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Statement
When we participated in the national competition, we were told that all of the results
have been discussed in some professional books on number theory, and there have been
far better methods to solve them. We didn’t know it when we were doing the study. These
results and proofs are all got by ourselves.

Abstract

a
In this paper, we first discussed some properties of the symbol (—] to make the following discussion
k

P

more convenient. Then we used the methods of elementary number theory to discuss some basic

properties of residue of higher degree on condition that the degree K isan odd prime, 2" , pn

and any positive integer.
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Introduction
The conception of quadratic residue comes from the problem of solving quadratic
congruence. A general quadratic congruence to a particular

modulo ax® +bx + ¢ = 0(mod p) can always be converted into the basic two terms

congruence X* = a(mod p) . As for the solvability of it, Euler once got a effective criterion.

a
To be convenient, Legendre introduced the symbol {— . So, the problem is to calculate the
p

a
symbol {—j . Early in a former paper, Euler raised a conjecture. Both Legendre and Gauss

realized the importance of the conjecture for calculating the value of Legendre symbol. The



conjecture was finally completely proved by Gauss. That is the famous law of quadratic
reciprocity. Thus, the problem of calculating Legendre symbol has been completely solved.
But solving congruence equation of higher degree, even the most basic two terms
congruence, is a really difficulty in elementary number theory. In this paper, we discussed

some basic properties of two terms congruence equation Xk = a(mod p) and some related

problems with theories of congruence. Although most of these conclusions can be easily
got with algebraic number theory, we mainly used elementary methods.

Definition First we suppose that @p)=1 ¢ x = a(mod p) has solutions, we call & s

the residue of k degree modulo p , otherwise we call & the non-residue of k degree

a a
modulo p . For convenience, we introduced the symbol P k We denote Py , it

a
represents that a s the residue modulo p of degree k ; If Py , it represents

that @ is the non-residue modulo p of degree k f k=2 , then it is quadratic residue,

[aj
which we are familiar with. And at this time we can omit k , and briefly symbol it as P f

a
(a, p) >1, we denote (— = 0. This condition is special, we didn’t discuss it in this paper.
Pk

Main results

In this paper, we always postulate P as a prime. The conclusion when P =2 is commonly

a
known, (we always have (—j =1) Thus, we always postulate P as an odd prime.
k

a
1. Properties of the symbol [—
Pk

a
First, we will discuss some properties of the symbol (—j to make the following discussion
k

more convenient.

k
Obviously, we have(lj =1, (a—j =1, andif a=b(modp), (Ej =(E) )
p Kk p K p k p k



It is easy to popularize the following Euler criterion:

Theorem 1 If p =1(modk), then we have

a p1 a k-l P-
(1)[6j =l<a* =1(modp); m(;j Z > =-1(mod p).
k k

n=1

Proof : If p=1(modk), if x*=a(mod p) has solution X = X, (mod p),

-t -t
k k

p-1
then(x/) ¥ =a ¥ (modp) , thatis a* =x""=1(mod p).
p-1

@ =1(mod p)

On the contrary, , we can know
p-1

Ozx"’l—l:(xk)T ~a

1 pd
k k

~1=(x k)T— pT:(x —a)Z( ) ?(mod p)

+a

k _
Hence there must exist solutions to X' —as= O(mOd p) . And we can also know that there

X' —a=0(mod p)

are K solutions to

p-1

kz k" =0(mod p)

p-1
If p=1(modk), we havea®™ —1=(a ¥

P=n
k

p1 k-1
If(ij =-1, a* —1% O(modp), so » a* =-1(modp).
k

P h-1

k1 Pt Pt
k

n
On the contrary, ifZa k =-1(mod p), wecanknow a

n=1
-+
Pk

ajlb ab
In quadratic residue there is {— — |=| — |, thisis not surely tenable in residue of
PAP P

higher degree, next we will proof :

Theorem 2 Va,b,if(ij ,(EJ don’t both equal —1, (E) (Ej :(a_bj is always
p Kk p Kk p k p k p k

—1% O(modp), thus

tenable.
k —
Proof : If (ij =1, (Ej =1, assume that solutions of X = a(mod p) are
PJy PJ.
X=X, (mod p),solutions of x* =b(mod p) are X=X, (mod p) )



(X,X,)* = x{x5 =ab(mod p) x* = ab(mod p)

that is
SEMHIOES
is P . Here PP P is tenable.

-4
If Py Py , assume the solution to X‘ = a(mod p) is X= Xl(mOd p), if

then also has solution, that

X = X, (mod p)

k _
X = ab(mOd p) has solution, assume the solution is that is

XIZ( = ab(mOd p) . We say a” as the solutionto X' 2 =1(mod p) .
ThereforelE( Xl) = (Xl ) Xi =a-(q ) (mod p) (Xgl)k = ail(mOd P) . We can know

x; =ab(mod p) ., a*

k = =
from X, =a"ab=h(mod p) . Because there is no solution to

k

K ool gk
X" = b(mod p) , so there is also no solution to X =& "% (mod p) - Neither is

-1 k _ _ vl
(¢ -x)" =a" ‘(mod p) or =, (mod p) . But we have It is a contradiction

(a—bJ - BIGLGL
X" = ab(mod p),Hence Pk . Hence P/\P P
(-] 31 (21
If Py Py , we cannot decide whether P . For
() -) -
example: ifk:3and p:19’ we can know 19
&) ) () s) 3 (EJ =(a—bJ
19 J 19 19/, \19 3, in this condition PP P kis
(2) () -
tenable. But we can also know 19/, 19,
5 -(5) ) 515 -(5)
=|—| =-1#| — | x| — —||=| =|—
19 J 19 19/, \19 3, in this condition PP P kKis not

F6L -3
tenable. Hence, AL P is not always tenable.

2. The solvability of x* =a(mod p)

and




If Kisan odd prime

If K isan odd prime, we have (p — X)* = (=X)* = —x*(mod p) . That means the first half

of complete residue system modulo P is corresponding to the second half of complete
residue system modulo P . So we only need to discuss the first half part of complete residue
system modulo P here.

2.1.11F k =3
We have the following conclusions

Theorem 3 If p=-1(mod3) , thereis always [EJ =1, if p=1(mod3), thereare
PJs

-1 a
only pT a in the complete residue system modulo P make (—j =1 tenable.
3

Proof: If P =1(mod3), according to Euler criterion, for every &, Thereare 3 solutions

to X* = a(mod p) . For different @, the solution could not be the same. Hence there are

-1 a
only pT 2 make (— =1 ina complete residue system modulo p.
PJs

If p=-1(mod3,we have (3, p—1)=1.Therefore there is a solution to
3u+v(p-1)=1. We say them as o' Vo,

_ =l
Thena' =@ ™™D = (a“")z -(aVO )p = (a”° )3(mod P) . Hence, there always exists

solutionto X® = a(mod p) . Thus the theorem is tenable.

Thus, theorem 3 is tenable.

If p=1(mod3),we also have following conclusions:

Corollary 11f X, X, satisfy X, =1(mod p), X =1(modp), and also
X ¥ X,(modp), X ¥ Imodp), X, ¥ 1(modp), then X’ =X,(modp).
Proof : Itis easy to know from above that, X, X, aretwo different solutions to

x* +Xx+1=0(mod p). From X} =1(mod p) we have (x;)®=(x})* =1(mod p)



So X/ also satisfy X, =1(mod p). Also, because X* + X +1 = 0(mod p) only has two

solutions, X =1(mod p), x? = x,(mod p) are all impossible. Hence, X; = X,(mod p).

Corollary 2 If X satisfy x> =1(mod p), andalso X% 1(mod p), then
(x+1)°=-1(mod p), andalso (x—1)°=(x+2)*(mod p).

Proof : If X satisfies Xx®=1(mod p) and X% 1(mod p), X satisfies

x> +Xx+1=0(mod p), so (x+1)°=x>+3x*+3x+1=1+3(-1)+1=-1(mod p)
Also (X+2)° —(X=1°=(X+2-X+D)(X* +4X+ 4+ X* + X—2+ x> = 2x+1)

=3(3x*+3x+3)=0(mod p), thatis (x—1)% = (x+2)*(mod p)

Corollary 3 Ifthereis X’ =1(modp), x;=1(modp), and X % X,(mod p),
X, % I(mod p), X, ¥ I(modp), 1<x,<X,<p-1, then X +X,=p-1.

Proof : From Corollary 1, thereis X, + X, = X, + X = —1(mod p) .

-1
If X, X, > pT , then according to Corollary 2, (X, +1)° =-1(mod p),

(X, +1)°® = -1(mod p) .Because X, +1,X, +1,> pz_l, so

p_(Xl +1)1 p—(X2 +1) <

, also

p-1
2
(p —(x 4—1))3 =1(mod p), ( p—(X, 4—1))3 =1(mod p), thisis contradictory to

p-1

XX and X, X, > , thus thereis

x* +X+1=0(mod p) only has solutions

1< X1<T_1’ 1<x,<p-1,

Thus X1+X2<p_l 1:M
2 2

, thus X, +X,=p-1.

2.1.21f K isanoddprimeand Kk >3
We can reach similar conclusions:

Theorem 41f p% 1(modk) , (EJ =1 istenable;if p=1(modk), there are
PJx




a
a in complete residue system modulo P make (—J =1 tenable.
K

Proof :If p El(mOd k), according to Euler criterion, for every ad There are k solutions
x* = a(mod p) . .
to . For different a, the solution could not be the same. Hence there are
p-1 [ij —1
only k @ make P in a complete residue system modulo P .

¢ P¥ 1(modk) (k,p-1) =1

,we have . Therefore there is a solution to

uk +v(p-1) =1

. We say them as Uo: Vo .
1 _ ;Ugk+ve(p-1) _( Uy )k ( Vo )P—l :( Uo
Then? =@ =\a a =\a )k(mOd P) . Hence, there always exists

k _
solution to X = a(mOd p) . Thus the theorem is tenable.

We can also popularize this Corollary:

. k _ .
Corollary4|f Xi(|21,2,-..’ k—l)meetxi —l(mOd p)(lZl,Z,..., k_l)and

X, % 1(mod p) Vi jij=12.. k-1 X % x;(mod p)

) . Then

v'!J(IlJ:]"zi"" k_l), Eln(n:]-,Z;..., k—l)' 9Xin EXJ(mOd p)
Proof : Itiseasy to know from above that X, arethe Kk —1 solutionsto

K
ZXk_i =0(mod p) . From X =1(mod p) there is (x)* = (x)* =1(mod p),

i=1

O = (%) =4(mod p), ..., (X H*=(x)"=1modp), so

K
also satisfy X* =1(mod p) . Also because ZXK" = 0(mod p) only has
i1

k-1 solutions, Vie[2,k—1] and i€Z, x{=1(modp) andto Vi, je[2,k-1],
i,jeZ and i#j, X =x'(mod p)areallimpossible, thus

Vi, j (i j=12... k-1) 3nn=12,.., k-1, 2% =x;(modp)

. K _ .
Corollary5|f Xi(|21,2,-..’ k—l)meetxi —l(mOd p)(lZl,Z,..., k_l)and



X % X;(mod p)

X % 1(mod p). Vi# j(i,j:l,Z,..., k-1 . then we have

),

x

-1

k-1 k-1 X

x; =—1(mod p) ZX =1(mod p) 2~ _1(mod p)
i=1 , ij=1 o, i X ,
k-1

X, =1(mod p)

Proof : Itis easy to know from above that X; are the k=1 solutions to

k . k-1 k-1
Zxk"zo(mod p) (X=%)=XT=D"% x4 D XX X
i=1 . Therefore = =1 i, jsk-1
k-1
k-1 Xl k-1 k-1
= +Hx X= Zx (mod p) x, = —1(mod p)
= = .Hence i< ,
k-1
el 1% k-1

k-1
> %X; =1(mod p) )1( =-1(mod p) [ ]x =1(mod p)
i j=1 = i=1 .

’ ’ ’

2.21f k=2"

Ifk =2", because (p—X)? =(=x)? =x?, thatisthe first half of complete residue

system of 2" degree modulo p is corresponding to the second half of complete residue
system of 2" degree modulo P . So we only need to discuss the first half part of complete

residue system modulo P here.

So we only need to discuss the first half part of complete residue system of 2" degree

modulo P here.

1.2.11f n=1k=2

This is the quadratic residue that we are familiar with. Theories of it is already quite perfect, here

we will add some more.

-1
Theorem5 : To V X,X, X ¥ X,(modp), and 1<X <X, < p2 , thereis

x; % x;(modp).if p=-1(mod4), to V X,X, X ¥ X,(mod p),and also, we all



have X% —x;(modp).if p=1(mod4),to V¥ X, 3 X,,andalso X, ¥ X,(mod p),
make X/ =-X5(mod p) tenable.

Proof : Assume 3 X, X,,andalso X, ¥ X,(mod p), make X/ =X;(mod p) tenable,
then | X2 — X7 = (X, + X )(X, = X,), take 1<x <X, <p-1,

thenl< X, —X, < p-1, 1<X,+X% <2(p-1), so X,+X = P.Also because
(p—x)>=(-X)>=x", so p=2X,=2X,, thisiscontradictory tothat P isan odd
prime. Hence, thereisno X, X, , % % X,(modp), make X =Xx5(modp) tenable.
Assume 3 X,X,, and X ¥ X,(modp), make X =-x;(mod p) tenable,

then p| X + X7, because pisanoddprime, P =1(mod4);on the contrary, if

p=1(mod4), DT—]- =0(mod?2). If there is (i] =1, thenthereis
p

L Pt pad
2 2 2

a2 =1(modp), andalso (-a) 2 =a 2 =1(modp), thatis [_—aj =1. Proofis
Y

finished.

From above we can know that, if p=-1(mod4), absolute value of quadratic residue
modulo p canrange through the first part of complete residue system modulo p , but the
opposite numbers are not its residue at the same time . And if p=1(mod4), absolute
value of quadratic residue modulo p cannot range through the first part of complete residue

systemmodulo p , but the opposite numbers are among residue modulo P . Because

2
n
(— =1, we can have the following corollary:
p

2 2
Corollary 6 If p=-1(mod4), [_n jz—l.lf p =1(mod 4) i, (_n j:1.that
p p

_n? Pl -1 =
i{ J:(_D 2 specially, if N=1, thereis (_]:(_1) 2.
P p



Theorem6If p=-1(mod4), a

(o2 atpinen)=( 21

p=1(mod4), aE(pT—lj” or _(p4 j(modp) (neN) ( j

2
Proof : If p=—1(modd), (Bgijzzﬁfi( D————{modp) that

is X = p——i_l(mod P) must have solution. If [E] =1, (a—j = (EJ =1, that
4 p Y Y

(p+1 ‘) o . o
is 4 neN is also quadratic residue modulo P, also 1 is quadratic residue modulo

+1Y'
p, thus (ij (n € N) are all the quadratic residue modulo P .

1Y p-1 1
If p=1(mod4), (DT] =pT(p—1)E—pT(m0d p), that

-1
is X° = —pT(mOd P) must has solution. According to Theorem1. 1.1 (2) ,

X% = p—_:L(mod p) also has solution. If (i] =1, (a—J = (EJ =1, that
4 p P P

-1y = \
is(p j ,_[ p4 j (ne N ) is also quadratic residue modulo P, also,1, -1is

4

p;lj (n IS N) are all the quadratic

—-1Y\"
quadratic residue modulo P . Thus, (p4 j ,—[

residue of .

But whethera = (pTHj (modp)(neN). a= (pT_lj or

_(DT—]-] (mod p) (n € N) is also the necessary condition of (%j =1 when

p=-1(mod4). p=1(mod4) (3] =1, thisis still a conclusion that we have not
P

proved in this paper.



Theorem 7 (ijzlﬁ p=1 or —1(modl12), [EJ=1© p=1 or —1(modl10),
P p

(1j=1© p=1or -1, 3 or =3, 9 or —9(M0d28).
p

(B) =1< p=1(mod3)

Proof : If &= 3,we can know . According to law of quadratic

2):1
o
P pT‘150(mod2)

. Therefore

p =1(mod3) { =—1(mod3)

p-1_
2 1(mod2) {p =1(mod4) _|p=-1(mod4)

or .

=-1(mod12)

p=1(mod12)

. Hence

pj e p=
== p =1(mod>5)
( 5 or P= —1(mod5) . According to law of

5-1 p-1
S, el
quadratic reciprocity, SAP . Therefore p 5 .

p =1(mods5) or P= ~1(mod5) .In addition, P = (mod 2). Hence, P = 1(mod10) or

if &= 5,we can know

p =-1(mod10)

Ej:1<:> p =1(mod7)

p=-3(mod7) . p=2(mod7)

If az?,wecan know ( or

-1p Pl
(Ej(lj:(_l) ()
According to law of quadratic reciprocity, TAP

(1}1@ @)ﬂ @jﬂ

P pT‘l _ 0(mod2) pT‘l _1(mod2)

or

. Therefore

p=1or —3or2(mod7) |p=-lor3or—2(mod7)
p =1(mod4) o p=-1(mod4) '



p=1(mod28) = p=-1(mod28) . p=3(mod28) . p=-3(mod28)

Hence
p=9(mod28) .. p=-9(mod28)

We can get a further conclusion according to the discussion above.
Theorem 8 Postulate a to be an odd prime, then:

If a=-1(mod4), p= (azlj (mod4a):>(pj 1,neN

If a=1(mod4), ps+(a4 j(mona):(pJ 1, neN

Proof: If @ =-1(mod4), according to law of quadratic reciprocity, we have

B

el [
— =1l a ors\ a . According to Theorem 6, if
p =1(mod4) =-1(mod4)

_(ax1Y P
——1(mod4) p=[ 2 j(moda)(neN):[aj_l

p-1

J-¢ >“—[( 1 j ()7 s

P
a

. According to Theorem 5,

a+1)

E(Tj (moda)(neN)

p =1(mod 4)

p E_(aTJrl]” (moda)(ne N):(gj =-1

, SO or

_ (a+1Y c
57 T

=-1(mod 4) a ~a%x —1(mod 8) 4 =1(mod2)

p aT+1 (moda) p

(aTJrl)" (mod4) p

or

_(aTHjn (moda)

_(aTHjn (mod4)

a+1)

pz(aglj (mod 4a) pz_[aTJrlj (mod4a):>[%}=l'



i a=1(mod4), (i)( j (- 1)612[)2—[( 1)E;lj2=1.50 [3}1@(3):1.
p p a

aee
According to Theorem 6, if & = Ymod4) 4 or

a-1) P)_ _(a-1Y
_[TJ (moda) (neN)j(EJ_l -« p_( 2 jor
a-1) aj_
_[TJ (moda) (neN):[EJ_l. p=1mod2) a% 1(mod8) _

p= i(aT—ljn (mod a)

_ a-1Y
aTl =1(mod?2) i(Tj =1(mod?2)

p =1(mod 2)

p= i(a_—lj (moda)

4

_(a-1Y" a-1

o=+ 271 mod2) pzi( j (mod 2a)

4 4

Hence, .
22n>2

About the solvability of X2 =a(mod p) when N>2, we have following conclusions:

Theorem91f p=-1(mod4), thereis (EJ = (—J
p 2"

Proof : According to Theorem 1.2.1(1), if p=-1(mod4), absolute value of quadratic

residue modulo p can range through the first part of complete residue system modulo p,
and the residue of 4 degree modulo P is the quadratic residue modulo P of quadratic
residue modulo P, so the residue of 4 degree modulo P is the quadratic residue modulo
the first half of complete residue system modulo P . And it is quadratic residue modulo p ,

(3),(3)
thatis | — | = —|.
P/, p
(3G GLGL — (LG
In the same way thereis | — | =| — |, — =|—1, ... , — =|— .
pg p4 p16 pg pzn pZH
racimvar (3] <(3)
By induction, there is, | — =|—].
p 2n p



If p=1(mod4), opposite numbers in residue modulo P always exist at the same time.
But thereis X° = (—x)*(mod p), sowhen N increases, the opposite numbers in

residue of 2" degree will become the same value in the residue of 2" degree, but

this will not absolutely cause the opposite numbers in residue of higher degree to disappear.
Following will be the proof :

_l —l n n
Theorem10 If V 1<x < P thereis 1< x, < P make X; =-x5 (mod p)

tenable. Then we have p=1(mod2"™?).

-1 -1
Also,if p=1(mod2™), V1<x, SpT thereis 1< X, < p2 make
Xl2n = —X2zn (mod p) tenable.
2" 2" __AM
Proof : IfX1 =Xz (mod p) , Then we can assume p=2"t+1 and Uis an odd number .

Then (Xlzn ) = <_ X22n ) - _(X22n )(mOd P) , Xlznt = _Xgnt(mOd P) .Suppose M=N then

t 2™t o _ 2"t [y2™t _
- (Xl )2 =1(mod p) , X5 = (XZ )Z =1(mod p) . It is contradictory to
t

n

X;
X" =" (MU P) tperefore M=n+1 P=1Lmod2™")

On the contrary, if p=1(mod2""), ifthereis Xl2n =a(mod p), then according to

L_l
Euler criterion, which we will popularize later, thereis a 2* =1(mod p), and

P pd
because p =1(mod2™), so o ! =0(mod2), so (-a)? =a? =1(modp),
that is Xl2n =-—a(mod p) also has solution, thatis 3X, that satisfies
x2' =—x2 (mod p).
p-1 p-1
1SX1S— 2" 2" <X Sp—l
Now we assume 2 KX =% (mod p) Jf 2 ’ , then

(P=%)" =(=%)" =% (modp) X =-x; =—(p—x)" (modp) ,

[EN

1< p—xzsp—_l 1<x, <P

2 , that is there always exists X, 2 , meet

X;' ==X (mod p).



Proof is finished.

2.31f kis q" (Qisan odd prime)
Similar to the discussion about Kk =2" above, we can conclude some properties
whenk = q” . The properties have some differences when the index is odd or even. The

condition when n=1k = q” has been discussed in 1. 1. Here we always postulate N> 2.

Theorem 111f p % 1(modq), then [Ej =1.
Py

Proof :If p%* 1(modq), according to theorem 1.3.1(1), residue of ( degree modulo

P equal complete residue system modulo P, and residue of q2 degree modulo

P equal residue of q2 degree of residue of q2 degree modulo P, thatis residue of

(q degree of complete residue system modulo, it is still complete residue system modulo

P . By conduction, we can know that residue of q” degree modulo P equal complete

. . a a
residue system modulo P . Thatis (—j = [—J =1
P g P/,

Theorem 12 If p=1(modq") but p* 1(modq™™), ifm=>n, thereis

.G

Proof : If p=1(modq") but p% 1(modq™), if x,X, satisfy xI % xJ (mod p)
but x4 =xJ (modp), that is(xlqn )q = (xg” )q (mod p),  assume

x¥ =ax? (mod p), because X! % xJ (modp), soazx 1(modp),

then(xf" )q = (axgn )q = aq(xgn )q (mod p), and because (xlqn )q = (xg” )q (mod p),

soa’ =1(mod p), inthe same way, assume XJ =bx" (mod p), there is

b% =1(mod p), also, thereis (a™)? =1(mod p), (b™)* =1(mod p), here me N



and 1<m<qg-1,among a",b™ thereareatleast q—1 numbersaren’t congruent to

each other, thus, to Va thereis a* =1(mod p). But here qun =1= Xgn (mod p), it’sa
n\d n

contradixtion, thus (qu ) % (X;JI )q(mod p).

In residue of ( " degree, the numbers that aren’t congruent to each other are still not

congruent to each other after multiply itself ( times. Hence, the theorem is tenable.

2.4 1fK is a positive integer which is not smaller than 2

n
Now we popularize K to a positive integer that is not smaller than 2.  Assume K = H pimi ,
i-1

a . .
it is easy to know that the necessary condition of (—] =1 isto Vie[lL,n] and ieZ,
k

a a
[—j =1. Otherwise, if (—j =-1, thatis
P/ pp P/

mj mj
x"" =a(mod p) hasnosolutions, thenXx* = (x%)” =a(mod p)also has no solution.
n
ml
[In
_ -
Here =———.

p;’

Next we will proof that it is also its sufficient condition.
Theorem 13 The sufficient and necessary condition of

[EJ =1 isto Vie[lL,n] and i€Z, (Ej =1.
Py PJom

Proof : The necessarity has already been proved. Now we will proof the sufficiency.
First we need to proof a lemma.

Lemma If (Ej =1, [%J =1, thatisx“ =a(mod p), x“ =a(modp) all
Py, k,

a
have solution, and (K;,k,)=1.Then (—j =1, thatis x“* =a(mod p) also has
kiks

solution.

Proof : If(k;,k,) =18, mk, +nk, =1 must have solution, we can assume they are

m,m,, and S=a(p-1)+m, t=pg(p-1)+n, here a,f arepositive integers



make S,t>0, because X" =a(mod p) has solution, so
Kot — Akt — Ak , ,

X =a? =a“(mod p) also has solution, in the same way,
kikos _ A kis A4 kemy .

X =a“ =a"™(mod p) also has solution, thus

(Xs+t)k1k2 — Xklkztxkﬂ(zs = akznlaklml — ak1m1+k2n1 — a(mod p) ) that is Xklkz = a(mOd p)

has solution.
. . . a a a
The lemma is easy to be popularized: if | —| =1, |—| =1, ... , =1 =1,
p ki P ka P kn
n
. . a
and K;,K,,...... K, are relatively primes to each other, K = Hki , then [—j =1.
i=1 p k
Now back to the original problem, because plml, ;nz yeeneen ’ pr:n” are relatively primes to

each other, thus the theorem is tenable.
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