )c n

Theorem 3: 0, ,Cε∀ > ∃  so that ( )c n C nε
ε≤ ⋅  

Proof: Suppose  1 2 ...... kaa an p p p= 1 2 k

The amount of numbers in  that are the multiple of ( )c n 1p : 
1

( )[c n ]
p

 or 
1

( )[ ] 1...c n
p

+  

The amount of numbers in  that are the multiple of ( )c n 1p  and 2p : 
1 2

( )[ ]c n
p p⋅

 

or
1 2

( )[ ] 1...c n
p p

+
⋅

 

…… 

According to the Inclusion-Exclusion Principal:  

1 2

1

1 2 1 2

( ) ( ) ( ) ( ) ( ) ( 1)( ) ... ... ...
...

m

m

k i i

c n c n c n c n c nc n
p p p p p p p p

−⋅ −
≈ + + + − − + +

⋅ ⋅ ⋅ ⋅ i

 

The error bond:  

1 2

1

1 2 1 2

( ) ( ) ( ) ( ) ( ) ( 1)( ) ( ... ... ...) 2
...

m

m
k

k i i i

c n c n c n c n c nc n
p p p p p p p p

−⋅ −
− + + + − − + + ≤

⋅ ⋅ ⋅ ⋅
 

1 2

1 1 1( ) (1 ) (1 ) ... (1 ) 2k

k

c n
p p p

× − × − × × − ≤  
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1 2

1 2

( ) 2 ...
1 1

k k

k 1
pp pc n

p p p
≤ × × × ×

− − −
      (1) 

In order to prove ( )c n C nε
ε≤ ⋅ , we only have to prove 

( )c n C
n εε ≤  

From (1) we have: 
11 1

1 2

1 2

22 2( ) ...
1 1

k

k

pp pc n
n p p p 1

εε ε

ε

−− −

≤ × × ×
− − −

  (2) 

When p →∞ , 
12 0
1

p
p

ε−

→
−

.  

This means that there are only a finite amount of prime numbers  that 

satisfy

p

12 1
1

p
p

ε−

>
−

. We multiply these 
12
1

p
p

ε−

−
 to get Cε .  Thus 

11 1
1 2

1 2

22 2 ...
1 1 1

k

k

pp p C
p p p

εε ε

ε

−− −

× × × ≤
− − −

. 

Thus 
( )c n C
n εε ≤ , which means that ( )c n C nε

ε≤ ⋅ . 

6. Conclusion and expectation

The essence of leaping to opposite side is that the frogs become more dispersed after every 

leap, thus they cannot leap infinitely.  Leaping to the same side does not necessarily make the 

frogs dispersed and creates a cycle for the leaping states, which enables the frogs to leap infinitely.  

We found that  frogs are enough to satisfy an infinite leap.  We also proved that on a 

circle with  points,  is the minimum number of frogs that satisfy an infinite leap.  For 

leaping “a units left, b units right” on a circle, we estimated that the order for the minimum 

number of frogs satisfying an infinite leap is 

n p q= +

n n

n
b

.  

“Frog Leap” is a very complicated problem and there are still many problems yet to be solved. 

For instance, for an initial state where n frogs are on the same point and every two frogs leap one 

unit eastward and northward respectively, how many steps can the frogs leap before they stop?  

Also, we have proved that  is smaller than any mathematical power of n, but what is the ( )c n

 20

javascript:showjdsw('jd_t','j_')


exact value of ?  What is ’s relationship with ln ?  These are just some of the 

problems that we can explore in the future. 

( )c n ( )c n n
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Appendix (the proof of the IMO shortlist) 

Let the squares be indexed serially by the integers:...,-1,0,1,2,... .When a bean is moved from i to i + 1 

or from i + 1 to i for the first time, we may assign the index i to it. Thereafter, whenever some bean is moved in the 

opposite direction, we shall assume that it is exactly the one marked by i, and so on. Thus, each pair of neighboring 

squares has a bean stuck between it, and since the number of beans is finite, there are only finitely pairs of 

neighboring squares, and thus finitely many squares on which moves are made. Thus we may assume w.l.o.g. that 

all moves occur between 0 and  and that all beans exist at all times within [0, l]. l N∈

Defining  to be the number of beans in the ith cell ib

 ( i ) and  the total number of beans, we define the semi-invariant 
i

Z∈ ib 2
i

2
i Z

S i b S b l e
∈

= < ⋅∑  Since all moves 

occur above 0, the semi-invariant S increases by 2 with each move, and since we always have { }2 0iS b l b< ⋅ ≥ , 

it follows that the number of moves must be finite. 

We now prove the uniqueness of the final configuration and the number of moves for some initial 

configuration { } 0i ib x ≥ . Let be the number of moves made in the ith cell ( i0ix ≥ Z∈ ) during the game. Since 

the game is finite, only finitely many of ix ’s are nonzero. Also, the number of beans in cell i, denoted as , at the ie
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end is 

{ }1 1( ) 2 0,i i i i ii Z e b x x x− +∀ ∈ = + + − ∈ 1         (1) 

Thus it is enough to show that given  , the sequence 0ib ≥ { }i i Z
x

∈
of nonnegative integers satisfying (1) is 

unique. 

Suppose the assertion is false, I.e., that there exists at least one sequence  for which there exist distinct 

sequences 

0ib ≥

{ }ix   and { }'ix  satisfying (1). We may choose such a { }ib for which min { }',ii Z i Z ix x
∈ ∈∑ ∑       

is minimal (since 
ii Z

x
∈∑  is always finite). We choose any index j such that . Such an index1jb > j exists, 

since otherwise the game is over. Then one must make at least one move in the j th cell, which implies that 

jx , . However, then the sequences ' 1jx ≥ { }ix  and { }'ix  with 
jx  and '

jx  decreased by 1 also satisfy (1) for 

a sequence { }ib  where ,1 1jb − + 2jb − , 1jb +  is replaced with 1 1jb − + , , .This 

contradicts the assumption of minimal min{

2jb − 1 1jb + +

}',ii Z i Z ix x
∈ ∈∑ ∑ for the initial{ }ib . 
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