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Abstract

The Weierstrass function is the first function in history which is continuous everywhere, but
differentiable nowhere. In this paper, we prove that the Weierstrass function with a condition
weaker than Weierstrass’s original one cannot be differentiable in an uncountable dense set
in the framework of mathematical analysis.
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Preface

Weierstrass function f(x) =
∞∑
n=0

an cos(bnπx) is one of the most famous “pathological

function” in mathematical history. Weierstrass proved that if 0 < a < 1, b is an odd integer

and ab > 1+
3π

2
, then f(x) is non-differentiable everywhere for x ∈ R [1]. This broke people’s

original guess that the continuous functions are always nearly differentiable, and makes the
gradual development of real analysis from mathematics analysis.

In 1916, G.H.Hardy proved in the framework of real analysis that Weierstrass function
f(x) is non-differentiable everywhere for x ∈ R when 0 < a < 1 and ab > 1[3]. But from
the fundamental mathematics analysis, the best conclusion as far I know is that f(x) is
non-differentiable everywhere for x ∈ R when 0 < a < 1, b is an odd integer and ab >

1 +
(1− a)π

2
[2].

In this paper, we will use a different method to prove that the function f(x) is non-
differentiable at least in an uncountable dense set when 0 < a < 1, b is an integer greater
than 5 and ab > 1. (The condition is a bit weaker than Weierstrass’s original one).

The main theorem is as follow.

Theorem. Assume that the real number a and the natural number b satisfy the condi-

tion that 0 < a < 1, b > 6 and ab > 1, then the function f(x) =
∞∑
n=0

an cos(bnπx) is

non-differentiable in an uncountable dense set.

Proof

First of all, let us prove three lemmas.

Lemma 1. Suppose {an}, {bn} satisfy an > bn > x′,
bn − x′

an − bn
= k is a constant for any

positive integer n, and an → x′, bn → x′. Moreover, suppose
df

dx
(x′) = A exists. Then

lim
n→∞

f(an)− f(bn)

an − bn
= A . (1)

Proof.

lim
x→x′

f(x)− f(x′)

x− x′
=

df

dx
(x′) = A. (2)

Let x = an and x = bn respectively, we have

lim
n→∞

f(an)− f(x′)

an − x′
= A, lim

n→∞

f(bn)− f(x′)

bn − x′
= A, (3)
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since an → x′, bn → x′. From the definition of limit, for any positive number ε, there must
be an N such that for any n > N ,

A− ε < f(an)− f(x′)

an − x′
< A+ ε, A− ε < f(bn)− f(x′)

bn − x′
< A+ ε. (4)

Hence

f(an)− f(bn)

an − bn
=

f(an)− f(x′)

an − x′
(an − x′)−

f(bn)− f(x′)

bn − x′
(bn − x′)

(an − x′)− (bn − x′)

<
(A+ ε)(an − x′)− (A− ε)(bn − x′)

(an − x′)− (bn − x′)

= A+ ε
(an − x′) + (bn − x′)
(an − x′)− (bn − x′)

= A+ ε+ 2kε. (5)

Similarly,
f(an)− f(bn)

an − bn
> A− ε− 2kε. From the definition of limit,

lim
n→∞

f(an)− f(bn)

an − bn
= A, (6)

Lemma 1 is proved.

Now expand any real number x′ in base b, that is

x′ = α0 +
α1

b
+
α2

b2
+
α3

b3
+ · · ·+ αn

bn
+ · · · , (7)

where α0, α1, α2, · · · , αn, · · · are all integers such that 0 6 αi 6 b − 1 for i > 1 and αi is

not always equal to b− 1 when i is large enough. Similarly, we can also expand
1

3
in base b,

which is
1

3
=
β1
b

+
β2
b2

+
β3
b3

+ · · ·+ βn
bn

+ · · · (8)

with 0 6 βi 6 b− 1 for i > 1. Since b > 6, we always have β1 > 2 and β1 6
b

3
. We call a real

number x′ a decidable number if there are infinitely many

αn1 , αn2 , αn3 , · · · , αni
, · · · (9)

in α0, α1, α2, · · · , αn, · · · satisfying αni
< β1 − 2 or αni

> b− β1 − 3.

Lemma 2. For any decidable number x′, there are infinitely many positive integers k
such that ∣∣ cos

(
bk−1πx′ +

2π

b

)∣∣ > 0.5 . (10)

2

E17  ------  4



Proof. We only need to prove that for any decidable number x′, there are infinitely many
k such that

bk−1x′ ∈
(
m− 1

3
− 2

b
,m+

1

3
− 2

b

)
, (11)

where m is an integer decided by k. Using (8), we have

m+
1

3
− 2

b
= m+

β1 − 2

b
+
β2
b2

+
β3
b3

+ · · ·+ βn
bn

+ · · · , (12)

and

m− 1

3
− 2

b
= m− 1 +

b− β1 − 3

b
+
b− 1− β2

b2
+
b− 1− β3

b3
+ · · ·+ b− 1− βn

bn
+ · · · . (13)

Since x′ is a decidable number, we can find infinitely many numbers

αn1 , αn2 , αn3 , · · · , αni
, · · · (14)

which satisfy αni
< β1 − 2 or αni

> b− β1 − 3. Taking k = ni, we have

bk−1x′ = (bni−1α0 + bni−2α1 + bni−3α2 + · · ·+ αni−1) +
(αni

b
+
αni+1

b2
+ · · ·

)
. (15)

If αni
< β1 − 2, then let m = bni−1α0 + bni−2α1 + bni−3α2 + · · ·+ αni−1 and we have

m− 1

3
− 2

b
< m 6 bk−1x′ < m+

β1 − 2

b
6 m+

1

3
− 2

b
. (16)

Otherwise αni
> b− β1 − 3, then let m− 1 = bni−1α0 + bni−2α1 + bni−3α2 + · · ·+ αni−1 and

we have

m− 1

3
− 2

b
< bk−1x′ < m 6 m+

1

3
− 2

b
. (17)

Lemma2 is true because there are infinitely many such ni.

Lemma 3. For a given integer b ≥ 6, the set of its decidable numbers is dense in R and has
the same cardinality as R.

Proof. The set of decidable numbers belongs to R. Let C = {α | 0 6 α < β1−2 or b−β1−
3 < α 6 b− 1}. Let c be the number of elements in C. Let ϕ be a one to one correspondence
between C and {0, 1, 2, · · · , c− 1}which maps b− 1 to c− 1. Let S be the set of all x′ whose
α1, α2, · · · satisfy that either αk < β1 − 2 or αk > b − β1 − 3 for any k > 1. Obviously any
element of S is a decidable number. For x′ ∈ S, let

ψ(x′) = α0 +
ϕ(α1)

c
+
ϕ(α2)

c2
+
ϕ(α3)

c3
+ · · ·+ ϕ(αn)

cn
+ · · · . (18)

It is a one to one correspondence between S and R. Hence S and R have the same cardinality.
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Meanwhile, for any real number x =
∞∑
j=0

aj
bj

and any positive number ε, let n be large

enough such that b−n < ε. Assume the integer c satisfies c < β1 − 2 or c > b− β1 − 3, then

x′ =
n∑

j=0

aj
bj

+
∞∑

j=n+1

c

bj
(19)

is a decidable number, and

|x′ − x| 6
∞∑

j=n+1

|aj − c|
bj

6
∞∑

j=n+1

b− 1

bj
6 ε. (20)

So the set of decidable number is dense in R. Lemma 3 is proved.

Proof of the theorem. Let x′ be a decidable number. Assume that f(x) had a finite
derivative at x′, then

lim
x→x′

f(x)− f(x′)

x− x′
= A. (21)

Let ak = x′ +
2

bk
. Obviously ak → x′, so lim

n→∞

f(an)− f(x′)

an − x′
= A. On the other hand,

f(ak)− f(x′)

ak − x′
=

bk

2

∞∑
n=0

an
[

cos
(
bnπ
(
x′ +

2

bk
))
− cos(bnπx′)

]
=

bk

2

k−1∑
n=0

an
[

cos
(
bnπ
(
x′ +

2

bk
))
− cos(bnπx′)

]
+

bk

2

∞∑
n=k

an
[

cos
(
bnπ
(
x′ +

2

bk
))
− cos(bnπx′)

]
. (22)

Since cos
(
bnπ
(
x′ +

2

bk
))
− cos(bnπx′) = 0 when n > k, we have

f(ak)− f(x′)

ak − x′
=

bk

2

k−1∑
n=0

an
[

cos
(
bnπ
(
x′ +

2

bk
))
− cos(bnπx′)

]
= −

k−1∑
n=0

anbk sin(bnπx′ + bn−kπ) sin(bn−kπ). (23)

Hence

lim
k→∞

k−1∑
n=0

anbk sin(bnπx′ + bn−kπ) sin(bn−kπ) = −A. (24)
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Similarly, by setting ak = x′ +
4

bk
, bk = x′ +

2

bk
, Lemma 1 leads to

lim
k→∞

k−1∑
n=0

anbk sin(bnπx′ + 3bn−kπ) sin(bn−kπ) = −A. (25)

Therefore,

lim
k→∞

k−1∑
n=0

anbk cos(bnπx′ + 2bn−kπ) sin2(bn−kπ)

=
1

2
lim
k→∞

k−1∑
n=0

anbk sin(bnπx′ + 3bn−kπ) sin(bn−kπ)

− 1

2
lim
k→∞

k−1∑
n=0

anbk sin(bnπx′ + bn−kπ) sin(bn−kπ)

=
1

2
(−A+ A) = 0. (26)

For each decidable number x′, Lemma 2 implies that there are either infinitely many k

such that cos
(
bk−1πx′+

2π

b

)
> 0.5, or infinitely many k such that cos

(
bk−1πx′+

2π

b

)
< −0.5.

Suppose there are infinitely many k such that cos
(
bk−1πx′ +

2π

b

)
> 0.5, then for any

k ∈ N+,

k−1∑
n=0

anbk cos(bnπx′ + 2bn−kπ) sin2(bn−kπ)

> ak−1bk cos
(
bk−1πx′ +

2π

b

)
sin2

(π
b

)
−

k−2∑
n=0

anbk sin2(bn−kπ)

> ak−1bk cos
(
bk−1πx′ +

2π

b

)
sin2

(π
b

)
−

k−2∑
n=0

anb2n−kπ2

= b(ab)k−1 sin2
(π
b

)
cos
(
bk−1πx′ +

2π

b

)
− [(ab2)k−1 − 1]π2

(ab2 − 1)bk

> (ab)k−1
[
b sin2

(π
b

)
cos
(
bk−1πx′ +

2π

b

)
− π2

b(ab2 − 1)

]
. (27)

Noticing that

(
π

b sin
(π
b

)
)2

<
(π

2

)2
<
b− 1

2
<
ab2 − 1

2
, we have

1

2
b sin2

(π
b

)
>

π2

b(ab2 − 1)
. (28)
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Hence there are infinitely many k such that

b sin2
(π
b

)
cos
(
bk−1πx′ +

2π

b

)
− π2

b(ab2 − 1)
> λ, (29)

where λ =
1

2
b sin2

(π
b

)
− π2

b(ab2 − 1)
> 0 is a constant. However, λ(ab)k−1 diverges as k →∞,

which contradicts (26).

Similarly, if there are infinitely many k such that cos
(
bk−1πx′ +

2π

b

)
< −0.5, then for

each k ∈ N+,

k−1∑
n=0

anbk cos(bnπx′ + 2bn−kπ) sin2(bn−kπ)

< (ab)k−1
[
b sin2

(π
b

)
cos
(
bk−1πx′ +

2π

b

)
+

π2

b(ab2 − 1)

]
. (30)

Similar to (32), there are infinitely many k such that

b sin2
(π
b

)
cos
(
bk−1πx′ +

2π

b

)
+

π2

b(ab2 − 1)
< −λ. (31)

This also contradicts (26) since −λ(ab)k−1 diverges as k →∞.

Therefore, the function f(x) =
∞∑
n=0

an cos(bnπx) cannot be differentiable at any decidable

number. Lemma 3 implies that f(x) is non-differentiable in an uncountable dense set.
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