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Abstract 

The linear congruence equations are the ancient and significant research contents. Most discussions 
of the linear congruence equations focus on the special cases, for example, there is a linear congruent 
theorem for solving the congruent linear equation in one unknown and the Chinese remainder theorem 
for solving the simultaneous congruent linear equations in one unknown, which are involved to find a 
special solution using the properties of the integer number, and some papers discuss the equation in n 
unknowns. But all the results are not convenient and efficient to solve the equations and not adapt to 
solving the general system of congruent linear equations in n unknowns. There is no uniform, convenient 
and efficient technique and theory for the general system of congruent linear equations, like the theory of 
linear equations over real numbers. The inspiration arose from the elimination of variables when solving 
the linear equations over real numbers, Generalized the elementary transformations of matrix over real 
numbers to the integer numbers modulo m, the paper discussed the properties of the modular matrix 
under the elementary transformations and a similar equivalent transforming theorem for matrix modulo 
m theorem was obtained that any matrix modulo m can be transformed into a canonical diagonal form by 
means of a finite number of elementary row and column operations. furthermore, by means of the 
equivalent transforming theorem, the solution criterion theorem and structure theorem were proposed for 
the general congruent linear equations based on the modular matrix transformations, which extended the 
theories of the congruent linear equations, and finally, the detailed steps of the uniform method were 
given for solving the general system of congruent linear equations based on the elementary 
transformations of matrix modulo m, it can be easily written out the solutions of the system immediately 
as determining solutions of the system conveniently by elementary matrix transformations. Analysis and 
discussions indicate that the results are most valuable in science and the proposed technique for solving 
the system is convenient, efficient and adaptable. 
Keywords: Elementary Modular Matrix Transformation, Equivalent Canonical Form, Congruent 
Linear Equations, Criterion and Solving 

1．Introduction 

1.1 Backgrounds 

During the process of learning the dividing property of integers and congruent equations, we found 
that we can adopt the elimination method for real coefficient linear equations and solution of matrix 
transform to solve the system of linear congruence equations. Using the properties of integers and 
congruence, we do a series of matrix transformations on the coefficient matrix of the system of linear 
congruence equations, and then get the solutions. 

The linear congruence equations are the ancient and significant research contents, which are 
involved with most theory and application about integers. 
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There is a linear congruence theorem for solving the linear congruence equation in one unknown 
and the Chinese remainder theorem for solving the simultaneous congruent linear equations in one 
unknown. But there are nearly no paper focus on the discussion of the s linear congruence equations in n 
unknowns[1][2][3][16][17]. At present, the presented solutions always discuss the solution by the dividing 
property of integers. But all the results are not convenient and efficient to solve the equations and not 
adapt to solving the general system of linear congruence equations in n unknowns. 

There is no uniform, convenient and efficient technique and theory for the general system of 
congruent linear equations, like the theory of linear equations over real numbers in Linear Algebra. So it 
seems be a significative research. 

1.2 research situation 

The congruent linear equations are the ancient and significant research contents, which are involved 
with most theory and application about integers. 

There is most linear congruent theorem for solving the linear congruence equation in one unknown 
and the Chinese remainder theorem is the best known solution for solving the simultaneous linear 
congruence equations in one unknown. But the Chinese remainder theorem is only true of linear 
congruence equations in one unknown, which has a strict condition, that the moduli of the equations 
must be pairwise coprime. If the modules are not pairwise coprime, we must take prime factorization on 
the modular, and then apply the theory to solve the congruent linear equations. In the process of solution, 
not only the prime factorization is very difficult, but also the complexity and calculated amount in 
solving process with Chinese remainder theorem are worthless. At present, there are nearly no paper 
focus on the discussion of the equation in n unknowns[1][2][3][16][17]. all the results are not convenient and 
efficient to solve the equations and not adapt to solving the general system of linear congruence 
equations in n unknowns. 

Given the inspiration arose from the elimination of variables when solving the linear equations over 
real numbers, we can solve the linear congruence equations easily by the matrix transformation method. 
This method is not only easy and feasible, but also especially applicable to the solution for the system of 
linear congruence equations in n unknowns. But there is no uniform, convenient and efficient technique 
and theory for the general system of congruent linear equations, like the theory of linear equations over 
real numbers. 

In the field of real number, document [4] and [5] proposed the solutions which can perfectly 
transform a matrix to the canonical form under the elementary transformations. Besides, document [5] 
give the canonical form matrix under Principal Ideal Domain, Euclid domain and others. All the integral 
domain has a shared characteristic that the nonzero element in domain can be invertible or eliminable. 
But the element of matrix modulo m can be invertible, or zero divisor, and the cancellation law does not 
hold for the zero divisor, so the discussion is more complex. In document [6]-[13], [15], all the solutions 
of congruent equation avoid the discussion for canonical form under the elementary transformation. 
Some of them directly use the conclusion of integer matrix; others are only discussing the congruent 
equation or indeterminate equation, not the system of linear congruence [indeterminate] equations. They 
only need to do the elementary transformations on the column matrix or row matrix, which is reduced to 
finding the great common divisor among a set of numbers. So the discussion in literatures [6]-[18] are 
deficient. 

In this paper, based on the properties of modulo m which is different from the real number and 
integer, we discuss the properties of elementary transformations and elementary matrices modulo m, and 
then adopt them to compute the Great Common Divisor and Least Common Multiple of finite integers. 
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Besides, we analyze the canonical form under the elementary transformations, which is similar to the 
conclusion on the integer matrix. All these works extend the conclusion in the literature [5] and provide a 
theory basis for the followed solution of linear congruence equations. 

A similar equivalent transforming theorem for matrix modulo m theorem was obtained that any 
matrix modulo m can be transformed into a canonical diagonal form by means of a finite number of 
elementary row and column operations. Then on the basis of the canonical form, we propose the solution 
criterion theorem and structure theorem for the general congruent linear equations, give the solution 
criterion theorem and necessary and sufficient condition of solution of any congruent linear equations, 
extend the solution criterion theorem of Chinese remainder theorem and perfect the solution theory of 
congruent linear equations. 

If the modulo of each equation in the system of linear congruence equations are different, we may 
obtain the criterion theorem and solution of equations after transform the original equations to an 
equivalent system of linear congruence equations under unified modulo by means of the least common 
multiple of all the modulus of the equations of the original system. 

The general solution structure and expression of the system of linear congruence equations modulo 
uniform m are given in this paper. Besides, the solution criterion theorem and structure theorem were 
proposed for the general congruent linear equations, and finally, the detailed steps of the uniform method 
were given for solving the general system of congruent linear that equations based on the elementary 
transformations of matrix modulo m. It is indicated that the proposed method is most valuable in science 
and convenient, efficient and adaptable for solving the general system. 

All kinds of the congruent linear equations are covered in this paper, so the results described in 
literature [6]-[13, 15] are special type of conclusions of this paper. 

On the above discussion, the complete theory and method of solution are given for congruent linear 
equations with all different types in this paper. The given method not only has few solution steps and 
small computational complexity, but also is most valuable in science and convenient, efficient and 
adaptable. 

1.3 Objectives and Basic Ideas 

Objectives: study on the properties of modular matrix transformations, discuss the solution theory 
for congruent linear equations and propose a uniform solution method for solving the general congruent 
linear equations by means of the elementary operations on modular matrices.. 

Basic idea: considering the congruence properties of integers, on the basis study of equivalent 
theorem among congruent linear equations, we give the equivalent transformations of congruent linear 
equations, analyze the properties of equivalent transformations, discuss the canonical form  of modular 
matrix under the elementary modular operations and the uniform solving steps for congruent linear 
equations. 

2．Matrix Representation of Linear Congruence Equations 

2.1  Linear Congruence Equations modulo m 

A general system of linear congruence equations: 
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11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

(mod )
(mod )

(mod )

n n

n n

s s sn n s s

a x a x a x b m
a x a x a x b m

a x a x a x b m

+ + + ≡⎧
⎪ + + + ≡⎪
⎨
⎪
⎪ + + + ≡⎩

L

L

L L L

L

 

Where , ,ij i ia b m (1 ,1i s j n≤ ≤ ≤ ≤ ) are integers and 1 2, , , nx x xL are n variables taking in 

integers. 

In general, the moduli (1 )im i s≤ ≤  are not the same. By the properties of linear congruence, 

multiplying both sides of the equation and the corresponding modulus of the system by a proper integer 
respectively, we can obtain a system of linear congruence equations modulo a same modulus, which has 
the same solutions as the original one. For example, one can multiply each equation and the 
corresponding modulus by proper multiple such that the uniform modulus m is the least common 

multiple of the moduli (1 )im i s≤ ≤ , 1 2( , , , )sm lcm m m m= L . 

To illustrate this, let 

8(mod15)
5(mod8)
13(mod 25)

x
x
x

≡⎧
⎪ ≡⎨
⎪ ≡⎩

be a system of linear congruence equations with different 

moduli, multiplying each equation by proper integer, we obtain the following linear congruence 

equations with the same modulus:

40 40 8(mod15 40)
75 75 5(mod8 75)
24 24 13(mod 25 24)

x
x
x

≡ × ×⎧
⎪ ≡ × ×⎨
⎪ ≡ × ×⎩

. It is evident that two systems are 

equivalent and have same solutions. And the later system of linear congruence equations has the uniform 
modulus 600. 

So any system of linear congruence equations can be transformed into a system of linear 
congruence equations modulo a uniform modulus. 

Definition 2.1  The system of linear congruence equations of n variables: 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

(mod )
(mod )

(mod )

n n

n n

s s sn n s

a x a x a x b m
a x a x a x b m

a x a x a x b m

+ + + ≡⎧
⎪ + + + ≡⎪
⎨
⎪
⎪ + + + ≡⎩

L

L

L L L

L

                     （2.1） 

is called a system of linear congruence equations modulo m. 
The coefficients of the system of linear congruence equations modulo m are the integers modulo m, 

that is, they are considered the elements of Residue Class Ring mZ [5], so the system is the system of 

linear congruence equations over the residue class ring mZ . 

According to the properties of congruence from [1-3], the following properties are evidently. 
Proposition 2.1 Performing the following operations on the equations of the system of linear 

congruence equations modulo m, the obtained system of linear congruence equations has the same 
solutions as the original system. 
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(1)  interchanging any two equations in the system; 
(2)  adding a multiple of one equation to another; 
(3)  multiplying any equation in the system by an integer which is coprime with the modulus m; 
(4)  modulo operation on any coefficients of the system: adding a multiple of the modulus m to or 

subtracting that from any coefficient of the equations. 
Note: from the proposition 2.1, the operation (3) is different from that on the system of linear 

equations over the real numbers [4]. If and only if the integer a and m are relatively prime, a is an 
invertible element modulo m, the inverse element of a can be obtained by applying the Euclidean 
algorithm. Because the integers being congruent modulo m are the same elements in residue class ring 

mZ , one can use the operation (4) to simplify the coefficients of the system. 

2.2  Matrix representation of the system of linear congruence equations 

modulo m 

The s n× matrix 

11 12 1

21 22 2

1 2

n

n

s s sn

a a a
a a a

A

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

O

M O O M

L

 is called the coefficient matrix of the system 

(2.1).  

If we let 

1

2

n

x
x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

x
M

 and 

1

2

s

b
b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

b
M

, then the system (2.1) may be rewritten as a single matrix 

congruence equation (mod )A m≡x b , here (mod m) means that the matrix operations are the 
operations modulo m. 

Definition 2.2: the matrix congruence equation (mod )A m≡x b is called the matrix 
representation of the system of linear congruence equations modulo m. 

11 12 1

21 22 2

1 2

n

n

s s sn

a a a
a a a

A

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

O

M O O M

L

 and 

111 12 1

21 22 2 2

1 2

( , )

n

n

s s sn s

a a a b

a a a b
A

a a a b

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

L

O

M O O M M

L

 are called the coefficient 

matrix and the augmented matrix of the system (mod )A m≡x b  
 

2.3  Discussions and summaries 

By unifying the modular of the linear congruence equations, defined the system of linear 
congruence equations modulo m and its modular matrix representation, gave four elementary operations 
on the linear congruence equations to transform the system with the same solutions. The proposition tells 
us that the operations (3) and (4) are different a bit from that for ordinary equations in real numbers in 
[4], operations (3) is used on the equations seldom besides multiplying or eliminating (-1) or the integer 
that can be obviously identified being coprime with m. 
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3．Modular Matrix Transformations 

Modular matrix modulo m is the matrix over the residue class ring modulo m, which has many 
familiar properties with the real and integer number matrix, but because the entries are the numbers 
modulo m, the modular matrix has its special characteristics. This chapter will discuss the properties on 
the elementary modular matrix operations and the elementary modular matrix, and the properties that 
how to compute the great common divisor and least common multiple of integers by using the 
elementary modular matrix operations, finally, prove and obtain the main result for the Equivalent 
Transforming Theorem for matrix modulo m.  

3.1 Matrix modulo m 

Definition 3.1 The matrix is called a matrix modulo m if its entries are the integers modulo m.  
Let A, B are two matrices modulo m of the same type, if their corresponding entries are congruent 

modulo m, then we call that the matrices A and B are the congruence matrix modulo m. Set 

(mod )A B m≡  when A and B are congruent modulo m, they are the same matrix over mZ . 

Obviously, the laws of the addition and multiplication of the modular matrix are familiar with that 
of the real number matrix in [4], just only notes that the add and multiple operations between the entries 
are the operations modulo m. 

3.2  Elementary Operations on modular m matrix 

In this section, we define the elementary operations that are used throughout the paper. We will use 
these operations to obtain the equivalent transforming theorem for the matrix modulo m, to discuss the 
solvability conditions for the linear congruence equations modulo and to obtain uniform computational 
methods for determining the solution of a system of linear congruence equations. 

From the proposition 2.1 and the matrix representation for the system of linear congruence 
equations, the elementary matrix operations on the modular matrix arise from the operations for the 
system of linear congruence equations described in the proposition 2.1. 

Definition 3.2：Let A be an s n×  matrix modulo m, Any one of the following operations on the 
rows [column] of A is called an elementary row [column] operation: 

(1) location operation：interchanges any two rows [or columns] of the matrix. Let i jr r↔  

[ i jc c↔ ] denote the operation interchanging i-th row [column] and j-th row [column]; 

(2) elimination operation：adding a multiple of each elements of one row [column] to the 
corresponding elements of another row [column], Let i jr r k+ ×  denote the operation adding the 
multiple k of the elements of j-th row [column] to the corresponding elements of i-th row [column]; 

(3) multiple operation：multiplying an integer k to each elements of one row [column], where k 

and the modular m are coprime (that is, k must be an invertible element in mZ ), denoted by ir k× ; 

or eliminating the  common divisor k of the elements of one row [column] from the row [column], if 

the common divisor k is coprime with the modular m, denoted by /ir k , where gcd( , ) 1k m = ; 

(4) modulo operation：applying the modulo operation to any entries of the modular matrix, i.e., 
adding a multiple of m to an element or subtracting a multiple of m from any element of the modular 
matrix, denoted this operation as (mod m). 
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Any one of the above operations is called an elementary operation. Elementary operations are of 
type 1,type 2, type 3 or type (4) depending on whether they are obtained by (1), (2), (3) or (4). 

Note: the operations (4) is not same as in the linear algebra, in fact, modulo operation does not 

change the element in mZ , but because this operation is often used in mZ , we join it as one of the 

elementary operation on modular matrix. 
If a modular matrix A can be transformed into another modular matrix B by means of a finite 

number row and column elementary operations, we called that the matrix A and B are equivalent, noted 
as A～B. 

The following propositions are obvious by proposition 2.1 and the corresponding of the system of 
linear congruence equations and its matrix representation.. 

Proposition 3.1:  Performing the elementary row operations on the corresponding augmented 
matrix of a system of linear congruence equations, the obtained system of linear congruence equations 
has same solutions as the original system of linear congruence equations. 

Similar discussion as in the [4], we can get the following proposition. 
Proposition 3.2:  Performing the elementary row and column operations on the corresponding 

augmented matrix of a system of linear congruence equations, the obtained system of linear congruence 
equations is equivalent to the original system of linear congruence equations, i.e., the solutions of one 
system of linear congruence equations can be obtained from another one by a linear transformation. 

3.3 Equivalent transforming for the modular matrix 

Using the elementary operations of the modular matrix, we can discuss and obtain some properties 
for the modular matrix, especially the important property about the canonical diagonal form of a modular 
matrix under the elementary operations..  

 
Definition 3.3:  An n n×  elementary matrix is a matrix obtained by performing an 

elementary operation on n n×  unit matrix nE . The elementary matrix is said to be of type 1, 2, 3 or 4 

according to whether the elementary operation performed on nE  is a type 1, 2, 3 or 4 operation, 

respectively. 

Denoted the elementary matrix as ( , )E i j ， ( ( ), )E j k i , ( ( ))E i k  and nE , which are 

corresponded to the type 1, 2, 3 and 4 operations, respectively. 
Note that not changing the matrix modulo m, the elementary matrix corresponding to the type 4 

operation is still the unit matrix itself. 
Just paying the attention to the modulo operation on the entries of the modular matrix, we can do 

the analogical studies in linear algebra [4], and obtain the results similar to the theorem 9, theorem 10 
and the corollaries in reference [4] for the elementary operations and elementary modular matrix, which 
will be declared with no proofs below. 

Theorem 3.1:  (1)  Let A be an s n×  modular matrix, and suppose that B is obtained from A 
by performing an elementary row [column] operation. Then there exists an s s× [ n n× ] elementary 

matrix E such that B E A= ⋅ [ B A E= ⋅ ]. Where E is in fact obtained from sE [ nE ] by performing 

the same elementary row [column] operation as that which was performed on A to obtained B. 
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Conversely, if E is an elementary s s× [ n n× ] matrix, then E A⋅ [ A E⋅ ] is the matrix obtained from 

A by performing the same elementary row [column] operation as that which produces E from sE [ nE ]. 

(2) A is an n n×  invertible modular matrix if and only if A is the product of elementary matrices, 

say 1 2 lA PP P= L , where 1 2, , , lP P PL  are the elementary matrices. 

(3) Let A and B be two s n×  modular matrices, the sufficient and necessary condition for A～B is 

that there exists an s s×  invertible matrix P and an n n×  invertible matrix Q such that PAQ B= . 

(4) Each elementary matrix is obtained from the corresponding elementary operation, elementary 
operation is invertible, so the elementary matrix is also invertible, and the invertible elementary matrix is 
corresponded to the invertible operation. 

By applying the elementary operations of modular matrix, we can calculate the great common 
divisor and least common multiple of integers conveniently. 

Lemma 3.1: (1) suppose that the column modular m matrix 

1

2

s

b
b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 is obtained by performing the 

elementary row operations of type 2 (elimination row operation) on a nonzero column modular m matrix 

1

2

s

a
a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
, then the integer sets 1 2{ , , , }sa a aL  and 1 2{ , , , }sb b bL have the same great common divisors, 

i.e., 1 2 1 2gcd( , , , ) gcd( , , , )s sa a a b b b=L L ; 

(2) Further, 

1

2

s

a
a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 can be transformed into the column matrix 

0

0

d⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 by a finite number of 

elementary row operations of type 1 and type 2, and 1 2gcd( , , , )sd a a a= L ; 

(3) if 2s ≥ , then the final 
0

0

d⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 must be obtained by a finite number of elementary row 

operations modulo m of type 1-4, and 1 2gcd( , , , , )sd a a a m= L . 

Proof: 
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(1) Let 1 2gcd( , , , )sd a a a= L  and '
1 2gcd( , , , )sd b b b= L , because 

1

2

s

b
b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 is obtained by 

elementary row operations of type 2 on 

1

2

s

a
a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
, each one of 1 2, , , sb b bL  is the linear combination of 

the integers 1 2, , , sa a aL . By the properties of great common divisor, we have | , 1, 2, ,id a i s= L , 

and then | , 1, 2, ,id b i s= L , and accordingly '|d d  is held； 

Conversely, for the elementary operations are invertible by theorem 3.1 (4), it can be considered 

that 

1

2

s

a
a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 is obtained by the corresponding invertible elementary row operations of type 2 on 

1

2

s

b
b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
, 

so each one of 1 2, , , sa a aL is also the linear combination of the integers 1 2, , , sb b bL , and then 

' | , 1, 2, ,id a i s= L  are held by the fact that ' | , 1, 2, ,id b i s= L , so ' |d d  is held.  

So we can claim that 'd d= , i.e., 1 2 1 2gcd( , , , ) gcd( , , , )s sa a a b b b=L L . 

(2) Euclidean algorithm [1,2] is the customary approach for calculating the great common divisor of 

integers. By the property that 1 2 1 2 1gcd( , ) gcd( , )a a a a ka= +  in [1-3], we can claim that performing 

an elementary row operation of type 2 on a column matrix is meant one step in Euclidean algorithm. 
Because the GCD (great common divisor) must be appeared by a finite number of division algorithm, 

1

2

s

a
a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 can be transformed into a column matrix with one of the entries being GCD d by a finite number 

of elementary row operations of type 2, then d can be interchanged to the first place of the column by the 

location row operations, and so 

1

2

s

a
a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 is transformed into 

'
2

'
s

d
a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M
 by  elementary row operations of 

type 1 and type 2, we know also that each one of ' ' '
2 3, , , sa a aL  is the linear combination of 
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1 2, , , sa a aL , and | , 1, 2, ,id a i s= L , then '| , 2, ,id a i s= L , d is the divisor of all ' , 2, ,ia i s= L , 

so 
'
2

'
s

d
a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M
 can be easily transformed into 

0

0

d⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 by elementary row operations of type 2, where 

1 2gcd( , , , )sd a a a= L . 

(3) Further considering, from (2), if |d m , then d is obviously the GCD of integers 

1 2, , ,sa a a mL ; if md |/ , as 
0

0

d⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
is a modular m matrix, and for 2s ≥ , there exists an element 

besides d being zero, then it can be transformed into 

0

d
m
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 by an elementary operation of type 4, i.e., a 

modulo operation, and finally the column matrix 

'

0

d⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 can be obtained by continuously performing a 

finite number of elementary row operations of type 2 on the first two rows of the column matrix, and 

we can see that d’ is the GCD of d , m, but d is the GCD of 1 2, , , sa a aL  known from (2), so, d’ is the 

GCD of 1 2, , , ,sa a a mL . 

The lemma is proved. 
Remark: 

There is a conjecture from Lemma 3.1(3): The result of Lemma 3.1 (3) is still satisfied when 1s = , 

that is, 1-order modular matrix ( )1a  can be transformed into ( )d  by means of a finite number of 

elementary operations modulo m（only the operations of tpye3 and tpye4 is applicable），and d is the 

GCD of 1,a m，that is, there exists integer k satisfying gcd(k,m)=1, such that 1 (mod )k a d m⋅ ≡ .

（Obviously, there exists an integer k such that 1 (mod )k a d m⋅ ≡  by the Euclidean algorithm, but it 

is not proved yet here whether the k satisfying gcd(k,m)=1 exists or not. For this, I have a conjecture: if 

gcd( , ) 1k m ≠ , then 
mk
d

+  must be satisfied the condition gcd( , ) 1mk m
d

+ = .) 

The least common multiple (LCM) of integers can be calculated by the great common divisor of the 
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integers. By the corollary of the theorem 9 in section 2 of reference [1], we can obtain the following 
Lemma3.2 for the calculating of the LCM of integers. 

Lemma 3.2[1]: Let 1 2, , , sa a aL  be s integers，and let 1 2 sa a a a= L ，ˆ , 1, 2, ,i
i

aa i s
a

= = L ，

then the least common multiple of 1 2, , , sa a aL  is [ 1 2lcm( , , , )sa a aL ]=
1 2ˆ ˆ ˆgcd( , , , )s

a
a a aL

. Where 

1 2lcm( , , , )sa a aL  denotes the least common multiple of 1 2, , , sa a aL . 

Based on the Lemma 3.1 and Lemma 3.2, the LCM of integers can also be calculated by means of 
elementary operations. 

The following theorem is the main result of this chapter, which claim that any modular matrix can 
be transformed into a canonical diagonal form or a reduced diagonal form by means of a finite 
number of elementary operations modulo m. 

Theorem 3.2(Equivalent transforming theorem): Let A be a nonzero s n×  ( s n≠ ) 
matrix modulo m, by means of a finite number of elementary row and column operations, A can be 

transformed into the canonical diagonal form D: rD
D ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

0
0 0

，that is, there are invertible modular 

matrices ,ss nnP Q , such that rD
PAQ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0
0 0

, where 

1

2

0 0
0 0

0 0

r

r

d
d

D

d

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

L L L L

L

, and the elements 

on the diagonal are satisfied that 0(mod ), 1,2, ,id m i r≠ = L , and 1 2| | | |rd d d mL . 

D is called a reduced diagonal form of modular matrix A if the elements on the diagonal of D are 

just satisfied that 0(mod ), | , 1, 2, ,i id m d m i r≠ = L . 

Proof: if A is a row or column matrix modulo m, because s n≠ , the conclusion of the theorem is 
correct by the Lemma 3.1. 

In general, suppose that 

11 12 1

21 22 2

1 2

n

n

s s sn

a a a
a a a

A

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

O

M O O M

L

, consider the great common divisor of all 

elements of A and m, denoted as 1a . Based on the Lemma 3.1, by means of a finite number of 

elementary modular operations, the GCD 1a  will be appeared and then by means of some operations of 
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type 1, A can be transformed into a matrix as follow: 

' '
1 12 1
' ' '
21 22 2

' ' '
1 2

'

n

n

s s sn

a a a
a a a

A

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

O

M O O M

L

. 

By the Lemma 3.1, the GCD of all elements of 'A  and m is not changed and still is 1a , then 1a  

is the divisor of all elements of 'A , so, by means of type 2 operations, A  can be transformed into the 

matrix 

1

1

0 0
0

0

a

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

O

OM M

L

, and in which 1a  is the divisor of all elements of A1 and m. 

Now suppose that 2a  is the GCD of all elements of A1 and m, then we have that 1 2|a a . If 

1 20,   0A then a≠ ≠ , do the similar works as before, 1A  can be transformed into the following form 

of matrix 

2

2

0 0
0

0

a

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

O

OM M

L

 by means of a finite number of elementary operations modulo m, and 

2a  is the GCD of all elements of A2 and m.  

Then, by means of a finite number of elementary operations modulo m, A can be transformed into 

matrix 

1

2

2

0 0
0 0

0 0

a
a

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

O

OM M

L

, and 1 2|a a , 2 0a ≠ . 

By the mathematic induction, we can obtain the conclusion of the theorem:  by means of a finite 
number of elementary modular operations, A can be transformed into the following canonical diagonal 

form: rD
D ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

0
0 0

, i.e., there are invertible modular matrices ,ss nnP Q , such that 

rD
PAQ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0
0 0

, in which 

1

2

0 0
0 0

0 0

r

r

d
d

D

d

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

L L L L

L

, and 1 2| | | |rd d d mL , 

0(mod ), 1,2, ,id m i r≠ = L . 

Note that the last nonzero rd  is also satisfied that |rd m . Because s n≠ , the last row (when 
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s>n) [or last column (when s<n)] of rD
PAQ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0
0 0

 must be zero row [or zero column], then 

performing the modulo operation on the last zero row [or column], and by means of the type 2 
operations on the last row [or column] and the last nonzero row [or last nonzero column], we can obtain 

that the last rd  satisfies that |rd m . 

The theorem 3.2 is proved. 
Corollary 3.1：For 1 2, , , rd d dL  of D in the Theorem 3.2, if there is invertible element among 

1 2, , , rd d dL , then there must exist some element, say ,1rd r r≤ ≤ , that rd  is invertible, and more, 

,1id i r≤ ≤  are all invertible, but ,jd r j r< ≤  are all zero divisors. 

Proof: by the theorem 3.2, 1 2, , , rd d dL  in canonical diagonal form D satisfy that 

1 2| | | |rd d d mL , and 0, 1,2, ,id i r≠ = L , so, if some one ,1kd k r≤ ≤  is invertible, then, 

because 1 | | kd dL , we can obtained that ,1id i k≤ ≤  are all invertible; and if there is some one 

,1kd k r≤ ≤  which is not invertible, then it must be a zero divisor, also for that | |k rd dL , we have 

the fact that ,id k i r≤ ≤  are all zero divisors. 

So, if there is any invertible element among 1 2, , , rd d dL , there must exists a maximal r ,such 

that ,1id i r≤ ≤  are all invertible and ,id r i r< ≤  are not invertible. 

Corollary is proved. 

3.4 Summary 

Based on the properties of integers and modular integers, elementary modular operations and 
elementary modular matrix are defined, some applications for calculating the GCD and LCM by means 
of the elementary operations, and finally obtained the main result on the equivalent transforming 
theorem of modular matrix, which will be useful in subsequent chapters for solving a system of linear 
congruence equations. 

4．Theories on system of linear congruence equations 

Based on the previous chapter’s discussion about the elementary transformations of matrix  
modulo m, this chapter will discuss the theories and approaches for solving the system of linear 
congruence equations, which are the promotion on the results in references [4] [5] , and expand the 
discussions in the references [6]- [13] and [15] about the congruence equations. 

4.1 Criterion for the solutions’ determining 

In this section, we will discuss the criterion conditions for the solutions of the system of linear 
congruence equations according to result on the equivalent transforming theorem about the modular 
matrix in chapter 3.  

Let’s consider the system of linear congruence equations in n unknowns: 
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11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... (mod )

... (mod )

... (mod )

n n

n n

s s sn n s

a x a x a x b m
a x a x a x b m

a x a x a x b m

+ + + ≡⎧
⎪ + + + ≡⎪
⎨
⎪
⎪ + + + ≡⎩

L L L
                      （4.1） 

Note that if the moduli of the equations in the system are different, we can multiply the both side of 
the equations by the appropriate multiples, and expand the modulus to the least common multiple of 
moduli, which make the modulus of each equation is equal. 

The coefficient matrix of the system (4.1) is 

11 12 1

21 22 2

1 2

n

n

s s sn

a a a
a a a

A

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

O

M O O M

L

, the constant column is 

1

2

s

b
b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

b
M

, and the unknown vector 

1

2

n

x
x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

x
M

, then matrix representation of the system (4.1) is that as 

follows: 
(mod )A m≡x b                                         （4.2） 

Form the theorem 3.2 , properties 3.2, we can easily figure out the theorems about the 
solution of linear congruence equations modulo m as follows. 

Theorem 4.1: Let  be an A s n×  matrix modulo m, and ,P Q  are s s×  invertible matrix 
and n n×  invertible matrix respectively, then the system (4.2) and the system  

(mod )PAQ P m≡y b                                 （4.3） 
are equivalent. 

In which 

1

2

n

y
y

y

⎛ ⎞
⎜ ⎟
⎜ ⎟≡
⎜ ⎟
⎜ ⎟
⎝ ⎠

y
M

. When the solutions to the systems exist, the relationship of the two systems 

(4.2) and (4.3) is: 
(mod )Q m≡x y .                       (4. 4)  

Proof: As P and Q are invertible matrices, the conclusion of theorem 4.1 is established apparently. 
The details of the proof are omitted. 

Further more, by the theorem 3.2, A can be transformed into the reduce diagonal form, namely there 

are invertible matrices P and Q, such that rD
PAQ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0
0 0

, 

1

2

0 0
0 0

0 0

r

r

d
d

D

d

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

L L L L

L

, and |id m , 

0(mod ), 1,2, ,id m i r≠ = L .          (4.5) 

Assume that 

1

2

s

b
b

P

b

∗

∗

∗

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b
M

, the following criterion theorem for determining solutions of the system 
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of linear congruence equations can be obtained apparently according to the Theorem 4.1 and the linear 
congruence theorem in [1-3] for linear congruence equation in one unknown. 

Theorem 4.2 (Criterion Theorem for the solutions’ determining): 
Suppose that the reduce diagonal form of the coefficient matrix A of the system (4.2) is that in 

(4.5), then the necessary and sufficient conditions for having solutions to the system (4.2) is that: 
| , 1, 2, ,i id b i r∗ = L , and 0(mod ), 1, ,jb m j r s∗ ≡ = + L .               (4.6) 

Proof: the conclusion is obvious according to the Theorem 4.1 and the linear congruence theorem 
in [1-3]..  

Notes: 
Theorem 4.2 extends the Chinese Remainder Theorem for the criterion of solutions determining to 

the general system of linear congruence equations. The conclusion is established for the system of linear 
congruence equations modulo m, but it is applicable for the general system with different moduli of the 
equations, because we can easily transfer the system to a system of linear congruence equations under 
uniform modulo, taking the uniform modulo as the least common multiple of the moduli.. 

4.2 The Structure of Solutions 

The follow Lemma 4.1 is described in [1, 16] as the linear congruence theorem. 
Lemma4.1[1]: For the linear congruence equation (mod )ay b m≡ , let ( , ),d a m=  when 

|d b , there are distinct d solutions modulo m to the linear congruence equation. If one special solution 

to the linear congruence equation is known, say *y , then we can write out the general solutions to the 

equation as follow: * (mod ), 0, 1.my y k m k d
d

= + ⋅ = −L  

According to the Lemma 4.1, the key work to figure out the solutions to the equation 
(mod )ay b m≡  is to find out one of the special solutions *y  to the linear congruence equation. 

According to Lemma 4.1, the following theorem for the special case is obviously true. 
Theorem4.3: For the linear congruence equation (mod )dy b m≡  that  | , |d m d b , then the 

equation must have d distinct solutions modulo m, and the general solution is:  

(mod ), 0, 1.b my k m k d
d d

= + ⋅ = −L  

The theorem 4.3 is established obviously, because under the condition of the theorem 4.3, 

obviously, * (mod )dy m
b

≡  is one of the solutions to the equation. 

According to the Theorems 4.1, 4.2 and 4.3, the following solution’s structure theorem can be 
immediately established. 

Theorem4.4 (the structure theorem of the solution): 
Suppose that the reduce diagonal form of the coefficient matrix A of the system (4.2) is D: 

rD
D ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

0
0 0

, when there exist solutions to the systems, the original system (4.2) is equivalent to 

the following simple system of linear congruence equations modulo m: 
*

1 1 1

*

1

(mod )

(mod )
0 0(mod )

0 0(mod )

r r r

r

s

d y b m

d y b m
y m

y m

+

⎧ ≡
⎪
⎪
⎪ ≡⎪
⎨

≡⎪
⎪
⎪

≡⎪⎩

M

M

                                    (4.7) 

And according to the theorem 4.3, the general solution to the system 4.7) can be written out:: 
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1
1 1

1 1
1 1

2
2 2 2 2

2 2

1

1 1

(mod )
0, 1

(mod ) 0, 1

, 0, 1
0, 1(mod )

(mod ) 0, 1

(mod )

r r
r

rr r
r r

r r
n

n n

b my k m
d d

k d
b my k m k d
d d

k d
b m k my k m
d d

y k m k m

y k m

∗

∗

∗

+

+ +

⎧
= + ⋅⎪

⎪ = −⎪
= + ⋅ = −⎪

⎪
⎪⎪ = −⎨
⎪ = −= + ⋅⎪
⎪

=⎪ = −⎪
⎪

=⎪⎩

L

L

M
M

L

L

M

L
M

                 （4.8） 

Or it can be expressed by column vectors (column matrix): 

1
1

1 1
1 1

2
2 2 2

2 21

* 2

1

1

0, 1
0, 1

(mod ), 0, 1
0, 1

0, 1

r r
r

rr
n r r

r
n

n

b mk
d d

k d
b mk k d
d dy

y
m k d

b m k mk
y d d

k
k m

k

∗

∗

∗

+

+

⎛ ⎞
+ ⋅⎜ ⎟

⎜ ⎟ = −⎜ ⎟
+ ⋅ = −⎜ ⎟

⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟≡ = = −⎜ ⎟ ⎜ ⎟

= −+ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎜ ⎟
= −⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠

y

L

L

M
M

L
M

L

M

L
M

              (4.9) 

The solution to the original system (4.2) can be obtained from the solution to the system (4.7): 

1 1

2 2* (mod )

n n

x y
x y

Q Q m

x y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟≡ ≡ ⋅ ≡
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x y
M M

                                (4.10) 

From theorem4.1 and 4.3, the conclusions in the theorem 4.4 are obviously true. And we can get the 
process of figuring out the solution to the system of linear congruence equations. 

在定理 4.4 中，设

11 12 1

21 22 2

1 2

n

n

n n nn

q q q
q q q

Q

q q q

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

M M L M

L

，Q的列向量为

1

2 , 1, ,

j

j
j

nj

q
q

j n

q

⎛ ⎞
⎜ ⎟
⎜ ⎟= =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

q L
M

，则方

程组（4.2）的解可展开表示为向量线性组合的形式： 

In the theorem 4.4, suppose that 

11 12 1

21 22 2

1 2

n

n

n n nn

q q q
q q q

Q

q q q

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

M M L M

L

, its the column vectors are 
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1

2 , 1, ,

j

j
j

nj

q
q

j n

q

⎛ ⎞
⎜ ⎟
⎜ ⎟= =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

q L
M

, then the solution of the system (4.2) can be expressed as a form of the  linear 

combination of vectors 

1 1

2 2*
1 2 1 1 2 2( , , , ) (mod )n n n

n n

x y
x y

Q y y y m

x y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟≡ ≡ ≡ ≡ + + +
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x y q q q q q qL L
M M

.   （4.11） 

or it can be representation as a full-scale form: 

1 2
1 1 11 2 12 1 1 1 1 1

1 1 2 2

1 2
2 1 21 2 22 2 1 2 1 2

1 1 2 2

1 2
1 1 2

1 1 2 2

( ) ( ) ( ) (mod )

( ) ( ) ( ) (mod )

( ) ( )

r
r r r r n n

r r

r
r r r r n n

r r

r r

b b bm m mx k q k q k q k q k q m
d d d d d d

b b bm m mx k q k q k q k q k q m
d d d d d d

b bm mx k q k
d d d d

∗ ∗ ∗

+ +

∗ ∗ ∗

+ +

∗ ∗

= + ⋅ + + ⋅ + + + ⋅ + + +

= + ⋅ + + ⋅ + + + ⋅ + + +

= + ⋅ + + ⋅

L L

L L

M

2 1 1

1 2
1 1 11 2 1,2 1, 1 1, 1 1

1 1 2 2

1 2
1 1 2 2

1 1 2 2

( ) (mod )

( ) ( ) ( ) (mod )

( ) ( ) ( )

r
r r rr r rr n rn

r r

r
r r r r r r r r r n r n

r r

r
n n n r

r r

b mq k q k q k q m
d d

b b bm m mx k q k q k q k q k q m
d d d d d d

b b bm m mx k q k q k
d d d d d d

∗

+ +

∗ ∗ ∗

+ + + + + + + +

∗ ∗ ∗

+ + + ⋅ + + +

= + ⋅ + + ⋅ + + + ⋅ + + +

= + ⋅ + + ⋅ + + + ⋅

L L

L L

M

L 1 1

,

(mod )nr r nr n nnq k q k q m+ +

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪

+ + +⎪
⎩

L

 

其中，

1 1

2 2

1

0, 1
0, 1

0, 1
0, 1

0, 1

r r

r

n

k d
k d

k d
k m

k m

+

= −
= −

= −
= −

= −

L

L

M

L

L

M

L

。                                       （4.12） 

4.3 Discussion and Summary 

Theorem 4.1 and 4.2 proposed the necessary and sufficient conditions for determining the solutions 
to the general linear congruence equations, promoted the Chinese Remainder Theorem. 

Chinese remainder theorem is only for the linear congruence equations in one unknown. we need to 
determine whether the moduli are pairwise relatively prime When using the Chinese remainder theorem 
to judge and figure out the solution to the linear congruence equations, it is very trouble. If the moduli 
are not pairwise relatively prime, we should factorize the modular and decompose each of the equations 
into several equations with small modulo, then combined them to find the solutions by means of Chinese 
remainder theorem, but the problem is that, when the modulo is considerable large, the modulo 
factorization itself is a difficult work, and it is not suitable for solving. 

Theorem 4.2 can be applied to any multivariate linear congruence equations, and it only needs to do 
a series of elementary transformations, and we can determine the solutions soon. 
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In addition, when discussing the linear congruence equations for the moduli are different, we only 
need to convert equations into linear congruence equations, which is under the each modulo’s least 
common multiple. So we can use the theorem 4.2 to determine, discuss and judge when the solution 
exists. 

And it is feasible when we figure the GCD and LCM, this is not like computing large modulus 
factorization, which is difficult. 

Theorem 4.4 gives the solution structure of the general linear congruence equations modulo m, and 
the representation of the solution in detail. 

From discussion about the theorem 4.1 to 4.4, this chapter not only gives the determination of the 
solution and the structure of the solution, but also gives the solving method.  

5．Solving the System of Linear Congruence Equations based on 

elementary modular operations 

For the linear congruence equation in one unknown and the system of linear congruence equations 
in one unknowns, we need to determine whether the moduli are pairwise relatively prime When using 
the Chinese remainder theorem to judge and figure out the solution to the linear congruence equations. If 
the moduli are not pairwise relatively prime, we should factorize each modulo and decompose each of 
the equations into several congruence equations of small modulo, and then combined some ones such 
that the moduli are pairwise relatively prime to use of Chinese remainder theorem[1], but the problem is 
that, when the modulo is considerable large, the modulo’s factorization itself is a difficult work, and it is 
not suitable for solving. At the same time, according to the module decomposition, which makes an 
equation into the multiple equations, and then combine, make the numbers of equations increases, and 
how to combine relation is not a unified and it is trivial and isn’t have a routing solution followed. 

But for solving general multivariate linear congruence equations is rarely illustrated in literatures. 
Here, according to the discussions in chapter 3, chapter 4, we can obtain the general steps to solve 

the linear congruence equations, by using the elementary operations of the matrix modulo m. 
The general steps to solve the linear congruence equations as follows: 
According to the results of theorems 3.2, 4.2 and 4.4, a general and uniform technique for solving 

the system of linear congruence equations is proposed. 
 
The steps of the solving techniques are as follow: 
(1) Unifying the modulus of the system of equations; 
Using the properties of the linear congruence, let the least common multiple m of the moduli of the 

linear congruent equations as the uniform modulus, to obtain the system (mod )A m≡x b  of 
congruent linear equations modulo m. 

(2) Construct the block matrix 
A

C
E

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

b
0

, suppose A is s row n column matrix, E is n n×  

unit matrix, and s is not equal to n; 
(3) By a finite number elementary row and column modular transformations modulo m on A, A can 

be transformed into the canonical diagonal matrix D, and C can be transformed into the following form: 

elementary row operations
elementary column operations

A
C

E
⎛ ⎞

= ⎯⎯⎯⎯⎯⎯⎯⎯→⎜ ⎟
⎝ ⎠

b
0

*D
Q
⎛ ⎞
⎜ ⎟
⎝ ⎠

b
0

, in which Q is the product of the elementary 

matrices of the corresponding column elementary transformations. 
(4) By means of the matrix *(  )D b  to determine solutions of the system by the criterion theorem; 
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(5) By the structure theorem, if the system is consistent, it’s easy to obtain the solution 
T

1( , , ) (mod )ny y m≡y L of the system of congruent linear equations * (mod )D m≡y b , and the 
solution of the original system can written out immediately as 

T
1( , , )nQ y y≡ ⋅x L 1 1 (mod )n ny y m≡ + +q qL  by the structure theorem .  

Notes: 
1) The congruent linear equation in one unknown (mod )ax b m≡  can be solved by means of the 

system of congruent linear equations associated with the trivial equation 0(mod )mx m≡ ; 
2) For the system of congruent linear equations in one unknown, the solutions can be obtained only 

by elementary row transformations; 
3) If the coefficient matrix of the system is square, it can be associated with a trivial equation to 

obtain a new system such that the coefficient matrix of the new system is not a square matrix, and then to 
ensure the above method can be applied to solve the system. 

 
According to the specific characteristics of the linear congruence equation(s) in one unknown, the 

linear congruence equation(s) in n unknowns, we give the examples, solving methods and steps 
respectively, 

5.1 The linear congruence equation in one unknown 

Suppose a linear congruence equation in one unknown:  
(mod )ax b m≡                                (5.1) 

Because the equation 0(mod )mx m= is a trivial equation, the equation (mod )ax b m≡  has the 

same solutions as the equations 
(mod )

0(mod )
ax b m
mx m

≡⎧
⎨ ≡⎩

, Thus the congruence equation (mod )ax b m≡  

can be solved by means of solving the system of equations 
(mod )

0(mod )
ax b m
mx m

≡⎧
⎨ ≡⎩

, according to the 

conclusions in chapter 4. 
The specific solving steps: 

 (1) According to the congruence equation (5.1), set the modular m matrix 
0

a b
m
⎛ ⎞
⎜ ⎟
⎝ ⎠

; 

 (2) Performing the elementary row operations on the matrix 
0

a b
m
⎛ ⎞
⎜ ⎟
⎝ ⎠

, such that 
a
m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is 

transformed into the reduce diagonal form 
0
d⎛ ⎞
⎜ ⎟
⎝ ⎠

, and 
0

a b
m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is become the form 
*

0

d b

b

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠%

, the 

process of the transformation can be marked as 
*

(mod  )
0 0

d ba b
m

m b

⎛ ⎞⎛ ⎞
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠%

elementary row operations . As the coefficient matrix is the reduce 

form, it is sure that |d m  (If it doesn't meet, continue to do the row operations, until it satisfies) 

(3) By means of the reduce form 
*

0

d b

b

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠%

 to determine the congruence equation having 

solutions or not by the criterion theorem: if and only if |m b% (i.e., 0(mod )b m≡% ) and *|d b , the 
equation has solutions; 

(4) When determined that the equation has solutions, it’s easy to write out the solutions of the 

equation by the structure theorem: the equation has a unique solution modulo 
m
d

: (mod )b mx
d d

∗

≡ , 
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or has d solutions modulo m: (mod  ), 0,1,...., ( 1) b mx i m i d
d d

∗

≡ + ⋅ = − . 

 
【Example 1】 15 20(mod35)x ≡  

【Answer】：（1）Set matrix based on the equation: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
035
2015

; 

（2）Performing the row operations on ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
035
2015

; 

22 1 1 2 1

2 1

( 3)( 2) mod35

mod35

15 20 15 20 15 20 0 35
35 0 5 40 5 5 5 30

5 30 5 30
;

0 35 0 0

r rr r r r

r r

+ × −+ × − ↔

↔

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

⎯⎯⎯⎯→ ⎯⎯⎯⎯→⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     

（3） 5, =30, 0(mod35), |d b b d b∗ ∗= ≡%Q ，∴ equation has solution, and 
30 6(mod 7)
5

x ≡ = is its 

unique solution modulo 7, or has 5 solutions modulo 35: 6 7 (mod35), ( 0,1,2,3,4)x i i≡ + = 。 

5.2 The system of linear congruence equations in one unknown 

Assume a system of linear equations in one unknown: 

 

1 1 1

2 2 2

(mod )
(mod )

(mod )n n n

a x b m
a x b m

a x b m

≡⎧
⎪ ≡⎪
⎨
⎪
⎪ ≡⎩

L L
，                             （5.2） 

Usually, the moduli of the congruence equations may not be same. So, unify the modular of the 
equations at first, and then to solve the system of equations. 

The Solving steps: 
(1)  Calculate the LCM of ( 1, , )im i n= L : ),,( 1 nmmlcmm L= ： 

     1)  calculate 1 2 nM m m m= L ， ),,2,1(,ˆ ni
m
Mm

i
i L==  

     2）by means of the method in Lemma 3.1, calculate the GCD of nmmm ˆ,,ˆ,ˆ 21 L : 

 )ˆ,,ˆ,ˆgcd( 21 nmmm L ； 

3） calculate the LCM of ( 1, , )im i n= L : 

 
)ˆ,,ˆ,ˆgcd(

),,,(
21

21
n

n mmm
Mmmmlcmm

L
L == ; 

(2) multiplying the coefficients of the equation (mod )i i ia x b m≡  in (5.2) and the modular m by 

im
m

, obtain the equation (mod )i i
i i

m ma x b m
m m

≡ , which has the same solutions to the equation 

)( iii mbxa ≡ , so the original system of equations (5.2) and the following system have the same 
solutions: 
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1 1
1 1

2 2
2 2

(mod )

(mod )

(mod )n n
n n

m ma x b m
m m
m ma x b m
m m

m ma x b m
m m

⎧ ≡⎪
⎪
⎪

≡⎪
⎨
⎪
⎪
⎪ ≡⎪
⎩

L L

                             （5.3） 

    (3) Solving the system (5.3): Let its coefficient matrix 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

n
n

a
m
m

a
m
m

A M

1
1

，the constant column 

1
1

n
n

m b
m

m b
m

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

b M , by means of the elementary row modular operations , transform (A，b) into the form 

20

0 n

d b
b

b

∗

∗

∗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M M
, and further, into the form 

*

0

0 0

d b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

%

M M
, where |d m  (if md |/ , then perform a modular 

operation on some zero in the first column, continue row operations, such that the only nonzero element 
divides m.) 

(4) From the above canonical form, we can easy determine: | , |d b m b∗ ⇔% the system has 

solutions, and through the simple equation *(mod )dx b m≡ , the d solutions of original system can be 

written out easily: (mod )b mx i m
d d

∗

≡ + ⋅ ，（i=0，1，…d-1）。 

【Example 2】 

2 1(mod 4)
3 2(mod 7)
4 3(mod 6)

x
x
x

≡⎧
⎪ ≡⎨
⎪ ≡⎩

 

【Answer】 Unifying the modular: m=[4,7,6]=84 
The original system of equations has the same solutions to the system of equations modulo 84: 

 

42 21(mod84)
36 24(mod84)
56 42(mod84)

x
x
x

≡⎧
⎪ ≡⎨
⎪ ≡⎩

, performing a finite number of elementary row operations on its augmented 

matrix: 
42 21 6 3 6 3 6 3 6 3 0 42 2 15
36 24 36 24 10 9 4 12 2 15 2 15 0 42
56 42 20 18 20 18 0 0 0 0 0 0 0 0

− − − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟→ → → → − → − →⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

42 0(84)b = ≡/%Q ，∴the system has no solution. 
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【Example 3】：

2 1(mod 5)
3 2(mod 7)
4 1(mod11)

x
x
x

≡⎧
⎪ ≡⎨
⎪ ≡⎩

 

【Answer】：The LCM of the moduli m1=5, m2=7 and m3=11 is m=385.  

The original system has the same solutions to the following system: 

154 77(mod 385)
165 110(mod 385)
140 35(mod 385)

x
x
x

≡⎧
⎪ ≡⎨
⎪ ≡⎩

, 

Performing elementary row operations on the augmented matrix: 

1 3 2 1 1 2

2 3 3 1

2 1

1/3
10 mod385 (3,385) 1

11

154 77 14 42 14 42 3 9
165 110 25 75 11 33 11 33
140 35 140 35 0 385 0 0

1 3 1 3
11 33 0 0
0 0 0 0

rr r r r r r
r r r r

c c

− − −
− − × =

− ×

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜→ ⎯⎯⎯⎯→⎜ ⎟ ⎜
⎜ ⎟
⎝ ⎠ ⎝

Q

⎞
⎟
⎟

⎜ ⎟
⎠

 

∴d=1，b∗ =3, |d b∗ , so the original system has unique solution modulo 385: 3(mod385)x ≡ 。 

5.3  The system of linear congruence equations in n unknowns 

Suppose a system of linear congruence equations modulo m as follow: 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... (mod )

... (mod )

... (mod )

n n

n n

s s sn n s

a x a x a x b m
a x a x a x b m

a x a x a x b m

+ + + ≡⎧
⎪ + + + ≡⎪
⎨
⎪
⎪ + + + ≡⎩

L L L
                   （5.4）  

Note: if the moduli are different, similar work as in section 5.2 to obtain the system (5.4) and they 
have the same solutions. 

The coefficient matrix, constant column and the variable column are as following , respectively, 

11 12 1

21 22 2

1 2

n

n

s s sn

a a a
a a a

A

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

O

M O O M

L

, 

1

2

s

b
b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

b
M

, 

1

2

n

x
x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

x
M

。 

The Steps for solving the system (5.4) are as follow: 

(1) Set the block matrix 
A

C
E

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

b
0

, A is s n×  matrix, E is n n×  unit matrix; 

(2) Performing the elementary row and column operations on the rows and columns of C which 
belong to A, A can be transformed into the reduce diagonal form: 

A
C

E
⎛ ⎞

= ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎜ ⎟
⎝ ⎠

b
0

row and column operations
*D

Q
⎛ ⎞
⎜ ⎟
⎝ ⎠

b
0

, where D为 is the reduce diagonal form 

44



Research paper for the second S. –T Yau High School Mathematics Awards 

1

2

0 ... 0 0 ... 0
0 ... 0 0 ... 0
.... ... ... ... ... ... ...
0 0 ... 0 ... 0
0 0 ... 0 0 ... 0
... ... ... ... ... ... ...
0 0 ... 0 0 ... 0

r

d
d

d

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, and all nonzero id  divide m, Q is the result obtained by performing 

the corresponding column operations on E. 

*
1

*
*

*
1

*

r

r

s

b

b
b

b

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

M

M

 is the result obtained by performing the 

corresponding row operations on b . 
(3) The original system is equivalent to the sysyem (5.5): 

 

*
1 1 1

*

*
1 1

*

(mod )

(mod )
0 (mod )

0 (mod )

r r r

r r

s s

d y b m

d y b m
y b m

y b m

+ +

⎧ ≡
⎪
⎪
⎪ ≡⎪
⎨

≡⎪
⎪
⎪

≡⎪⎩

M

M

                                 (5.5) 

    (4) From the system (5.5), the following works are easy:: 
If and only if |i id b∗ , ( 1,..., )i r= , and | jm b∗ , 1,...,j r s= + , the system has solutions; 

(D is the reduce diagonal form, so |id m , ( 1,..., )i r=  satisfy); 

    (5) Obtain the solutions of the system (5.5): 

*
1
*

* 2

*

(mod )

n

y
y

m

y

⎛ ⎞
⎜ ⎟
⎜ ⎟≡ ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

y
M

, then the solutions of the 

original system can be obtained by means of 

*
1 1

*
2 * 2

*

(mod )

n n

x y
x y

Q Q m

x y

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟≡ ≡ ⋅ ≡ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

x y
M M

. 

 

【Example 4】： 1 2 3

1 2 3

2 2 1(mod 5)
3 2 2(mod 7)

x x x
x x x
+ + ≡⎧

⎨ − + ≡⎩
 

【Answer】： Calculate  the LCM m=35 of m1=5, m2=7. the original system has the same solutions to 

the system of equations: 1 2 3

1 2 3

14 14 7 7(mod 35)
15 5 10 10(mod 35)

x x x
x x x
+ + ≡⎧

⎨ − + ≡⎩
, its coefficient matrix, constant column 
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are 
14 14 7
15 5 10

A ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, 
7

10
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

b , respectively. 

Performing the elementary row and column operations modulo 35 on A: 

 

14 14 7 7
15 5 10 10
1 0 0 0
0 1 0 0
0 0 1 0

A
C

E

⎛ ⎞
⎜ ⎟−⎜ ⎟⎛ ⎞ ⎜ ⎟= =⎜ ⎟
⎜ ⎟⎝ ⎠
⎜ ⎟
⎜ ⎟
⎝ ⎠

b
0

 

1 22 1 14
mod35

14 14 7 7 14 14 7 7 0 0 0 0
15 5 10 10 1 19 3 3 1 19 3 3
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0

r rr r − ×−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯→
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

1 2 2 1
3 1

19
3

1 19 3 3 1 0 0 3
0 0 0 0 0 0 0 0
1 0 0 0 1 19 3 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0

r r c c
c c

↔ + ×
− ×

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎯⎯⎯→ ⎯⎯⎯⎯→ −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, so, 
1 0 0
0 0 0

D ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 

 * 3
0
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

b , 

1 19 3
0 1 0
0 0 1

Q
−⎛ ⎞

⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

From the canonical diagonal form, we can see that * * *
1 2 1 2 1 1 11, 0, 3, 0, | , |d d b b d b d m= = = = , 

and known that the original system has solutions. 
Consider the simple system of linear equations corresponding the matrix as its augmented matrix 

* 1 0 0 3
( , )

0 0 0 0
D ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

b , easy to know that the system of equations is 

1 2 30 0 3(mod35)y y y+ + ≡ . In which 2 3,y y  are free variables, and the general solutions of the 

system can be expressed as 
1

2 1

3 2

3
(mod 35)

y
y k
y k

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟≡⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, where 1 20,1,...,34; 0,1,...,34k k= = . 

So, the original system has the solution as follow: 

 
1 1 1 2

2 2 1 1

3 3 2 2

1 19 3 3 3 19 3
0 1 0 (mod 35)
0 0 1

x y k k
x Q y k k
x y k k

− + −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟≡ ≡ ≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

, 

i.e. 
1 1 2

2 1

3 2

3 19 3 (mod 35)
(mod 35)
(mod 35)

x k k
x k
x k

≡ + −⎧
⎪ ≡⎨
⎪ ≡⎩

, 1 20,1,...,34; 0,1,...,34k k= = 。 
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5.4 Discussion and Summary 

The equations discussed in this chapter cover all types of linear congruence equation and linear 
congruence equations, thus, it can be seen that the discussions in documents [6]-[13] are just the special 
types discussed in this paper. 

Through the discussion, all types of linear congruence equation and linear congruence of equations 
have a complete and unified theory and the solving method, the method is unified, simple, practical, 
when we judge the existence of the solution, the solution of equation is figured out at the same time, 
which reduce the computational complexity and solving steps. 

6．Summary 

6.1 Summary of the Researches 

Congruence theory and congruence equation are ancient and meaningful. The existing literature 
usually discusses that how to solve the congruence equation or equations in one unknown and the 
multivariate congruence equation, and the methods for solving the congruence equations are neither 
simple nor practical. In the real number field, there are many comprehensive theories and methods to 
solve linear equations, but no such theories and methods for any congruent linear equations. Therefore, 
study of this project is very meaningful and challenging for us. 

Inspired by solving linear equations with real coefficients, this article is based on the properties 
which are expressed by the different number modulo m, real numbers and integers, etc. extends the 
matrix transformations to the modular m matrix transformations, discusses the properties of elementary 
modular operations and elementary modular matrices, and then obtain and prove the equivalent 
transforming theorem for modular matrix, which is similar to but different from that for the real numbers 
or integer matrix, therefore, the discussions promote the relevant theoretical results in mathematics and 
enriched the matrix transformation theory, and made a solid theoretical foundation for researching 
congruent linear equations; 

For congruent linear equations, the traditional method just only discusses the special equations in 
special condition, the judging method and solving method are different, which is cumbersome and 
impractical, not suitable for discussing and solving general congruent linear equations. Based on the 
results and theorems discussed, the congruent linear equations are equivalent to a system of simple 
congruent equations. Then we obtained a simple and effective judging theory of any congruent linear 
equations, and gave the complete methods linear for determining and solving the any linear congruence 
equations, which promoted the Chinese Remainder Theorem, enriched and improved linear congruence 
equations theory. 

As for the technique of solving the system of congruent linear equations, the paper proposed a 
uniform method to solve any system of congruent linear equations based on the elementary matrix 
transformations. Further more, by means of the obtained criterion theorem and structure theorem, it can 
be easily written out the solutions of the system immediately as determining solutions to the system 
conveniently by elementary matrix transformations. So the proposed technique is a convenient, efficient, 
uniform and most adaptable method for solving the any type of the congruent linear equations. 

The methods discussed can judge whether the equations have solutions, and find the solutions if the 
equations have in the judging process. The methods are simple and practical, adaptable for solving any 
congruent linear equations. 
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6.2  Conclusions 

1) Generalized the elementary transformations of matrix over real numbers to the integer numbers 
modulo m, and a familiar theorem was obtained that any matrix modulo m can be transformed into a 
canonical diagonal form by means of a finite number of elementary row and column operations. 

2) For the congruent linear equations, most discussions are devoted on the special congruent linear 
equations in special cases by special methods based on the integer number properties in the published 
papers and books, for example, the Chinese remainder theorem, such special methods are not applicable 
to solving the general system of congruent linear equations in n unknowns. Generalizing the elementary 
transformations to the modular matrices and discussing the properties of the modular matrix 
transformations, the paper obtained the solution criterion theorem and solution structure theorem for any 
system of congruent linear equations based on the modular matrix transformations, which extended the 
theories of the congruent linear equations. 

3) As for the technique of solving the system of congruent linear equations, the paper proposed a 
uniform method to solve any system of congruent linear equations based on the elementary matrix 
transformations. Further more, by means of the obtained criterion theorem and structure theorem, it can 
be easily written out the solutions of the system immediately as determining solutions of the system 
conveniently by elementary matrix transformations. So the proposed technique is a convenient, efficient, 
uniform and most adaptable method for solving the congruent linear equations. 
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