J. DIFFERENTIAL GEOMETRY 83 (2009) 337-376

# THE DIFFERENTIABLE-INVARIANCE OF THE ALGEBRAIC MULTIPLICITY OF A HOLOMORPHIC VECTOR FIELD

#### RUDY ROSAS

## Abstract

We prove that the algebraic multiplicity of a holomorphic vector field at an isolated singularity is invariant by topological equivalences which are differentiable at the singular point.

### 1. Introduction

Given a holomorphic curve  $f : (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ , singular at  $0 \in \mathbb{C}^2$ , we define its *algebraic multiplicity* as the degree of the first nonzero jet of f, that is,  $\nu(f) = \nu$  where

$$f = f_{\nu} + f_{\nu+1} + \cdots$$

is the Taylor development of f and  $f_{\nu} \neq 0$ . A well known result by Burau [2] and Zariski [15] states that  $\nu$  is a *topological invariant*, that is, given  $\tilde{f} : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$  and a homeomorphism  $h : U \to \tilde{U}$  between neighborhoods of  $0 \in \mathbb{C}^2$  such that  $h(f^{-1}(0) \cap U) = \tilde{f}^{-1}(0) \cap V$  then  $\nu(f) = \nu(\tilde{f})$ . Consider now a holomorphic vector field Z in  $\mathbb{C}^2$  with a singularity at  $0 \in \mathbb{C}^2$ . If

$$Z = Z_{\nu} + Z_{\nu+1} + \cdots, \quad Z_{\nu} \neq 0$$

we define  $\nu = \nu(Z)$  as the algebraic multiplicity of Z at  $0 \in \mathbb{C}^2$ . The vector field Z defines a holomorphic foliation by curves  $\mathcal{F}$  with isolated singularity in a neighborhood of  $0 \in \mathbb{C}^2$  and the algebraic multiplicity  $\nu(Z)$  depends only on the foliation  $\mathcal{F}$ . A natural question, posed by J.F. Mattei is: is  $\nu(\mathcal{F})$  a topological invariant of  $\mathcal{F}$ ? In [**3**], the authors give a positive answer if  $\mathcal{F}$  is a generalized curve, that is, if the desingularization of  $\mathcal{F}$  does not contain complex saddle-nodes. If  $\mathcal{F}$  is dicritical, that is, after a blow up the exceptional divisor is not invariant by the strict transform of  $\mathcal{F}$ , the conjecture is also true: in this case, it is not difficult to show that the algebraic multiplicity of  $\mathcal{F}$  is equal to the index of  $\mathcal{F}$  (as defined in [**3**]) along a generic separatrix. Then the topological invariance of the algebraic multiplicity of a dicritical singularity is a consequence of the topological invariance of the index

Received 05/05/2006.

along a curve, which is proved in [3]. Thus, in this paper we always assume the non-dicritical case. Given foliations  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  with isolated singularities at  $0 \in \mathbb{C}^2$ , we say that  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  are topologically equivalent (at  $0 \in \mathbb{C}^2$ ) if there is a homeomorphism  $h: U \to \widetilde{U}$ , h(0) = 0 between neighborhoods of  $0 \in \mathbb{C}^2$ , taking leaves of  $\mathcal{F}$  to leaves of  $\widetilde{\mathcal{F}}$ . Such a homeomorphism is a topological equivalence between  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$ . In this work we impose conditions on the topological equivalence  $h: U \to \widetilde{U}$ and prove the following.

**Theorem 1.1.** Let  $h: U \to \widetilde{U}$  be a topological equivalence between  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  and assume that h preserves the orientation of  $\mathbb{C}^2$ . Suppose that h is differentiable at  $0 \in \mathbb{C}^2$  and such that  $dh(0) : \mathbb{R}^4 \to \mathbb{R}^4$  is a real isomorphism. Then the algebraic multiplicities of  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  are the same.

Let  $\pi : \widehat{\mathbb{C}^2} \to \mathbb{C}^2$  be the blow up at  $0 \in \mathbb{C}^2$ . Given a complex line P passing through  $0 \in \mathbb{C}^2$ , we say that P is *regular for*  $\mathcal{F}$ , if the strict transform of P by  $\pi$  intersects the divisor E at a regular point of the strict transform of  $\mathcal{F}$ . The following theorem is a key step in the proof of Theorem 1.1.

**Theorem 1.2.** Let  $h: U \to \widetilde{U}$  be a topological equivalence between  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  and assume that h preserves the orientation of  $\mathbb{C}^2$ . Let P and  $\widetilde{P}$  be two complex lines passing through  $0 \in \mathbb{C}^2$  which are regular for  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  respectively. Suppose that  $P \cap U$  is homeomorphic to a disc and  $h(P \cap U) = \widetilde{P} \cap \widetilde{U}$ . Then the algebraic multiplicities of  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  are equal.

The paper is organized as follows. In section 2 we prove a weaker version of Theorem 1.2. In section 3 we stay and prove a topological lemma, fundamental for the following sections. We prove Theorem 1.2 in section 4. Finally, in section 5 we prove Theorem 1.1.

Acknowledgments. The contents of this paper originally comprised a Ph.D. dissertation at Instituto de Matematica Pura e Aplicada, Rio de Janeiro. The author would like to thank his advisor, César Camacho, for guidance and support. I also thank Alcides Lins Neto, Paulo Sad, Luis Gustavo Mendes and specially Jorge Vitório Pereira for the remarks that helps in the redaction of the present paper.

## 2. A first theorem.

Let  $h: U \to \widetilde{U}$  be a topological equivalence between  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$ . Let  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$  be the strict transforms of  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  respectively. Let W and  $\widetilde{W}$  be denote the sets  $\pi^{-1}(U)$  and  $\pi^{-1}(\widetilde{U})$  respectively. Let

$$h: W \setminus E \to W \setminus E$$

be the homeomorphism defined by  $h = \pi^{-1} h \pi$ . We have a natural fibration  $\rho$  on  $\widehat{\mathbb{C}^2}$  which fibers are the strict transforms of the complex lines passing through  $0 \in \mathbb{C}^2$ . Consider  $p, \widetilde{p} \in E$  and let  $L_p$  and  $L_{\widetilde{p}}$  be the fibers of  $\rho$  passing through p and  $\widetilde{p}$  respectively. This section is devoted to prove the following.

**Theorem 2.1.** Suppose that p and  $\tilde{p}$  are regular points of  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$  respectively. Let  $\Omega$  be a neighborhood of p in  $\widehat{\mathbb{C}^2}$ . Suppose that h extends to  $(W \setminus E) \cup \Omega$  as a homeomorphism onto its image, such that  $h(L_p \cap W) = L_{\widetilde{p}} \cap \widetilde{W}$ . Then the algebraic multiplicities of  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$  are the same.

Let  $\nu$  be the algebraic multiplicity of  $\mathcal{F}$  at 0 and let  $p_1, ..., p_k$  be the singularities of  $\mathcal{F}_0$  on E. We have the following relation due to Ven Den Essen (see [9], appendix I):

$$\sum_{i=1}^{k} \mu(\mathcal{F}_0, p_i) = \mu(\mathcal{F}, 0) - \nu^2 + \nu + 1,$$

where  $\mu(\mathcal{F}, p)$  is the Milnor number of  $\mathcal{F}$  at p. Let  $s = \sum_{i=1}^{k} \mu(\mathcal{F}_0, p_i)$ . In the same way, let  $\tilde{s}$  be the sum of the Milnor numbers of the singularities on E of  $\tilde{\mathcal{F}}_0$ . Then, since the Milnor number is a topological invariant, it is sufficient to prove that  $s = \tilde{s}$ .

Let  $\mathcal{D} \subset E \cap \Omega$  be a closed disc containing p, which does not contain singularities of  $\mathcal{F}_0$  and such that  $h(\mathcal{D})$  does not contains singularities of  $\widetilde{\mathcal{F}}_0$ . Let D and  $\widetilde{D}$  be the closed discs in E equal to the closure of  $E \setminus \mathcal{D}$  and  $E \setminus h(\mathcal{D})$  respectively. Then h maps  $W \setminus D$  homeomorphically onto  $\widetilde{W} \setminus \widetilde{D}$ , and the interiors of D and  $\widetilde{D}$  contain all the singularities of  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$  respectively. Observe that h is a topological equivalence between  $\mathcal{F}_0|_{W \setminus D}$  and  $\widetilde{\mathcal{F}}_0|_{\widetilde{W} \setminus \widetilde{D}}$ . Since  $h(L_p \cap W) = L_{\widetilde{p}} \cap \widetilde{W}$ , we have the homeomorphism

$$h: (W \setminus D) \setminus L_p \to (\widetilde{W} \setminus \widetilde{D}) \setminus L_{\widetilde{p}}.$$

We know that  $W \setminus L_p$  and  $\widetilde{W} \setminus L_{\widetilde{p}}$  are isomorphic to  $\mathbb{C}^2$ , where the divisor can be represented by the vertical line  $\{z_1 = 0\}$  and the sets  $W \setminus L_p$  and  $\widetilde{W} \setminus L_{\widetilde{p}}$  give neighborhoods V and  $\widetilde{V}$  of  $\{z_1 = 0\}$ . Thus, we may think that the foliations  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$  are defined on the sets V and  $\widetilde{V}$  in  $\mathbb{C}^2$ , and that

$$h:V\backslash D\subset \mathbb{C}^2\to \widetilde{V}\backslash \widetilde{D}\subset \mathbb{C}^2$$

is a topological equivalence between  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$ . Observe that  $\mathcal{F}_0$  is globally defined by a holomorphic vector field on V and the same holds for  $\widetilde{\mathcal{F}}_0$  on  $\widetilde{V}$ . The disc D is contained in  $\{z_1 = 0\}$  and we may assume that  $D = \{(0, z_2) : |z_2| \le r\}$ , where r > 0.

We proceed now to compute s. Let Z be a holomorphic vector field which generates the foliation  $\mathcal{F}_0$  on V. Let B be a neighborhood of D homeomorphic to a ball, such that  $\partial B$  is homeomorphic to  $S^3$  and  $\overline{B} \subset V$ . It is well known that the Milnor number is just the Poincar-Hopf index (considering the holomorphic vector field as a real vector field). Then, since all the singularities of  $\mathcal{F}_0$  are contained in B, we have ([10], p. 36) that the sum of the Milnor numbers of the singularities of  $\mathcal{F}_0$  is equal to the degree of the map

$$\frac{Z}{||Z||} : \partial B \to \mathbb{S}^3,$$
$$\frac{Z}{||Z||}(z) = \frac{Z(z)}{||Z(z)||}$$

Let  $\mathcal{B}$  be a neighborhood of  $\overline{B}$  homeomorphic to a ball and such that  $\overline{\mathcal{B}} \subset V$ . Since V is a neighborhood of  $\{z_1 = 0\}$ , for  $\varepsilon > 0$  small enough, the set  $\{|z_1| < 2\varepsilon, |z_2| < 4r\}$ , which contains D, is contained in V. Then, we may chose B and  $\mathcal{B}$  such that

$$\mathcal{B} \subset \{|z_1| < \varepsilon, |z_2| < 2r\}$$

The last hypothesis will be only used in the proof of Lemma 2.5.

Consider the sets  $\widetilde{B} = h(B \setminus D) \cup \widetilde{D}$ ,  $\widetilde{\mathcal{B}} = h(\mathcal{B} \setminus D) \cup \widetilde{D}$  and  $\widetilde{V} = h(V \setminus D) \cup \widetilde{D}$ . It is easy to see that  $\widetilde{B}$ ,  $\widetilde{\mathcal{B}}$  and  $\widetilde{V}$  are neighborhoods of  $\widetilde{D}$  in  $\mathbb{C}^2$ .



Let

 $\varphi:\overline{\mathbb{D}}_{\varepsilon}\times\overline{\mathcal{B}}\to V\subset\mathbb{C}^2$ 

and

 $\widetilde{\varphi}: \overline{\mathbb{D}}_{\varepsilon} \times \widetilde{\mathcal{B}} \to \widetilde{V} \subset \mathbb{C}^2$ 

be the local complex flows of Z and  $\widetilde{Z}$  respectively, where  $\mathbb{D}_{\varepsilon} = \{T \in \mathbb{C} : ||T|| < \varepsilon\}$  with  $\varepsilon$  small enough. Now, we follow the ideas used in [3] to prove the topological invariance of the Milnor number.

**Lemma 2.2.** There exists continuous functions  $\tau : \mathcal{B} \setminus D \to (0, \varepsilon)$  and  $\widetilde{\tau} : h(\mathcal{B} \setminus D) \to \mathbb{D}_{\varepsilon} \setminus \{0\}$  such that for all  $z \in \mathcal{B} \setminus D$  we have:

(i)  $\varphi(\tau(z), z) \in \mathcal{B} \setminus D$ .

(ii)  $\varphi(t\tau(z), z) \neq z$ , for any  $t \in (0, 1]$ .

(*iii*)  $h(\varphi(\tau(z), z)) = \widetilde{\varphi}(\widetilde{\tau}(h(z)), h(z)).$ 

We say that a function  $f: U \to \mathbb{R}$  is *lower(upper) semi-continuous* if given  $\epsilon > 0$  and  $x_0 \in U$ , there is a neighborhood  $\Omega$  of  $x_0$  in U such that  $f(x) \ge f(x_0) - \epsilon$   $(f(x) \le f(x_0) + \epsilon)$  for all  $x \in \Omega$ . We need the following lemma.

**Lemma 2.3.** Let U be an open set in  $\mathbb{R}^n$  and let  $f : U \to \mathbb{R}$  and  $g : U \to \mathbb{R}$  be an upper and a lower semicontinuous function respectively. Suppose that f < g. Then there exists a continuous function  $h : U \to \mathbb{R}$  such that f < h < g. In particular, if g is a strictly positive lower semicontinuous function, then there exists a continuous function h such that 0 < h < g.

Proof of Lemma 2.2. Clearly, given  $z \in \mathcal{B} \setminus D$  there exists  $\delta > 0$  such that  $\varphi(*, z)$  is injective on  $\mathbb{D}_{\delta}$ . Then define  $\delta(z) > 0$  as the supremum of  $\delta' \leq \varepsilon$  such that  $\varphi(*, z)$  is injective on  $\mathbb{D}_{\delta'}$ .

### Assertion 1. The function $\delta : \mathcal{B} \setminus D \to (0, \varepsilon]$ is lower semicontinuous.

*Proof.* Fix  $z_0 \in \mathcal{B} \setminus D$  and let  $\epsilon > 0$ . We will prove that for z close enough to  $z_0$  we have  $\delta(z) \geq \delta(z_0) - \epsilon$ . Suppose by contradiction that for  $z_k \to z_0$  we have that  $\varphi(*, z_k)$  is not injective on  $\mathbb{D}_{\delta(z_0)-\epsilon}$ . Then there are points  $t_k, t'_k$  in  $\mathbb{D}_{\delta(z_0)-\epsilon}$ , with  $t_k \neq t'_k$  and such that  $\varphi(t_k, z_k) = \varphi(t'_k, z_k)$ for all k. By taking a subsequence we may assume that  $t_k \to a$  and  $t'_k \to a'$  with  $a, a' \in \overline{\mathbb{D}}_{\delta(z_0)-\epsilon} \subset \mathbb{D}_{\delta(z_0)}$ . By continuity we have

$$\varphi(a, z_0) = \lim_{k \to \infty} \varphi(t_k, z_k) = \lim_{k \to \infty} \varphi(t'_k, z_k) = \varphi(a', z_0)$$

and, since  $\varphi(*, z_0)$  is injective on  $\mathbb{D}_{\delta(z_0)}$ , we deduce that a = a'. Let  $z' = \varphi(a, z_0)$  and take a neighborhood  $\Omega$  of z' and  $\delta_0 > 0$  such that  $\varphi(*, z)$  is injective on  $\mathbb{D}_{\delta_0}$  for all  $z \in \Omega$ . For k big enough we have that  $\varphi(a, z_k) \in \Omega$  and  $(t_k - a), (t'_k - a') \in \mathbb{D}_{\delta_0}$ . Then, since

$$\varphi(t_k - a, \varphi(a, z_k)) = \varphi(t_k, z_k) = \varphi(t'_k, z_k) = \varphi(t'_k - a', \varphi(a', z_k)),$$

we have that  $t_k - a = t'_k - a'$ , hence  $t_k = t'_k$ , which is a contradiction.

Assertion 2. Consider  $\overline{\delta} : \mathcal{B} \setminus D \to (0, \varepsilon]$ , where  $\overline{\delta}(z)$  is the supremum of  $\delta' < \varepsilon$  such that  $\varphi(\mathbb{D}_{\delta'}, z) \subset \mathcal{B} \setminus D$ . Then  $\overline{\delta}$  is a lower semicontinuous function.

*Proof.* Fix  $z_0$  and let  $\epsilon > 0$ . The set  $\varphi(\overline{\mathbb{D}}_{\bar{\delta}(z_0)-\epsilon}, z_0)$  is compact and is contained in  $\mathcal{B} \setminus D$ . If z is close enough to  $z_0$  we have that  $\varphi(\overline{\mathbb{D}}_{\bar{\delta}(z_0)-\epsilon}, z)$  is also contained in  $\mathcal{B} \setminus D$ . Then  $\bar{\delta}(z) \geq \bar{\delta}(z_0) - \epsilon$  and it follows that  $\bar{\delta}$  is lower semicontinuous.

Consider  $\widetilde{\delta} : h(\mathcal{B} \setminus D) \to (0, \varepsilon]$ , where  $\widetilde{\delta}(w)$  is the supremum of  $\delta' < \varepsilon$ such that  $\widetilde{\varphi}(*, w)$  is injective on  $\mathbb{D}_{\delta'}$ . As in Assertion 1, we can prove that  $\widetilde{\delta}$  is a lower semicontinuous function.

Assertion 3. Define  $\hat{\delta} : \mathcal{B} \setminus D \to (0, \varepsilon]$ , where  $\hat{\delta}(z)$  is the supremum of  $\delta' < \varepsilon$  such that  $h(\varphi(\mathbb{D}_{\delta'}, z))$  is contained in  $\widetilde{\varphi}(\mathbb{D}_{\widetilde{\delta}(h(z))}, h(z))$ . Then  $\hat{\delta}$  is a lower semicontinuous function.

*Proof.* Fix  $z_0$  and let  $\epsilon > 0$ . Since  $h(\varphi(\mathbb{D}_{\hat{\delta}(z_0)}, z_0))$  is contained in  $\widetilde{\varphi}(\mathbb{D}_{\widetilde{\delta}(h(z_0))}, h(z_0))$ , there is  $\epsilon' > 0$  such that  $h(\widetilde{\varphi}(\overline{\mathbb{D}}_{\widehat{\delta}(z_0)-\epsilon}, z_0))$  is contained in  $\widetilde{\varphi}(\mathbb{D}_{\widetilde{\delta}(h(z_0))-\epsilon'}, h(z_0))$ . Let  $\Sigma$  be a disc passing through  $h(z_0)$ and transverse to the foliation. Since  $\tilde{\delta}$  is lower semicontinuous, we may take  $\Sigma$  small enough such that  $\widetilde{\varphi}(*, z)$  is injective on  $\overline{\mathbb{D}}_{\widetilde{\delta}(h(z_0))-\epsilon'}$  for all  $z \in \Sigma$ . Moreover, we may take  $\Sigma$  small enough such that  $\tilde{\varphi}$  is injective on  $\mathbb{D}_{\widetilde{\delta}(h(z_0))-\epsilon'} \times \Sigma$ . Let M denote the open set  $\widetilde{\varphi}(\mathbb{D}_{\widetilde{\delta}(h(z_0))-\epsilon'} \times \Sigma)$  and let  $M' = \widetilde{\varphi}(\mathbb{D}_{\epsilon'/2} \times \Sigma)$ . We may take a neighborhood  $\Omega$  of  $z_0$  such that  $h(\Omega) \subset M'$  and  $\widetilde{\delta}(h(z)) \geq \widetilde{\delta}(h(z_0)) - \epsilon'/2$  for all  $z \in \Omega$ , because  $\widetilde{\delta}$  is lower semicontinuous. Since  $h(\varphi(\overline{\mathbb{D}}_{\hat{\delta}(z_0)-\epsilon}, z_0))$  is compact and is contained in M, we may assume  $\Omega$  small enough such that  $h(\varphi(\overline{\mathbb{D}}_{\hat{\delta}(z_0)-\epsilon}, z))$ is contained in M for all  $z \in \Omega$ . Fix  $z \in \Omega$ . Since  $h(z) \in M'$ , there is  $w' \in \Sigma$  and t', with  $|t'| < \epsilon'/2$ , such that  $h(z) = \widetilde{\varphi}(t', w')$ . Since  $h(\varphi(\overline{\mathbb{D}}_{\hat{\delta}(z_0)-\epsilon}, z))$  is contained in M, we deduce that it is contained in  $\widetilde{\varphi}(\mathbb{D}_{\widetilde{\delta}(h(z_0))-\epsilon'}, w')$ . Then, given w in  $h(\varphi(\overline{\mathbb{D}}_{\widehat{\delta}(z_0)-\epsilon}, z))$ , we have that  $w = \widetilde{\varphi}(t'', w')$  with  $|t''| < \widetilde{\delta}(h(z_0)) - \epsilon'$ . Thus

$$w = \widetilde{\varphi}(t'', w') = \widetilde{\varphi}(t'' - t', \widetilde{\varphi}(t', w')) = \widetilde{\varphi}(t'' - t', h(z)),$$

where  $|t''-t'| \leq |t''|+|t'| < \widetilde{\delta}(h(z_0))-\epsilon'+\epsilon'/2 = \widetilde{\delta}(h(z_0))-\epsilon'/2 \leq \widetilde{\delta}(h(z))$ . Then  $h(\varphi(\overline{\mathbb{D}}_{\widehat{\delta}(z_0)-\epsilon}, z))$  is contained in  $\widetilde{\varphi}(\mathbb{D}_{\widetilde{\delta}(h(z))}, h(z))$  and it follows that  $\widehat{\delta}$  is lower semicontinuous.

It is easy to see that the function  $g = \min\{\delta, \bar{\delta}, \hat{\delta}\}$  is also lower semicontinuous. Then, by Lemma 2.3, there exists a positive continuous function  $\tau$  on  $\mathcal{B}\backslash D$  such that  $\tau < \delta, \bar{\delta}, \hat{\delta}$ . By the definition of  $\bar{\delta}$ , (*i*) is satisfied. Since  $\varphi(*, z)$  is injective on  $\mathbb{D}_{\bar{\delta}}$  and  $\tau(z) \in \mathbb{D}_{\bar{\delta}}$ , we have that (*ii*) holds. Now, we shall define  $\tilde{\tau}$ . Let  $w = h(z) \in h(\mathcal{B}\backslash D)$ . Since  $\tau < \hat{\delta}$ , we have that  $h(\varphi(\tau(z), z))$  is contained in  $\tilde{\varphi}(\mathbb{D}_{\tilde{\delta}(h(z))}, h(z))$ 

and by injectivity there exists a unique  $\tilde{\tau}(h(z))$  in  $\mathbb{D}_{\tilde{\delta}(h(z))}$  such that  $h(\varphi(\tau(z), z)) = \tilde{\varphi}(\tilde{\tau}(h(z)), h(z))$ . Now, it is easy to see that  $\tilde{\tau}$  is continuous and therefore (*iii*) holds. q.e.d.

Proof of Lemma 2.3. Consider  $x \in U$  and  $a_x \in \mathbb{R}$ , such that  $f(x) < a_x < g(x)$ . It follows from the definition of lower and upper semicontinuous function that there exists a neighborhood  $V_x$  of x in U such that  $f(y) < a_x < g(y)$  for all  $y \in V_x$ . We may take a subset  $I \subset U$ , such that  $U \subset \bigcup_{i \in I} V_i$  and  $\{V_i\}_{i \in I}$  is locally finite. Thus, we have  $f(x) < a_i < g(x)$  for all  $x \in V_i$ . Let  $\{\psi_i\}_{i \in I}$  be a partition of the unity subordinate to  $\{V_i\}_{i \in I}$ . Then, we define  $h: U \to \mathbb{R}$  by

$$h(x) = \sum_{i \in I} \psi_i(x) a_i.$$

Clearly, h is continuous. If  $x \in V_i$ , then  $f(x) < a_i < g(x)$ , hence  $\psi_i(x)f(x) < \psi_i(x)a_i < \psi_i(x)g(x)$  and it follows that f < h < g.

q.e.d.

From Lemma 2.2, we have the maps

$$f: \mathcal{B} \setminus D \to \mathcal{B} \setminus D,$$
  
 $f(z) = \varphi(\tau(z), z)$   
 $\widetilde{c} \in \widetilde{Q} \setminus \widetilde{C} = \widetilde{Q} \setminus \widetilde{C},$ 

and

$$f: \mathcal{B} \backslash D \to \mathcal{B} \backslash D,$$
  
$$\tilde{f}(w) = \tilde{\varphi}(\tilde{\tau}(w), w)$$

with

$$h\circ f=f\circ h$$

and such that f and  $\tilde{f}$  are without fixed points.

There exists  $\psi, \widetilde{\psi} : \mathbb{C}^2 \to \mathbb{C}^2$  with the following properties:

- (i)  $\psi(D) = 0$  and  $\widetilde{\psi}(\widetilde{D}) = 0$ .
- (ii)  $\psi : \mathbb{C}^2 \setminus D \to \mathbb{C}^2 \setminus \{0\}$  and  $\tilde{\psi} : \mathbb{C}^2 \setminus \tilde{D} \to \mathbb{C}^2 \setminus \{0\}$  are homeomorphisms.

(iii)  $\psi$  and  $\tilde{\psi}$  are equal to the identity out of B and  $\tilde{B}$  respectively. We define

$$\begin{split} f' &= \psi f \psi^{-1} : \mathcal{B} \setminus \{0\} \to \mathcal{B} \setminus \{0\} \subset \mathbb{C}^2, \\ \tilde{f}' &= \tilde{\psi} \tilde{f} \tilde{\psi}^{-1} : \tilde{\mathcal{B}} \setminus \{0\} \to \tilde{\mathcal{B}} \setminus \{0\} \subset \mathbb{C}^2, \\ h' &= \tilde{\psi} h \psi^{-1} : V \to \tilde{V}. \end{split}$$

Then we have the following:

- (i) f' and  $\tilde{f}'$  do not have fixed points.
- (*ii*) On  $\partial B$ , we have f' = f and  $\tilde{f}' = \tilde{f}$ .
- (*iii*) h' is a homeomorphism with h'(0) = 0 and such that  $h' \circ f' = \tilde{f}' \circ h'$ .

Thus, there are well defined maps:

$$\begin{array}{rcl} (f'-\mathrm{id}) & : & \mathcal{B} \setminus \{0\} \to \mathbb{C}^2 \setminus \{0\}, \\ (\widetilde{f}'-\mathrm{id}) & : & \widetilde{\mathcal{B}} \setminus \{0\} \to \mathbb{C}^2 \setminus \{0\}. \end{array}$$

Observe that  $H_3(\mathcal{B}\setminus\{0\}) \subset H_3(\mathbb{C}^2\setminus\{0\})$  and this inclusion is an isomorphism between the groups. Then  $(f' - \mathrm{id})$  induces a map

$$(f' - \mathrm{id})_* : H_3(\mathbb{C}^2 \setminus \{0\}) \to H_3(\mathbb{C}^2 \setminus \{0\})$$

at the homology level.

**Lemma 2.4.**  $(f' - id)_*$  is the multiplication by s.

*Proof.* We have that  $\partial B \subset \mathcal{B}$  is a generator of  $H_3(\mathbb{C}^2 \setminus \{0\})$ . It is known that, homologically:

$$(f' - \mathrm{id})(\mathbb{S}^3) = (f' - \mathrm{id})(\partial B) = n\mathbb{S}^3,$$

where n is the degree of the map:

$$g: \partial B \to \mathbb{S}^3,$$
$$g(z) = \frac{(f' - \mathrm{id})}{||(f' - \mathrm{id})||}(z).$$

Thus, it is sufficient to prove that  $\deg(g) = s$ . Observe that  $g = \frac{(f-\mathrm{id})}{||(f-\mathrm{id})||}$ , since f' = f on  $\partial B$ . By (*ii*) of Lemma 2.2 the map

$$G: [0,1] \times \partial B \to \mathbb{S}^3,$$

$$G(t,z) = \frac{\varphi(t\tau(z),z) - z}{||\varphi(t\tau(z),z) - z||}, \quad t \neq 0,$$

$$G(0,z) = \frac{\tau(z)}{||\tau(z)||} \cdot \frac{Z(z)}{||Z(z)||}$$

is well defined. Evidently, G(1, z) = g(z). On the other hand:

$$\begin{split} \lim_{t \to 0} G(t,z) &= \frac{\tau(z)}{||\tau(z)||} \lim_{t \to 0} \left\| \frac{\varphi(t\tau(z),z) - z}{t\tau(z)} \right\|^{-1} \cdot \lim_{t \to 0} \frac{\varphi(t\tau(z),z) - z}{t\tau(z)} \\ &= \frac{\tau(z)}{||\tau(z)||} \lim_{s \to 0} \left\| \frac{\varphi(s,z) - z}{s} \right\|^{-1} \cdot \lim_{s \to 0} \frac{\varphi(s,z) - z}{s} \\ &= \frac{\tau(z)}{||\tau(z)||} \cdot \frac{Z(z)}{||Z(z)||}. \end{split}$$

It follows that G is continuous and therefore is a homotopy between g(z) and  $G(0,z) = \frac{\tau(z)}{||\tau(z)||} \cdot \frac{Z(z)}{||Z(z)||}$ . Now, since  $\pi_3(\mathbb{S}^1) = \{0\}$ , the map  $\tau/|\tau| : \partial B \to \mathbb{S}^1$  is homotopic to the constant  $1 \in \mathbb{S}^1$  and g is homotopic to Z/||Z||. Therefore  $\deg(g) = \deg(Z/||Z||) = s$ .

In the same way, we have that

$$(\widetilde{f}' - \mathrm{id})_* : H_3(\mathbb{C}^2 \setminus \{0\}) \to H_3(\mathbb{C}^2 \setminus \{0\})$$

is the multiplication by  $\tilde{s}$ .

Let

$$h'_*: H_3(\mathbb{C}^2 \setminus \{0\}) \to H_3(\mathbb{C}^2 \setminus \{0\})$$

be the isomorphism induced by h'. Clearly, the following lemma implies Theorem 2.1.

Lemma 2.5. The following diagram commutes:

*Proof.* Recall that  $\mathcal{B}$  was chosen such that

$$\mathcal{B} \subset \{|z_1| < \varepsilon, |z_2| < 2r\} \subset \{|z_1| < 2\varepsilon, |z_2| < 4r\} \subset V.$$

Since  $h' \circ f' = \tilde{f}' \circ h'$  we have  $(\tilde{f}' - \mathrm{id}) \circ h' = \tilde{f}' \circ h' - h' = h' \circ f' - h'$ . It is sufficient to prove that  $h' \circ f' - h'$  and  $h' \circ (f' - \mathrm{id}) : \mathcal{B} \setminus \{0\} \to \mathbb{C}^2 \setminus \{0\}$  are homotopic. For any  $z \in \mathcal{B} \setminus \{0\}$  and  $t \in [0, 1]$  we have that  $f'(z), (1 - t)z \in \mathbb{D}_{\epsilon} \times \mathbb{D}_{2r}$ . Then (f'(z) + (1 - t)z) is contained in  $\mathbb{D}_{2\epsilon} \times \mathbb{D}_{4r} \subset V$ . Therefore, the map:

$$F: [0,1] \times (\mathcal{B} \setminus \{0\}) \to \mathbb{C}^2 \setminus \{0\},$$
$$F(t,z) = h'(f'(z) - (1-t)z) - h'(tz)$$

is well defined. F is continuous and  $F(t, z) \neq 0$  for all  $(t, z) \in [0, 1] \times (\mathcal{B} \setminus \{0\})$  because F(t, z) = 0 implies h'(f'(z) - (1 - t)z) = h'(tz) and since h' is a homeomorphism f'(z) - (1 - t)z = tz, hence f'(z) = z, which contradicts  $f'(z) \neq z$ . Thus F is a homeotopy between  $h' \circ f' - h'$  and  $h' \circ (f' - id)$ .

### 3. A topological fact.

Let M be a complex manifold. We say that  $\mathcal{D}$  is a complex disc in M, if  $\mathcal{D} \subset M$  and there is a map  $f: \overline{\mathbb{D}} \to M$ , which is a homeomorphism onto  $\mathcal{D}$  and is holomorphic on  $\mathbb{D}$ . Let V be any subset of M containing  $\partial \mathcal{D}$ . The map  $f|_{S^1}: S^1 \to \partial \mathcal{D} \subset M$  defines a 1-cycle in V and represents an element in  $H_1(V)$  which does not depend on f. We denote this 1-cycle by  $\partial \mathcal{D}$  independently of the set V. For simplicity, we write  $\gamma = \gamma'$  in  $H_1(M)$  for means that the 1-cycles  $\gamma$  and  $\gamma'$  represents the same element in the group  $H_1(M)$ . Let  $\pi: \widehat{\mathbb{C}^2} \to \mathbb{C}^2$  be the blow up at  $0 \in \mathbb{C}^2$  and let  $E = \pi^{-1}(0)$ . Let  $\rho: \widehat{\mathbb{C}^2} \to E$  be the natural projection. (If L is the strict transform by  $\pi$  of a complex line passing through  $0 \in \mathbb{C}^2$ , then  $\rho(L) = L \cap E$ .) The following Lemma is a reason for assuming that the topological equivalence h preserves the orientation of  $\mathbb{C}^2$ .

**Lemma 3.1.** Let  $h: U \to U'$  be a homeomorphism, where U and U' are neighborhoods of  $0 \in \mathbb{C}^2$  homeomorphic to balls. Let P and P' be two complex lines passing through  $0 \in \mathbb{C}^2$ . Suppose that  $P \cap U$  is homeomorphic to a disc and  $h(P \cap U) = P' \cap U'$ . Let L and L' be the strict transforms by  $\pi$  of P and P' respectively. Let p and p' be the points of intersection of L and L' with E respectively. Denote by W and W' the sets  $\pi^{-1}(U)$  and  $\pi^{-1}(U')$  in  $\widehat{\mathbb{C}^2}$  and let  $h: W \setminus E \to W' \setminus E$  be the homeomorphism defined by  $h = \pi^{-1} h \pi$ . Let  $V \subset W$  be a neighborhood of p and let

$$\varphi: \mathbb{D} \times \mathbb{D} \to V$$

be a biholomorphism such that  $\varphi(\{0\} \times \mathbb{D}) = L \cap V$  and  $\varphi(\mathbb{D} \times \{0\}) = E \cap V$ . Let r with 0 < r < 1 and consider the disc  $\mathcal{B}_w = \varphi(w, |z| \leq r)$ , where  $w \in \mathbb{D}$ . Let  $\Omega$  be a neighborhood of p' in E, homeomorphic to a disc. Let  $V' \subset \widehat{\mathbb{C}^2}$  be the set  $\rho^{-1}(\Omega)$ . Let  $\mathcal{A}' \subset V' \setminus E$  and  $\mathcal{B}' \subset V' \setminus L'$  be complex discs transverse to L' and E respectively. Then, for |w| small enough we have the following:

(i) If h preserves the orientation of  $\mathbb{C}^2$ , then

$$h(\partial \mathcal{B}_w) = \xi \partial \mathcal{B}' \quad in \quad H_1(V' \setminus (L' \cup E)),$$

where  $\xi = +1$  or -1.

- (ii) If h inverts the orientation of  $\mathbb{C}^2$ , then
  - $h(\partial \mathcal{B}_w) = -2\xi \partial \mathcal{A}' + \xi \partial \mathcal{B}' \quad in \quad H_1(V' \setminus (L' \cup E)),$

where  $\xi = +1$  or -1.

**Remark.** With some hypothesis on the foliation  $\mathcal{F}$ , we have in fact that the topological equivalence h necessarily preserves the orientation of  $\mathbb{C}^2$ . Precisely, we have the following.

**Proposition 3.2.** Let  $\mathcal{F}$  be a holomorphic foliation by curves on U which has  $0 \in \mathbb{C}^2$  as its unique singularity. Suppose that  $\mathcal{F}$  has three smooth and transverse separatrices. Suppose that  $\widetilde{\mathcal{F}}$  is another holomorphic foliation of a neighborhood  $\widetilde{U}$  of  $0 \in \mathbb{C}^2$  and let

$$h: U \to \tilde{U}$$

be a topological equivalence between  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$ . Then h preserves the orientation of  $\mathbb{C}^2$ .

Let  $U \subset \mathbb{C}^2$  be an open set homeomorphic to a ball. Let P be a complex line in  $\mathbb{C}^2$  and suppose that  $U \cap P$  is homeomorphic to a disc. It follows by Alexander's duality theorem that  $H_1(U \setminus P) \simeq \mathbb{Z}$ . Let  $\mathcal{D} \subset \mathbb{C}^2$  be a complex disc transverse to P. The 1-cycle  $\partial \mathcal{D}$  represents an element in  $H_1(U \setminus P) \simeq \mathbb{Z}$ , which does not depends on the disc  $\mathcal{D}$ . We know that  $\partial \mathcal{D}$  is a generator of the group and we say that it is the positive generator of  $H_1(U \setminus P)$ . Given a homeomorphism  $f : M \to M'$ ,

where M and M' are oriented manifolds, we define  $\deg(f)$  to be 1 or -1 depending on whether f preserves or reverses orientation.

**Lemma 3.3.** Let  $h: U \to U'$  be a homeomorphism, where U and U' are neighborhoods of  $0 \in \mathbb{C}^2$  homeomorphic to balls. Let P and P' be two complex lines passing through  $0 \in \mathbb{C}^2$ . Suppose that  $P \cap U$  is homeomorphic to a disc and  $h(P \cap U) = P' \cap U'$ . Let a and a' be 1-cycles in  $U \setminus P$  and  $U' \setminus P'$  representing the positive generators of  $H_1(U \setminus P)$  and  $H_1(U' \setminus P')$  respectively. Then

$$\mathbf{h}(a) = \deg(\mathbf{h}) \deg(\mathbf{h}|_P) a' \quad in \quad H_1(U' \setminus P').$$

Proof of Lemma 3.1. If  $\mathcal{B}'' \subset V' \setminus L'$  is any complex disc transverse to E, we have that  $\partial \mathcal{B}''$  is homologous  $\partial \mathcal{B}'$  in  $H_1(V' \setminus (L' \cup E))$ . Thus, we may change the disc  $\mathcal{B}'$  if necessary and assume that it is contained in W'. Let b' be the 1-cycle defined by  $b' = \pi(\partial \mathcal{B}')$ . Then, since  $\pi(\mathcal{B}') \subset U'$ is a complex disc transverse to P' and  $\pi(\partial \mathcal{B}') = \partial \pi(\mathcal{B}')$ , we have that b' is a positive generator of  $H_1(U' \setminus P')$ . Analogously, if  $b = \pi(\partial \mathcal{B}_w)$ , we deduce that b is a positive generator of  $H_1(U \setminus P)$ . It follows from Lemma 3.3 that:

$$\mathbf{h}(b) = \psi \xi b' \quad \text{in} \quad H_1(U' \backslash P'),$$

where  $\psi = \deg(h)$  and  $\xi = \deg(h|_P)$ . Then, since  $\pi^{-1} : U' \setminus P' \to W' \setminus (L' \cup E)$  is well defined, we have that

$$\pi^{-1}(\mathbf{h}(b)) = \psi \xi \pi^{-1}(b') \quad \text{in} \quad H_1(W' \setminus (L' \cup E))$$

and thus

(1) 
$$h(\partial \mathcal{B}_w) = \psi \xi \partial \mathcal{B}' \text{ in } H_1(W' \setminus (L' \cup E)).$$

Observe that  $\pi(\mathcal{A}')$  is a complex disc transverse to P'. Then the cycle  $\partial \pi(\mathcal{A}') = \pi(\partial \mathcal{A}')$  represents the positive generator of  $H_1(U' \setminus P')$ . Thus, we deduce that  $\pi(\partial \mathcal{A}') = \pi(\partial \mathcal{B}')$  in  $H_1(U' \setminus P')$  and therefore

(2) 
$$\partial \mathcal{A}' = \partial \mathcal{B}' \text{ in } H_1(W' \setminus (L' \cup E)).$$

Let  $\mathcal{C}$  be the disc  $\varphi(0, |z| \leq r)$  in L. Let  $\mathcal{C}'$  be a disc in L' containing p'. Since h maps  $\mathcal{C}$  homeomorphically into L' with h(p) = p', the cycle  $h(\partial \mathcal{C})$  is a generator of the group  $H_1(L' \setminus \{p'\})$  and we have  $h(\partial \mathcal{C}) = \deg(h|_L)\partial \mathcal{C}'$ . Thus, since  $h|_L$  preserves orientation if an only if  $h|_P$  does, we have that  $h(\partial \mathcal{C}) = \xi \partial \mathcal{C}'$  in  $H_1(L' \setminus \{p'\})$ . Since  $L' \setminus \{p'\}$  is contained in  $V' \setminus E$ , we conclude that

(3) 
$$h(\partial \mathcal{C}) = \xi \partial \mathcal{C}' \text{ in } H_1(V' \setminus E).$$

Observe that  $\partial \mathcal{C}' = \partial \mathcal{B}'$  in  $H_1(V' \setminus E)$ . Moreover,  $\partial \mathcal{C} = \varphi(0, |z| = r)$  is homologous to  $\partial \mathcal{B}_w = \varphi(w, |z| = r)$  in the set  $T = \varphi(|z| \le |w|, |z| = r)$ . It is easy to see that for |w| small enough, the set h(T) is contained

in  $V' \setminus E$ . Then  $h(\partial \mathcal{C})$  and  $h(\partial \mathcal{B}_w)$  are homologous in  $V' \setminus E$ . It follows from (3) and the observations above that for |w| small enough:

(4) 
$$h(\partial \mathcal{B}_w) = \xi \partial \mathcal{B}'$$
 in  $H_1(V' \setminus E)$ .

We know that there exists integers n and m such that

 $h(\partial \mathcal{B}_w) = n\partial \mathcal{A}' + m\partial \mathcal{B}'$  in  $H_1(V' \setminus (L' \cup E)).$ 

Then, since  $V' \setminus (L' \cup E) \subset V' \setminus E$ :

$$h(\partial \mathcal{B}_w) = n\partial \mathcal{A}' + m\partial \mathcal{B}' \quad \text{in} \quad H_1(V' \setminus E),$$

hence

$$h(\partial \mathcal{B}_w) = m\partial \mathcal{B}'$$
 in  $H_1(V' \setminus E)$ ,

because  $\partial \mathcal{A}' = 0$  in  $H_1(V' \setminus E)$ . From this and (4) we conclude that  $m = \xi$ . Then

$$h(\partial \mathcal{B}_w) = n\partial \mathcal{A}' + \xi \partial \mathcal{B}' \quad \text{in} \quad H_1(V' \setminus (L' \cup E))$$

and, since  $V' \setminus (E \cup L')$  is contained in  $W' \setminus (E \cup L')$ , we have that

(5) 
$$h(\partial \mathcal{B}_w) = n\partial \mathcal{A}' + \xi \partial \mathcal{B}' \text{ in } H_1(W' \setminus (L' \cup E)).$$

From (2) we have  $\partial \mathcal{A}' = \partial \mathcal{B}'$  in  $H_1(W' \setminus (L' \cup E))$ . Replacing in (5) we obtain:

$$h(\partial \mathcal{B}_w) = n\partial \mathcal{B}' + \xi \partial \mathcal{B}'$$
 in  $H_1(W' \setminus (L' \cup E)).$ 

Thus, from (1) we have:

$$\psi \xi \partial \mathcal{B}' = n \partial \mathcal{B}' + \xi \partial \mathcal{B}' \quad \text{in} \quad H_1(W' \setminus (L' \cup E))$$

q.e.d.

and therefore  $n = (\psi - 1)\xi$ . This proves the Lemma.

*Proof of Proposition* 3.2. It is known that the germ of three smooth and transverse curves is equivalent to the germ given by its tangents lines. Therefore we may assume that  $\mathcal{F}$  has three transverse complex lines  $P_1$ ,  $P_2$  and  $P_3$  as separatrices. Then  $h(P_1)$ ,  $h(P_2)$  and  $h(P_3)$  are smooth and transverse separatrices of  $\widetilde{\mathcal{F}}$  and we can also assume that they are contained in complex lines  $\tilde{P}_1$ ,  $\tilde{P}_2$  and  $\tilde{P}_3$ . By reducing U we may assume that  $U \cap P_1$ ,  $\hat{U} \cap P_2$  and  $U \cap P_3$  are homeomorphic to discs. We may take a neighborhood  $\tilde{\tilde{U}}' \subset h(U)$  of  $0 \in \mathbb{C}^2$  such that  $\tilde{U}' \cap \tilde{P}_1$ ,  $\widetilde{U}' \cap \widetilde{P}_2$  and  $\widetilde{U}' \cap \widetilde{P}_3$  are homeomorphic to discs and are contained in  $h(U \cap P_1)$ ,  $h(U \cap P_2)$  and  $h(U \cap P_3)$  respectively. Then if we make  $U' = h^{-1}(\widetilde{U}')$ , it is easy to see that  $U' \cap P_1, U' \cap P_2$  and  $U' \cap P_3$  are homeomorphic to discs and  $h(U' \cap P_1) = \widetilde{U}' \cap \widetilde{P}_1$ ,  $h(U' \cap P_2) = \widetilde{U}' \cap \widetilde{P}_2$ ,  $h(U' \cap P_3) = \widetilde{U}' \cap \widetilde{P}_3$ . We may choose two of the complex lines  $P_1$ ,  $P_2$  and  $P_3$ , say us  $P_1$  and  $P_2$ , such that  $\deg(h|_{P_1}) = \deg(h|_{P_2})$ . Let  $\mathcal{D} \subset P_1$  be a disc containing  $0 \in \mathbb{C}^2$ . Then  $h(\partial \mathcal{D}) = \deg(h|_{P_1})\partial h(\mathcal{D})$  in  $H_1(\widetilde{P}_1 \cap \widetilde{U}' \setminus \{0\})$  and, since  $\widetilde{P}_1 \cap \widetilde{U}' \setminus \{0\} \subset \widetilde{U}' \setminus \widetilde{P}_2$ , we have that

$$h(\partial \mathcal{D}) = \deg(h|_{P_1})\partial h(\mathcal{D})$$
 in  $H_1(U' \setminus P_2)$ .

On the other hand, since  $\partial \mathcal{D}$  and  $\partial h(\mathcal{D})$  are positive generators of  $H_1(U' \setminus P_2)$  and  $H_1(\widetilde{U}' \setminus \widetilde{P}_2)$  respectively, we have by Lemma 3.3 that

$$h(\partial \mathcal{D}) = \deg(h) \deg(h|_{P_2}) \partial h(\mathcal{D}) \text{ in } H_1(\widetilde{U}' \setminus \widetilde{P}_2).$$

Finally, since  $\deg(h|_{P_1}) = \deg(h|_{P_2})$ , it follows from the equations above that  $\deg(h) = 1$  and therefore h preserves orientation. q.e.d.

Proof of Lemma 3.3. We only sketch the proof. Let  $\mathcal{D}$  and  $\mathcal{D}'$  be complex discs transverse to P and P' respectively. Thus  $\partial \mathcal{D}$  and  $\partial \mathcal{D}'$ are homologous to a and a' respectively. Clearly  $h(\partial \mathcal{D}) = \xi \partial \mathcal{D}'$ , where  $\xi = 1$  or -1. Let  $L = P \cap U$  and  $L' = P' \cap U'$ . It follows from the topological invariance of the intersection number (see [6], p.200) that

$$h(L) \cdot h(\mathcal{D}) = \deg(h)L' \cdot \mathcal{D}'.$$

On the other hand it is easy to see that

$$\mathbf{h}(L) \cdot \mathbf{h}(\mathcal{D}) = (\deg(\mathbf{h}|_P)L') \cdot (\xi \mathcal{D}') = \deg(\mathbf{h}|_P)\xi L' \cdot \mathcal{D}'.$$

Then  $\deg(h|_P)\xi = \deg(h)$  and therefore  $\xi = \deg(h|_P) \deg(h)$ , which proves the lemma. q.e.d.

## 4. Proof of theorem 1.2

Let  $\rho : \widehat{\mathbb{C}^2} \to \pi^{-1}(0)$  be the projection associated to the natural fibration on a neighborhood of the divisor  $\pi^{-1}(0)$ . Let  $h: U \to \widetilde{U}, \mathcal{F},$  $\widetilde{\mathcal{F}}, P$ , and  $\widetilde{P}$  be as in Theorem 1.2. We know that the strict transforms of P and  $\widetilde{P}$  are fibers of  $\rho$ . Let  $L_p$  and  $L_{\widetilde{p}}$ , the fibers passing through p and  $\widetilde{p}$ , be the strict transforms of P and  $\widetilde{P}$  respectively. By the hypothesis on P and  $\widetilde{P}$  we have that p and  $\widetilde{p}$  are regular points of  $\mathcal{F}_0$ and  $\widetilde{\mathcal{F}}_0$  respectively. Let W and  $\widetilde{W}$  denote the sets  $\pi^{-1}(U)$  and  $\pi^{-1}(\widetilde{U})$ and let E be the divisor  $\pi^{-1}(0)$ . Since  $h(P \cap U) = \widetilde{P} \cap \widetilde{U}$ , if

$$h: W \backslash E \to W \backslash E$$

is the homeomorphism given by  $h = \pi^{-1} h \pi$ , we have that

$$h(L_p \cap W \setminus \{p\}) = L_{\widetilde{p}} \cap \widetilde{W} \setminus \{\widetilde{p}\}$$

Now, it is easy to see that Theorem 1.2 is a direct consequence of the following proposition.

**Proposition 4.1.** Let p and  $\tilde{p}$  be points in the divisor which are nonsingular for  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$  respectively. Let  $L_p$  and  $L_{\tilde{p}}$  be the fibers through p and  $\tilde{p}$  respectively and suppose that

$$h(L_p \cap W \setminus \{p\}) = L_{\widetilde{p}} \cap W \setminus \{\widetilde{p}\}.$$

Then there exists neighborhoods  $U \subset U$  and  $\widetilde{U} \subset \widetilde{U}$  of  $0 \in \mathbb{C}^2$ , and another topological equivalence

 $\hat{h}:U\to\widetilde{U}$ 

between  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$ , for which the hypothesis of Theorem 2.1 holds.

We need some lemmas. Let  $U \subset \mathbb{C}$  be the domain bounded by the Jordan curve J. Let  $p \in U$  and  $\zeta \in J$ . We know that any biholomorphism between  $\mathbb{D}$  and U extends as a homeomorphism between  $\overline{\mathbb{D}}$  and  $\overline{U} = U \cup J$  and there exists a unique biholomorphism  $f : \mathbb{D} \to U$  with f(0) = p and such that its extension to  $\overline{\mathbb{D}}$  satisfies  $f(1) = \zeta$ . In other words,  $f : \overline{\mathbb{D}} \to \overline{U}$  is the unique orientation preserving homeomorphism, which is conformal on  $\mathbb{D}$  and maps 0 to p and 1 to  $\zeta$ . It is easy to prove that  $g : \overline{\mathbb{D}} \to \overline{U}$  defined by  $g(z) = f(\overline{z})$  is the unique orientation reversing homeomorphism, which is conformal on  $\mathbb{D}$  and maps 0 to p and 1 to  $\zeta$ . Therefore we have the following.

**Lemma 4.2.** Let  $U, U' \subset \mathbb{C}$  be the domains bounded by the Jordan curves J and J' respectively. Let  $p \in U$ ,  $\zeta \in J$  and  $p' \in U'$ ,  $\zeta' \in J'$ . Then there exists exactly two homeomorphisms between  $\overline{U}$  and  $\overline{U}'$  which are conformal and maps p to p' and  $\zeta$  to  $\zeta'$ . The first one preserves orientation and the other one reverses orientation.

**Lemma 4.3.** Let  $J_k : S^1 \to \mathbb{C}$  be a Jordan curve for all  $k \ge 1$ . Suppose that  $J_k$  converges uniformly on  $S^1$  to the Jordan curve  $J : S^1 \to \mathbb{C}$ . Let U and  $U_k, k \ge 1$  be the domains bounded by J and  $J_k, k \ge 1$  respectively. Let  $p_k \in U_k$  and  $\zeta_k \in J_k$  be such that  $p_k \to p \in U$ and  $\zeta_k \to \zeta \in J$  as  $k \to \infty$ . Let  $f : \overline{\mathbb{D}} \to \overline{U}$  and  $f_k : \overline{\mathbb{D}} \to \overline{U}_k$ be the orientation preserving homeomorphisms which are conformal on  $\mathbb{D}$  and such that  $f(0) = p, f(1) = \zeta, f_k(0) = p_k$  and  $f_k(0) = \zeta_k$ . Then  $f_k$  converges to f uniformly on  $\overline{\mathbb{D}}$ . If under the same hypothesis, we change "orientation preserving homeomorphisms" by "orientation reversing homeomorphisms", the conclusion is also true.

**Lemma 4.4.** Let  $\phi: X \to \mathbb{C} \setminus \{0\}$  be a continuous function. Suppose that  $\phi_*: \pi_1(X) \to \pi_1(\mathbb{C} \setminus \{0\})$  is trivial. Then there exists a continuous function  $\log_{\phi}: X \to \mathbb{C}$  such that  $e^{\log_{\phi}} = \phi$ .

**Lemma 4.5.** Let  $\phi : S^1 \to S^1$  be an orientation preserving homeomorphism. Consider  $S^1$  as a subset of  $\mathbb{C}$  and define the closed curve  $\alpha : S^1 \to \mathbb{C} \setminus \{0\}$  by  $\alpha(\zeta) = \phi(\zeta)/\zeta$ . Then  $\alpha$  is homotopically trivial in  $\mathbb{C} \setminus \{0\}$ .

**Lemma 4.6.** Let  $\phi : S^1 \to S^1$  be an orientation preserving homeomorphism and let  $\tau : S^1 \to \mathbb{C}$  be such that  $e^{\tau(\zeta)} = \phi(\zeta)/\zeta$ . Let  $A \subset \mathbb{C}$ be the annulus  $\{z \in \mathbb{C} : 1/2 \le |z| \le 1\}$ . Then the map

$$q: A \to A$$

$$q(z) = z e^{(2|z|-1)\tau(z/|z|)}$$

is a homeomorphism. Moreover,  $g = \phi$  on  $\{|z| = 1\}$  and g = id on  $\{|z| = 1/2\}$ .

**Lemma 4.7.** Let  $f : \mathbb{D} \to \mathbb{C}$  be a conformal map. Then there exists  $\delta_0 > 0$  such that for all  $\delta \leq \delta_0$  the set  $f(|z| \leq \delta)$  is convex. (For convenience, we define a set  $\overline{U} \subset \mathbb{C}$  to be convex if U is the domain bounded by a smooth Jordan curve with positive curvature.)

**Lemma 4.8.** Let  $f : \mathbb{D} \to \mathbb{C}$  be a conformal map. Let U be an open set in  $\mathbb{C}$  and let  $\delta_0 > 0$ . Suppose for all  $\delta \leq \delta_0$  the set  $f(|z| \leq \delta)$  is convex and contained in U. Then there exists  $\epsilon > 0$  with the following property: if  $g : \mathbb{D} \to \mathbb{C}$  is a conformal map with  $||f - g||_{\{|z| \leq \delta_0\}} < \epsilon$ , then for all  $\delta \leq \delta_0$  the set  $g(|z| \leq \delta)$  is convex and contained in U. (If K is compact and f is continuous,  $||f||_K$  is defined as the supremum of |f(x)| for  $x \in K$ .)

Any leaf of  $\mathcal{F}_0$  or  $\mathcal{F}_0$  has a natural orientation induced by the complex structure. Thus, given a leaf L of  $\mathcal{F}_0$  out of the divisor, we may state if  $h|_L : L \to \tilde{L}$  preserves or reverses orientation. Suppose that  $h|_L$  preserves orientation. Then it is not difficult to prove that  $h|_{L'}$  preserves orientation of any leaf L' close enough to L. On the other hand, if  $h|_L$ reverses orientation, the same holds for  $h|_{L'}$  provided the leaf L' is close enough to L. By connectedness we have in fact that: either h preserves orientation for every leaf, or h reverses orientation for every leaf.

Proof of Proposition 4.1. Let V and  $\widetilde{V}$  be neighborhoods of p and  $\widetilde{p}$  and let  $\varphi : \overline{\mathbb{D}} \times \overline{\mathbb{D}} \to V$  and  $\widetilde{\varphi} : \overline{\mathbb{D}} \times \overline{\mathbb{D}} \to \widetilde{V}$  be diffeomorphisms with the following properties:

- (i) If restricted to  $\mathbb{D} \times \mathbb{D}$ , the maps  $\varphi$  and  $\tilde{\varphi}$  are biholomorphisms.
- (*ii*) The leaves of  $\mathcal{F}_0|_V$  and the leaves of  $\mathcal{F}_0|_{\widetilde{V}}$  are given by the sets  $\varphi(\overline{\mathbb{D}} \times \{*\})$  and  $\widetilde{\varphi}(\overline{\mathbb{D}} \times \{*\})$  respectively.
- (*iii*) We have  $L_p \cap V = \varphi(\{0\} \times \overline{\mathbb{D}}), E \cap V = \varphi(\overline{\mathbb{D}} \times \{0\}), L_{\widetilde{p}} \cap \widetilde{V} = \widetilde{\varphi}(\{0\} \times \overline{\mathbb{D}})$  and  $E \cap \widetilde{V} = \widetilde{\varphi}(\overline{\mathbb{D}} \times \{0\}).$

Let  $\varrho: V \to \overline{\mathbb{D}}$  be the projection  $\varrho(\varphi(z_1, z_2)) = z_1$  and we also denote by  $\varrho$  the projection  $\varrho: \widetilde{V} \to \overline{\mathbb{D}}, \ \varrho(\widetilde{\varphi}(z_1, z_2)) = z_1$ . Let  $\Sigma$  be the set  $L_p \cap V = \varphi(\{0\} \times \overline{\mathbb{D}})$ . We have that  $h(\Sigma) \subset L_{\widetilde{p}}$  and we may assume Vsmall enough such that  $h(\Sigma) \subset \widetilde{V}$  Given  $x = \varphi(0, z_2) \in \Sigma$ , we denote by  $D_x$  the plaque  $\varphi(\overline{\mathbb{D}} \times \{z_2\})$  passing through x. We have that  $D_x$  is a closed disc in the leaf of  $\mathcal{F}_0$  passing through x.

**Step 1.** Fix a point q in  $\partial \mathbb{D} = S^1$  and denote by  $q_x$  the unique point in  $\partial D_x$  such that  $\varrho(q_x) = q$ . If h preserves the orientation of the leaves, by Lemma 4.2 we may define  $f_x : D_x \to h(D_x)$  as the unique orientation-preserving-homeomorphism which is conformal on the interior of  $D_x$ 

and such that  $f_x(x) = h(x)$  and  $f_x(q_x) = h(q_x)$ . Otherwise, we define  $f_x: D_x \to h(D_x)$  as the unique orientation reversing homeomorphism which is conformal on the interior of  $D_x$  and such that  $f_x(x) = h(x)$  and  $f_x(q_x) = h(q_x)$ . Let  $\varrho_x^{-1}: \overline{\mathbb{D}} \to D_x$  be the inverse of  $\varrho|_{D_x}: D_x \to \overline{\mathbb{D}}$ .

Assertion 1. Let  $f: V \setminus E \to \widehat{\mathbb{C}^2}$  be defined by  $f|_{D_x} = f_x$  for all  $x \in \Sigma \setminus \{p\}$ . Then f is continuous.

Proof. Let  $g_x: \overline{\mathbb{D}} \to h(D_x)$  be defined by  $g_x = f_x \circ \varrho_x^{-1}$ . It is sufficient to prove that  $g_x$  varies continuously with x, precisely: fix  $x_0 \in \Sigma \setminus \{p\}$ and let  $x_k (k \geq 1)$  be such that  $x_k \to x_0$  as  $k \to \infty$ ; then we shall prove that  $g_{x_k} \to g_{x_0}$  uniformly on  $\overline{\mathbb{D}}$ . Since  $h(D_{x_0})$  is a compact and simply connected subset of a leaf of  $\widetilde{\mathcal{F}}_0$ , there exits a neighborhood Uof  $h(D_{x_0})$  and a biholomorphism  $\phi = (Z, W) : U \to \mathbb{D} \times \mathbb{D}$  such that the leaves of  $\widetilde{\mathcal{F}}_0$  are mapped to the sets  $\mathbb{D} \times \{z\}$ . We may assume that  $h(D_{x_k})$  is contained in U for all  $k \geq 0$ . Thus, we define  $G_k: \overline{\mathbb{D}} \to \mathbb{D} \times \mathbb{D}$ by  $G_k = \phi \circ g_{x_k} = (Z \circ g_{x_k}, W \circ g_{x_k})$ . Since  $g_{x_k}(\overline{\mathbb{D}}) = h(D_{x_k}) \subset U$ is contained in a leaf, there is  $z_k \in \mathbb{D}$  such that  $G_k(\overline{\mathbb{D}})$  is contained in  $\mathbb{D} \times \{z_k\}$ . Thus  $W \circ g_{x_k} \equiv z_k$  and it is sufficient to show that  $F_k =$  $Z \circ g_{x_k}: \overline{\mathbb{D}} \to \mathbb{D}$  converges to  $F_0 = W \circ g_{x_0}$  uniformly on  $\overline{\mathbb{D}}$ . Observe that  $F_k$  is a homeomorphism onto its image and is conformal on  $\mathbb{D}$ .

$$F_k(0) = Z \circ g_{x_k}(0) = Z(h(x_k)) \to Z(h(x_0)) = Z \circ g_{x_0}(0) = F_0(0)$$

and

$$F_k(q) = Z \circ g_{x_k}(q) = h(q_{x_k}) \to h(q_{x_0}) = g_{x_0}(q) = F_0(q)$$

Then Assertion 1 follows from Lemma 4.3

Let

$$\theta_r: S^1 \to S^1$$

be the homeomorphism defined by  $\theta_x = \rho f_x^{-1} h \rho_x^{-1}|_{S^1}$ . It is easy to see that  $\theta_x$  preserves the orientation of  $S^1$ .

Define the function

$$\phi: S^1 \times (\Sigma \setminus \{p\}) \to \mathbb{C} \setminus \{0\}$$
$$\phi(\zeta, x) = \frac{\theta_x(\zeta)}{\zeta}.$$

Assertion 2. At homotopy level,  $\phi_* : \pi_1(S^1 \times (\Sigma \setminus \{p\})) \to \pi_1(\mathbb{C} \setminus \{0\})$  is trivial.

*Proof.* The generators of  $\pi_1(S^1 \times (\Sigma \setminus \{p\}))$  are represented by the paths

$$\alpha, \beta: S^1 \to S^1 \times (\Sigma \setminus \{p\}),$$

defined by  $\alpha(\zeta) = (\zeta, x_0)$  and  $\beta(\zeta) = (q, \gamma(\zeta))$ , where  $x_0 \in \Sigma \setminus \{p\}$  and  $\gamma$  is a simple closed curve around p in  $\Sigma$ . Recall that  $q \in S^1$ , then |q| = 1 and we have

$$\begin{split} \phi(\beta(\zeta)) &= \phi(q, \gamma(\zeta)) = \frac{\theta_{\gamma(\zeta)}(q)}{q} = \frac{\varrho f_{\gamma(\zeta)}^{-1} h \varrho_{\gamma(\zeta)}^{-1}(q)}{q} \\ &= \frac{\varrho f_{\gamma(\zeta)}^{-1} h(q_{\gamma(\zeta)})}{q} = \frac{\varrho f_{\gamma(\zeta)}^{-1} f_{\gamma(\zeta)}(q_{\gamma(\zeta)})}{q} \\ &= \frac{\varrho(q_{\gamma(\zeta)})}{q} \\ &= 1. \end{split}$$

Then  $\phi_*(\beta) = 0$ . On the other hand, since  $\theta_{x_0} : S^1 \to S^1$  is an orientation preserving homeomorphism, we have by Lemma 4.5 that

$$\phi \circ \alpha : S^1 \to \mathbb{C} \setminus \{0\},$$
$$\phi \circ \alpha(\zeta) = \frac{\theta_{x_0}(\zeta)}{\zeta}$$

is homotopically trivial and thus  $\phi_*(\alpha) = 0$ .

It follows from Assertion 2 and Lemma 4.4 that there exists a continuous function

$$\tau: S^1 \times (\Sigma \setminus \{p\}) \to \mathbb{C}$$

such that  $e^{\tau} = \phi$ , that is,  $e^{\tau(\zeta,x)} = \theta_x(\zeta)/\zeta$ . Consider the annulus  $A = \{1/2 \le ||z|| \le 1\} \subset \overline{\mathbb{D}}$  and define the map

$$\begin{split} g: A \times (\Sigma \backslash \{p\}) &\to A, \\ g(z,x) = z e^{(2|z|-1)\tau(z/|z|,x)} \end{split}$$

It follows from Lemma 4.6 that for all x the map

$$g_x: A \to A,$$
  
 $g_x(z) = g(z, x)$ 

is a homeomorphism such that  $g_x = \text{id on } \{|z| = 1/2\}$  and  $g_x = \theta_x$  on  $S^1$ . Let  $A_x$  be the annulus  $\varrho_x^{-1}(A)$  in  $D_x$  and let  $\partial A'_x = \varrho_x^{-1}(|z| = 1/2)$  and  $\partial A''_x = \varrho_x^{-1}(|z| = 1)$  be the interior and the exterior boundary of  $A_x$  respectively. Then the map

$$\bar{g}: A_x \to f_x(A_x)$$

defined by  $\bar{g}_x = f_x \varrho_x^{-1} g_x \varrho : A_x \to f_x(A_x)$  is a homeomorphism and it is easy to see that  $\bar{g}_x$  coincides with  $f_x$  on  $\partial A'_x$  and with h on  $\partial A''_x$ . Then we may define the homeomorphism

$$h_x: D_x \to h(D_x)$$

by

$$h_x = f_x \quad \text{on} \quad \varrho_x^{-1}(|z| \le 1/2),$$
  
$$h_x = g_x \quad \text{on} \quad A_x.$$

Clearly,  $h_x$  coincides with h on  $\partial D_x$  and it is easy to see that  $h_x$  depends continuously on x. Finally, we define the function h' by

$$h'|_{D_x} = h_x$$
 for all  $x \in \Sigma \setminus \{p\},$   
 $h' = h,$  otherwise.

It is easy to see that h' is injective and take leaves to leaves. Moreover, if we restrict h' to a small enough neighborhood of the divisor, h'is continuous. Hence, h' restricted to a neighborhood of the divisor is a homeomorphism onto its image and is therefore a topological equivalence between  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$ . By definition h' is conformal on every plaque  $\varrho_x^{-1}(|z| \leq 1/2)$ , because coincides with  $f_x$ . In other words, there is  $\epsilon > 0$ such that h' restricted to  $\varphi(|z_1| \leq 1/2, |z_2| \leq \epsilon)$  is conformal along the leaves.

**Step 2.** From step 1 and by reducing V, we may assume that h restricted to V is conformal along the leaves. Then for all  $x \in \Sigma \setminus \{p\}$  the map

$$h\varrho_x^{-1}: \overline{\mathbb{D}} \to h(D_x)$$

is conformal and maps 0 to h(x). Given  $x \in \Sigma \setminus \{p\}$ , since  $h\varrho_x^{-1}(0) = h(x)$  is contained in  $L_{\widetilde{p}} \cap \widetilde{V}$ , there is  $\delta > 0$  such that the disc  $\{|z| \leq \delta\}$  in  $\overline{\mathbb{D}}$  is mapped by  $h\varrho_x^{-1}$  into the interior of  $\widetilde{V}$ . Then the map

$$\varrho h \varrho_x^{-1} : \{ |z| \le \delta \} \to \mathbb{D}$$

is well defined and assuming  $\delta$  be small, by Lemma 4.7 we have that for all  $\delta' \leq \delta$  the disc  $\{|z| \leq \delta'\}$  is mapped by  $\rho h \rho_x^{-1}$  onto a convex subset of  $\mathbb{D}$ . Define  $\delta(x) > 0$  as the supremum of  $0 < \delta < 1$  such that for all  $\delta' \leq \delta$ , the disc  $\{|z| \leq \delta'\}$  in  $\overline{\mathbb{D}}$  is mapped by  $\rho h \rho_x^{-1}$  onto a convex subset of  $\mathbb{D}$ .

Assertion 3. The function  $\delta: \Sigma \setminus p \to \mathbb{R}^+$  is lower semi-continuous.

*Proof.* Fix  $x_0 \in \Sigma \setminus p$  and let  $\epsilon > 0$ . Take  $\delta_0$  be such that  $\delta(x_0) - \epsilon < \delta_0 < \delta(x_0)$ . Then the disc  $\{|z| \leq \delta_0\}$  is mapped by  $\rho h \rho_{x_0}^{-1}$  onto a compact subset of  $\mathbb{D}$ . Then, if  $\Omega$  is a small enough neighborhood of  $x_0$  in  $\Sigma \setminus p$ , we have that

$$\varrho h \varrho_x^{-1} : \{ |z| \le \delta_0 \} \to \overline{\mathbb{D}}$$

is well defined for all  $x \in \Omega$ . If we write  $f = \rho h \rho_{x_0}^{-1}$ , it follows from the definition of  $\delta(x_0)$  that for all  $\delta' \leq \delta(x_0) - \epsilon$ , the set  $f(|z| \leq \delta')$  is a

convex subset of  $\mathbb{D}$ . Let  $\epsilon_0 > 0$  be given by Lemma 4.8 for  $f = \rho h \rho_{x_0}^{-1}$ and  $U = \mathbb{D}$ . Then if

$$g: \{|z| \le \delta_0\} \to \overline{\mathbb{D}}$$

is a conformal map with  $||f - g||_{\{|z| \le \delta(x_0) - \epsilon\}} < \epsilon_0$ , we have that for all  $\delta' \le \delta(x_0) - \epsilon$ , the set  $g(|z| \le \delta')$  is also convex and contained in  $\mathbb{D}$ . By reducing the neighborhood  $\Omega$  of  $x_0$  we may assume that

$$||\varrho h \varrho_{x_0}^{-1} - \varrho h \varrho_x^{-1}||_{\{|z| \le \delta(x_0) - \epsilon\}} < \epsilon_0$$

for all  $x \in \Omega$ . Then, for all  $\delta' \leq \delta(x_0) - \epsilon$  the set  $\rho h \rho_x^{-1}(|z| \leq \delta')$  is convex and contained in  $\mathbb{D}$ . Thus by the definition of  $\delta(x)$  we conclude that

$$\delta(x) \ge \delta(x_0) - \epsilon.$$

It follows that  $\delta$  is a lower semi-continuous function.

Assertion 4. There exists a positive continuous function

$$r: \Sigma \backslash \{p\} \to (0,1)$$

such that for all x the map

$$\varrho h \varrho_x^{-1} : \{ |z| \le r(x) \} \to \overline{\mathbb{D}}$$

is well defined and its image  $U_x := \rho h \rho_x^{-1}(|z| \le r(x))$  is a convex subset of  $\mathbb{D}$ .

*Proof.* We take any continuous function  $r < \delta$  given by Lemma 2.3. Then Assertion 4 is a direct consequence of the definition of  $\delta$ .

For all 0 < r < 1 let  $\beta_r : [0, 1] \to [0, 1]$  be the homeomorphism defined by

$$\beta_r(t) = t^{\frac{\ln(1/r)}{\ln 2}}.$$

We have that  $\beta_r(0) = 0$ ,  $\beta_r(1) = 1$  and it is easy to see that  $\beta_r(1/2) = r$ . In fact

$$\beta_r(1/2) = (1/2)^{\frac{\ln(1/r)}{\ln 2}} = \left(2^{\frac{1}{\ln 2}}\right)^{-\ln(1/r)}$$
$$= \left((e^{\ln 2})^{\frac{1}{\ln 2}}\right)^{\ln(r)} = e^{\ln(r)} = r.$$

For each  $x \in \Sigma \setminus \{p\}$  we define the homeomorphism:

$$f_x: \overline{\mathbb{D}} \to \overline{\mathbb{D}},$$
$$f_x(z) = \beta_{r(x)}(|z|)z.$$

Observe that  $f_x$  maps each ratio of  $\overline{\mathbb{D}}$  homeomorphically onto itself and this homeomorphism is "given" by  $\beta_{r(x)}$ . We have that  $f_x(0) = 0$ ,  $f_x = \text{id on } \partial \overline{\mathbb{D}}$  and that  $f_x$  maps the disc  $\{|z| \leq 1/2\}$  onto the disc  $\{|z| \leq r(x)\}$ . For all  $y \in L_{\widetilde{p}} \cap \widetilde{V}$ , let  $\varrho_y^{-1} : \overline{\mathbb{D}} \to D_y$  be the inverse of

 $\varrho|_{D_y}: D_y \to \overline{\mathbb{D}}.$ 

Assertion 5. For each  $x \in \Sigma \setminus \{p\}$ , define the homeomorphism

$$h_x = h\varrho_x^{-1} f_x \varrho : D_x \to h(D_x).$$

Then  $h_x$  coincides with h on  $\partial D_x$  and maps the disc  $\varrho_x^{-1}(|z| \leq 1/2)$  onto  $\varrho_{h(x)}^{-1}(U_x)$ . Moreover,  $h_x$  depends continuously on x.

*Proof.* If  $\zeta \in \partial D_x$ , then  $\varrho(\zeta) \in S^1$  and since  $f_x = \text{id on } S^1$  we have that  $f_x(\varrho(\zeta)) = \varrho(\zeta)$ . Then

$$h_x(\zeta) = h\varrho_x^{-1} f_x \varrho(\zeta) = h\varrho_x^{-1} \varrho(\zeta) = h(\zeta).$$

On the other hand,

$$h_x(\varrho_x^{-1}(|z| \le 1/2)) = h\varrho_x^{-1} f_x \varrho(\varrho_x^{-1}(|z| \le 1/2)) = h\varrho_x^{-1} f_x(|z| \le 1/2)$$
  
and, since  $f_x(|z| \le 1/2) = \{|z| \le r(x)\}$ , we obtain:

$$h_x(\varrho_x^{-1}(|z| \le 1/2)) = h\varrho_x^{-1}(|z| \le r(x)).$$

Recall that  $U_x = \rho h \rho_x^{-1}(|z| \le r(x))$  and so

$$\varrho_{h(x)}^{-1}(U_x) = h \varrho_x^{-1}(|z| \le r(x)).$$

therefore

$$h_x(\varrho_x^{-1}(|z| \le 1/2)) = \varrho_{h(x)}^{-1}(U_x).$$

Finally, h depends continuously on x because  $\beta_r$  depends continuously on r.

We now define the function h' by

$$h'|_{D_x} = h_x$$
 for all  $x$ ,  
 $h' = h$ , otherwise.

It is easy to see that h' is injective and take leaves to leaves. Moreover, if we restrict h' to a small enough neighborhood of the divisor, it is continuous. Hence, h' restricted to a neighborhood of the divisor is a homeomorphism onto its image and is therefore a topological equivalence between  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$ . By definition, h' maps each plaque  $\varrho_x^{-1}(|z| \le 1/2)$ onto  $\varrho_{h(x)}^{-1}(U_x)$ . In other words, any plaque  $\varrho_x^{-1}(|z| \le 1/2)$  is mapped by h' onto a set which projection by  $\varrho$  is a convex set  $U_x$  in  $\mathbb{D}$ .

**Step 3.** From step 2 and by reducing V we may assume that h maps each plaque  $D_x$  onto  $\varrho_{h(x)}^{-1}(U_x)$ . Since  $U_x \subset \mathbb{D}$  is convex and contains 0, given  $w \in \overline{\mathbb{D}}$  there exists a unique point in the intersection of  $\partial U_x$  with the ray  $\overrightarrow{0w}$ . Let  $r_x(w)$  be the norm of this point. It is easy to see that  $r_x(w)$  depends continuously on x and w. We define the homeomorphism:

$$f_x: \mathbb{D} \to \mathbb{D},$$

$$f_x(w) = \beta_{r_x(w)}(|w|)w.$$

Observe that  $f_x$  maps the ratio of  $\mathbb{D}$  passing through w homeomorphically onto itself and this homeomorphism is "given" by  $\beta_{r_x(w)}$ . We have that  $f_x$  maps the disc  $\{|z| \leq 1/2\}$  onto  $U_x$ .

Assertion 6. For each  $x \in \Sigma \setminus \{p\}$  define the homeomorphism

$$g_x = \varrho_{h(x)}^{-1} f_x^{-1} \varrho : D_{h(x)} \to D_{h(x)}.$$

Then  $g_x = \text{id on } \partial D_{h(x)}$  and maps  $\varrho_{h(x)}^{-1}(U_x)$  onto  $\varrho_{h(x)}^{-1}(|z| \leq 1/2)$ . Moreover,  $g_x$  depends continuously on x.

*Proof.* If  $\zeta \in \partial D_{h(x)}$ , then  $\varrho(\zeta) \in S^1$  and since  $f_x = \text{id on } S^1$  we have that  $f_x^{-1}(\varrho(\zeta)) = \varrho(\zeta)$ . Then

$$g_x(\zeta) = \varrho_{h(x)}^{-1} f_x^{-1} \varrho(\zeta) = \varrho_{h(x)}^{-1} \varrho(\zeta) = \zeta$$

On the other hand:

$$g_x(\varrho_{h(x)}^{-1}(U_x)) = \varrho_{h(x)}^{-1} f_x^{-1} \varrho(\varrho_{h(x)}^{-1}(U_x)) = \varrho_{h(x)}^{-1} f_x^{-1}(U_x).$$

From the definition of  $f_x$ , we have that  $f_x^{-1}(U_x) = \{|z| \le 1/2\}$ . Then

$$g_x(\varrho_{h(x)}^{-1}(U_x)) = \varrho_{h(x)}^{-1} f_x^{-1}(U_x) = \varrho_{h(x)}^{-1}(|z| \le 1/2).$$

Finally,  $g_x$  depends continuously on x because  $r_x$  depends continuously on x.

Now, define the function g by

$$g|_{D_{h(x)}} = g_x$$
 for all  $x$ ,  
 $g = \mathrm{id}$ , otherwise.

It is easy to see that g is injective and maps leaves of  $\widetilde{\mathcal{F}}_0$  to leaves of  $\widetilde{\mathcal{F}}_0$ . Moreover, if we restrict g to a small enough neighborhood of the divisor, g is continuous. Hence, g restricted to a neighborhood of the divisor is a homeomorphism onto its image and is therefore a topological equivalence of  $\widetilde{\mathcal{F}}_0$  with itself. Finally we define  $h' = g \circ h$ . Then h' is a topological equivalence between  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$  and from the definition of g we have

$$h'(D_x) = g(h(D_x)) = g(\varrho_{h(x)}^{-1}(U_x)) = \varrho_{h(x)}^{-1}(|z| \le 1/2).$$

Thus h' maps each plaque  $D_x$  onto the plaque  $\rho_{h(x)}^{-1}(|z| \le 1/2)$ .

**Step 4.** From step 3 and by redefining  $\widetilde{V}$  we may assume that for all  $y \in \overline{\mathbb{D}} \setminus \{0\}$  the equivalence h maps the plaque  $\varphi(\overline{\mathbb{D}} \times \{y\})$  onto the plaque the  $\widetilde{\varphi}(\overline{\mathbb{D}} \times \{f(y)\})$ , where  $f : \overline{\mathbb{D}} \to \mathbb{D}$  is a homeomorphism onto its image. Therefore  $h|_{V \setminus E} : V \setminus E \to \widetilde{V} \setminus E$  is expressed as

$$h(\varphi(x,y)) = \widetilde{\varphi}(h_y(x), f(y)),$$

where  $h_y: \overline{\mathbb{D}} \to \overline{\mathbb{D}}$  is a homeomorphism such that  $h_y(0) = 0$  (because  $h(\Sigma) \subset L_{\tilde{p}}$ ). As a first case we assume that the homeomorphisms  $h_y$  preserve orientation. Define the function

$$\phi: S^1 \times (\overline{\mathbb{D}} \setminus \{0\}) \to \mathbb{C} \setminus \{0\}$$
$$\phi(\zeta, y) = \frac{h_y(\zeta)}{\zeta}.$$

Assertion 7. At homotopy level,  $\phi_* : \pi_1(S^1 \times (\overline{\mathbb{D}} \setminus \{0\})) \to \pi_1(\mathbb{C} \setminus \{0\})$  is trivial.

*Proof.* The generators of  $\pi_1(S^1 \times (\overline{\mathbb{D}} \setminus \{0\}))$  are represented by the paths

$$\alpha, \beta: S^1 \to S^1 \times (\overline{\mathbb{D}} \setminus \{0\}),$$

defined as  $\alpha(\zeta) = (\zeta, 1)$  and  $\beta(\zeta) = (1, \zeta)$ . Then we have that

$$\phi \circ \alpha(\zeta) = \phi(\zeta, 1) = \frac{h_1(\zeta)}{\zeta}$$

and, since  $h_1|_{S^1}: S^1 \to S^1$  preserves the orientation, we have by Lemma 4.5 that  $\phi \circ \alpha$  is homotopically trivial in  $\mathbb{C}\setminus\{0\}$ . Observe that  $\beta$  is the boundary of the disc  $\{(1, y): |y| \leq 1\}$ . Thus,  $\varphi(\beta)$  is the boundary of the complex disc  $\mathcal{B} = \varphi(1, |y| \leq 1)$ . Consider the disc  $\mathcal{B}_w = \varphi(w, |y| \leq 1)$ , where  $w \in \mathbb{D}\setminus\{0\}$ . By Lemma 3.1 we may chose w such that the path  $h(\partial \mathcal{B}_w)$  in  $\widetilde{V}$  does not link the fiber  $L_{\widetilde{p}}$ . Thus, since  $\partial \mathcal{B} = \partial \mathcal{B}_w$  in  $H_1(V\setminus(L_p\cup E))$  and  $h(V\setminus(L_p\cup E))\subset \widetilde{V}\setminus(L_{\widetilde{p}}\cup E)$ , we have that  $h(\partial \mathcal{B})$  does not link the fiber  $L_{\widetilde{p}}$ . Therefore the path  $\widetilde{\varphi}^{-1}h(\partial \mathcal{B})$  in  $(\overline{\mathbb{D}}\setminus\{0\})\times\overline{\mathbb{D}}$  does not link  $\{0\}\times\overline{\mathbb{D}}$  and, since

$$\begin{split} \widetilde{\varphi}^{-1}h(\partial\mathcal{B}) &= \widetilde{\varphi}^{-1}h(\varphi(\beta)) = \widetilde{\varphi}^{-1}h(\varphi(1,\zeta)) \\ &= \widetilde{\varphi}^{-1}\widetilde{\varphi}(h_{\zeta}(1),f(\zeta)) = (h_{\zeta}(1),f(\zeta)), \end{split}$$

we conclude that the path  $\zeta \to h_{\zeta}(1) = \phi(\beta(\zeta))$  is homotopically trivial in  $\mathbb{C} \setminus \{0\}$ .

Assertion 7 and Lemma 4.4 imply that there exists a continuous function

$$: S^1 \times (\overline{\mathbb{D}} \setminus \{0\}) \to \mathbb{C}$$

such that  $e^{\tau(\zeta,y)} = h_y(\zeta)/\zeta$ . We define the map:

$$h': V \backslash E \to \widetilde{V} \backslash E$$

by:

$$\begin{aligned} h'(\varphi(x,y)) &= \widetilde{\varphi}(x,f(y)), \quad \text{for} \quad |x| < 1/2, \quad \text{and} \\ h'(\varphi(x,y)) &= \widetilde{\varphi}\left(xe^{(2|x|-1)\tau(x/|x|,y)}, f(y)\right), \quad \text{for} \quad |x| \ge 1/2. \end{aligned}$$

By Lemma 4.6 we have that h' maps the plaque  $\varphi(\overline{\mathbb{D}} \times \{y\})$  homeomorphically onto the plaque  $\widetilde{\varphi}(\overline{\mathbb{D}} \times \{f(y)\})$ . Thus h' is a homeomorphism

which preserves the plaques and it is easy to see that h' coincides with h on  $\varphi(\partial \mathbb{D} \times (\overline{\mathbb{D}} \setminus \{0\}))$ . Moreover h' extends to  $\varphi(|x| < 1/2, y = 0) \subset E$  as  $h'(\varphi(x, 0)) = \widetilde{\varphi}(x, 0)$ . It is easy to see that this extension is a homeomorphism onto its image. We now define:

$$\hat{h} = h'$$
 on  $V \setminus E$ ,  
 $\hat{h} = h$  otherwise.

As before, on a neighborhood of the divisor,  $\hat{h}$  is also a topological equivalence between  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$ . Moreover, from above  $\hat{h}$  extends to the open set  $\varphi(|x| < 1/2, |y| < 1)$  and Proposition 4.1 is therefore proved in this case. We now suppose that the homeomorphisms  $h_x$  inverts orientation. Then we define

$$h': V \backslash E \to \widetilde{V} \backslash E$$

by:

$$\begin{aligned} h'(\varphi(x,y)) &= \widetilde{\varphi}(\bar{x},f(y)), \quad \text{for} \quad |x| < 1/2, \quad \text{and} \\ h'(\varphi(x,y)) &= \widetilde{\varphi}\left(\bar{x}e^{(2|x|-1)\tau(\bar{x}/|x|,y)},f(y)\right), \quad \text{for} \quad |x| \ge 1/2. \end{aligned}$$

and the proof follows in the same way.

q.e.d.

*Proof of Lemma* 4.3. This lemma is a direct consequence of a theorem of Rado (see [11], p.26). q.e.d.

Proof of Lemma 4.4. Fix  $x_0 \in X$ . There is a neighborhood  $\Omega$  of  $z_0\phi(x_0)$  in  $\mathbb{C}\setminus\{0\}$  where a branch of logarithm function is well defined. Then there exist a holomorphic function

$$f:\Omega\to\mathbb{C}$$

such that  $e^{f(z)} = z$  for all  $z \in \Omega$ . We know that f can be analytically continued along any path  $\gamma$  in  $\mathbb{C}\setminus\{0\}$  with  $\gamma(0) = z_0$  and  $\gamma(1) = z \in \mathbb{C}\setminus\{0\}$ . This analytic continuation has a value at  $\gamma(1) = z$ , which we denote by  $f_{\gamma}(z)$ . Let  $x \in X$ . Take a path  $\alpha$  in X connecting  $x_0$  to x. Then we define  $F_{\alpha}(x) = f_{\phi \circ \alpha}(\phi(x))$ . Let  $\alpha'$  be other path in Xconnecting  $x_0$  to x. Then, since

$$\phi_*: \pi_1(X) \to \pi_1(\mathbb{C} \setminus \{0\})$$

is trivial, it follows that  $\phi \circ \alpha$  and  $\phi \circ \alpha'$  are homotopic in  $\mathbb{C} \setminus \{0\}$ . Then

$$f_{\phi \circ \alpha}(\phi(x)) = f_{\phi \circ \alpha'}(\phi(x))$$

and so  $F_{\alpha}(x) = F_{\alpha'}(x)$ . Therefore we define  $\log_{\phi}(x) = F_{\alpha}(x)$  for any  $\alpha$ . q.e.d.

Proof of Lemma 4.5. It is known that a map  $\phi : S^n \to S^n$  is homotopically determined by its degree (Brouwer). Thus, a preservingorientation homeomorphism of  $S^1$  is homotopic to the identity map  $id: S^1 \to S^1$ , that is, there exists a map

$$F: S^1 \times [0,1] \to S^1$$

such that  $F(\zeta, 0) = \phi(\zeta)$  and  $F(\zeta, 1) = \zeta$  for all  $\zeta \in S^1$ . Then the map  $G: S^1 \times [0, 1] \to S^1 \subset \mathbb{C} \setminus \{0\}$ 

defined by

$$G(\zeta,t)=\frac{F(\zeta,t)}{\zeta}$$

is a homotopy between  $\alpha$  and the constant 1.

Proof of Lemma 4.6. We first observe that each circle  $\{|z| = r\}$  in A is mapped into itself. Let  $z \in A$  with |z| = r. Since

$$e^{\tau(\zeta)} = \phi(\zeta)/\zeta \in S^1$$

for all  $\zeta \in S^1$ , it follows that  $\tau(z/|z|) = 2\pi i t$  with  $t \in \mathbb{R}$ . Then

$$|g(z)| = \left| ze^{(2|z|-1)\tau(z/|z|)} \right| = |z| \left| e^{(2|z|-1)(2\pi it)} \right| = |z| = r$$

Now, it is sufficient to prove that g maps each  $\{|z| = r\}$  homeomorphically onto itself, which is equivalent to prove that the map  $h: S^1 \to S^1$  defined by  $h(\zeta) = g(r\zeta)/r$  is a homeomorphism. We have that

 $h(\zeta) = g(r\zeta)/r = (r\zeta)e^{(2|r\zeta|-1)\tau(r\zeta/|r\zeta|)}/r = \zeta e^{(2r-1)\tau(\zeta)},$ 

where  $1/2 \leq r \leq 1$ . Since  $\phi$  is a homeomorphism and preserves the orientation, there exists a homeomorphism  $f : \mathbb{R} \to \mathbb{R}$  such that  $\phi(e^{2\pi i t}) = e^{2\pi i f(t)}$  and f(t+1) = f(t) + 1 for all  $t \in \mathbb{R}$ . Then, since  $e^{\tau(\zeta)} = \phi(\zeta)/\zeta$ , we obtain

$$e^{\tau(e^{2\pi it})} = \phi(e^{2\pi it})/e^{2\pi it} = e^{2\pi if(t)}/e^{2\pi it} = e^{2\pi i(f(t)-t)}$$

Hence  $\tau(e^{2\pi i t}) = 2\pi i (f(t) - t + N)$ , where  $N \in \mathbb{Z}$ . Then

$$h(e^{2\pi it}) = e^{2\pi it} e^{(2r-1)\tau(e^{2\pi it})} = e^{2\pi it} e^{(2r-1)(2\pi i)(f(t)-t+N)}$$
  
=  $e^{(2\pi i)(t+(2r-1)f(t)-(2r-1)t+(2r-1)N)}$   
=  $e^{(2\pi i)((2r-1)f(t)+(2-2r)t+(2r-1)N)}$ 

and we have therefore

(6)

$$h(e^{2\pi it}) = e^{2\pi i\bar{f}(t)},$$

where  $\overline{f}(t) = (2r-1)f(t) + (2-2r)t + (2r-1)N$ . An easy computation shows that  $\overline{f}(t+1) = \overline{f}(t) + 1$ . Moreover, since f is increasing, it is easy to see that  $\overline{f}$  also is. Then  $\overline{f} : \mathbb{R} \to \mathbb{R}$  is a homeomorphism and the lemma follows. q.e.d.

Proof of Lemma 4.7. Since the conjugation  $z \to \overline{z}$  preserves the convex sets, by replacing f with  $\overline{f}$  we may assume that f is holomorphic. For r > 0 small enough, define  $g_r : \mathbb{D} \to \mathbb{C}, \ g_r(z) = f(rz/a)/r$ , where

360

q.e.d.

a = f'(0). It is easy to see that  $g_r(z) \to z$  as  $r \to 0$  for all z. Then  $g_r$  converges uniformly on compact sets to the identity id :  $\mathbb{D} \to \mathbb{D}$  as  $r \to 0$ . Hence there is  $r_0$  such that for all  $r \leq r_0$  we have

$$\| \operatorname{id} - g_r \|_{\{|z| \le 1/2\}} < \epsilon,$$

where  $\epsilon$  is given by Lemma 4.8 for  $\delta_0 = 1/2$ . Therefore  $g_r(|z| \le 1/2)$  is convex for all  $r \le r_0$ . But

$$g_r(|z| \le 1/2) = g\left(\frac{r\{|z| \le 1/2\}}{a}\right)/r = g\left(|z| \le \frac{r}{|2a|}\right)/r,$$

which is convex in and only if the set  $g(|z| \le r/|2a|)$  is convex. Then, if we take  $\delta_0 = r_0/(2|a|)$ , we have that the set  $g(|z| \le \delta)$  is convex for all  $\delta \le \delta_0$ . q.e.d.

Proof of Lemma 4.8. We may assume that f is holomorphic. Thus, if the conformal map g is close enough to f, it will be holomorphic too. If  $\alpha : (a, b) \to \mathbb{C}$  is a smooth curve, the curvature of  $\alpha$  at the point  $\alpha(t)$ is given by

$$k_{\alpha}(t) = \left| \frac{d}{dt} \left( \frac{\alpha'(t)}{|\alpha'(t)|} \right) \right| = \frac{||\alpha''(t)|\alpha'(t)| - \alpha'(t)|\alpha'(t)|'||}{|\alpha'(t)|^2}$$
$$= \frac{\left| |\alpha''(t)|\alpha'(t)| - \alpha'(t) \left( \frac{\alpha''(t)\overline{\alpha'(t)} + \alpha'(t)\overline{\alpha''(t)}}{2|\alpha'(t)|} \right) \right| \right|}{|\alpha'(t)|^2}$$
$$= \frac{||\alpha''(t)|\alpha'(t)|^2 - \overline{\alpha''(t)}(\alpha'(t))^2||}{2|\alpha'(t)|^3}.$$

Let r > 0 and parametrices the boundary of the disc  $\{|z| \leq r\}$  by  $\gamma_r(t) = re^{it/r}, t \in \mathbb{R}$ . Let  $g : \mathbb{D} \to \mathbb{C}$  be any holomorphic conformal map and let  $\alpha_{rg}$  be the curve  $\alpha_{rg} = g \circ \gamma_r$ . We have  $\alpha'_{rg}(t) = g'(\gamma_r(t))\gamma'_r(t),$  $\alpha''_{rg}(t) = g''(\gamma_r(t))(\gamma'_r(t))^2 + g'(\gamma_r(t))\gamma''_r(t), |\gamma'_r(t)| = 1$  and  $|\gamma'_r(t)| = 1/r$ . Then from (7):

$$k_{\alpha_{rg}}(t) = \frac{|(g''(\gamma_r)(\gamma'_r)^2 + g'(\gamma_r)\gamma''_r)|g'(\gamma_r)| - g'(\gamma_r)\gamma'_r|g'(\gamma_r)|'}{|g'(\gamma_r)|^2} \\ = \frac{|g'(\gamma_r)\gamma''_r|g'(\gamma_r)| + g''(\gamma_r)(\gamma'_r)^2|g'(\gamma_r)| - g'(\gamma_r)\gamma'_r|g'(\gamma_r)|'}{|g'(\gamma_r)|^2},$$

Hence

(7)

(8) 
$$k_{\alpha_{rg}}(t) \geq \frac{|g'(\gamma_r)|^2/r - |g''(\gamma_r)||g'(\gamma_r)| - |g'(\gamma_r)||g'(\gamma_r)|}{|g'(\gamma_r)|^2} \\ = \frac{|g'(\gamma_r)|/r - |g''(\gamma_r)| - |g'(\gamma_r)|'}{|g'(\gamma_r)|}.$$

Observe that

$$|g'(\gamma_r)|' = \frac{g''(\gamma_r)\gamma'_r \overline{g'(\gamma_r)} + g'(\gamma_r)\overline{g''(\gamma_r)\gamma'_r}}{|g'(\gamma_r)|}$$

and thus

$$|g'(\gamma_r)|' \le \frac{|g''(\gamma_r)||g'(\gamma_r)| + |g'(\gamma_r)||g''(\gamma_r)|}{|g'(\gamma_r)|} \le 2|g''(\gamma_r)|.$$

Replacing in equation (8) we obtain

$$k_{\alpha_{rg}}(t) \geq \frac{|g'(\gamma_r)|/r - |g''(\gamma_r)| - 2|g''(\gamma_r)|}{|g'(\gamma_r)|} \\ = 1/r - 3|g''(\gamma_r)|/|g'(\gamma_r)|.$$

We know that if  $g \to f$ , then  $g''/g' \to f''/f'$  (uniformly on the compact sets). Then there is  $\epsilon > 0$  such that  $||f-g||_{\{|z| \le r_0\}} < \epsilon_1$  implies  $k_{\alpha_{rg}}(t) \ge 1/r - 3||f''/f'||_{\{|z| \le \delta_0\}} - 1$  for all  $r \in (0, \delta_0)$ . Thus we make take  $r_0 \in (0, \delta_0)$  such that  $k_{\alpha_{rg}}(t) > 0$  whenever  $||f - g||_{\{|z| \le r_0\}} < \epsilon$  and  $r < r_0$ . On the other hand, clearly if  $g \to f$  then  $g'(\gamma_r) \to f'(\gamma_r)$  and  $g''(\gamma_r) \to f''(\gamma_r)$  uniformly on  $\{r_0 \le |r| \le \delta_0\}, t \in \mathbb{R}$ . Consequently, from (8), we have  $k_{\alpha_{rg}}(t) \to k_{\alpha_{rf}}(t)$  uniformly on  $t \in \mathbb{R}, r \in [r_0, \delta_0]$ . Then, since  $k(\alpha_{rf}(t)) > 0$  for all  $t \in \mathbb{R}, r \in [r_0, \delta_0]$  (from convexity), we may reduce  $\epsilon$  in order to have  $k_{\alpha_{rg}}(t) > 0$  for all  $t \in \mathbb{R}, r \in [r_0, \delta_0]$ . Thus  $g(|z| \le \delta)$  is convex for all  $\delta \le \delta_0$ . Clearly we may assume  $\epsilon$  small enough such that  $g(|z| \le \delta_0)$  is contained in U, which finishes the proof.

#### 5. The differentiable case.

In this section we prove Theorem 1.1. As before, let  $\pi : \widehat{\mathbb{C}^2} \to \mathbb{C}^2$ be the blow up at  $0 \in \mathbb{C}^2$  and let E be denote the divisor  $\pi^{-1}(0)$ . Let  $\rho : \widehat{\mathbb{C}^2} \to E$  be the natural projection associated to the fibration on  $\widehat{\mathbb{C}^2}$  which fibers are given by the strict transforms of the complex lines passing through  $0 \in \mathbb{C}^2$ .

**Definition 5.1.** Let  $\{z_k\}$  be a sequence of points in  $\mathbb{C}^2 \setminus \{0\}$ . Let L be a complex line passing through  $0 \in \mathbb{C}^2$ . We say that  $\{z_k\}$  is tangent to L at 0 if  $z_k \to 0$  and every accumulation point of  $\{z_k/||z_k||\}$  is contained in L.

**Lemma 5.2.** Let  $\{x_k\}$  be a sequence of points in  $\widehat{\mathbb{C}}^2 \setminus E$ . Let  $x \in E$ and let  $P_x = \pi(L_x)$ , where  $L_x$  is the fiber of  $\rho$  through x. Then  $x_k \to x \in E$  if and only if  $\{\pi(x_k)\}$  is tangent to  $P_x$  at 0.

Let C be an irreducible separatrix (That is: an irreducible holomorphic curve invariant by  $\mathcal{F}$ ) of  $\mathcal{F}$  (It exists by Separatrix Theorem, see [4]). Then  $\widetilde{C} = h(C)$  is an irreducible separatrix of  $\widetilde{\mathcal{F}}$ . Let P and  $\widetilde{P}$  be the tangents lines at  $0 \in \mathbb{C}^2$  of C and  $\widetilde{C}$  respectively.

**Proposition 5.3.** Denote by A the derivative  $dh(0) : \mathbb{R}^4 \to \mathbb{R}^4$ . Then  $A(P) = \widetilde{P}$ .

*Proof.* Given  $v \in P \setminus \{0\}$ , there exits a path  $\gamma : [0,1) \to C$ , with  $\gamma(0) = 0$  and such that  $\gamma'(0) = v$ . Then the path  $h \circ \gamma$  is contained in  $\widetilde{C}$  and therefore

$$(h \circ \gamma)'(0) = d h(0)(\gamma'(0)) = A(v)$$

is contained in  $\widetilde{P}$ . It follows that  $A(P) \subset \widetilde{P}$ , and so  $A(P) = \widetilde{P}$ , since A is a isomorphism. q.e.d.

Let L and  $\tilde{L}$  denote the strict transforms by  $\pi$ , of P and  $\tilde{P}$  respectively. Let q and  $\tilde{q}$  be the points of intersection of L and  $\tilde{L}$  with E. We may assume without loss of generality that

$$P = \tilde{P} = \{ (z_1, z_2) \in \mathbb{C}^2 : z_2 = 0 \}.$$

Let  $\mathcal{U} = \pi^{-1}(z_1 \neq 0)$  and consider holomorphic coordinates (t, x) in  $\mathcal{U}$ such that  $\pi$  is given by  $\pi(t, x) = (x, tx)$ . Then the fibers of  $\rho$  are given by the sets  $\{t = cte\}$  and, the fibers L and  $\widetilde{L}$  are represented by  $\{t = 0\}$ , that is,  $q = \widetilde{q} = (0, 0)$ . Since  $\widetilde{\mathcal{F}}_0$  has a finite number of singularities on E, we may take  $\epsilon > 0$  such that the set  $\{(t, 0) : 0 < |t| < 2\epsilon\} \subset E$  does not contain singularities of  $\widetilde{\mathcal{F}}_0$ . let

$$A:\widehat{\mathbb{C}^2}\backslash E\to \widehat{\mathbb{C}^2}\backslash E$$

be the homeomorphism defined by  $A = \pi^{-1} A \pi$ .

**Proposition 5.4.** There exists  $\delta > 0$  such that the set

 $\{(t,x): |t| < 2\delta\} \setminus E$ 

is mapped by A into  $\{(t,x): |t| < 2\epsilon\}$ . Clearly, we may take  $\delta$  such that the set  $\{(t,0): 0 < |t| < 2\delta\} \subset E$  does not contain singularities of  $\mathcal{F}_0$ .

*Proof.* Let  $A(z) = (A_1(z), A_2(z))$  for all  $z = (z_1, z_2) \in \mathbb{C}^2$ . Since A(P) = P', it follows that  $A_2(z_1, 0) = 0$  for all  $z_1 \in \mathbb{C}$ . Hence:

$$\frac{\mathbf{A}_2(\zeta,0)}{\mathbf{A}_1(\zeta,0)} = 0$$

for all  $\zeta \in S^1$ . Then there exists  $\delta > 0$  such that

(9) 
$$\frac{\mathbf{A}_2(\zeta, z_2)}{\mathbf{A}_1(\zeta, z_2)} < 2\epsilon$$

for all  $\zeta \in S^1$  and all  $z_2 \in \mathbb{C}$  with  $|z_2| \leq 2\delta$ . Since A is real linear:

$$\frac{\mathbf{A}_2(z_1, z_2)}{\mathbf{A}_1(z_1, z_2)} = \frac{|z_1|\mathbf{A}_2(z_1/|z_1|, z_2/|z_1|)}{|z_1|\mathbf{A}_1(z_1/|z_1|, z_2/|z_1|)} = \frac{\mathbf{A}_2(z_1/|z_1|, z_2/|z_1|)}{\mathbf{A}_1(z_1/|z_1|, z_2/|z_1|)} < 2\epsilon$$

and, since  $z_1/|z_1| \in S^1$ , it follows from (9) that

(10) 
$$\frac{\mathbf{A}_2(z_1, z_2)}{\mathbf{A}_1(z_1, z_2)} < 2\epsilon \quad \text{whenever} \quad |z_2/z_1| \le 2\delta.$$

If  $w \in \{(t,x) : |t| < 2\delta\} \setminus E$ , then  $\pi(w) = (z_1, z_2)$  with  $z_1 \neq 0$  and  $|z_2/z_1| < 2\delta$ . Therefore

$$\begin{aligned} A(w) &= \pi^{-1} \mathbf{A} \pi(w) = \pi^{-1} \mathbf{A}(z_1, z_2) = \pi^{-1} (\mathbf{A}_1(z_1, z_2), \mathbf{A}_2(z_1, z_2)) \\ &= \left( \frac{\mathbf{A}_2(z_1, z_2)}{\mathbf{A}_1(z_1, z_2)}, \mathbf{A}_1(z_1, z_2) \right), \end{aligned}$$

and it follows from (10) that A(w) is contained in  $\{(t, x) : |t| < 2\epsilon\}$ . q.e.d.

Let  $p = (\delta, 0) \in E$  and let  $L_p = \{t = \delta\}$  (its fiber). Consider the path  $\beta : S^1 \to L_p,$   $\beta(\zeta) = (\delta, \zeta),$ and let  $\beta_A : S^1 \to \{(t, x) : |t| < 2\epsilon\}$  given by  $\beta_A = A \circ \beta.$ 

**Proposition 5.5.** The set  $\rho(A(L_p \setminus \{p\}))$  is equal to  $\rho(\beta_A(S^1))$ .

*Proof.* Evidently  $\rho\beta_A(S^1) \subset \rho(A(L_p \setminus \{p\}))$ . On the other hand, let  $(\delta, x) \in L_p \setminus \{p\}$ , then

$$\begin{split} \rho A(\delta, x) &= \rho \pi^{-1} A\pi(\delta, x) = \rho \pi^{-1} A(x, \delta x) \\ &= \rho \pi^{-1} (A_1(x, \delta x), A_2(x, \delta x)) = \rho \left( \frac{A_2(x, \delta x)}{A_1(x, \delta x)}, A_1(x, \delta x) \right) \\ &= \left( \frac{A_2(x, \delta x)}{A_1(x, \delta x)}, 0 \right) = \left( \frac{A_2(x/|x|, \delta x/|x|)}{A_1(x/|x|, \delta x/|x|)}, 0 \right) \\ &= \rho \left( \frac{A_2(x/|x|, \delta x/|x|)}{A_1(x/|x|, \delta x/|x|)}, A_1(x/|x|, \delta x/|x|) \right) \\ &= \rho \pi^{-1} (A_1(x/|x|, \delta x/|x|), A_2(x/|x|, \delta x/|x|)) \\ &= \rho \pi^{-1} A(x/|x|, \delta x/|x|) = \rho \pi^{-1} A\pi(\delta, x/|x|) \\ &= \rho A(\beta(x/|x|)) = \rho(\beta_A(x/|x|)). \end{split}$$

Therefore  $\rho(A(L_p \setminus \{p\})) \subset \rho\beta_A(S^1).$  q.e.d.

Define K as the set of points  $y \in E$  such that there exists a sequence  $\{x_k\}$  in  $L_p \setminus \{p\}$  with  $h(x_k) \to y$  as  $k \to \infty$ .

**Proposition 5.6.** Given a neighborhood  $\Omega$  of K in  $\widehat{\mathbb{C}^2}$ , there exist a disc  $\Sigma$  in  $L_p$  containing p, such that the set  $h(\Sigma \setminus \{p\})$  is contained in  $\Omega$ .

*Proof.* Is a direct consequence of the definition of K. q.e.d.

**Proposition 5.7.** The set K is equal to  $\rho\beta_A(S^1)$ . Thus, since  $\beta_A(S^1) \subset A(L_p \setminus \{p\})$  does not intersect  $\widetilde{L}$ , the set K is contained in  $\{(t,0): 0 < |t| < 2\epsilon\}$ .

*Proof.* Let  $y \in K$ . Then there exist a sequence  $\{x_k\}$  in  $L_p \setminus \{p\}$  with  $h(x_k) \to y$  as  $k \to \infty$ . Let  $P_y = \pi(L_y)$ , where  $L_y$  is the fiber of  $\rho$  through y. It follows from Lemma 5.2 that the sequence  $\{\pi(h(x_k))\}$  is tangent to  $P_y$  at 0. Since  $\pi(x_k) \to 0$  as  $k \to \infty$  and A is the derivate of h at 0, we have that

$$h(\pi(x_k)) = A(\pi(x_k)) + R(\pi(x_k)),$$

where  $R(\pi(x_k))/||\pi(x_k)|| \to 0$  as  $k \to \infty$ . Therefore

(11) 
$$\frac{\mathbf{h}(\pi(x_k))}{||\pi(x_k)||} = \frac{\mathbf{A}(\pi(x_k))}{||\pi(x_k)||} + \frac{\mathbf{R}(\pi(x_k))}{||\pi(x_k)||},$$

with  $R(\pi(x_k))/||\pi(x_k)|| \to 0$  as  $k \to \infty$ . Since the sequence  $\{h \pi(x_k)\} = \{\pi h(x_k)\}$  is tangent to  $P_y$  at 0, we have by definition that any accumulation point of

$$\frac{\mathbf{h}(\pi(x_k))}{||\mathbf{h}(\pi(x_k))||}$$

is contained in  $P_y$  and the same holds for the sequence

$$\frac{\mathbf{h}(\pi(x_k))}{||\pi(x_k)||} = \frac{\mathbf{h}(\pi(x_k))}{||\mathbf{h}(\pi(x_k))||} \cdot \frac{||\mathbf{h}(\pi(x_k))||}{||\pi(x_k)||}.$$

Then, it follows from (11) that any accumulation point of the sequence

$$\frac{\mathbf{A}(\pi(x_k))}{||\pi(x_k)||}$$

is contained in  $P_y$  and the same property is satisfied by

$$\frac{\mathbf{A}(\pi(x_k))}{||\mathbf{A}(\pi(x_k))||} = \frac{\mathbf{A}(\pi(x_k))}{||\pi(x_k)||} \cdot \frac{||\pi(x_k)||}{||\mathbf{A}(\pi(x_k))||}.$$

Then the sequence

$$\frac{A(\pi(x_k))}{||A(\pi(x_k))||} = \frac{\pi(A(x_k))}{||\pi(A(x_k))||}$$

is tangent to  $P_y$  at 0. By Lemma 5.2 we have that  $A(x_k) \to y$  as  $k \to \infty$ , hence  $\rho(A(x_k)) \to y$  as  $k \to \infty$ . Then y is a limit point of  $\rho(A(L_p \setminus \{p\}))$ . But  $\rho(A(L_p \setminus \{p\}))$  is equal to  $\rho\beta_A(S^1)$  by Proposition 5.5. Then, since  $\rho\beta_A(S^1)$  is compact, we have that  $y \in \rho\beta_A(S^1)$  and therefore  $K \subset \rho\beta_A(S^1)$ . On the other hand, let  $y \in \rho\beta_A(S^1)$ . Then  $y = \rho(A(\delta, \zeta))$ . For all  $k \in \mathbb{N}$  let  $x_k = (\delta, s_k \zeta) \in L_p$ , where  $s_k > 0$ 

and  $s_k \to 0$  as  $k \to \infty$ . Clearly  $x_k \to p = (\delta, 0)$  as  $k \to \infty$ . Then  $\pi(x_k) \to 0 \in \mathbb{C}^2$  as  $k \to \infty$  and we have that

$$h(\pi(x_k)) = A(\pi(x_k)) + R(\pi(x_k))$$

with  $||R(\pi(x_k))||/||\pi(x_k)|| \to 0$  as  $k \to \infty$ . Therefore

$$\frac{\mathbf{h}(\pi(x_k))}{||\pi(x_k)||} = \frac{\mathbf{A}(\pi(x_k))}{||\pi(x_k)||} + \frac{R(\pi(x_k))}{||\pi(x_k)||}.$$

Hence, since

$$\frac{\mathbf{A}(\pi(x_k))}{||\pi(x_k)||} = \frac{\mathbf{A}(s_k\zeta, s_x\zeta\delta)}{||(s_k\zeta, s_x\zeta\delta)||} = \frac{s_k \mathbf{A}(\zeta, \zeta\delta)}{|s_k|||(\zeta, \zeta\delta)||} = \frac{\mathbf{A}(\zeta, \zeta\delta)}{||(\zeta, \zeta\delta)||}$$

and  $||R(\pi(x_k))||/||\pi(x_k)|| \to 0$  as  $k \to \infty$ , we have that

(12) 
$$\frac{\mathbf{h}(\pi(x_k))}{||\pi(x_k)||} \to \frac{\mathbf{A}(\zeta,\zeta\delta)}{||(\zeta,\zeta\delta)||}$$

as  $k \to \infty$ . Let  $L_y$  be the fiber of  $\rho$  through y and let  $P_y = \pi(L_y)$ . Since  $\rho(A(\delta, \zeta)) = y$  we have  $A(\delta, \zeta) \in L_y$ , hence  $\pi A(\delta, \zeta) \in P_y$ . Then

$$\frac{\mathbf{A}(\zeta,\zeta\delta)}{||(\zeta,\zeta\delta)||} = \frac{\mathbf{A}(\pi(\delta,\zeta))}{||(\pi(\delta,\zeta))||} = \frac{\pi A(\delta,\zeta)}{||(\pi(\delta,\zeta))||}$$

is contained in  $P_y$  and it follows from (12) that any accumulation point of the sequence

$$\frac{\pi(h(x_k))}{||\pi(h(x_k))||} = \frac{h(\pi(x_k))}{||\pi(x_k)||} \cdot \frac{||h(\pi(x_k))||}{||\pi(x_k)||}$$

is contained in  $P_y$ . Then, by Lemma 5.2 we have that  $\pi(h(x_k)) \to y$  as  $k \to \infty$ . Thus  $y \in K$  and therefore  $\rho \beta_A(S^1) \subset K$ . q.e.d.

**Proposition 5.8.** Define  $\theta : [0,1] \to E$  by  $\theta(s) = \rho \beta_A(e^{\pi i s})$  for all  $s \in [0,1]$ . Then

$$\rho \circ \beta_A(e^{2\pi i s}) = \theta(2s), \quad if \quad 0 \le s \le 1/2,$$
  
$$\rho \circ \beta_A(e^{2\pi i s}) = \theta(2s-1), \quad if \quad 1/2 \le s \le 1.$$

In particular,  $\rho\beta(S^1) = \theta([0,1])$  and, by Proposition 5.7, we have that  $K = \theta([0,1])$ .

*Proof.* If  $s \in [0, 1/2]$ , then  $\rho\beta_A(e^{2\pi is}) = \rho\beta_A(e^{\pi i(2s)}) = \theta(2s)$ . Suppose now that  $s \in [1/2, 1]$ . Then, since A is real linear:

$$\begin{split} w &= \rho A\beta(e^{2\pi is}) = \rho \pi^{-1} A\pi(\delta, e^{2\pi is}) = \rho \pi^{-1} A(e^{2\pi is}, \delta e^{2\pi is}) \\ &= \rho \pi^{-1}(-1) A((-1)e^{2\pi is}, (-1)\delta e^{2\pi is}) \\ &= \rho \pi^{-1}(-1) (A_1(e^{-\pi i}e^{2\pi is}, e^{-\pi i}\delta e^{2\pi is}), A_2(e^{-\pi i}e^{2\pi is}, e^{-\pi i}\delta e^{2\pi is})) \\ &= \rho \pi^{-1}(-A_1(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)}), -A_2(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)})) \\ &= \rho \left(\frac{A_2(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)})}{A_1(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)})}, -A_1(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)})\right) \right) \\ &= \left(\frac{A_2(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)})}{A_1(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)})}, A_1(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)})\right) \right) \\ &= \rho \pi^{-1}(A_1(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)}), A_2(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)})) \\ &= \rho \pi^{-1}A(e^{\pi i(2s-1)}, \delta e^{\pi i(2s-1)}) = \rho \pi^{-1}A\pi(\delta, e^{\pi i(2s-1)}) \\ &= \rho A(\delta, e^{\pi i(2s-1)}) = \rho A\beta(e^{\pi i(2s-1)}) = \rho \beta_A(e^{\pi i(2s-1)}) \\ &= \theta(2s-1), \end{split}$$

since  $(2s - 1) \in [0, 1]$ .

**Proposition 5.9.** We have that: either K is a point, or K is equal to a Jordan curve.

*Proof.* By Proposition 5.7 and Proposition 5.8, it is sufficient to prove that: either  $\theta$  is constant or it is a simple closed curve. By Proposition 5.8, we have that  $\theta(0) = \theta(2(1/2) - 1) = \rho\beta_A(e^{2\pi i(1/2)}) = \theta(2(1/2)) =$  $\theta(1)$ . Thus  $\theta$  defines a closed curve in E. Suppose that  $\theta$  is not a simple curve, that is,  $\theta(s') = \theta(s'')$  for  $0 \le s' < s'' < 1$ . Observe that

$$\theta(s') = \rho \pi^{-1} \mathbf{A} \pi(\delta, e^{\pi i s'}) = \rho \pi^{-1} \mathbf{A}(e^{\pi i s'}, \delta e^{\pi i s'})$$

Writing  $A(e^{\pi i s'}, \delta e^{\pi i s'}) = (A'_1, A'_2)$  we have that

$$\theta(s') = \rho \pi^{-1}(A'_1, A'_2) = \rho\left(\frac{A'_2}{A'_1}, A'_1\right) = \left(\frac{A'_2}{A'_1}, 0\right)$$

Analogously, making  $A(e^{\pi i s''}, \delta e^{\pi i s''}) = (A_1'', A_2'')$  we obtain

$$\theta(s'') = \left(\frac{\mathbf{A}_2''}{\mathbf{A}_1''}, 0\right).$$

Then  $\frac{A_2'}{A_1'} = \frac{A_2''}{A_1''}$  and we have therefore that

$$\frac{aA_2' + bA_2''}{aA_1' + bA_1''} = \frac{A_2'}{A_1'} = \frac{A_2''}{A_1''}$$

for all  $a, b \in \mathbb{R}$  such that  $aA'_1 + bA''_1 \neq 0$ . Computing as above

$$\rho \pi^{-1} \left( a A_1' + b A_1'', a A_2' + b A_2'' \right) = \left( \frac{a A_2' + b A_2''}{a A_1' + b A_1''}, 0 \right) = \left( \frac{A_2'}{A_1'}, 0 \right) = \theta(s'),$$

that is,

(13) 
$$\rho \pi^{-1}(a(\mathbf{A}'_1, \mathbf{A}'_2) + b(\mathbf{A}''_1, \mathbf{A}''_2)) = \theta(s').$$

Since  $0 \leq s' < s'' < 1$ , the vectors  $e^{\pi i s'}$  and  $e^{\pi i s''}$  are real-linearly independent. Thus, for all  $s \in [0, 1)$  we have that  $e^{\pi i s} = a e^{\pi i s'} + b e^{\pi i s''}$  with  $a, b \in \mathbb{R}$ . Therefore:

$$\begin{aligned} \theta(s) &= \rho A\beta(e^{\pi i s}) = \rho \pi^{-1} A\pi(\delta, e^{2\pi i s}) = \rho \pi^{-1} A(e^{2\pi i s}, \delta e^{2\pi i s}) \\ &= \rho \pi^{-1} A(a e^{\pi i s'} + b e^{\pi i s''}, \delta(a e^{\pi i s'} + b e^{\pi i s''})) \\ &= \rho \pi^{-1} A(a(e^{\pi i s'}, \delta e^{\pi i s'}) + b(e^{\pi i s''}, \delta e^{\pi i s''})) \\ &= \rho \pi^{-1}(a A(e^{\pi i s'}, \delta e^{\pi i s'}) + b A(e^{\pi i s''}, \delta e^{\pi i s''})) \\ &= \rho \pi^{-1}(a (A'_1, A'_2) + b(A''_1, A''_2)), \end{aligned}$$

and by using (13):

$$\theta(s) = \theta(s').$$

It follows that  $\theta$  is constant and the assertion is therefore proved.

We denote by V and  $\widetilde{V}$  the sets  $\{(t,x): |t| \le 2\delta\}$  and  $\{(t,x): |t| \le 2\epsilon\}$  respectively. Let

 $\widetilde{\beta}:S^1\to \widetilde{V}$ 

be the path defined by  $\widetilde{\beta}(\zeta) = (\epsilon, \zeta)$ .

**Proposition 5.10.** The path  $\beta_A$  is homologous to  $\xi \tilde{\beta}$  in  $\tilde{V} \setminus (\tilde{L} \cup E)$ , where  $\xi = 1$  or -1.

*Proof.* Let  $\mathcal{B}_w$  be the disc  $\{(t, x) : t = w, |x| \leq 1\}$  in V. Observe that  $\widetilde{\beta}$  is equal to  $\partial \widetilde{\mathcal{B}}$ , where  $\widetilde{\mathcal{B}}$  is the disc  $\{(\epsilon, x) : |x| \leq 1\}$  in  $\widetilde{V}$ . Then, since  $A : \mathbb{R}^4 \to \mathbb{R}^4$  preserves orientation, it follows from Lemma 3.1 that for some  $w \neq 0$ :

(14) 
$$A(\partial \mathcal{B}_w) = \xi \partial \widetilde{\mathcal{B}} = \xi \beta$$
 in  $H_1(\widetilde{V} \setminus (\widetilde{L} \cup E))$ .

Observe that  $\partial \mathcal{B}_w$  is homologous to  $\beta$  in  $V \setminus (L \cup E)$ . Then, since  $A(V \setminus (L \cup E))$  is contained in  $\widetilde{V} \setminus (\widetilde{L} \cup E)$ , it follows that

(15) 
$$A(\partial \mathcal{B}_w) = A(\beta) = \beta_A \text{ in } H_1(V \setminus (L \cup E)).$$

Thus the proposition follows from (15) and (14).

**Proposition 5.11.** Suppose that K is a Jordan curve and let  $U \subset \{(t,0) : |t| < 2\epsilon\}$  be the domain bounded by K. Then  $q = (0,0) \notin U$ .

*Proof.* Making  $C = \{(t,0) : |t| < \epsilon\}$  and since  $\rho : \widetilde{V} \setminus (\widetilde{L} \cup E) \to C \setminus \{p'\}$  is well defined, it follows from Proposition 5.10 that

$$\rho(\beta_A) = \xi \rho(\widetilde{\beta}) \quad \text{in} \quad H_1(C \setminus \{p'\}).$$

Then, since  $\rho(\widetilde{\beta}) = 0$  in  $H_1(C \setminus \{p'\})$ , we have that

(16) 
$$\rho \circ \beta_A = 0 \quad \text{in} \quad H_1(C \setminus \{p'\}).$$

If we consider  $\rho \circ \beta_A$  as defined on [0, 1] by  $s \to \rho \beta_A(e^{2\pi i s})$ , it follows from Proposition 5.8 that  $\rho \circ \beta_A = \theta * \theta$ . Then

$$\rho \circ \beta_A = 2\theta$$
 in  $H_1(C \setminus \{p'\})$ 

and it follows from (16) that

$$\theta = 0$$
 in  $H_1(C \setminus \{p'\}),$ 

since  $H_1(C \setminus \{p'\})$  does not have torsion. Therefore  $p' \notin U$ .

**Proposition 5.12.** Let  $\Sigma$  be a disc in  $L_p$  containing p and such that  $\mathcal{A} = h(\Sigma \setminus \{p\})$  is contained in  $\widetilde{V} \setminus E$ . Let  $\gamma$  be a path in  $\mathcal{A}$ , which represents a generator of  $H_1(\mathcal{A})$ . Then  $\gamma$  is homologous to  $\xi \widetilde{\beta}$  in  $\widetilde{V} \setminus E$  with  $\xi = 1$  or -1.

*Proof.* Since  $\widetilde{V} \setminus (\widetilde{L} \cup E)$  is contained in  $\widetilde{V} \setminus E$ , it follows from Proposition 5.10 that  $\beta_A$  is homologous to  $\xi \widetilde{\beta}$  in  $\widetilde{V} \setminus E$  where  $\xi = 1$  or -1. Therefore it is sufficient to show that  $\gamma$  is homologous to  $\xi \beta_A$  with  $\xi = 1$  or -1. Let

$$\vartheta_r: S^1 \to L_p = \{t = \delta\}$$

be the path defined by  $\vartheta_r(\zeta) = (\delta, r\zeta)$  with 0 < r < 1 small enough such that  $\{(\delta, x) : |x| \leq r\}$  is contained in  $\Sigma$ . Then  $\vartheta_r$  is a generator of  $H_1(\Sigma \setminus \{p\})$  and consequently  $h \circ \vartheta_r$  is a generator of  $H_1(\mathcal{A})$ . Thus  $\gamma$ is homologous to  $\xi h \circ \vartheta_r$  in  $\widetilde{V} \setminus E$ , where  $\xi = 1$  or -1. Therefore it is sufficient to prove that  $h \circ \vartheta_r$  is homologous to  $\beta_A$  in  $\widetilde{V} \setminus E$ . Recall that  $\beta(\zeta) = (\delta, \zeta)$ . Then  $\beta$  and  $\vartheta_r$  are homologous in  $C = \{(\delta, x) : 0 < |x| \leq$  $1\} \subset L_p$  and, since  $A(C) \subset \widetilde{V} \setminus E$ , it follows that the paths  $A \circ \beta = \beta_A$ and  $A \circ \vartheta_r$  are homologous in  $\widetilde{V} \setminus E$ . Then, it suffices to show that  $h \circ \vartheta_r$ and  $A \circ \vartheta_r$  are homologous in  $\widetilde{V} \setminus E$  for some r > 0.

Let  $P' = \pi(L_p)$  and consider the path  $\theta_r : S^1 \to P'$  defined by  $\theta_r = \pi \circ \vartheta_r$ , that is  $\theta_r(\zeta) = (r\zeta, \delta r\zeta)$ . Recall that  $A : \mathbb{R}^4 \to \mathbb{R}^4$  is an isomorphism, then there exist a constant c > 0 such that

(17) 
$$||\mathbf{A}(z)|| > c||z|| \quad \text{for all} \quad z \in \mathbb{C}^2.$$

Since A is the derivate of h at 0, there exists  $\varepsilon > 0$  such that

(18) 
$$\mathbf{h}(z) = \mathbf{A}(z) + R(z),$$

with |R(z)| < c|z| whenever  $|z| < \varepsilon$ . Now, assume that

$$r < \min\left\{\frac{\varepsilon}{\sqrt{1+\delta^2}}, c, c/(2\epsilon+1), \frac{\varepsilon_0}{\sqrt{1+\delta^2}}\right\},$$

where the constant  $\varepsilon_0 > 0$  will be defined later. Then, since  $\theta_r(\zeta) = (r\zeta, \delta r\zeta)$  satisfies

(19) 
$$||\theta_r(\zeta)|| = r\sqrt{1+\delta^2} < \varepsilon,$$

we have that

(20) 
$$||R(\theta_r(\zeta))|| < c||\theta_r(\zeta)||.$$

Therefore the map

$$F: S^1 \times [0,1] \to \mathbb{C}^2,$$
  
$$F(\zeta, s) = \mathcal{A}(\theta_r(\zeta)) + sR(\theta_r(\zeta))$$

is such that

$$\begin{aligned} ||F(\zeta,s)|| &= ||\operatorname{A}(\theta_r(\zeta)) + sR(\theta_r(\zeta))|| \\ &\geq ||\operatorname{A}(\theta_r(\zeta))|| - ||sR(\theta_r(\zeta))|| \geq c||\theta_r(\zeta)|| - ||R(\theta_r(\zeta))|| > 0 \end{aligned}$$

Observe that  $F(\zeta, 0) = \mathcal{A}(\theta_r(\zeta))$  and  $F(\zeta, 1) = \mathcal{A}(\theta_r(\zeta)) + \mathcal{R}(\theta_r(\zeta)) = \mathcal{h}(\theta_r(\zeta))$ . Then F defines a homotopy between  $\mathcal{A}(\theta_r)$  and  $\mathcal{h}(\theta_r)$  in  $\mathbb{C}^2 \setminus \{0\}$ . Thus, since  $\pi^{-1} \mathcal{A}(\theta_r) = \mathcal{A}(\vartheta_r)$  and  $\pi^{-1} \mathcal{h}(\theta_r) = \mathcal{h}(\vartheta_r)$ , it follows that  $\pi^{-1} \circ F$  defines a homotopy between  $\mathcal{A} \circ \vartheta_r$  and  $\mathcal{h} \circ \vartheta_r$  in  $\widehat{\mathbb{C}}^2 \setminus E$ . Therefore, in order to prove that  $\mathcal{A} \circ \vartheta_r = \mathcal{h} \circ \vartheta_r$  in  $\mathcal{H}_1(\widetilde{V} \setminus E)$ , it suffices to show that  $\pi^{-1} \circ F(\zeta, s)$  belongs to  $\widetilde{V}$  for all  $s \in [0, 1], \zeta \in S^1$ . We write  $F(\zeta, s) = (x_F, y_F), \mathcal{A}(\theta_r(\zeta)) = (x_A, y_A)$  and  $\mathcal{R}(\theta_r(\zeta)) = (x_R, y_R)$ , then

(21) 
$$(x_F, y_F) = (x_A, y_A) + s(x_R, y_R).$$

Observe that

$$\left(\frac{y_{\mathrm{A}}}{x_{\mathrm{A}}}, x_{\mathrm{A}}\right) = \pi^{-1}(x_{\mathrm{A}}, y_{\mathrm{A}}) = \pi^{-1} \operatorname{A}(\theta_{r}(\zeta)) = A\pi^{-1}\theta_{r}(\zeta) = \operatorname{A} \circ \vartheta_{r}(\zeta),$$

hence  $(y_A/x_A, 0) = \rho A \vartheta_r(\zeta)$ . Then, since  $A\vartheta_r(\zeta)$  is contained in  $A(L_p \setminus \{p\})$ , it follows from Proposition 5.5 and Proposition 5.7 that  $(y_A/x_A, 0)$  is contained in K. Thus, since K a compact subset of  $\{(t, 0) : |t| < 2\epsilon\}$ , we have that

(22) 
$$\frac{|y_{\rm A}|}{|x_{\rm A}|} + \varepsilon_1 < 2\epsilon$$

for some  $\varepsilon_1 > 0$  small enough. Take  $\varepsilon_2 > 0$  be such that

(23) 
$$\frac{\varepsilon_2(1+2\epsilon)}{(c/(1+2\epsilon)-\varepsilon_2)} < \varepsilon_1$$

Now, we chose  $\varepsilon_0$  be such that

$$(24) ||R(z)|| < \varepsilon_2 ||z||$$

whenever  $||z|| < \varepsilon_0$ . Observe that  $\pi^{-1} \circ (x_F, y_F)$  belongs to

$$\widetilde{V} = \{(t, x) : |x| < 2\epsilon\}$$

if and only if  $\frac{y_F}{x_F} < 2\epsilon$ , and by (21), if and only if

(25) 
$$\frac{y_{\rm A} + sy_R}{x_{\rm A} + sy_R} < 2\epsilon.$$

An easy computation shows that

$$\frac{y_{\mathrm{A}} + sy_{R}}{x_{\mathrm{A}} + sy_{R}} = \frac{y_{\mathrm{A}}}{x_{\mathrm{A}}} + \frac{sy_{R} - sy_{R}(y_{\mathrm{A}}/x_{\mathrm{A}})}{x_{\mathrm{A}} + sy_{R}}$$

Thus, in view of (22), it is sufficient to prove that

(26) 
$$\frac{|sy_R - sy_R(y_A/x_A)|}{|x_A + sy_R|} \le \epsilon_1.$$

Since that  $||\theta_r(\zeta)|| = r\sqrt{1+\delta^2} < \varepsilon_0$ , it follows from (24) that  $||(y_R, y_R)|| = ||R(\theta_r(\zeta))|| < \varepsilon_2 ||\theta_r(\zeta)||$ , hence  $|y_R| < \varepsilon_2 ||\theta_r(\zeta)||$ . Then

$$\begin{aligned} |sy_R - sy_R(y_A/x_A)| &= |sy_R| \cdot |1 - y_A/x_A| \\ &< \varepsilon_2 ||\theta_r(\zeta)||(1 + |y_A|/|x_A|) \end{aligned}$$

and, by using (22), we obtain

(27) 
$$|sy_R - s(y_A/x_A)y_R| < \varepsilon_2(1+2\epsilon)||\theta_r(\zeta)||.$$

On the other hand, also from (22) we have that  $|y_A| < 2\epsilon |x_A|$ , hence

 $(1+2\epsilon)|x_{\rm A}| \ge |x_{\rm A}| + |y_{\rm A}| \ge ||(x_{\rm A}, y_{\rm A})|| = ||A(\theta_r(\zeta))|| \ge c||\theta_r(\zeta)||$ 

and therefore

$$|x_{\mathcal{A}}| \ge \frac{c}{1+2\epsilon} \cdot ||\theta_r(\zeta)||.$$

Then

$$|x_{A} + sy_{R}| \ge |x_{A}| - |sy_{R}| \ge |x_{A}| - |y_{R}| \ge \frac{c}{1 + 2\epsilon} ||\theta_{r}(\zeta)|| - \epsilon_{2} ||\theta_{r}(\zeta)||$$

and so

$$|x_{\mathcal{A}} + sy_{\mathcal{R}}| \ge (c/(1+2\epsilon) - \epsilon_2)||\theta_r(\zeta)||.$$

From this and (27) we obtain

$$\frac{|sy_R - s(y_A/x_A)y_R|}{|x_A + sy_R|} \le \frac{\varepsilon_2(1+2\epsilon)||\theta_r(\zeta)||}{(c/(1+2\epsilon) - \epsilon_2)||\theta_r(\zeta)||} = \frac{\varepsilon_2(1+2\epsilon)}{(c/(1+2\epsilon) - \epsilon_2)}$$

and from (23):

$$\frac{|sy_R - sy_A/x_A y_R|}{|x_A + sy_R|} \le \varepsilon_1,$$

which finishes the proof.

It follows from Proposition 5.7 and Proposition 5.9 that there exists a subset D of the divisor E with the following properties:

(i) D is diffeomorphic to a closed disc.

q.e.d.

- (*ii*) D is contained in  $\{(t, 0) : 0 < |t| < 2\epsilon\}$
- (iii) K is contained in the interior of D.

Let  $\tilde{p}$  be a point in the interior of D and let  $L_{\tilde{p}}$  be the fiber of  $\rho$  through  $\tilde{p}$ . Since D is contained in a leaf of  $\tilde{\mathcal{F}}_0$ , there is a disc  $\Sigma'$  in  $L_{\tilde{p}}$  containing  $\tilde{p}$  with the following property: if  $z \in \Sigma'$ , then there exists a closed disc  $D_z$  in the leaf of  $\tilde{\mathcal{F}}_0$  passing through z, such that  $\rho$  maps  $D_z$  diffeomorphically onto D. Let W denote the set  $\bigcup_{z \in \Sigma'} D_z$ . By Proposition 5.6, there exists a disc  $\Sigma$  in  $L_p$  containing p, such that the set  $\mathcal{A} = h(\Sigma \setminus \{p\})$  is contained in the interior of W. We assume  $\Sigma$  be small enough such that  $\mathcal{F}_0$  is transverse to  $\Sigma$ .

**Proposition 5.13.** There exists a disc  $\Sigma \subset \Sigma'$  containing  $\widetilde{p}$ , with the following property. Given  $x \in \widetilde{\Sigma} \setminus \{\widetilde{p}\}$ , the disc  $D_x$  intersects  $\mathcal{A}$  in a unique point f(x). Moreover, the map  $f : \widetilde{\Sigma} \setminus \{\widetilde{p}\} \to \mathcal{A}$  is continuous.

*Proof.* The foliation  $\mathcal{F}_0$  induces a complex structure in  $\mathcal{A}$  as follows. Let  $y \in \mathcal{A}$  and  $x \in \Sigma \setminus \{p\}$  with h(x) = y. Since  $\Sigma$  is transverse to  $\mathcal{F}_0$ , there exists a neighborhood  $W_x$  of x in  $\mathbb{C}^2 \setminus E$  such that each leaf of  $\mathcal{F}_0|_{W_x}$  intersects  $\Sigma$  only one time. Let  $W_y$  be a neighborhood of ywhere  $\mathcal{F}_0$  is trivial. Thus, there exists a disc  $\Sigma_y$  (complex sub-manifold of  $W_y$ ) such that each leaf of  $\widetilde{\mathcal{F}}_0|_{W_y}$  intersects  $\widetilde{\Sigma}_y$  at a unique point. We may assume that  $h^{-1}(W_y)$  is contained in  $W_x$ . Let  $\Sigma_x \subset \Sigma \cap W_x$ be a disc with  $x \in \Sigma_x$  and such that the closure of  $\Sigma_y = h(\Sigma_x) \subset \mathcal{A}$ is contained in  $W_y$ . If w is a point contained in  $\Sigma_y$ , the leaf of  $\mathcal{F}_0|_{W_y}$ passing through it intersects  $\Sigma_y$  in a unique point  $\psi_y(w)$ . Clearly,  $\psi_y$ is continuous and we claim that  $\psi_y$  is a homeomorphism of  $\Sigma_y$  onto its image. Since  $\overline{\Sigma}_y$  is compact, it suffices to prove that  $\psi_y$  is injective on  $\overline{\Sigma}_y$ . Suppose that  $w_1$  and  $w_2$  are two different points in  $\Sigma_y$  contained in the same leaf L of  $\widetilde{\mathcal{F}}_0|_{W_y}$ . Then, since  $\pi_y^{-1}(W_y) \subset W_x$ , we have that  $\pi_{u}^{-1}(L)$  is contained in a leaf L' of  $\mathcal{F}_{0}|_{W_{x}}$ . Then  $h^{-1}(w_{1})$  and  $h^{-1}(w_{2})$ are two different points in the intersection of L' with  $\overline{\Sigma}_0$ , which is a contradiction. Then we consider  $\psi_y : \Sigma_y \to \widetilde{\Sigma}_y$  as a local chart of  $\mathcal{A}$ . We may assume the sets  $\Sigma_y$  be small enough such that, if  $\Sigma_y \cap \Sigma_{y'} \neq \emptyset$ , then  $\Sigma_{u} \cup \Sigma_{u'}$  is contained in an open set where  $\mathcal{F}_{0}$  is trivial. Then it is easy to see that the map  $\psi_{y'} \circ \psi_y^{-1}$ , which preserves the leaves, is a holonomy map and therefore holomorphic.

Given  $y \in \mathcal{A}$ , denote by g(y) the point in  $\Sigma' \setminus \{\widetilde{p}\}$  such that  $y \in D_{g(y)}$ . It is not difficult to see that the map  $g \circ \psi_y^{-1} : \widetilde{\Sigma}_y \to \Sigma'$  is a holonomy map. Therefore  $g : \mathcal{A} \to \Sigma'$  is holomorphic and regular. It is known (see [1]) that there exists a biholomorphism

$$\varphi: A_r = \{ z \in \mathbb{C} : 0 \le r < |z| < 1 \} \to \mathcal{A}$$

and we may take  $\varphi$  such that  $\varphi(z) \to E$  as  $|z| \to r$ . Hence  $g \circ \varphi(z) \to \widetilde{p}$ as  $|z| \to r$ . Then the map  $g \circ \varphi : A_r \to \Sigma'$  extends as  $g \circ \varphi \equiv \widetilde{p}$  on |z| = r. This implies that r = 0. Then  $g \circ \varphi$  extends holomorphically to  $\mathbb{D}$  with  $g \circ \varphi(0) = \widetilde{p}$ .

Assertion. The map  $g \circ \varphi$  is regular at 0.

*Proof.* Let  $\gamma$  be a path in  $\mathbb{D}\setminus\{0\}$  which winds once around 0. It is sufficient to prove that the path  $g \circ \varphi(\gamma)$  in  $\Sigma'$  winds once around  $\tilde{p}$ . Let  $\beta'$  be a path in  $\Sigma'\setminus\{\tilde{p}\}$  such that

(28) 
$$\beta' = \beta$$
 in  $H_1(V \setminus E)$ 

Clearly  $\beta'$  represents generators in  $H_1(\Sigma' \setminus \{\tilde{p}\})$  and  $H_1(W \setminus E)$ . Let N and N' be integers such that

(29) 
$$g \circ \varphi(\gamma) = N\beta' \text{ in } H_1(\Sigma' \setminus \{\tilde{p}\})$$

and

(30) 
$$\varphi(\gamma) = N'\beta'$$
 in  $H_1(W \setminus E)$ .

We shall prove that N = 1 or -1. Observe that g is the restriction of the map

$$G: W \backslash E \to \Sigma' \backslash \{\widetilde{p}\}$$

defined by  $G(D_x) = \{x\}$  for all  $x \in \Sigma' \setminus \{\tilde{p}\}$ . Then, since  $g(\beta') = \beta'$ , it follows from (30) that

$$g \circ \varphi(\gamma) = N'\beta'$$
 in  $H_1(\Sigma' \setminus \{\widetilde{p}\})$ 

and, in view of (29), we conclude that N' = N. Thus, since  $W \setminus E \subset \widetilde{V} \setminus E$ , equation (30) gives:

$$\varphi(\gamma) = N\beta'$$
 in  $H_1(\widetilde{V} \setminus E)$ .

Then, by (28), we have that

$$\varphi(\gamma) = N\beta$$
 in  $H_1(V \setminus E)$ .

Thus, since  $\varphi(\gamma)$  is a generator of  $H_1(\mathcal{A})$ , Proposition 5.12 implies that N = 1 or -1.

Now, since  $g \circ \varphi$  is regular at 0, there exists a disc  $\Omega$  in  $\mathbb{D}$  containing 0, such that  $g \circ \varphi|_{\Omega}$  is a homeomorphism onto its image. Then, since  $\varphi$  is a diffeomorphism, it follows that  $\overline{g} = g|_{\varphi(\Omega \setminus \{0\})}$  is a homeomorphism onto its image. Thus we take a disc  $\widetilde{\Sigma} \subset g\varphi(\Omega) \subset \Sigma'$  containing  $\widetilde{p}$  and define  $f = \overline{g}^{-1}$  on  $\widetilde{\Sigma} \setminus \{\widetilde{p}\}$ . Let  $x \in \widetilde{\Sigma} \setminus \{\widetilde{p}\}$ . Clearly  $f(x) \in \mathcal{A}$  and since g(f(x)) = x, we have that  $f(x) \in D_x$  and so  $f(x) \in D_x \cap \mathcal{A}$ . If  $y \in D_x \cap \mathcal{A}$ , then g(y) = x and therefore y = f(x). Then f(x) is the unique point in the intersection of  $D_x$  and  $\mathcal{A}$ . This proves the proposition.

We need the following lemma.

**Lemma 5.14.** For each  $x \in \mathbb{D}$ , we may take a homeomorphism  $h_x : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$  such that:

- (i)  $h_x(x) = 0$  for all  $x \in \mathbb{D}$ .
- (*ii*)  $h_x = \text{id on } S^1$ .
- (iii)  $h_x$  depends continuously on x.

Proof of Theorem 1.1. From Lemma 5.14, for each  $x \in \widetilde{\Sigma}$  we may take a homeomorphism  $h_x : D \to D$  such that:

- (i)  $h_x(\rho(f(x))) = \widetilde{p}$
- (*ii*)  $h_x = \text{id on } \partial D$
- (*iii*)  $h_x$  depends continuously on x.

Then the homeomorphism  $g_x: D_x \to D_x$  defined by

(31) 
$$\rho \circ g_x = h_x \circ \rho$$

depends continuously on  $x \in \Sigma \subset L_{\tilde{p}}$ . Consider the map g defined (g is not the same function that one in previous pages) as

$$g = g_x$$
 on  $D_x$ ,  
 $g = \text{id}$  otherwise.

We have that g is univalent and preserves the leaves of  $\mathcal{F}_0$ . Moreover, in a small enough neighborhood of the divisor, g is continuous. Thus, if restricted to a small enough neighborhood of the divisor, g is a topological equivalence between  $\mathcal{F}_0$  and itself. Then, in a neighborhood of the divisor,  $g \circ h$  gives a topological equivalence between  $\mathcal{F}_0$  and  $\mathcal{F}_0$ . Therefore for some neighborhoods U and  $\widetilde{U}$  of  $0 \in \mathbb{C}^2$ , the map

$$\hat{\mathbf{h}} = \pi g h \pi^{-1} : \mathbf{U} \to \widetilde{\mathbf{U}}$$

is a topological equivalence between  $\mathcal{F}$  and  $\widetilde{\mathcal{F}}$ . Let  $P = \pi(L_p)$  and  $\widetilde{P} = \pi(L_{\widetilde{p}})$ .

Assertion. There exists a disc  $\mathcal{D}$  in P containing  $0 \in \mathbb{C}^2$ , such that  $\hat{h}(\mathcal{D})$  is contained in  $\widetilde{P}$ .

*Proof.* If  $y \in \mathcal{A}$  is close enough to E, we have that  $y \in D_x$  for some  $x \in \widetilde{\Sigma}$ . Thus, there is a disc  $\Sigma_0 \subset \Sigma$  containing p, such that for all y in  $h(\Sigma_0 \setminus \{p\}) \subset \mathcal{A}$  we have y = f(x) for some  $x \in \widetilde{\Sigma}$ . Then, from (31) and (*i*) we have that

$$\rho \circ g(y) = \rho \circ g(f(x)) = h_x \circ \rho(f(x)) = \widetilde{p}.$$

Thus  $g(y) \in L_{\widetilde{p}}$  for all  $y \in h(\Sigma_0 \setminus \{p\})$  and therefore

$$g \circ h(\Sigma_0 \setminus \{p\}) \subset L_{\widetilde{p}}.$$

Then, if  $\mathcal{D} \subset \pi(\Sigma_0) \subset P$ , we have that  $\hat{h}(\mathcal{D}) \subset \widetilde{P}$ .

Consider a neighborhood  $U' \subset U$  of  $0 \in \mathbb{C}^2$  homeomorphic to a ball and such that  $U' \cap P \subset \mathcal{D}$ . We take U' small enough such that  $\hat{h}(U') \cap \tilde{P}$ is contained in  $h(\mathcal{D})$ . Thus, making  $\tilde{U}' = \hat{h}(U')$ , it is easy to see that

$$h(\mathbf{U}' \cap P) = \widetilde{\mathbf{U}}' \cap \widetilde{P}.$$

Then,

$$\hat{h}|_{U'}:U'\to \widetilde{U}'$$

is a topological equivalence between  $\mathcal{F}_0$  and  $\widetilde{\mathcal{F}}_0$ , which satisfies the hypothesis of Theorem 1.2. Therefore Theorem 1.1 is proved. q.e.d.

Proof of Lemma 5.14. Let  $\psi : \overline{\mathbb{D}} \to [0,1]$  be such that  $\psi = 1$  on  $\{|z| \leq 1/2\}$  and  $\psi = 0$  on  $S^1$ . Let

$$\beta_r(t): [0,1] \to [0,1]$$

be a diffeomorphism with  $\beta_r(0) = 0$ ,  $\beta(1) = 1$ ,  $\beta(r) = 1/2$  and such that  $\beta_r$  depends continuously on  $r \ge 0$ . Given  $x \in \mathbb{D}$ , define the vector field

$$V_x : \mathbb{D} \to \mathbb{C}$$
$$V_x(z) = -\psi(\beta_{|x|}(|z|))x,$$

and let  $\varphi_x$  the flow associated to  $V_x$ . Then define  $h_x : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$  by  $h_x(z) = \varphi_x(1, z)$ . It is easy to see that  $h_x$  satisfy the conditions of Lemma 5.14. q.e.d.

#### References

- L. Bers, Riemann surfaces: Lectures by Lipman Bers. Notes by Richard Pollack and James Radlow, New York University, 1958.
- [2] W. Burau, *Kennzeichnung der Schlauchknoten*, Abh. Math. Sem. Ham. Univ. 9 (1932), 125–133, Zbl 0006.03402.
- [3] C. Camacho, A. Lins & P. Sad, Topological invariants and equidesingularization for holomorphic vector fields, J. Differential Geom. 20 (1984), 143–174, MR 0772129, Zbl 0576.32020.
- [4] C. Camacho & P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. Math. 115 (1982), No. 3, 579–595, MR 0657239, Zbl 0503.32007.
- [5] J. Dieudonné, Foundations of modern analysis, enlarged and corrected printing, New York, Academic Press, 1969, Zbl 0176.00502.
- [6] A. Dold, Lecture notes on algebraic topology, Berlin, Springer, 1972.
- [7] X. Gomez Mont, J. Seade & A. Verjovsky, The index of a holomorphic flow with an isolated singularity, Math. Ann. 291 (1991) 4, 737–751, MR 1135541, Zbl 0725.32012.
- [8] J.F. Mattei & D. Cerveau, Formes intégrables holomorphes singuliéres, Astérisque 97. Société Mathématique, Paris, 1982, 193pp, MR 0704017, Zbl 0545.32006.

- [9] J.F. Mattei & R. Moussu, *Holonomie et intégrales premiéres*, Ann. Sci. École Norm. Sup. (4) **13** (1980) 4, 469–523, MR 0608290, Zbl 045832005.
- [10] J. Milnor, Topology from the differentiable viewpoint, Charlottesville, University Press of Virginia, 1965, MR 0226651, Zbl 0136.20402.
- [11] C. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften 299, A Series of Comprehensive Studies in Mathematics, Springer-Verlag, 1992, MR 1217706, Zbl 0762.30001.
- [12] R. Rosas, On the topological invariance of the algebraic multiplicity of a holomorphic vector field, tese de doutorado, IMPA (2005).
- [13] W. Rudin, *Real and complex analysis*, New York, McGraw-Hill, 1987, MR 0924157, Zbl 0925.00005.
- [14] M.E. Taylor, Partial differential equations I, New York, Springer, 1996, MR 1395148, Zbl 08693.5004.
- [15] O. Zariski, On the topology of algebroid singularities, Amer. Journ. of Math. 54 (1932), 453–465, MR 1507926, Zbl 0004.36902.

Pontificia Universidad Católica del Perú Av Universitaria s/n San Miguel, Lima, Perú

*E-mail address*: rudy.rosas@pucp.edu.pe

Instituto de Matemática y Ciencias Afines (IMCA) Jr. los Biólogos 245 La Molina, Lima, Perú

E-mail address: rudy@imca.edu.pe