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CODIMENSION ONE FOLIATIONS WITH
BOTT-MORSE SINGULARITIES I

Bruno Scárdua & José Seade

Abstract

In this article we show how the classical theory of Reeb and
others extends to the case of codimension one singular foliations
on closed oriented manifolds, provided that at the singular set
sing(F), the foliation is locally defined by Bott-Morse functions
which are transversely centers. We prove, in this setting, the
equivalent of the local and the complete stability theorems of
Reeb. We show that if F has a compact leaf with finite fun-
damental group, or if a component of sing(F) has codimension
≥ 3 and finite fundamental group, then all leaves of F are com-
pact and diffeomorphic, sing(F) consists of two connected com-
ponents, and there is a Bott-Morse function f : M → [0, 1] such
that f : M \ sing(F) → (0, 1) is a fiber bundle defining F and
sing(F) = f−1({0, 1}). This yields a topological description of
the type of leaves that appear in these foliations, and also the
type of manifolds admitting such foliations. These results unify
and generalize well known results for cohomogeneity one isometric
actions, and a theorem of Reeb for foliations with Morse singular-
ities of center type.

Introduction

Cohomogeneity one isometric actions of Lie groups, i.e., actions where
the principal orbits have codimension 1, play an important role in Dif-
ferential Geometry, particularly in the Theory of Minimal Submanifolds
(see for instance [13]). A basic well-known fact about these actions is
that whenever the group and the manifold are compact, if all orbits are
principal then the space of orbits is S1, and if there are special orbits
then there are exactly two of them and the space of orbits is the inter-
val [0, 1]. Notice that such an action defines a codimension one foliation
with compact leaves and singular set the special orbits. Since the action
is isometric, the intersection of the orbits with a slice Σ transverse to a
special orbit corresponds to a Morse singularity of center type.
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From the Foliation Theory viewpoint this reminds us of two important
results of Reeb. The first of them is the Complete Stability Theorem,
which states that a transversely oriented non-singular codimension one
foliation having a compact leaf with finite fundamental group on a closed
manifold, is a fibration over the circle. The second result concerns
foliations with non-empty singular set. It states that if a codimension
one transversely oriented foliation on a closed manifold has only Morse
(isolated) singularities of center type then there are exactly two such
singularities and the manifold is homeomorphic to a sphere.

In this article we unify these two situations by introducing the concept
of foliations with Bott-Morse singularities. This means that the singular
set of such a foliation is a disjoint union of “nondegenerate critical man-
ifolds”, as used by Bott in his classical proof of the periodicity theorem
(a concept which is already present in the landmark work of Morse in
his Colloquium Publication [18]). More precisely, in a neighborhood of
each singular point, the foliation is defined by a Bott-Morse function;
so it is a usual Morse function restricted to each transversal slice.

Given such a foliation, the transverse type of each connected com-
ponent of the singular set sing(F) is well-defined, and we can speak of
components of center type, of saddle type, etc., according to the Morse
index of the foliation on a transversal slice.

Throughout this paper and in particular in the statements below, the
manifold M is connected and the foliation F is smooth of codimension
one. We prove the following Complete Stability Theorem:

Theorem A. Let F be a foliation with Bott-Morse singularities on a

closed oriented manifold M of dimension m ≥ 3 having only center

type components in sing(F). Assume that F has some compact leaf Lo

with finite fundamental group, or there is a codimension ≥ 3 compo-

nent N of sing(F) with finite fundamental group. Then all leaves of F
are compact, stable, with finite fundamental group. If, moreover, F is

transversely orientable, then sing(F) has exactly two components and

there is a differentiable Bott-Morse function f : M → [0, 1] whose criti-

cal values are {0, 1} and such that f
∣∣
M\sing(F)

: M \ sing(F)→ (0, 1) is

a fiber bundle with fibers the leaves of F .

The proof of Theorem A actually shows that every compact trans-
versely oriented foliation with non-empty singular set, all of Bott-Morse
type, has exactly two components in its singular set and is given by a
Bott-Morse function f : M → [0, 1] as is in the statement.

The first step for proving Theorem A is the following Local Stability
Theorem:

Theorem B. Let F be a foliation on a manifold Mm having Bott-

Morse singularities and let Nn ⊂ sing(F) be a (compact) component
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with finite holonomy group (e.g., if N has finite fundamental group).
Then there exists a neighborhood W of N in M where F is given by a

Bott-Morse function f : W → R. If, moreover, the transverse type of F
along N is a center, then N is stable and the leaves of F in W , for a

suitable choice of W , are fiber bundles over N with fiber Sm−n−1.

Theorem A and its proof lead to the following generalization of The-
orem 1.5 in [15]:

Theorem C. Let F be a transversely oriented, compact foliation with

Bott-Morse singularities on a closed, oriented, connected manifold Mm,

m ≥ 3, with non-empty singular set sing(F). Let L be a leaf of F .

Then sing(F) has two connected components N1, N2, both of center

type, and one has:

(i) M \ (N1 ∪N2) is diffeomorphic to the cylinder L× (0, 1).
(ii) L is a sphere fiber bundle over both manifolds N1, N2 and M is

diffeomorphic to the union of the corresponding disc bundles over

N1, N2, glued together along their common boundary L by some

diffeomorphism L→ L.

(iii) In fact one has a double-fibration

N1
π1←− L

π1−→ N2 ,

and M is homeomorphic to the corresponding mapping cylinder,

i.e., to the quotient space of (L× [0, 1])
⋃

(N1 ∪N2) by the iden-

tifications (x, 0) ∼ π1(x) and (x, 1) ∼ π2(x).

This yields a description of this type of foliations on manifolds of
dimensions 3 and 4 (see Section 4).

Unless it is stated otherwise, in this work all manifolds, bundles,
foliations and maps are assumed to be of class C∞. This is just for
simplicity, because essentially everything we say holds in class Cr, for
all r ≥ 1.

In Section 1 we give the precise definition of foliations with Bott-
Morse singularities and discuss key-examples of such foliations. In Sec-
tion 2 we extend the concept of holonomy to the case of components
of the singular set of a foliation with Bott-Morse singularities, and we
prove the Local Stability Theorem. In Section 3 we prove Theorem A
(the Complete Stability Theorem). For this we first explain the way
to adapt to the setting of foliations with center-type Bott-Morse sin-
gularities, the theory of Dippolito [7] (see also [6, 9]) about saturated
open sets in compact codimension one foliated manifolds. In Section
4 we focus on topological implications of Theorem A, thus arriving to
theorems C and D, giving a classification of the 3-manifolds, and the
corresponding leaves, admitting this type of foliations.
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1. Definitions and examples

Let F be a codimension one smooth foliation on a manifold M of
dimension m ≥ 2. We denote by sing(F) the singular set of F . We say
that the singularities of F are of Bott-Morse type if sing(F) is a dis-
joint union of a finite number of disjoint closed connected submanifolds,

sing(F) =
t⋃

j=1
Nj , each of codimension ≥ 2, which are non-degenerate

in the following sense: For each p ∈ Nj there exists a neighborhood V
of p in M where F is defined by a Bott-Morse function. That is, there
exist a disc P ⊂ R

n, a disc D in R
m−n centered at the origin, equipped

with a foliation G given by the fibers of a Morse function on D, and a
diffeomorphism ϕ : V → P ×D, taking F|V into the product foliation
P × G. In other words, we can find local coordinates

(x, y) = (x1, . . . , xn, y1, . . . , ym−n) ∈ V ,

such that Nj ∩ V =
{
y1 = · · · = ym−n = 0

}
and F|V is given by the

levels of a function JNj
(x, y) =

m−n∑
j=1

λj y
2
j where λj ∈ {±1}.

The discs Σp = ϕ−1(x(p) × D) are transverse to F outside sing(F)
and the restriction F|P

p
is an ordinary Morse singularity, whose Morse

index does not depend on the point p in the component Nj . We shall
refer to G(Nj) = F|P

p
as the transverse type of F along Nj. This

is a codimension one foliation in the disc Σp with an ordinary Morse
singularity at {p} = Nj ∩ Σp.

If Nj has dimension zero (or if we look at a transversal slice), then F
has an ordinary Morse singularity at p and for suitable local coordinates,
F is given by the level sets of a quadratic form f = f(p)− (y2

1 + · · · +
y2

r)+y2
r+1 + · · ·+y2

m , where r ∈ {0, . . . ,m} is the Morse index of f at p.
The Morse singularity p is a center if r is 0 or m, otherwise p is called a
saddle. In a neighborhood of a center, the leaves of F are diffeomorphic
to (m − 1)-spheres. In a neighborhood of a saddle q, we have conical
leaves called separatrices of F through q, which are given by expressions
y2
1 + · · · + y2

r = y2
r+1 + · · · + y2

m 6= 0. Each such leaf contains p in its
closure.
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Definition 1. A component N ⊂ sing(F) is of center type (or just
a center) if the transverse type G(N) = F|P

q
of F along N is a center.

Similarly, the component N ⊂ sing(F) is of saddle type if its transverse
type is a saddle.

As in the case of isolated singularities, these concepts do not depend
on the choice of orientations. We denote by C(F) ⊂ sing(F) the union
of center type components, and by S(F) the corresponding union of
saddle components. Of course saddles can have different transversal
Morse indices; this will be relevant for Part II of this article [24].

Definition 2. We say that F is compact if every leaf of F is compact
(and consequently S(F) = ∅). The foliation F is closed if every leaf of
F is closed off sing(F).

If F is closed and M is compact, then all leaves are compact except
for those containing separatrices of saddles in S(F) and such a leaf
is contained in a compact singular variety L = L ∪ [L ∩ sing(F)] ⊂
L ∪ S(F). A closed foliation on a compact manifold is compact if and
only if S(F) = ∅.

Let N ⊂ C(F) be a component of dimension k. Suppose that the
nearby leaves of F are compact. We define Ω(N,F) = Ω(N) ⊂ M as
the union of N and all the leaves L ∈ F which are compact and bound
a compact invariant region R(L,N) which is a neighborhood of N in
M . The region R(L,N) is equivalent to a fibre bundle with fibre the

closed disc D
m−k

over N , the fibers being transversal to the leaves of
F . As we will see, the notion of holonomy of the singular set, to be
introduced in section 2.1, assures that if N is of center type and has
finite holonomy group (e.g., if π1(N) is finite) then Ω(N,F) is an open
subset of M .

Definition 3 (orientability and transverse orientability). Let F be a
codimension one foliation with Bott-Morse singularities on Mm, m ≥ 2.
The foliation F is orientable if there exists an (m− 1)-form Ω on Mm,
nonsingular on M \sing(F), such that Ω

∣∣
L

is a volume form on each leaf
L ∈ F . The choice of such an (m − 1)-form Ω is called an orientation
for F . We shall say that F is transversely orientable if there exists a
vector field X on M , possibly with singularities at sing(F), such that
X is transverse to F at every point outside sing(F).

The following basic result is easily proved using the fact that we can
always choose local orientations for F , and also orientations along paths
which are null-homotopic.

Proposition 1. Let F be a codimension one foliation with Bott-
Morse singularities on Mm, m ≥ 2. Suppose M is orientable. Then:

(i) The foliation F is orientable if and only if it is transversely ori-
entable.
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(ii) If M is simply-connected, then F is transversely orientable.

1.1. Examples. Basic examples of foliations with Bott-Morse singu-
larities are given by Bott-Morse functions and by products of Morse
foliations by closed manifolds. Next we give four types of examples of
foliations with Bott-Morse singularities. We remark that foliations with
Bott-Morse singularities are all examples of “generalized foliations” in
the sense of [25].

Example 1 (Fiber bundles). Let M̃m+k and Mm be connected ori-
ented manifolds. Let F be a foliation with Bott-Morse singularities on

M and let π : M̃ →M be a proper submersion. Then the pull-back foli-

ation F̃ = π∗F has only Bott-Morse singularities; hence F̃ is a foliation
with Bott-Morse singularities and its transverse type at each component
is that of F at the corresponding point.

For instance, take a vector field on an oriented closed surface S with
non-degenerate singularities, and consider the corresponding foliation
L. Given any S1-bundle π : M → S, the pull-back foliation F = π∗(L)
has Bott-Morse singularities on M ; sing(F) is a union of circles.

In particular, the Hopf fibration π : S3 → S2 gives rise, in this way,
to Bott-Morse foliations on S3. We can consider also SO(3), regarded
as the unit tangent bundle of S2, to get examples on SO(3) ∼= RP 3.

Example 2 (Mapping cylinders and lens spaces). Consider now a
closed oriented manifold L that fibers as a sphere fiber bundle over two
other manifolds N1 and N2, of possibly different dimensions, so that the
corresponding disc bundlesE1, E2 are compact manifolds with boundary
L. Then each Ei can be foliated by copies of L by taking concentric
spheres in the corresponding fibers. We may now glue E1 and E2 by
some diffeomorphism of the common boundary L to get a closed oriented
manifold M with a foliation with Bott-Morse singularities at N1 and N2,
both of center type.

For instance, take two solid tori S1 × D2, equipped with the same
foliation, and glue their boundaries by a diffeomorphism that carries a
meridian of the first torus into a curve on the second which is homol-
ogous to q-meridians and p-longitudes, with p, q ≥ 1 coprime. We ob-
tain foliations with Bott-Morse singularities on the so-called lens spaces
L(p, q) (see [11]).

Example 3 (Cohomogeneity one actions). As mentioned before, a
cohomogeneity one isometric action leads naturally to compact folia-
tions with Bott-Morse singularities of center type.

For instance [15], consider SO(n + 1,R) as a subgroup of SO(n +
1,C). The standard action of this group on C

n+1 defines an action
of SO(n + 1,R) on CP (n), which is by isometries with respect to the
Fubini-Study metric.
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The special orbits are the complex quadric Qn−1 ⊂ CP (n), of points

with homogeneous coordinates satisfying
n∑

j=0
z2
j = 0, and the real pro-

jective space RP (n) ⊂ CP (n), consisting of the points which are fixed
by the involution in CP (n) given by complex conjugation. The principal
orbits are copies of the flag manifold

Fn+1
+ (2, 1) ∼= SO(n+ 1,R)/(SO(n − 1,R)× (Z/2Z)) ,

of oriented 2-planes in R
n+1 and (unoriented) lines in these planes. Each

such orbit splits CP (n) in two pieces, each being a tubular neighborhood
of a special orbit.

The case n = 2 is specially interesting because this provides an equi-
variant version of the Arnold-Kuiper-Massey theorem that CP (2) mod-
ulo conjugation is the 4-sphere, see for instance [15]. This is also proved
in [2] and [1], where there are interesting generalizations of these con-
structions and theorem to the quaternionic and the octonian projective
planes.

We also remark that the above foliations, given by a compact group
action, are a special class of Riemannian foliations, introduced by P.
Molino and studied by several authors (see [17]). Every singular Rie-
mannian foliation has all its singularities of center-type.

Example 4 (Poisson manifolds). A Poisson structure on a smooth
manifold M consists of a Lie algebra structure on the ring of functions
C∞(M), generalizing the classical Poisson bracket on a symplectic man-
ifold, which satisfies a Leibniz identity in such a way that { , h} is a
derivation. There is thus a vector bundle morphism ψ : T ∗M → TM
associated with { , }, satisfying an integrability condition, whose rank
at each point is called the rank of the Poisson structure.

If the rank is constant, then the integrability condition implies one
has a foliation on M , of dimension equal to the rank, and the tangent
space of the foliation is, at each point x ∈ M , the image of ψ(T ∗

xM)
in TxM . If the rank is not constant, then one still has a generalized
foliation in the sense of [25], i.e., a foliation with singularities at the
points where the rank drops, but at each such point one has a leaf of
dimension the corresponding rank, whose tangent space is again given
by ψ(T ∗

xM). The Dolbeault-Weinstein theorem implies that at such
points the transversal structure plays a key role (see [26]).

It would be interesting to study Poisson structures for which the cor-
responding foliation has Bott-Morse singularities (cf. [8] for instance).

2. Holonomy and local stability

The notion of stability plays a fundamental role in the classical theory
of (nonsingular) foliations. In what follows we bring this notion into our
framework.
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Definition 4. Let F be a (possibly singular) foliation on M . A
subset B ⊂ M , invariant by F , is stable (for F) if for any given neigh-
borhood W of B in M there exists a neighborhood W ′ ⊂W of B in M
such that every leaf of F intersecting W ′ is contained in W .

The following technical result comes from the proof of the Complete
Stability theorem of Reeb (cf. [9]):

Lemma 1. Let F be a codimension one (nonsingular) foliation on
M .
(i) Let L be a compact leaf of F and let Ln be a sequence of compact

leaves of F accumulating on L. Then given a neighborhood W of L
in M one has Ln ⊂W for all n sufficiently large.

(ii) Denote by Lx the leaf of F containing x ∈M and define M∗ as the
set of points x ∈M such that Lx is compact with finite fundamental
group. Then every leaf contained in ∂M∗ is closed in M .

Remark 1 (Reeb’s classical Complete Stability Theorem). Let (M,
F) be a foliated manifold with M connected and compact, F smooth,
transversely oriented of codimension one and L0 ∈ F a compact leaf
with finite fundamental group. Denote by Ω(F) the set of all compact
leaves with finite fundamental group. Finally, let Ω(L0) ⊂ Ω(F) be the
connected component containing L0. By the Local Stability Theorem of
Reeb, Ω(L0) is an open subset of M . Put U = Ω(L0) and suppose that
∂U 6= ∅. Let V ⊂M be a regular open set for F with V ∩ ∂U 6= ∅ and
denote by π the projection of V onto the space T of F-plaques. The open
set π(V ∩ U) of T is a countable union of disjoint open intervals which
are bounded except for at most two of them. Given one of such bounded
interval I, the saturation Sat

F
∣∣
V

(I) = π−1(I) is at the same time open

and closed in U and therefore each leaf of U crosses π−1(I). Hence V ∩U
has only finitely many connected components and therefore each leaf in
the boundary of U is closed and compact. Such a leaf is also necessarily
homeomorphic to the leaves in U , so it has finite fundamental group
and cannot be a boundary leaf for ∂U , a contradiction. This proves in
the classical framework that U = M , that is, M = Ω(L0). This is the
heart of the proof of the Complete Stability Theorem of Reeb. Later
on, on Remark 4, we shall resume this discussion under another point
of view.

2.1. Holonomy of the singular set. According to the proof of [9,
Proposition 2.20], in case F is a compact foliation without singularities,
stability of a leaf is equivalent to finiteness of its holonomy group. We
will extend this result for compact codimension one foliations with Bott-
Morse center singularities (see Proposition 2) using the following notion
of holonomy.
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Given a component N ⊂ sing(F), we consider a collection U =
{Uj}j∈J of open subsets Uj ⊂ M and charts ϕj : Uj → ϕj(Uj) ⊂ R

m

with the following properties:
(1) Each ϕj : Uj → ϕj(Uj) ⊂ R

m defines a local product trivialization
of F , Uj ∩N is a disc and ϕj(Uj) is a product of discs lying in plaques
of ϕj(F

∣∣
Uj

).

(2)
⋃

j∈J

Uj is an open neighborhood of N in M .

(3) If Ui∩Uj 6= ∅ then there exists an open subset Uij ⊂M containing
Ui∪Uj and a chart ϕij : Uij → ϕij(Uij) ⊂ R

m of M , such that ϕij defines
a product structure for F in Uij and Uij ∩N ⊃ (Ui ∪ Uj ∩N) 6= ∅.

Such a covering U will be called a chain adapted to F and N . When
N is compact we can assume U to be finite, say U = {U1, . . . , Uℓ+1}.
Suppose now that Uj ∩ Uj+1 6= ∅, for all j ∈ {1, . . . , ℓ}. In each Uj we
choose a transverse disc Σj , Σj∩N = {qj}, such that Σj+1 ⊂ Uj∩Uj+1

if j ∈ {1, . . . , ℓ}. By the choice of U , in each Uj the foliation is given by
a smooth function Fj : Uj → R which is the natural trivial extension of
its restriction to any of the transverse discs Σj or Σj+1 .

There is a C∞ local diffeomorphism ψj : (R, 0) → (R, 0) such that
Fj+1

∣∣
Σj+1

= ψj ◦Fj

∣∣
Σj+1

. This implies that Fj+1 = ψj ◦Fj in Uj ∩Uj+1

(notice that by condition (3), if Ui ∩ Uk 6= ∅ then every plaque of F in
Ui\N intersects at most one plaque of Uk\N).

Definition 5. The holonomy map associated to the chain U =
{U1, . . . , Uℓ} is the local diffeomorphism ψ : (R, 0) → (R, 0) defined by
the composition ψ = ψℓ ◦ · · · ◦ ψ1 .

Given now a path c : [0, 1]
C0

−→ N , we can find a finite chain U =

{U1, . . . , Uℓ+1} such that
ℓ+1⋃
j=1

Uj ⊃ c([0, 1]) and define the holonomy map

of c : [0, 1] → N as ϕ = ϕℓ ◦ · · · ◦ ϕ1 : (R, 0) → (R, 0). Clearly if
c̃ : [0, 1] → N is C0-close to c : [0, 1] → N and c̃(0) = c(0), c̃(1) =
c(1) then c and c̃ define the same holonomy map up to isotopy. This
shows, by a standard argument, that the holonomy map of c is, up to
isotopy, the same holonomy map of any curve c̃ homotopic to c in N
with c(0) = c̃(0), c(1) = c̃(1). If we now consider closed paths we
obtain a map that associates to each homotopy class [c] ∈ π1(N, qo)
(where qo = c(0)) the holonomy map of the path c : [0, 1] → N . This
is indeed a group homomorphism Hol : π1(N, qo) → Diff∞(R, 0) of the
fundamental group of N based at qo into the group of isotopy classes of
germs of C∞ diffeomorphisms fixing the origin 0 ∈ R. If we move either
the base point or the discs Σj , or else if we change the coverings U , then
we obtain the same homomorphism up to conjugation in Diff∞(R, 0).
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Definition 6. We define the holonomy group of the component N ⊂
sing(F) as the image of the homomorphism Hol : π1(N, qo)→Diff∞(R, 0)
up to conjugacy in Diff∞(R, 0).

In what follows, N ⊂ sing(F) is compact, connected and of Bott-
Morse type. The following lemma proves the first statement in Theo-
rem B.

Lemma 2. If the holonomy group of the component N ⊂ sing(F) is
finite, then there is a neighborhood W of N in M where F is given by
a smooth function f : W → R.

Proof. We recall (see for instance [4], Lemma 5, page 73) that a finite
subgroup of Diff∞(R, 0) is either trivial or has order two and therefore
it is conjugate to the group generated by the involution ϕ(x) = −x in
Diff∞(R, 0). Assume first that the holonomy is trivial. The proof is by
a standard argument of extension by holonomy. We fix a point qo ∈ N
and a transverse disc Σqo such that F

∣∣
Σqo

is given by a Morse function

fo : Σqo → R singular only at {qo} = Σqo ∩ N . Take a point q ∈ N
and consider a transverse disc Σq given by a transverse fibration as in
the above definition of holonomy. Fix any curve cq : [0, 1] → N with
cq(0) = qo and cq(1) = q. Given a point yo ∈ Σqo we consider the lift
c̃yo : [0, 1]→ Ly of the curve cq to the leaf Lyo of F through the point yo.
Put y = c̃yo(1) ∈ Σq. We define the value f(y) = fo(yo). By triviality
of the holonomy of N , the value f(y) does not depend on the curve
cq. Thus we can define a function f : W → R in an invariant tubular
neighborhood W of N in M with the following properties:

(i) f
∣∣
Σqo

= fo.

(ii) f is constant along the leaves of F in W .
(iii) The restriction f

∣∣
Σq

to a transverse disc Σq to N at q is conjugate

to fo by a holonomy map diffeomorphism hcq : (Σqo, qo)→ (Σq, q).
And finally,
(iv) This extension f is a smooth first integral for F which is a sub-

mersion in W \N .
Assume now that N has holonomy group generated by the real map

ϕ(x) = −x. Then we can use the same proof of Lemma 2 above but

replacing fo by (fo)
2 = fo.fo . This function (fo)

2(x) =
(
fo(x)

)2
is

invariant by the holonomy ϕ(x) = −x and therefore extends to a well-
defined first integral for F in a neighborhood W of N in M . q.e.d.

Remark 2. If the holonomy has order 2, then we cannot assure that
the first integral f : W → R has connected fibers. Nevertheless, if F
is transversely oriented then the holonomy of N consists of orientation
preserving elements in Diff∞(R, 0) and therefore it is finite if and only
if it is trivial. This shows that the order 2 case in the proof of Lemma 2
does not occur if F is transversely oriented.
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2.2. Proof of the Local stability. To prove Theorem B we use:

Proposition 2. Let F be a transversely orientable foliation with
Bott-Morse singularities on M . Given a compact component N ⊂
sing(F) of center type we have:
(i) If all leaves near N are compact then the holonomy group of N is

finite.
(ii) If the holonomy group of N is finite, then N is stable and the nearby

leaves are all compact.

Proof. First we prove (i). Suppose that N is a center and all leaves in
a neighborhood of N are compact. Since the nearby leaves are compact,
the holonomy group Hol(F , N) ⊂ Diff∞(R, 0) is an orientation preserv-
ing group with finite orbits. This implies that this group is trivial,
proving (i), and therefore F has a fibre bundle structure in a neighbor-
hood of N in M , as noticed in the paragraph before Definition 3. In
fact, as noticed there, one has a fundamental system of neighborhoods
of N such that each neighborhood is equivalent to a fibre bundle with

fibre the closed disc D
m−k

over N , the fibers being transversal to the
leaves of F .

Thanks to this fibre bundle structure given any leaf L close enough to
N , the leaf L bounds a region R(L) in M , this region is invariant by F
and such that limL→N R(L) = N . Because of the transverse orientation
for F we can assume that the above limit is a decreasing limit so that
N is stable.

Proof of (ii): As already mentioned, if Hol(F , N) is finite then it is
trivial and F has a fibre bundle structure in a neighborhood of N ,
which implies that N is stable with compact nearby leaves. q.e.d.

Remark 3. For codimension one transversely oriented nonsingular
foliations, a compact leaf is stable if and only if it has trivial holonomy,
this is due to Reeb [23]. This is not true for components of the singular
set of foliations with Bott-Morse singularities and a counterexample for
a one-dimensional singular component is given in Section 3.3. Also a
compact leaf which is a limit of compact stable leaves is not necessarily
stable, as shown by the following construction. Consider the sphere Sm

as obtained by gluing S1 × Dm−1 and D2 × Sm−2 along their bound-
ary. On S1 × Dm−1 we consider a non-compact foliation with leaves
diffeomorphic to R × Sm−2, except for the boundary leaf which is dif-
feomorphic to S1 × Sm−2, and on D2 × Sm−2 we consider the trivial
foliation with compact leaves S1(r) × Sm−2. These foliations can be
glued together along the common boundary leaf S1 × Sm−2. The re-
sulting foliation F is partially depicted in Figure 2 and has a non-stable
compact leaf which is diffeomorphic to S1 × Sm−2, which is a limit of
compact stable leaves S1(r)× Sm−2.
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Proof of Theorem B. The first part of the theorem is exactly the content
of Lemma 2. Assume now that the transverse type of F along N is a
center. Then N is stable with compact nearby leaves (cf. Proposition 2
(ii)). It remains to prove that these leaves are fibre bundles over N
with fiber Sm−n−1. The local product structure off N and the triviality
of the holonomy group of N give a retraction of a suitable saturated
neighborhood W of N onto N having as fibers transverse discs Σ to
N . The restriction of this retraction to any leaf L ⊂ W gives a proper
smooth submersion of L onto N . The fibration theorem of Ehresmann
[9] and the center type of N give the fibre bundle structure of L. q.e.d.

3. Complete Stability

In this section we prove the Complete Stability Theorem A. We begin
with a brief discussion of the standard theory of saturated open sets,
that we use in the sequel.

3.1. Dippolito’s Semistability Theorem. Let us recall Dippolito’s
semistability theorem in [7] (see also [6, Sections 5.2, 5.3], [9, Section
IV. 4] and [12, Chapter V, Sections 3, 4]).

We consider a codimension one, non-singular foliation G of class C∞

in a closed C∞ manifold M . Given such a pair (M,G), we denote by
O(G) the set of all open G-saturated subsets of M . We assume that
G is transversely oriented, and we let L be a one dimensional oriented
foliation, defined by a smooth non-singular vector field transverse to G.

Let U ∈ O(G) be connected; fix a riemannian metric on M and take
its restriction to U . Let d : U × U → [0,∞) be the induced topological

metric, and denote by Û its completion with respect to this metric. One
has (see propositions 5.2.10 to 5.2.12 in [6]):

Proposition 3. i) The space Û is a complete connected, C∞ man-

ifold with finitely many boundary components, and its interior Int Û is
diffeomorphic to U .

ii) The manifold Û has a foliation Ĝ induced from that in U , and the

inclusion i : U →֒ M extends to a C∞ immersion î : Û →֒ M that
carries leaves of Ĝ diffeomorphically onto leaves of G.

iii) If we let δU = î(∂Û ) be the image of the boundary of Û , then δU

is a union of leaves of G, and if L is a leaf in δU then î−1(L) consists

of one or two leaves in ∂Û .

iv) There is also an induced oriented foliation L̂ on Û , defined by a

vector field transverse to Ĝ, which is carried by î into the foliation L.

Definition 7. The manifold Û is the (abstract transverse) completion
of U ∈ O(G). The set δ(U) is the border of U ; the leaves in δU are the
border leaves of U .
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That is, a border leaf L ⊂ δU is the image under î of a leaf in the

boundary of the completion Û , and there are at most two such leaves

in ∂Û corresponding to L.

A biregular cover of (M,G,L) is a cover M =
⋃
Uα by open sets Uα

equipped with coordinates (xα, yα) ∈ Uα, such that G
∣∣
Uα

and L
∣∣
Uα

are

trivial, the plaques of G in Uα are the level sets of yα and the plaques of L
in Uα are the level sets of xα. Every foliated manifold (M,G,L) admits
a biregular cover, which can be taken to be finite if M is compact.

We say that U ∈ O(G) is a foliated product (with respect to L) if the
restriction L

∣∣
U

fibers U by open intervals over some (m − 1)-manifold
N . Since L is defined by a vector field, this bundle is trivial. Thus U is
diffeomorphic to N × (0, 1), but the restriction G

∣∣
U

is not necessarily a
product foliation.

We now recall that a leaf L ∈ G is proper if it is locally path-connected.
This is equivalent to saying that L does not cluster on itself (see [7, p.
408] or [6, Def. 4.3.3]).

Definition 8. A leaf L ∈ G is semiproper if it is proper or does not
cluster on itself from one side, which is called positive (see [6, p. 118] or
[9, page 228]). The leaf L ∈ G is semistable if it is semiproper and on
the proper side of L and in a transverse arc J on this side, that meets L
only at a point x0 ∈ L, the fixed points of the holonomy of L cluster at
x0 (by definition, a point x ∈ J is a fixed point of the holonomy if, for
every loop γ ⊂ L based at the point x0, the corresponding holonomy
map hγ either is not defined at the point x ∈ J or it fixes the point
x ∈ J , i.e., hγ(x) = x, see [6, p. 134]).

One has that a leaf L ∈ G is semiproper if and only if it is a border leaf
of some U ∈ O(G) (see [6, Lemma 5.3.2]). Therefore each component of

∂Û is identified with a semiproper leaf of G; some pairs of components
may be identified with a same leaf.

Theorem 1 (Semistability theorem of Dippolito). Let L be a semi-
proper leaf which is semistable on the proper side defined by the trans-
verse arc J = [x0, y0). Then there is a point y1 ∈ J \ {x0} such that the
G-saturation U = SatG((x0, y1)) is a foliated product having as border
leaves the (distinct) leaves through x0 and y1. Also, there exists a se-
quence {yk}

∞
k=1 ⊂ (x0, y1] converging monotonically to x0, such that the

leaf Lk ∋ yk is carried by the L̂-fibration π : Û → L homeomorphically
onto L, for all k ≥ 1.

Remark 4 (Classical complete stability - revisited). Let (M,G) be as
above with M compact and connected, and assume there is a compact
leaf L0 ∈ G with finite fundamental group. Denote by Ω(G) the set of
all compact leaves with finite fundamental group, and let Ω(L0) ⊂ Ω(G)
be the connected component containing L0. Reeb’s Complete Stability
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Theorem claims that Ω(L0) is all of M . To prove this, notice that
by the Local Stability Theorem of Reeb, Ω(L0) is an open subset of
M ; hence, by connectedness, we only need to prove that this set is
also closed in M . Suppose that ∂Ω(L0) 6= ∅, so there is a border leaf
L ⊂ δΩ(L0). This leaf L ⊂ δΩ(L0) is semiproper (see the paragraph
just above Theorem 1), and since each leaf in Ω(L0) is compact, the
border leaf L must be semistable. By Dippolito’s theorem 1, the leaf L
is homeomorphic to the leaves inside Ω(L0) and therefore it is compact
with finite fundamental group. Thence L ⊂ Ω(L0), a contradiction.

This sort of ideas apply to our situation, of foliations with singularities
of center type, as we shall see below (see Lemma 3).

We now consider the case of a compact foliated manifold (M,F ,L)
with Bott-Morse singularities, all of center type and F transversely
orientable. The basic concept of biregular cover can be extended as
follows:

Definition 9. Choose L a one-dimensional foliation such that
sing(L) ⊂ sing(F) and L is defined by a smooth vector field transverse
to F off sing(F). Let N ⊂ sing(F) be a component of dimension ℓ < m
and p ∈ N a point. A bi-distinguished open neighborhood of p is an
open set V ⊂M , with p ∈ V , equipped with a diffeomorphism ϕ : V →
R

m−ℓ × R
ℓ, such that ϕ conjugates the restriction F

∣∣
V

to the foliation

given by the quadratic form
ℓ∑

j=ℓ+1

y2
m and conjugates the restriction L

∣∣
V

to the foliation given by the vector field X =
m∑

j=ℓ+1

yj
∂

∂yj
. We define a

biregular cover of (M,F ,L) as an open cover of M which is a union of

an ordinary biregular cover of
(
M \ sing(F),F

∣∣
sing(F)

,L
∣∣
M\sing(F)

)
and

an open cover of sing(F) ⊂M , consisting of bi-distinguished neighbor-
hoods as above.

It is now easy to prove:

Proposition 4. Let M be a closed oriented manifold, F a foliation
on M with Bott-Morse singularities, all of center type, having an ori-
ented transverse foliation L off its singular set sing(F). Then (M,F ,L)
admits a finite biregular cover.

Now, for a connected F-invariant open subset U ⊂ M \ sing(F) we

construct its (abstract transverse) completion Û in the same way as

above. This is again a manifold with a singular foliation F̂ , and the

inclusion of U in M extends to an immersion î : Û → M carrying

F̂ onto F . The border of U is î(∂Û ) and it consists of finitely many
components: some are semiproper leaves of F (recall that some pairs of
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leaves in ∂Û may be identified with the same leaf of F) and others are
connected components of sing(F) .

3.2. Proof of Theorem A. From now on, F is a smooth foliation with
non-empty singular set which is Bott-Morse of center type, in a compact,
oriented, smooth manifold M of dimension ≥ 3. Such a foliation will be
called stable if every leaf is compact and stable, and each component of
the singular set is stable. Our first step is the following proposition:

Proposition 5. Suppose there exists a compact leaf Lo ∈ F with
finite fundamental group. Then every leaf of F is compact with finite
fundamental group and the foliation is stable. If one also has that F is
transversely orientable, then all leaves are diffeomorphic to Lo.

Proof. Using the 2-fold transversely orientable covering of F we can
assume in what follows that F is transversely orientable. To prove
Proposition 5 denote by Ω(F) the union of leaves L ∈ F which are
compact with finite fundamental group and by Ω(Lo) the connected
component of Ω(F) that contains the leaf Lo. By the Reeb local stability
theorem Ω(Lo) is open in M \ sing(F). Since Ω(Lo) is connected and F
is transversely oriented, all the leaves in Ω(Lo) are diffeomorphic.

The following lemma implies that all the leaves are compact and
diffeomorphic. It is here that we use the previous results about the
structure of saturated open sets.

Lemma 3. We have Ω(Lo) = M \ sing(F).

Proof. Put U = Ω(Lo) and let Û be its abstract transverse comple-

tion. We prove first that ∂Û has no nonsingular component, i.e., it

contains no leaf. Assume by contradiction that there is a leaf L̂ ⊂ ∂Û .
By the above theory of saturated open sets, its image in M by the map
î in 3 is a leaf L contained in the border δU ; this leaf is semiproper
(because it is a border leaf of a saturated open subset; see the comment
after Definition 8) and indeed semistable, due to the compactness of
the leaves in U . Thence, as in the classical non-singular case, by Dip-
polito’s Semistability Theorem 1, L is homeomorphic to the leaves in
U = Ω(Lo). Thus L is compact with a finite fundamental group, and
one has L ⊂ U , giving a contradiction.

Now assume there is a leaf L ⊂ ∂U in the boundary of the original
open set U ⊂M (which is not a border leaf, L 6⊂ δU). Since U is a union
of compact leaves of the foliation, this leaf L is compact by a well-known
theorem of Haefliger. On the other hand, the leaves in U are compact.
This implies that L is semistable on whatever side is approached by
points of U . Hence Dippolito’s semistability theorem implies that L is
indeed homeomorphic to the leaves inside U , contradicting the fact that
L is a leaf in the boundary of U and proving 3. q.e.d.
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In order to conclude that F is stable it is enough to apply the Local
stability theorem of Reeb for the stability of the leaves, and Proposi-
tion 2 for the stability of the singular set. q.e.d.

The second step in the proof of Theorem A is:

Proposition 6. Assume F has a codimension ≥ 3 component No ⊂
sing(F) with finite fundamental group. Then all leaves are compact with
finite fundamental group.

Proof. Again, we can assume that F is transversely orientable. Let
Nno

o be as above, with codimension m− no ≥ 3. By the Local Stability
(Theorem B) or by Proposition 2, No is stable with compact nearby
leaves, and it has trivial holonomy (see Remark 2). Hence each leaf of
F , in a suitable neighborhood W of N , is diffeomorphic to an Sm−no−1-
fibre bundle over Nno

o . Since m−no ≥ 3, the homotopy sequence of the
fibration Sm−no−1 →֒ L → Nno

o implies that L has finite fundamental
group, so we can apply Proposition 5 to conclude the statement in
Proposition 6. q.e.d.

Remark 5. The condition on the codimension of No in Proposition 6
is indeed necessary. For instance, consider a foliation with Bott-Morse
singularities on S2×S2 given by the product of a non-periodic flow with
exactly two center type singularities on S2 by the sphere S2, which has
non-compact leaves.

The existence of the function f : M → [0, 1] describing F in Theo-
rem A is a consequence of the following lemma.

Lemma 4. Assume F is transversely orientable. Then sing(F) has
exactly two connected components, say N1, N2, and there exists an arc
γ : [0, 1] → M transverse to F such that γ(0) ∈ N1, γ(1) ∈ N2, whose
image meets every leaf of F at a single point.

Proof. Let us prove first that sing(F) has at most two connected
components. Take a component N ⊂ sing(F) and denote by A(N) the
subset of M which is the union of leaves L ∈ F such that L bounds
a region R(L) ⊂ M containing N and such that F

∣∣
R(L)\N

is a fibre

bundle over N . Clearly N ⊂ ∂A(N) and ∂R(L)\L ⊂ sing(F). Suppose
there is a singular component N ′ ⊂ ∂A(N) \ N and let us prove one
has M = N ∪ A(N) ∪ N ′. First we claim that S = N ∪ A(N) ∪ N ′ is
an open subset of M . To see this, take an invariant neighborhood W
of N ′ given by the local stability theorem for N ′. Since N ′ ⊂ ∂A(N),
there is a leaf L ⊂ A(N) which intersects W and therefore is entirely
contained in W . By definition of A(N) the leaf L bounds a region
R(L) ⊂ M such that F

∣∣
R(L)\N

is a fiber bundle over N and by the

choice of W , L bounds a region R′(L) ⊂ W such that F
∣∣
R(L′)\N ′

is a

fiber bundle over N ′. Finally, since F has a local product structure in
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a neighborhood of L we conclude that W \N ′ ⊂ A(N). Thus S is open
in M . The above arguments also show that S contains the union of
two compact submanifolds with boundary which are glued along their
common boundary (L above). Hence S equals M and therefore sing(F)
has exactly two connected components, as stated in 4.

To construct the arc γ in the statement we first need:

Claim 1. Let γo : S1 → M be a closed curve transverse to F and
to sing(F). Then γo intersects all leaves of F and all components of
sing(F).

Proof of Claim 1. Denote by Ω the set of all leaves L ∈ F such that
γo ∩ L 6= ∅. By transversality this is an open set. To see this set is also
closed in M \ sing(F) take a nonsingular point p ∈ ∂Ω and choose an
invariant neighborhood W of the leaf Lp, given by the local stability,
where F is trivial. Because of this triviality, every curve transverse to F
intersects all leaves inW . Since p ∈ ∂Ω we have γo∩W 6= ∅ and therefore
γo ∩ Lp 6= ∅. Thus Ω is closed in M \ sing(F) and Ω = M \ sing(F).
Similar arguments prove that γo intersects each component of sing(F).

q.e.d.

As a consequence we have:

Claim 2. Let γ : [0, 1] → M be a curve such that γ(0) ∈ N1 and
γ(1) ∈ N2 and γ(0, 1) is everywhere transverse to F . Then #(γ∩L) ≤ 1,
for each leaf L of F .

Proof of Claim 2. Suppose by contradiction that γ intersects twice some
leaf L of F . Let us choose two such points p1 = γ(t1) ∈ L and p2 =
γ(t2) ∈ L, t2 > t1, and a path β : [0, 1] → L joining p1 to p2 . By
a classical argument, there exists δ > 0 and a smooth closed curve γo

transverse to F , such that γo contains the arc C = α([t1 + δ, t2− δ]) and
the complement γo([0, 1])\C projects onto β via a transverse fibration
with basis β. Thus we can construct a closed curve γo transverse to F
and which avoids a neighborhood of N . This contradicts Claim 1.

q.e.d.

Let X be a vector field transverse to F on M . Let N ⊂ sing(F) be
given, we can assume that X is radial pointing outwards in a neighbor-
hood of N . Consider a point p ∈ N ⊂ sing(F) and the orbit γ of X
whose α-limit is p. We consider the ω-limit ω(γ). Then ω(γ) avoids a
neighborhood of N . In fact

Claim 3. We have ω(γ) = {q} where q ∈ sing(F) \N .

Proof of Claim 3. Suppose ω(γ) contains some non-singular point q.
Then γ cuts the leaf Lq infinitely many times. Let us choose two such
points p1 = γ(t1) and p2 = γ(t2), t2 > t1 close enough to q so that
they avoid a neighborhood of N and a path β : [0, 1] → Lq joining p1
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to p2 . By a classical argument ∃ δ > 0 and a smooth closed curve γo ,
transverse to F such that γ contains the arc C = α([t1 + δ, t2 − δ]) and
the complement γo([0, 1])\C projects onto β via a transverse fibration
with basis β. Thus we can construct a closed curve γo transverse to
F and which avoids a neighborhood of N . This contradicts Claim 1.
Therefore we must have ω(γ) ⊂ sing(F). Since X is radial in a neigh-
borhood of sing(F) we have that ω(γ) has to be a single point, say
ω(γ) = q ∈ sing(F). Because X points outwards in a neighborhood of
N we have that q cannot belong to N , proving the claim. q.e.d.

α

p q

α

p q

γ
0

γ
0

arc C

β

γ
0
([0,1 [) \C

L

p=q

Figure 1

By Claim 3 we have an arc γo : [0, 1]→M such that γo(0) ∈ N1 and
γ(1) ∈ N2 and γ(0, 1) is everywhere transverse to F . By Claim 2 γo

intersects each leaf of F at most once. Thus, there is a leaf Lo ∈ F such
that γo cuts Lo exactly one time.

Claim 4. #(γo ∩ L) = 1, for each leaf L of F .

Proof of Claim 4. Let O be the set of points x ∈M\ sing(F) such that
#(γo∩Lx) = 1. By Local Stability we have a local product structure for
F around each compact leaf L and therefore O is open in M\ sing(F).
We claim that ∂O = sing(F). Assume by contradiction that there is
a leaf L ⊂ ∂O. Then by the local product structure we have #(γo ∩
Lx) = #(γo ∩ L), for all x close enough to L and therefore we get a
contradiction. This shows that M = O ∪ sing(F) and proves the claim.

q.e.d.
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Now, by the local structure of F around the singularities we obtain
that also #(γo ∩ N) = 1 for each component N ⊂ sing(F). This ends
the proof of the lemma. q.e.d.

Theorem A is now an immediate consequence of Propositions 5 and 6
and Lemma 4.

3.3. Examples and remarks on stability. The condition on the
codimension of the singular set in Theorem A is necessary, for oth-
erwise one can construct examples of foliations with Bott-Morse sin-
gularities with only center type singularities and non-compact leaves,
as for instance the example in Remark 3. A modification of that con-
struction gives a foliation with center type singularities which are limits
of compact leaves and also of noncompact leaves. For this, let Am be
a compact annulus (i.e., an m-disc minus a smaller m-disc in its inte-
rior), and consider a foliation FA in S1 × Am tangent to the boundary
∂(S1 × Am) = (S1 × Sm−1

1 ) ⊎ (S1 × Sm−1
2 ), transverse to the annuli

{z} × Am, z ∈ S1 and such that each restriction FA

∣∣
{z}×Am is equiv-

alent to the trivial foliation by (m− 1)-spheres concentric and tangent
to the boundary of Am. We may also choose FA so that each leaf on
S1×Am, outside the boundary, is non-compact and accumulates on both
components of ∂(S1 × Am) as Fo above. Now we consider a sequence
of positive numbers 1 = r1 > r2 > · · · > rj > rj+1 > · · · converging to
zero. Let Aj be the annulus of internal radius rj+1 and external radius
rj . On each solid annulus we put a copy FAj

of FA . Glue all these

foliations in a foliation F ′
o of the product S1 × Dm to get a foliation

there, with singular set S1×{pt} of center type. Finally glue two copies
of F ′

o into a foliation F of S1 × Sm with two circles N1, N2 as singular
set, both with center types. Each component Nj is a limit of compact
leaves (diffeomorphic to S1×Sm−2) and also of noncompact leaves (dif-
feomorphic to R × Sm−2) as well. In particular, Nj is stable without
trivial holonomy and F is not compact, although Nj is of center type
and is a limit of compact leaves.

transverse type

singular set

Figure 2
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Example 5. We decompose S3 as the union of two solid tori S3 =
(S1

1 × D
2
1) ∪ (D2

2 × S
1
2) with common boundary S1

1 × S
1
2 . In the solid

torus S1
1 ×D

2
1 we consider the product foliation S1 × C where C is the

foliation of the 2-disc by concentric circles. We decompose the second
solid torus as the union of a solid torus and a solid annulus with common
boundary S1

3 × S
1
2 , i.e., D2

2 × S
1
2 = (A2 × S1

2) ∪ (D2
3 × S

1
2). In the solid

torus D2
3 × S

1
2 we put another trivial foliation C × S1. Finally, in the

solid annulus A2 × S1
2 we consider a product foliation F × S1

2 where F
is a one-dimensional foliation in A2 as follows:

A

Figure 3

F has a noncompact leaf accumulating the two circles in the boundary
of A2. Gluing all together we obtain a foliation F on S3 with singular
set sing(F) = union of two circles which are stable with respect to F ,
however F is not a foliation by compact leaves due to the noncompact
leaves in A2×S1

2 . This construction cannot be performed for dimension
m ≥ 4 as is implied by Proposition 6.

Let now F and f be as in Theorem A and assume m ≥ 4. If sing(F)
has some isolated singularity then by Reeb complete stability theorem
all leaves are diffeomorphic to Sm−1. Nevertheless, sing(F) is not neces-
sarily of dimension zero. For instance, take the classical Hopf fibration
of S3 over S2 with fiber S1. Now consider the corresponding disc bundle
over S2. Its total space E4 is a four dimensional manifold with bound-
ary S3. Using the discs D2 bounded by the fibers we can construct a
foliation with Bott-Morse singularities F1 of E4 having compact leaves
diffeomorphic to S3 and singular set S2 ∼= CP (1). Now glue to E4 a
four dimensional disc in the obvious way to obtain the complex pro-
jective plane CP (2) and a foliation with Bott-Morse singularities F of
CP (2) with leaves S3 and singular set S2 union a point. This same
construction generalizes to CP (n) regarded as the union of a 2n-disc
and CP (n− 1).

4. Compact foliations with Bott-Morse singularities

Let F be a transversely oriented, compact foliation with Bott-Morse
singularities on the closed, oriented, connected manifold Mm, m ≥ 3.
Notice that Proposition 2 implies that (besides each leaf L of F) each
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component N of the singular set is stable with finite holonomy. By
Lemma 4 one has Theorem C as an immediate consequence. This obvi-
ously imposes stringent conditions on both, the topology of M and L.
Let us see what this says when M has dimensions 3 and 4. If m = 3,
then L must be a two-dimensional closed oriented manifold that fibers
over another manifold of dimension 0 or 1, with fiber a sphere. The
only possibilities for L are to be S2, fibered over a point, or the 2-torus
T = S1 × S1, since the are no other S1-bundles over S1, except for
the Klein bottle which is not orientable. Hence the possibilities for the
double-fibration in Theorem C are:
(i) If N1 is a point, then L must be a 2-sphere S2, and this surface does

not fiber over S1, hence N2 must be also a point. This is the classical
case envisaged by Reeb and others, the leaves are copies of S2 and
M is the 3-sphere, regarded as the suspension over S2.

(ii) If N1 is a circle, then L is the torus T = S1×S1 and M is the result
of gluing together two solid tori along their common boundary. The
manifolds one gets in this way are either orientable S1-bundles over
S2 (and there is one such bundle for each integer, being classified
by their Euler class), or a lens space L(p, q), obtained by identifying
two solid tori by a diffeomorphism of their boundaries that carries a
meridian into a curve of type (p, q) in T .

Notice that Theorem C implies:

Theorem D. LetM be a closed oriented connected 3-manifold equipped

with a transversely oriented compact foliation F with Bott-Morse sin-

gularities. Then either sing(F) consists of two points, the leaves are

2-spheres and M is S3, or sing(F) consists of two circles, the leaves are

tori and M is homeomorphic to a lens space or to an S1-bundle over

S2.

We remark that the hypothesis of having a compact foliation is nec-
essary, otherwise the conclusion of Theorem D does not hold. For in-
stance, decompose S3 as a union of two solid tori T1, T2, as usual. Foliate
T1 = S1 × D2 by concentric tori S1 × S1, and put Reeb’s foliation on
T2. We get a foliation on S3 with singular set a circle of center type.

Examples 1 and 2 show that all S1-bundles over S2 and all lens spaces
admit compact foliations as in Theorem D.

When m = 4 the list of possibilities for L and M is larger. For
instance, we can foliate S4 in various ways:
• By 3-spheres with two isolated centers.
• By copies of S1 × S2 with two circles as singular set.
• Think of S4 as being the space of real 3 × 3 symmetric matrices A

of trace zero and tr(A2) = 1. The group SO(3,R) acts on S4 by
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A 7→ OtAO, for a given O ∈ SO(3,R) and A ∈ S4. As noticed in
[13] this gives an isometric action of SO(3,R) on the sphere S4 with
two copies of RP (2) as singular set. The leaves are copies of the flag
manifold

F 3(2, 1) ∼= SO(3,R)/(Z/2Z × Z/2Z) ∼= L(4, 1)/(Z/2Z),

of (unoriented) planes in R
3 and lines in these planes.

• Now consider the complex projective plane CP (2). Thinking of it as
being C

2 union the line at infinity, one gets a foliation by copies of S3

with an isolated singularity at the origin and a copy of S2 ∼= CP (1)
at infinity.
• Notice that, as in Example 3, the group SO(3,R) is a subgroup

of SO(3,C) and therefore acts on CP (2) in the usual way. The
orbits of this action are copies of the Flag manifold F 3

+(2, 1) ∼=
SO(3,R)/(Z/2Z), which is a double cover of F 3(2, 1). The singular

set now consists of the quadric
2∑

j=0
z2
j = 0, which is diffeomorphic to

S2, and a copy of RP (2). As in Example 3, this foliation is mapped to
the above foliation of S4 by the projection CP (2)→ CP (2)/j ∼= S4,
where j : CP (2)→ CP (2) is complex conjugation (by [2], [1] or [15]).

Let us discuss the various possibilities for L and M . Let N1 and N2

be the connected components of sing(F).
(i) If N1 is a point then each leaf L must be S3.

We claim that there are three possibilities for N2: it can be either
a point, the 2-sphere or the projective plane RP (2). Indeed, L fibers
over N2 with fiber a sphere, and S3 does not fiber over S1. This implies
that N2 has cannot have dimension one. If N2 has dimension two then
necessarily is diffeomorphic to S2 or to RP (2). Thus the possibilities
are the following:

(i.a) If N2 is also a point, then M is S4 by Reeb’s theorem.
(i.b) If N2 is the 2-sphere then one has a fiber bundle

S1 →֒ S3 −→ N2 ;

such a bundle necessarily corresponds to a free S1-action on S3.
The effective actions of S1 on 3-manifolds are classified in [19], and
the only free action on S3 is the usual one, which gives the Hopf
fibration S1 →֒ S3 −→ S2 , and M is the complex projective plane
CP 2. Of course the projection S2 → RP (2) gives a fibre bundle
S1 →֒ S3 −→ RP (2) .

(ii) If N1 is a circle, then L fibers over S1 ∼= N1 with fiber a 2-sphere,
so L is S1 × S2, and N2 can be either a circle S1, S2 or RP (2). If

N2
∼= S1 then both fibrations L

πi−→ Ni , i = 1, 2, necessarily coincide.
Then M is the result of taking two copies of the corresponding disc
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bundle, and glued them along their common boundary L by some
diffeomorphism. If N2 is S2 or RP (2) then L is a product S1 × S2.

(iii) If N1 and N2 are both surfaces, then they can be oriented or not, and
L is a closed, oriented Seifert manifold. The manifolds N1 and N2

cannot be arbitrary, since L must fiber over both of them simultane-
ously, but there is a lot of freedom. For instance, notice that we can
use the procedure in Example 2 to construct compact foliations with
Bott-Morse singularities whenever we have a double-fibration as in
Theorem C, regardless of whether or not the hypothesis of Theorem
A are satisfied.
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Portuguese by Sue E. Goodman. Birkhäuser Boston, Inc., Boston, MA, 1985.
MR 0824240, Zbl 0568.57002.

[5] C. Camacho & B. Scárdua, On codimension one foliations with Morse singu-

larities; Proc. Amer. Math. Soc. 136 (2008), no. 11, 4065–4073. MR 2425748,
Zbl 1152.57028.

[6] A. Candel & L. Conlon, Foliations, I. American Mathematical Society. Provi-
dence, Rhode Island, 1999. MR 1732868, Zbl 0936.57001.

[7] P. Dippolito, Codimension one foliations of closed manifolds, Ann. of Math. 107
(1978) 403–453. MR 0515731, Zbl 0418.57012.
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212 B. SCÁRDUA & J. SEADE
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21.945-970 Rio de Janeiro-RJ
Brazil

E-mail address: scardua@impa.br

Instituto de Matemáticas
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