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Abstract

We study the algebraic dimension a(X) of a compact hyper-
kähler manifold of dimension 2n. We show that a(X) is at most
n unless X is projective. If a compact Kähler manifold with alge-
braic dimension 0 and Kodaira dimension 0 has a minimal model,
then only the values 0, n and 2n are possible. In case of middle
dimension, the algebraic reduction is holomorphic Lagrangian. If
n = 2, then - without any assumptions - the algebraic dimension
only takes the values 0, 2 and 4. The paper also gives structure re-
sults for ”generalised hyperkähler” manifolds and studies nef lines
bundles.
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1. Introduction

In this paper, we are mainly interested in non-projective hyperkähler
manifolds, especially their algebraic dimensions and algebraic reduc-
tions.

Let X be a compact Kähler manifold. The famous criterion of Ko-
daira [Ko54], Theorem 4, states that X is projective if and only if X
admits an integral Kähler class. That is, X is projective if and only if

K(X) ∩H2(X,Q) 6= {0}

in H2(X,R). Here K(X) is the Kähler cone of X, i.e., the cone consist-
ing of the Kähler classes of X. As is well known, K(X) is an open convex
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cone in H1,1(X,R) (see e.g. [GHJ03], Page 84, Proposition 14.14). In
particular, X is projective if H0(X,Ω2

X) = 0. In fact, if H0(X,Ω2
X) = 0,

then H1,1(X,R) = H2(X,R). Thus K(X) is an open convex cone of
the whole H2(X,R), whence, meets a dense subset H2(X,Q) \ {0} of
H2(X,R); one can then apply Kodaira’s criterion above. So, if X is not
projective, then X necessarily admits a non-zero global holomorphic
2-form, i.e., H0(X,Ω2

X) 6= 0. In some sense, irreducible holomorphic
symplectic manifolds (hyperkähler manifolds, for short) form the sim-
plest class of manifolds having H0(X,Ω2

X) 6= 0.

By definition, a hyperkähler manifold is a compact simply connected
Kähler manifold X admitting a holomorphic 2−form σX which is of
maximal rank at every point such that H0(X,Ω2

X) = CσX . Note that
dim X is then even, say 2n, and ∧nσX is a 2n−form without zeroes.
Though H0(X,Ω2

X) 6= 0 is just a necessary condition for X to be non-
projective, it is shown by Fujiki [Fu83-2], Theorem 4.8 (2) (see also
[Ca83], Page 413, Théorème) that both projective and non-projective
hyperkähler manifolds are dense in the Kuranishi space of X. This is
based on Bogomolov’s unobstructedness theorem [Bo78] (Theorem 1
and Corollary in Page 1464). We also note that a hyperkähler manifold
is never rigid, as H1(X,TX ) ≃ H1(X,Ω1

X) 6= 0 by σX and the Kähler
condition. So in the study of hyperkähler manifolds, it is natural and
important to study not only projective ones but also non-projective ones
and their interactions.

Let X be a non-projective compact Kähler manifold. The most basic
numerical invariant of X is the algebraic dimension. The set C(X)
of global meromorphic functions of X naturally form a field. It is a
general fact, originally due to Siegel ([Si55], Satz 1, 2) that C(X) is a
finitely generated field over C, the field consisting of constant functions
(see e.g. [Ue75], Page 24). The algebraic dimension a(X) of X is the
transcendental degree of C(X) over C.

The roles of C(X) and a(X) are, in many aspects, similar to the roles
of the pluri-canonical ring and the Kodaira dimension in birational ge-
ometry of projective manifolds. As one often studies the pluri-canonical
ring geometrically through the pluri-canonical map, one can also study
the field C(X) and the algebraic dimension a(X) more geometrically
via the algebraic reduction. By definition, ”the” algebraic reduction

f : X 99K B

of X is a meromorphic map from X to a normal projective variety B
such that

f∗(C(B)) = C(X).

We can naturally define the image and fibers of f through a resolution
of indeterminacy of f . Then f(X) = B and the fibers of f are con-
nected. Note that C(B) is the same as the rational function field of
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B, as B is projective. Thus, a(X) = dim B and 0 ≤ a(X) ≤ dim X.
There are infinitely many ways to choose the base space B. However
they are birational as their rational function fields are all isomorphic
to C(X), whence ”the” algebraic reduction f is unique up to birational
modification of B (See [Ue75], section 3 in chapter I for more detail).
When a(X) = dim X, the algebraic reduction is bimeromorphic (and
vice versa). In this case X is called algebraic or Moishezon. A fa-
mous theorem of Moishezon ([Mo66], Theorem 11) says that a com-
pact Kähler manifold X is algebraic if and only if X is projective. In
particular, non-projective and non-algebraic have the same meaning for
hyperkähler manifolds.

In dimension 2, the algebraic reduction can always be taken as a
holomorphic map from the original X (see e.g. [Ue75], Page 249).
However, in dimension ≥ 3, this is no longer true, and makes the study
of algebraic reduction for a higher dimensional manifold more difficult.
Note that, as B is projective, the algebraic reduction is always given by
a linear subsystem associated with a line bundle on X. Thus, to ask
“if one can take a holomorphic algebraic reduction from a hyperkähler
manifold X or not” is essentially the same as to ask the following:

Conjecture 1.1. Let X be a non-projective hyperkähler manifold and
L be a nef line bundle on X. Then L is semi-ample, i.e., the complete
linear system |mL| is base point free for some m > 0.

Conjecture 1.1 is quite similar to one of the major problems in the
minimal model theory; if the pluri-canonical system |mKM | of a mini-
mal model M is base point free for some m > 0 (abundance type prob-
lem). Even in dimension 4, this problem is very difficult and completely
open both in non-projective hyperkähler manifolds and in minimal mod-
els. On the other hand, if Conjecture 1.1 holds true, then the following
is an immediate consequence of Matsushita’s result ([Ma99], Theorem
2 and Theorem 1 in Addendum; see also Proposition 3.3 in section 3):

Conjecture 1.2. Let X be a non-projective hyperkähler manifold of
dimension 2n. Then its algebraic dimension takes only the values 0, n.
Moreover, if a(X) = n, then the algebraic reduction has a holomorphic
model f : X −→ B with B a normal projective variety of dimension n.
Finally f is Lagrangian, that is σX |F ≡ 0 for a general fiber of f .

Among others (see e.g. [Og07], Conjecture in section 3), Todorov
([To03], Conjectures 41 and 42) poses these two conjectures in con-
nection with mirror-symmetry, especially the Strominger-Yau-Zaslow
conjecture for hyperkähler manifolds. It would be really exciting if
one could solve Conjectures 1.1 or 1.2 by using an idea from mirror-
symmetry.

In this paper we give some significant results supporting these con-
jectures. Our main results are the following:
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Theorem 1.3. Conjecture 1.2 holds in dimension 4.

We first reduce, via deformation, our proof of Theorem 1.3 to [AC05],
Théorème 3.6, where “a version” of Conjecture 1.1 is solved for projec-
tive hyperkähler 4−folds (see ibid for the precise statement). As we
explained above, algebraic reduction and pluricanonical map have some
similarities. So, it might be worth noticing here that our proof is finally
reduced to a certain universal estimate of the pluri-canonical system of
a projective threefold ([VZ07], Corollary 0.4).

In higher dimensions, we can also solve Conjecture 1.2 up to the
existence of minimal models of certain Kähler spaces:

Theorem 1.4. Let X be a hyperkähler manifold of dimension 2n.
Then Conjecture 1.2 holds, provided that any compact Kähler manifold
Y with dimY ≤ 2n− 1, a(Y ) = κ(Y ) = 0 has a minimal model.

A general conjecture from minimal model theory says that every com-
pact Kähler manifold of non-negative Kodaira dimension should have a
minimal model.

For Theorems 1.3 and 1.4, the following a bit more technical result
will be used:

Theorem 1.5. Let X be a hyperkähler manifold of dimension 2n.
Then:

1) If the Néron-Severi group NS(X) is elliptic, i.e., negative definite
with respect to Beauville-Bogomolov-Fujiki’s form, then a(X) = 0.

2) If NS(X) is parabolic, i.e., negative semi-definite but not negative
definite with respect to Beauville-Bogomolov-Fujiki’s form, then

0 ≤ a(X) ≤ n = dim X/2 .

3) Assume that NS(X) is parabolic and a(X) > 0. Then one can
choose an algebraic reduction of one of the following two forms:

(i) f : X −→ B is holomorphic Lagrangian, in particular,
a(X) = n, or

(ii) f : X 99K B is not almost holomorphic and the general fiber
Xb (b ∈ B) is isotypically semi-simple, in particular, a(Xb) = 0
(see section 2 for the definition of the term “isotypically semisim-
ple”).

4) Assume that any compact isotypically semi-simple Kähler manifold
Y of dim Y ≤ 2n − 1, of algebraic dimension a(Y ) = 0 and of
Kodaira dimension κ(Y ) = 0 and with effective canonical divisor
KY , has a minimal model. Then Conjecture 1.2 holds.

Here we recall that a meromorphic map between compact varieties is
almost holomorphic if it is proper holomorphic over some Zariski dense
open subset of the base space. The second cohomology group H2(X,Z)
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of a hyperkähler manifold admits a natural miraculous, integral sym-
metric bilinear form, called Beauville-Bogomolov-Fujiki form ([Be83],
Théorème 5, see also [GHJ03], Definition 22.8, Corollary 23.11, Propo-
sition 23.14)

qX : H2(X,Z)×H2(X,Z) → Z.

This naturally induces a bilinear form on the Néron-Severi group
NS(X). According to the signature, NS(X) falls into the three cases,
elliptic, parabolic (the cases in Theorem 1.5) and hyperbolic, which is
the case where NS(X) has an element H such that (H2) > 0 with
respect to the Beauville-Bogomolov-Fujiki form. However, NS(X) is
never hyperbolic if X is non-projective, by the following deep result
due to Huybrechts ([Hu99], Theorem 2 in Erratum, see also [GHJ03],
Proposition 26.13):

Theorem 1.6. NS(X) is hyperbolic if and only if X is projective.

It is worth noticing that, contrary to our proof of Theorem 1.3, The-
orem 1.6 was proved by deforming X to “highly” non-algebraic hy-
perkähler manifolds (see ibid).

According to the Beauville-Bogomolov-Kobayashi decomposition theo-
rem ([Be83], Théorème 1), hyperkähler manifolds, Calabi-Yau mani-
folds (in the strict sense) and complex tori form the building blocks of
compact Kähler manifolds with vanishing first Chern class. In sharp
contrast, Calabi-Yau manifolds X of dimension n ≥ 3 are projective, as
H0(X,Ω2

X ) = 0, hence always a(X) = dimX, and for complex tori X
of dimension n ≥ 2, the algebraic dimension takes all values between 0
and n ([We58], Page 139, Proposition 10).

Parts (1) and (2) of Theorem 1.5 will be proved in section 3; parts (3)
and (4) in section 4 and Theorem 1.3 finally in section 5. Theorem 1.4
is a special case of Theorem 1.5. All these sections make essential use
of section 2, which contains structure results on meromorphic fibrations
on compact Kähler manifolds, in particular, on those manifolds ad-
mitting a unique holomorphic 2-form which additionally is generically
non-degenerate (Theorem 2.4 and Corollary 2.5). The final section gives
some results on nef line bundles on hyperkähler manifolds. Theorem 6.1
there is closely related to Conjecture 1.1. In fact, we show that a non-
trivial line bundle with a smooth metric of semi-positive curvature (a
stronger assumption than nefness) has Kodaira dimension κ(L) = a(X).
In particular, κ(L) ≥ 0, so some multiple of L must have a section.
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2. Fibrations on generalized hyperkähler manifolds

In this section we prove some general structure theorems on gener-
alised hyperkähler manifolds.

Conventions and Notations 2.1. (1) By X,X ′,X
′′

, . . ., we denote
n-dimensional compact irreducible complex spaces which are bimero-
morphic to compact Kähler manifolds. The algebraic dimension
([Ue75], Page 24) is denoted by a(X). We have the algebraic reduc-
tion (only defined up to obvious bimeromorphic equivalence, see [Ue75],
Page 25)

f : X 99K B .

We always take B to be normal projective and often we will choose B
smooth.

(2) A fibration f : X 99K B is a dominant meromorphic map with
connected fibers. A fiber of f is a closed analytic subset of X defined
naturally through a resolution of indeterminacy of f . The fibration f
is said to be almost holomorphic if f is proper holomorphic over some
Zariski dense open subset of B, or equivalently, generic fibers (see (3)
below) do not meet the indeterminacy locus of f . If B is not uniruled,
then any fibration f : X 99K B is automatically almost holomorphic.
Indeed, as each irreducible component E of the exceptional divisor of a
resolution of indeterminacy of f is uniruled, E can not dominate B if
B is not uniruled.
The fibration f is said to be trivial if dimB = 0 or dimB = n.

(3) A point b in B is said to be generic or general if it lies outside of a
countable union of (suitable) proper closed analytic subsets of B. We
denote by Xb the fiber of f over a generic b ∈ B.

(4) Recall ([Fu82], section 2, the third Definition, or [Fu83], Page 237)
that a compact Kähler manifoldX is said to be simple ifX is not covered
by positive-dimensional irreducible compact proper analytic subsets. By
definition, if X is simple and dim X ≥ 2, then necessarily a(X) = 0.

(5) Two complex spaces X and X ′ are commensurable if there exist a

complex space X
′′

and generically finite surjective holomorphic maps
X

′′

→ X and X
′′

→ X ′. This is easily seen to be an equivalence
relation.
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Notice that two projective varieties are commensurable if and only if they
have the same dimension. But for non-algebraic X, this equivalence
relation is very restrictive. For instance, if X is simple and if X ′ is
commensurable to X, then X ′ is simple, too.

(6) We say (after [Fu82], section 2, the forth Definition) that X is semi-
simple if it is commensurable to the product of simple manifolds, and
that X is isotypically semi-simple if it is commensurable to the product
Sk for some simple S and some k > 0.

Definition 2.2. Let f : X 99K B be a fibration from a compact
(connected) Kähler manifold X.
We say that f = h◦ g is a factorisation of f if g : X99KS and h : S99KB
are fibrations with f = h ◦ g.
This factorisation is said to be trivial if dimS = dimX or dimS =
dimB. The fibration f is said to be minimal if any factorisation of
f is trivial. The variety itself X is minimal if the constant fibration
X → {pt} is minimal.

The following easy observation is essential:

Theorem 2.3. Let X be a compact Kähler manifold of dimension
2n and suppose that h2,0(X) = 1, and the corresponding holomorphic
2−form σ (which is unique up to a scalar) satisfies σn 6= 0. Then the
following assertions hold.

1) If f : X99KY is a fibration with dimY < dimX, then Y is Moishe-
zon.

2) The algebraic reduction f : X99KB is minimal.
3) If a(X) = 0, then X is minimal.
4) In particular, hyperkähler manifolds X with a(X) = 0 are mini-

mal.

Proof. Only (1) needs to be proved; the other statements are trivial
consequences of (1). We show (1) by argue by contradiction. Suppose
that f : X99KY would be a nontrivial fibration over non-algebraic Y .
Then by a resolution of singularities and a resolution of indeterminacy,
we may assume without loss of generality, that Y is smooth and f is
holomorphic, i.e., f : X −→ Y is a surjective holomorphic map from a
compact Kähler manifold X to a compact non-algebraic manifold Y . By
definition, Y is then of class C in the sense of Fujiki (see, e.g., [Fu83],
p.235). Thus Y is bimeromorphic to a compact Kähler manifold by
[Va89], p. 51, Theorem 5. Hence, again by a resolution of indetermi-
nacy (twice), we may assume without loss of generality, that Y is Kähler
and f is holomorphic. As Y is now Kähler but non-algebraic, it follows
that h2,0(Y ) > 0 by [Ko54], Theorem 4 (see also the second paragraph
of the introduction). Any non-zero holomorphic 2−form on Y lifts to a
non-zero holomorphic 2−form on X by f . On the other hand, by our
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assumption, any non-zero holomorphic 2−form on X is generically of
maximal rank. Thus, we would have dimY = dimX, a contraction to
dim Y < dim X, the assumption made in (1). This completes the proof
of (1). q.e.d.

The main result of this section is:

Theorem 2.4. Let X be a non-projective, compact Kähler manifold,
f : X99KB be a minimal fibration. Suppose dimX > dimB. Let Xb be
a general fiber of f . Then

1) Xb is either Moishezon or isotypically semi-simple, in which case
a(Xb) = 0.

2) Furthermore, if Xb are Moishezon, then f is almost holomorphic
and Xb is an abelian variety.

Theorem 2.4 will be proved at the end of this section.

By combining Theorem 2.3 (2) and Theorem 2.4, we get:

Corollary 2.5. Let X be a non-projective, compact Kähler manifold
of dimension 2n with h2,0(X) = 1, carrying a holomorphic two-form
σ such that σn 6= 0. Assume X is non-projective. Then the following
assertions hold.

1) Let f : X 99K B be the algebraic reduction and Xb be a general
fiber of f . Then either

2a. Xb is isotypically semi-simple or
2b. f is almost holomorphic, and Xb is an abelian variety.

2) In particular, if a(X) = 0, then X is isotypically semi-simple.

We can obtain the following interesting result originally due to Fujiki
([Fu87], Proposition 5.16) also as an application of Theorem 2.4:

Corollary 2.6. Let X be a simply connected compact Kähler mani-
fold of dimension 2n with h2,0(X) = 1, carrying a holomorphic two-form
σ such that σn 6= 0. Assume moreover that X does not contain any ef-
fective divisor. Then X is simple.

In particular, any hyperkähler manifold without effective divisors is
simple and so does the generic member of the Kuransihi family of (any)
hyperkähler manifold.

Proof. Since X has no effective divisors, we have a(X) = 0. Thus
X is isotypically semi-simple by Theorem 2.4. Specifically there exist
generically finite meromorphic maps u : Z → X and v : Z → Sk,
with Z smooth, and S simple. Our claim comes down to prove that
u is bimeromorphic and that k = 1. Since X has no divisor, u is
unramified, hence bimeromorphic, X being simply connected. Thus
h2,0(X) = h2,0(Z) = 1. Since S is non-algebraic, for the same reason as
in the proof of Theorem 2.3 (1), one has h2,0(S) ≥ 1, hence necessarily
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k = 1. For the last statement, recall that generic hyperkähler manifolds
in the Kuranishi family are of Picard number 0 ([Ca83], Page 413,
Théorème, see also [Og03], Corollary 1.3). In particular, they are of
algebraic dimension zero and do not contain any effective divisors.

q.e.d.

The assumption thatX does not contain any divisors cannot be removed
in (2.6). In fact, the hyperkähler 4-fold S[2], with S a K3 surface,
a(S) = 0, is not simple but a(S[2]) = 0.

The rest of the section is devoted to the proof of Theorem 2.4. We
shall need the following two elementary lemmas, which are relative ver-
sions of results similar to [Fu82] (section 2, Theorem 1 and its proof)
in a simplified form. We first recall some notions needed in the proof.

A covering family of X will be a compact irreducible analytic subset
S ⊂ C(X) of the Chow variety (or Barlet-space) C(X) of X, such that
if Z ⊂ S×X is its incidence graph, with natural projections p : Z → X
and q : Z → S, then p is surjective, and the generic fiber of q is ir-
reducible. In other words, X is covered by the generically irreducible
cycles Zs, s ∈ S. We call m = dimZs the dimension of the family S.
If f : X 99K B is a fibration, we denote by C(X/B) the closed analytic
subset of C(X) consisting of those points s ∈ C(X) such that the corre-
sponding analytic compact pure-dimensional cycle Zs of X has support
contained in one fiber Xb of f . If S ⊂ C(X/B) is a covering family of
X, the map f∗ sending s to b = f(Zs) is a meromorphic dominant map
f∗ : S99KB.

Lemma 2.7. Let X be a compact Kähler manifold and f : X99KB
be any fibration with a(Xb) = 0. Let Z −→ S ⊂ C(X/B) be a nontrivial
covering family of X over B. Assume that dimZs = m (s ∈ S) is
maximal among the dimensions of nontrivial covering families of X
over B. Then

1) dimZ = dimX. In particular, only finitely many of the Z ′
ss pass

through the generic point of X.
2) Sb is simple, and no proper closed analytic subset of Sb is a cov-

ering family of Xb.
3) Sb is the union of finitely many irreducible components of C(Xb).

Proof. (1) By definition of Z, we have dim Z ≥ dim X. We shall
show dim Z = dim X by argue by contradiction. Assume that dimZ >
dimX. Then also dimZb > dimXb so that we may assume dimB = 0.
The fibers of p : Z → X are Moishezon by [Ca80], Page 8, Théorème.
(Note that X and Z here are denoted by Z and X there.) Thus we can
find a covering family of S by curves (Cv)v∈V . For general v ∈ V we
define

Wv := p(q−1(Cv)).
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This is an irreducible compact analytic subset of X and defines a cov-
ering family (Wv)v∈V of X with dimWv = m + 1. As Wv ⊂ X, we
have m + 1 ≤ dim X. If m + 1 < dimX, then this would contradicts
the maximality of m, and we are done. If m+ 1 = dim X, then the Zs

(s ∈ S) form family of divisors in X. This contradicts a(X) = 0, and we
are done. This completes the proof of (1).
(2) The same argument shows that Sb is simple. In fact, if Sb were not
simple, then in every fiber we find a covering family of proper subva-
rieties and in total we obtain a nontrivial covering family (Cv)v∈V of
S and define Wv as above. By the maximality of m, we must have
Wv = X for all v ∈ V . But then (Zs)s∈Cv

is a nontrivial covering family
of X. Let Z ′ := q−1(Cv) be the graph of this covering family. Then
dimZ ′ = dimX = dimZ. Thus by irreducibility we obtain Z ′ = Z and
Cv = S, a contradiction.
(3) The third assertion is an obvious consequence of the second.

q.e.d.

Lemma 2.8. Let k ∈ N and let Sj be simple manifolds for 1 ≤ j ≤ k.
Put

S = S1 × · · · × Sk

with projections pj : S → Sj. More generally, for a given subset J =
{j1, . . . , jh} ⊂ {1, 2, . . . , k}, let

pJ : S → SJ = Sj1 × . . . × Sjh

be the projection. Let Y ⊂ S be an irreducible compact analytic subset
such that pj(Y ) = Sj for all j.
There exists J such that pJ : Y → SJ is surjective and generically finite.
In particular, Y is commensurable to SJ and is therefore semi-simple.
In particular, if Sj ≃ Sk for all j, k, then Y is isotypically semi-simple.

Proof. Let K = {1, . . . , k− 1}. If pK(Y ) 6= SK , we proceed by induc-
tion on k. Thus we may assume that pK(Y ) = SK forK = {1, . . . , k−1}.
If pK : Y → SK is not generically finite, let S′

K be its Stein factorisation
with map p′K : Y → S′

K , and define a meromorphic map

ϕ : S′

K99KC(Sk)

by sending a general s ∈ S′

K to pk(p
′

K
−1(s)). The image of ϕ gives a

covering family of Sk. Because Sk is simple, we must have ϕ(s) = Sk

for all s. Thus Y = S (in which case we take J = {1, . . . , k}).
q.e.d.

Proof of Theorem 2.4. Let af : X99KY, h : Y 99KB with f = h ◦ af
be the relative algebraic reduction of f (see [Ca81], Corollaire 2 or
[Fu83], Page 238, second Definition and Proposition 2.1, for definition
and existence). By definition, for general b ∈ B, the induced map
Xb99KYb is the algebraic reduction of Xb. Since f is minimal, either
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Y = X up to bimeromorphic equivalence andXb is Moishezon, or Y = B
up to bimeromorphic equivalence and a(Xb) = 0.

(1) First, we consider the case where a(Xb) = 0. We need to show that
Xb is isotypically semi-simple. If Xb is simple, we are already done. If
Xb is not simple, let S ⊂ C(X/B) be a nontrivial covering family of X
with m = dimZs maximal. By Lemma 2.7, Sb is simple and p : Z → X
is generically finite onto X. Let δ be the degree of p and

ϕ : X99KSymδ(S/B)

be the meromorphic map sending a general x ∈ X to q∗(p
−1(x)). Here

Symδ(S/B) denotes the subspace of Symδ(S) consisting of δ-tuples of
S contained in some fiber of S over B. We adopt a similar convention
for (Sδ/B).
Since f is minimal, this map is generically finite onto its image Y0 ⊂
Symδ(S/B). Let Y ⊂ (Sδ/B) be a main component of the inverse image
of Y0 under the natural map (Sδ/B) → Symδ(S/B). Then Y maps
surjectively onto S under all projections from (Sδ/B) to S; otherwise
there would exist some irreducible proper compact analytic subset S′ ⊂
S parametrising a covering family of X, contradicting Lemma 2.7. From
Lemma 2.8 we conclude that Y , and hence so X, is commensurable to
(Sk/B) for some k ≤ δ. The first assertion of Theorem 2.4 is thus
established.

(2) Next, we consider the case where Xb is Moishezon. We need to
show that f is almost holomorphic and Xb (b ∈ B general) is an abelian
variety. By the minimality assumption of Theorem 2.4 and Theorem
2.3 (1), it follows that f is the algebraic reduction of X.
First we show that f is almost holomorphic (by argue by contradiction).
In fact, if otherwise, one of the exceptional divisors, say E, of a reso-
lution of indeterminacy of f , dominates Y . Note that E is birational
to the blow up of some subvariety, say C, of (a bimeromorphic modi-
fication of) Xb. By definition, any bimeromorphic modification of Xb

is algebraic. Thus, C is algebraic as well (See [Ue75], Corollary 3.9).
Thus E is also algebraic. In particular, any general two points of E can
be joined by a finite chain of algebraic curves. The same is true for Xb

(b ∈ B) being general, as Xb are algebraic. As E dominates Y , any gen-
eral two points of X is then joined by a finite chain of algebraic curves.
However, X would then be algebraic by [Ca81], Page 212, Corollaire,
a contradiction to our assumption that X is not algebraic. Hence f is
almost holomorphic as claimed.
Let us show that Xb is an abelian variety. By [Fu83], Theorem 1, Xb is
either a complex torus, whence an abelian variety (as Xb is algebraic),
or a unirational manifold.
We have to exclude the second case. If κ(X) ≥ 0 - and this is sufficient
for all our applications - Xb cannot be uniruled and we conclude. In
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general, if Xb is unirational, then [Fu83], Proposition 2.5 implies that
X is projective, which is excluded again by our assumption. q.e.d.

We now consider the restriction of holomorphic 2-forms to fibers.

Corollary 2.9. Let X be a compact Kähler manifold and f : X99KB
be a fibration. Assume that the restriction of any holomorphic 2-form
on X to the fiber Xb for generic b ∈ B vanishes. Then

1) Xb is Moishezon for general b.
2) If f is the algebraic reduction of X and a minimal fibration, then

f is almost holomorphic, and Xb is an abelian variety.

Proof. The first statement is a lemma due to C. Voisin (see [Ca06],
Proposition 2.1). The second follows from Theorem 2.4. q.e.d.

3. Basics on hyperkähler manifolds and first results

We begin by fixing some notations. For the rest of the paper we
consider a hyperkähler manifold X of dimension 2n, that is, a simply
connected compact Kähler manifold admitting a holomorphic 2−form
σ which is of maximal rank at every point (hence σ2n is a 2n−form
without zeroes), such that H0(X,Ω2

X ) = Cσ.
The non-degenerate symmetric bilinear form, constructed by Beauville
([Be83], Théorème 5, see also [GHJ03], Definition 22.8, Corollary
23.11, Proposition 23.14) will be denoted by

q = qX : H2(X,Z)×H2(X,Z) → Z.

This form qX has signature (3, 0, b2(X) − 3), more precisely, it is pos-
itive definite on R〈Reσ, Im σ〉 and of signature (1, 0, h1,1(X) − 1) on
H1,1(X,R), and q(η) > 0 for each Kähler class η. We shall use the
shorthand q(a) = q(a, a). Let

P(X) ⊂ H1,1(X,R)

be the positive cone of X, that is, the connected component of

{x ∈ H1,1(X,R) | q(x) > 0}

containing the Kähler classes. As qX is of signature (1, 0, h1,1(X)) on
H1,1(X,R), the signature of qX on the Néron-Severi group

NS(X) = H1,1(X) ∩H2(X,Z)

is one of the following.

• (1, 0, ρ − 1) (hyperbolic case);
• (0, 1, ρ − 1) (parabolic case);
• (0, 0, ρ) (elliptic case).
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Here ρ is the Picard number of X, i.e., the rank of NS(X).
As we mentioned in the introduction, Huybrechts shows that X is pro-
jective if and only if NS(X) is hyperbolic ([Hu99], Erratum, Theorem
2). So we are interested in the parabolic case and the elliptic case.

Theorem 3.1. Let X be a hyperkähler manifold.

1) If NS(X) is elliptic, then a(X) = 0.
2) If 0 < a(X) < 2n, then NS(X) is parabolic. Let ℓ ∈ NS(X) be

the unique primitive isotropic vector of NS(X) with qX(ℓ, η) > 0
for a Kähler class η. Then there is a line bundle L whose linear
system defines the algebraic reduction, such that c1(L) ∈ Z>0ℓ. In
particular qX(L) = 0.

Proof. Let X be a non-projective hyperkähler manifold and f : X 99K

B be the algebraic reduction with B normal projective. If dim B > 0,
i.e., a(X) > 0, then there is a line bundle L on X and a linear subsystem
Λ ⊂ |L| such that f = ΦΛ (the meromorphic map associated with Λ) and
such that any two general D1,D2 ∈ |L| have no common component.
In fact, L is given by a “pull-back” of a very ample line bundle on B
(cf. setup (3.2) below). By the explicit description of qX (see [Be83],
Théorème 5), one has, up to positive constant multiple:

qX(L,L) =

∫
X

c1(D1)c1(D2)(σ ∧ σ)n−1 =

∫
D1∩D2

(σ ∧ σ)n−1 ≥ 0 .

Thus NS(X) is not elliptic if a(X) > 0. This proves (1). As X is not
projective by our assumption, NS(X) is not hyperbolic. Thus NS(X)
has to be parabolic (if 0 < a(X)). Thus, by the inequality above,
qX(L) = 0. Hence

c1(L) ∈ −P(X) ∪ (P(X) \ {0}) .

Here P(X) is the closure of the positive cone. As L is non-zero effective,

this implies c1(L) ∈ P(X) \ {0} and qX(L, η) > 0, simply by reasons of
signature (or the Cauchy-Schwarz inequality). This proves (2).

q.e.d.

Setup 3.2. (1) We shall assume that 0 < a(X) < 2n. Thus X is
not projective and NS(X) is parabolic. We consider “the” algebraic
reduction

f : X 99K B.

From the previous section (Corollary 2.5) we recall that the general
fiber is isotypically semi-simple or that f is almost holomorphic and the
general fiber is abelian.
We always take B to be normal projective and often we will choose B
smooth, too. Let

π : X̃ → X
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be a resolution of indeterminacy of f so that the induced map

f̃ : X̃ → B

is holomorphic.

(2) We fix a very ample line bundle A on B and set

L = π∗(f̃
∗(A))∗∗.

Then L is an invertible sheaf, i.e., a holomorphic line bundle on X. For
D ∈ |f∗A|, we have π∗D ∈ |L|. Here π∗D is the pushforward of D as
codimension one cycle, which is necessarily a Cartier divisor on X (as

X is smooth). Thus, we find an effective divisor E on X̃ such that

π∗(L) = f̃∗(A) + E.

We set L̃ = π∗(L).

(3) In all what follows η will always denote a Kähler form on X. We set
η̃ = π∗(η).

By the results of section 2, we may already state an “ideal” case (as
we remarked in the introduction, it is however highly non-trivial if one
can always take a holomorphic model as in this “ideal” case or not):

Proposition 3.3. If the algebraic reduction f : X → B is holomor-
phic (with B normal, projective and dimB > 0), then a(X) = dim B =
n and f is Lagrangian, in particular, all smooth fibers are abelian.

Proof. By [Ma99] (Theorem 2 and Theorem 1 in Addendum), f is
Lagrangian and dimB = n - his argument works in the Kähler case as
well. Then there is no holomorphic 2−form with non-zero restriction to
the general fiber. There are several ways to conclude the last statement.
For instance, we can conclude by Corollary 2.9. q.e.d.

Theorem 3.4. Assume that 0 < a(X) < 2n. Then c1(L) ∈ K(X),
the closure of the Kähler cone, i.e., L is (analytically) nef. Moreover,
L.C = 0 for all curves C ⊂ X.

Proof. Let P(X) ⊂ H1,1(X,R) be the closure of the positive cone of

X. In the proof of Theorem 3.1 (2), we already show that c1(L) ∈ P(X).
Thus, by [Hu03], Proposition 3.2,

c1(L) ∈ K(X),

i.e., L is nef, if L · C ≥ 0 for all curves C ⊂ X. So, it suffices to show
the last statement.
As the form qX is non-degenerate and defined over H2(X,Q), we have
an isomorphism

ι : H2(X,Q) ≃ H2(X,Q)∗ ≃ H4n−2(X,Q).
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Here H2(X,Q)∗ is the dual space of H2(X,Q), the first isomorphism is
given by the map x 7→ qX(∗, x), and the second isomorphism is given
by (the inverse of) the intersection pairing. Moreover, by the shape of
qX , the map ι is compatible with the Hodge decomposition. Therefore,
ι induces an isomorphism

ι : H1,1(X,Q) ≃ H2n−1,2n−1(X,Q).

Note here thatH1,1(X,Q) = NS(X)⊗Q. Since [C] ∈ H2n−1,2n−1(X,Q),
there is then an element α ∈ H1,1(X,Q) such that ι(α) = [C]. Hence,
by definition of ι, we have that

L · C = qX(L,α) = 0 .

Here the second equality follows from Theorem 3.1 (2), i.e., the fact
that L is a multiple of the isotropic vector ℓ in parabolic NS(X). This
completes the proof. q.e.d.

Parts of the following Lemma are certainly well-known; we include full
proofs for the convenience of the reader.

Lemma 3.5. 1) Ln 6= 0 in H2n(X,R) and Ln+1 = 0 in H2n+2(X,
R). In particular, the numerical dimension ν(L) = n.

2) For all a, b ≥ 0 with a+ b > n we have

f̃∗(A)a · L̃b · η̃2n−(a+b) = 0.

3) For all k ≥ 0 we have

f̃∗(A)k · L̃2n−k = 0.

Proof. By Verbitsky [Ve96], Theorem 1.5 (see also [Bo96] or
[GHJ03], proof of Proposition 24.1, for a more geometric proof), we
have a graded ring isomorphism

SH2(X) = Sym∗H2(X,C)/I .

Here SH2(X) is the subalgebra of the total cohomology ring H∗(X,C)
generated by H2(X,C), and I is the ideal of the symmetric algebra
Sym∗H2(X,C) generated by all elements αn+1 such that α ∈ H2(X,C)
and qX(α) = 0. By definition of I, we have that Ln 6∈ I and Ln+1 ∈ I.
Thus, by the isomorphism above, we have that Ln 6= 0 and Ln+1 = 0 in
SH2(X) ⊂ H∗(X,C). This implies (1).

Let c > n and a+ b = c. By (1) we have

L̃c · η̃2n−c = π∗(Lc.η2n−c) = 0.

Hence

(f̃∗(A) + E) · L̃c−1 · η̃2n−c = 0.

Since L̃ is nef, this gives

f̃∗(A) · L̃c−1 · η̃2n−c = E · L̃c−1 · η̃2n−c = 0.
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Continuing in this way, we obtain

f̃∗(A)a · L̃c−a · η̃2n−c = 0

proving (2).
Claim (3) is the following special case of (2): a = k and b = 2n − k.

q.e.d.

Theorem 3.6. Let X be a non-algebraic hyperkähler manifold of
dimension 2n. Then a(X) ≤ n.

Proof. Recall that a(X) = dim B. We shall argue by contradiction.
Suppose that k = dim B > n. Then we can take a = k and b = 0 in
Lemma 3.5 (3), i.e., (f̃∗A)kη̃2n−k = 0. The class (f̃∗A)k is represented

by a positive multiple of general fiber F̃ of f̃ . So, if we put F = π∗F̃ ,
then F is a (2n− k)-dimensional non-zero effective cycle on X, but

0 < (η|F )2n−k = Fη2n−k = F̃ η̃2n−k = 0 ,

a contradiction. This completes the proof. q.e.d.

Theorem 3.7. Let X be a hyperkähler manifold of dimension 2n.
Suppose a(X) = n. Then any nef line bundle D on X is semi-ample.
In particular its algebraic reduction can be taken holomorphic.

Proof. Note that NS(X) = Zℓ⊕ V and qX is negative definite on V.
Thus, D = L up to a non-negative multiple, as D is nef. By Lemma
3.5 (2), we know ν(L) = n. On the other hand, κ(L) = n by a(X) = n.
We also note that the canonical line bundle KX is trivial, as X is a
hyperkähler manifold. Hence [Na87], Theorem 5.5 (see also [Fn08],
Theorem 4.8 for a complete proof) applies and D = L is semi-ample.

q.e.d.

4. Almost holomorphic algebraic reductions

We use the same notations as in section 3 (setup (3.2)) and first prove
that an almost holomorphic algebraic reduction has in fact a holomor-
phic model.

Theorem 4.1. Let X be a hyperkähler manifold of dimension 2n such
that 0 < a(X) < 2n. If the algebraic reduction f is almost holomorphic,
then f has a Lagrangian holomorphic model.

Proof. It suffices to show that L is semi-ample. By Hironaka’s flat-
tening theorem ([Hi75], Page 504, Corollary 1) applied to f̃ : X̃ −→ B
and the normalization for the resulting source space, we have an equi-
dimensional modification f̂ : X̂ −→ B̂ of f̃ : X̃ −→ B. More precisely,
there are a normal space X̂ , a proper bimeromorphic morphism

µ = µ̂ ◦ π : X̂ −→ X̃ −→ X,
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a smooth projective manifold B̂, a birational morphism µB : B̂ −→ B
and an equi-dimensional morphism f̂ : X̂ −→ B̂ such that µB ◦ f̂ = f̃ ◦µ̂
and µB ◦ f̂ = f ◦ µ. Note that we can make B̂ smooth, as flatness is
preserved under base change. Note also that we can make X̂ normal as
the normalization map is a finite map.
Put Â = µ∗

B(A) so that Â is big, nef and semi-ample and set

L̂ = µ∗L = f̂∗Â+
∑

aiÊi ,

where ∪Êi is the exceptional divisor of µ and ai are non-negative in-
tegers. As D̂ and f̂∗Â are Cartier, so is

∑
aiÊi. Since f is almost

holomorphic and f̂ is equi-dimensional, f̂(Ei) is a divisor on B̂. As B̂
is smooth, it is not only a Weil divisor but also a Cartier divisor. Let
C be a sufficiently general ample complete intersection curve on B̂. Let

V̂ = X̂ ×
B̂
C ,

ν : Z −→ V̂ ⊂ X̂ be a resolution of V̂ and ϕ : Z −→ C be the induced
morphism. Choose a Kähler class ηZ of Z. Then, as ϕ∗(Â|C) and

ν∗(
∑

aiÊi)) are supported in the fibers of ϕ, we have:∫
Z

ν∗L̂ ∧ ϕ∗(Â|C) ∧ ηn−1
Z

=

∫
Z

(ϕ∗(Â|C) + ν∗(
∑

aiÊi)) ∧ ϕ∗(Â|C) ∧ ηn−1
Z = 0 .

As ν∗L̂, ϕ∗(Â|C) ∈ K(Z), they are proportional in NS(Z) by the

Hodge index theorem. So are ϕ∗(Â|C) and ν∗(
∑

aiÊi). Consequently

ν∗(N(
∑

aiÊi)) = ϕ∗(Θ)

for some positive integer N and an effective divisor Θ on C. As f̂ is
equi-dimensional and C is a general ample complete intersection curve,
the Cartier divisor N(

∑
aiÊi) on X̂ is then of the form f̂∗∆ for some

effective Cartier divisor ∆ on B̂. Thus, replacing L by some positive
multiple, we have µ∗L̂ = f̂∗(Â+∆) for some semi-ample big divisor Â

on B̂ and an effective Cartier divisor ∆ on B̂. As µ∗L̂ ∈ K(X̂) (strictly

speaking, this makes a sense after passing to a resolution of X̂. But this
would not matter, as we will not need equi-dimensionality any longer),

it follows that Â+∆ ∈ K(B̂). As B̂ is projective, this implies that the

divisor Â+∆ is nef. As Â is big and ∆ is effective, the divisor Â+∆
is also big. Thus,

κ(L̂) = dim B = ν(Â+∆) = ν(L̂) .

As L̂ = µ∗L, we have κ(L) = ν(L) > 0 as well. Thus L is semi-ample
by [Na87], Theorem 5.5 (see also [Fn08], Theorem 4.8 for a complete
proof). The morphism given by |mL| is then Lagrangian fibration by a
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result of Matsushita [Ma99] (Addendum, Theorem 1). This completes
the proof. q.e.d.

Suppose 0 < a(X) < 2n. In order to prove that always a(X) = n, we are
reduced to the case that for the general fiber F has algebraic dimension
a(F ) = a(F̃ ) = 0 and moreover that F̃ is isotypically semi-simple.

Unfortunately not much is known about compact Kähler manifolds F̃
with a(F̃ ) = 0. If however F̃ has a minimal model, things work out:

Proposition 4.2. If every isotypically semi-simple compact Kähler
manifold Z of dimension at most 2n−1 with κ(Z) = 0 and h0(KZ) = 1
has a minimal model with numerically trivial canonical bundle (i.e. a
bimeromorphically equivalent normal Kähler variety which is Q− Goren-
stein with numerically trivial canonical class), then every compact hy-
perkähler manifold X of dimension 2n has algebraic dimension a(X) =
0, n, 2n.

Proof. We must rule out that 1 ≤ a(X) ≤ n−1. We argue by contra-
diction, hence we are in situation of setup (3.2). We write the second
equation in setup (3.2)(2) more precisely as

L̃ = f̃∗(A) +
∑
I

aiEi

with ai ≥ 0. Furthermore we have

KX̃ =
∑
I

biEi (1)

with bi > 0. Let Di = Ei ∩ F̃ and I ′ ⊂ I, I ′ 6= ∅, the set of all i such
that Ei ∩ F̃ 6= ∅.
Then

L̃F̃ =
∑
I′

aiDi

and by the adjunction formula,

KF̃ =
∑
I′

biDi. (2)

Moreover

L̃F̃ =
∑
I′

aiDi. (3)

Let h : F̃99KF ′ be a minimal model of F̃ ; then KF ′ ≡ 0. Choose a
modification τ : F̂ → F̃ from a compact Kähler manifold F̂ such that the
bimeromorphic map h : F̃99KF ′ induces a holomorphic map ĥ : F̂ → F ′.
Since KF ′ ≡ 0, by (2) every Di, i ∈ I ′ is contracted by h. Moreover by
(2) and (3)

mKF̃ = L̃F̃ +D′
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with D′ effective and supported in
⋃

I′ Di and m ≫ 0. Therefore τ∗(L̃F̃ )
is on one hand nef, on the other hand effective with support necessarily
in the exceptional locus of ĥ. This is only possible when all ai = 0 for
i ∈ I ′ by the following proposition, a contradiction. q.e.d.

Proposition 4.3. Let X be a (not necessarily compact) Kähler man-
ifold, φ : X → Y bimeromorphic with exceptional divisor E =

⋃
Ei. Let

L = OX(
∑

aiEi) with ai ≥ 0. If L is φ−nef, then all ai = 0.

Proof. This proposition is of course folklore. Since we were not able
to trace a proof in the literature, here we give a proof. By taking local
sections in Y , we reduce to the case that E is mapped to a point p,
which is then an isolated singularity of Y. Since isolated singularities
are algebraic by Artin’s theorem, we next reduce to the case that X
and Y are algebraic (X quasi-projective and Y affine). Then reduce
to dimX = 2 by taking hyperplane sections in X. Finally for surfaces
the claim is obvious, the intersection matrix (Ei · Ej) being negative
definite. q.e.d.

5. The 4-dimensional case

In this section we settle Conjecture 1.2 in dimension 4 completely.
What still needs to be proved is

Theorem 5.1. Let X be a 4-dimensional hyperkähler manifold. Then
a(X) 6= 1.

Proof. We shall argue by contradiction. So we assume to the contrary
that a(X) = 1 and shall derive a contradiction.
By a(X) = 1, the base space B of the algebraic reduction has to be
a smooth projective curve (as we always assume that the base space is
normal and projective). SinceH0(X,Ω1

X) = 0 as X is simply connected,
the base space B is then P1. Now let

f : X 99K B ≃ P1

be the algebraic reduction with the setup (3.2); we set specifically A =

OB(1). By Theorem 2.4 and Theorem 4.1, we know that a(F ) = a(F̃ ) =

0; moreover F̃ is isotypically semi-simple.
(In fact, otherwise the second case (2) in Theorem 2.4 would happen.
In particular, f would be almost holomorphic. However then Theorem
4.1 applies to conclude dim B = 2, a contradiction.)

But since dim F̃ = 3, necessarily F̃ must be simple.
(In fact, otherwise F̃ would be commensurable to the self product of

a curve, say C3. Then however a(F̃ ) = a(C3) = 3, a contradiction to

a(F̃ ) = 0.)

We may also assume, without loss of generality, that q(F̃ ) = 0. For
this statement, recall that any subvarietry V of a positive dimensional
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complex torus T that generates T is of Kodaira dimension > 0 ([Ue75],
Corollary 10.5), and hence a(V ) > 0, and that if the Albanese map
from a compact Kähler manifold U is surjective to the Albanse torus
Alb(U), then U is of Kodaira dimension > 0 unless the Albanese map is

bimeromorphic (by the ramification formula). Thus, if q(F̃ ) > 0, then

the Albanese map of F̃ must be bimeromorphic onto Alb(F̃ ), so that F̃
has a minimal model, and we conclude (i.e., get a contradiction) now
by Proposition 4.2.

Since A = OP1
(1), we have h0(L) = 2; we take F1, F2 ∈ |L|, both

necessarily irreducible. Set

S = F1 ∩ F2

as complex spaces. Hence S is a possibly non-reduced complete inter-
section. Let IS ⊂ OX (resp. IE ⊂ OX̃) be the ideal sheaf of S (resp.
of E). Notice that

π∗(IE) = IS . (∗)

In fact, we have on the level of analytic preimages (complex subspaces)

π∗(S) = π∗(F1) ∩ π∗(F2) = (F̃1 + E) ∩ (F̃2 + E) = E.

In other words
π∗(IS) · OX̃ = IE,

where the left hand side denotes the image of π∗(IS) in OX̃ . Therefore
the canonical monomorphism IS → π∗(IE) must be an isomorphism.
We first show

5.2 Claim. Hq(X,L) = 0 for q = 1, 3, 4 and dimH2(X,L) = 1.

Proof. We proceed in several steps. (1) H1(X,L ⊗ IS) = 0.
To verify this vanishing, we deduce from (*)

π∗(f̃
∗(OB(1))) = π∗(IE ⊗ L̃) = IS ⊗ L.

Thus our claim (1) certainly holds if we can show

H1(X̃, f̃∗(OB(1))) = 0.

By the Leray spectral sequence (and the projection formula for f̃), this
in turn comes down to

R1f̃∗(OX̃) = 0. (∗∗)

Since q(F̃ ) = 0, the sheaf R1f̃∗(OX̃) is torsion, supported on a finite
set. Thus if the sheaf would not be 0, again the Leray spectral sequence
would yield H1(X̃,OX̃) 6= 0, which is absurd.

(2) χ(LS) = 0.
Now there is a constant K such that

a2 · c2(X) = Kq(a)
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for all (1, 1)−classes a ([GHJ03], Proposition 23.17, see also [Fu87],
Page 147, Statement (B)). Hence

L2 · c2(X) = 0

and via Riemann-Roch we obtain

χ(X,mL) = χ(OX) = 3

for all m ∈ Z. Here the last equality follows from [Be83], Proposition
3. The Koszul complex

0 → L∗ → OX ⊕OX → L⊗ IS → 0

gives then χ(L⊗ IS) = 2χ(OX)− χ(L∗) = 3, so that

χ(LS) = χ(L)− χ(L⊗ IS) = 0.

Here and hereafter, L∗ is the dual bundle of L. This establishes (2).

(3) The vanishing (1) and the isomorphism H0(IS ⊗ L) → H0(L) give

H0(LS) = 0.

Finally we obtain

H3(L) = H4(L) = 0 ; h2(L) = 1

as follows. Concerning H2 we calculate using the adjunction formula
KS = 2LS :

H2(LS) = H0(L∗

S ⊗ 2LS) = H0(LS) = 0.

Hence by (2):
H1(LS) = 0.

Therefore
H1(X,L) = 0.

Next
Hq(X,L) = 0

for q = 4, 3 by Serre duality resp. by a Kodaira vanishing theorem
in the Kähler case [DP03], Theorem 0.1 (observe L2 6= 0). Hence by
Riemann-Roch

dimH2(X,L) = 1.

Thus we completely determined the cohomology of L and Claim (5.2)
is established.

We continue with the proof of Theorem 5.1. Notice that h1,1(X) ≥ 2,;
otherwise X would be projective. Thus

h1(TX) = h1,1(X) ≥ 2.

Let us consider the small deformation of the pair (X,L) of X and its
line bundle L. Such a deformation is realized as a smooth hypersurface,
say V , in the Kuranishi space of X (see e.g. [Hu99], Pages 74, 75,
Paragraph 1.14). As h1(TX) ≥ 2, we have dim V ≥ 1. Thus, we can
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choose a small disk ∆ in V centered at 0 (the point corresponding to
(X,L)) and obtain one dimensional deformation

p : X → ∆

of (X,L). By definition and by [Fu83-2], Theorem 4.8 (2) (see also
[Ca83], Page 413, Théorème), this deformation has the following prop-
erties

• X ≃ X0;
• there is a line bundle L over X such that L|X0 ≃ L;
• there is a sequence (tk) in T converging to 0 such that Xtk is
projective;

• the set ∆1 of all t such that Xt is not projective is dense in ∆ with
countable complement.

Here Xt = p−1(t), the fiber of p over t ∈ ∆, is again a hyperkähler
manifold (see, e.g., [GHJ03], Proposition 22.7). Let Lt = L|Xt. From
the knowledge of the cohomology of L0, semi-continuity theorem and
the constancy of χ(Lt), we obtain immediately (possibly after shrinking
∆) for all t:

h0(Lt) = 2 , h2(Lt) = 1

and

hq(Lt) = 0

for q = 1, 3, 4. Therefore

a(Xt) ≥ 1

for all t. Notice that by Theorem 3.6, a(Xt) takes the values 1, 2 and 4;
the set

∆1 = {t ∈ ∆ |a(Xt) = 1}

is moreover dense in ∆ with countable complement. In fact, if other-
wise, we conclude a(X0) ≥ 2 by the upper-semicontinuity of algebraic
dimensions (see e.g. [FP09], Proposition 4.1 for an explicit statement
and proof). We should remark that the Kähler condition of fibers is
essential, as there is an explicit counter-example in non-Kähler case
([FP09], Corollary 1.2).

We consider the meromorphic map

ft : Xt 99K Bt ≃ P1

defined by |Lt|. Our plan is to apply [AC05] to Xtk ; [AC05], Théorème
3.6 gives a composition of flops Xtk 99K X ′ to some other projective
hyperkähler manifold X ′ such that the induced rational map X ′

99K B
is actually a morphism. But then by [Ma99], Theorem 2, Bt cannot
have dimension 1 (a projective hyperkähler 4-fold does not admit a
surjective morphism to a curve), a contradiction. This contradiction
would then complete the proof of Theorem 5.1. However, in order to
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be able to apply [AC05], Théorème 3.6, we need to check one condition
that

κ(Ftk ) ≤ 0.

Here κ(Ft) is the Kodaira dimension of a desingularisation of a general
fiber of ft. Let us complete the proof by checking this condition. The
maps ft fits together in a family

f̃ : X 99K P1 ×∆.

We introduce a resolution of indeterminacy of f̃ :

ϕ̃ : X̃ → P1 ×∆.

Choose a general point b ∈ P1 and set F̃t = ϕ̃−1((b, t)), the fiber of ϕ̃

over (b, t) ∈ P1×∆. Then we can consider a family (F̃t) of general fibers
of ft, i.e.,

ϕ = ϕ̃|W : W = ϕ̃−1({b} ×∆) −→ {b} ×∆ = ∆ .

After possibly shrinking ∆, we may assume that all F̃t are smooth except
for t = 0. Here we have an abuse of language and F̃0 may split in
a component which was called F̃0 formerly, and possibly some other
components. However, this possible imbellicity is avoided by considering
instead of X0 some Xs with s ∈ ∆1(s 6= 0) (defined above) and by

treating this Xs as our new X0. Thus we may assume that p : X̃ → ∆,
where p = pr2 ◦ f̃ , is a submersion and that F̃0 is smooth.

Now choose a universal numberM such that |MKZ | defines the Iitaka
fibration for all smooth projective threefolds Z. This number exists by
[FM00], Corollary 6.2 and [VZ07], Corollary 0.4 (including references
for the general type case and the case of Kodaira dimension 0, which ac-
tually are not needed here). Note that KF̃t

= KW |F̃t by the adjunction
formula. Thus, by the semi-continuity theorem, there is a neighborhood
U ⊂ ∆ of 0 such that

h0(MKF̃0
) ≥ h0(MKF̃t

)

for all t ∈ U. Recall that F̃0 is a resolution of singularities of X0. So,
a(F̃0) = a(F0) = 0 (see at the beginning of the proof of Theorem 5.1).
In particular, h0(MKF̃0

) ≤ 1. Thus,

h0(MKF̃tk

) ≤ 1

for all tk ∈ U. Therefore, by the choice of M , we conclude κ(F̃tk ) =
κ(Ftk ) ≤ 0 for all tk ∈ U. Now we are done. q.e.d.



420 F. CAMPANA, K. OGUISO & T. PETERNELL

6. Nef line bundles on hyperkähler manifolds

If X is a non-algebraic hyperkähler manifold, then NS(X) is para-
bolic if and only if X carries a nef non-trivial line bundle L, which is
then unique up to a multiple (see the proof of Theorem 3.7). We expect
that L is actually semi-ample (cf. Conjecture 1.1). In this section we
give some results pointing in this direction.
A line bundle L on a compact complex manifold is hermitian semi-
positive if there exists a (smooth) hermitian metric on L whose cur-
vature form is semi-positive. Equivalently, there exists a semi-positive
(1, 1)−form ω such that

c1(L) = [ω].

A hermitian semi-positive line bundle is nef, but the converse is not true
even in dimension 2, see [DPS01], Corollary 2.9.

Theorem 6.1. Let X be a non-projective hyperkähler manifold of
dimension 2n. Let L be a non-trivial hermitian semi-positive line bundle
on X. Then a(X) = κ(L); in particular κ(L) ≥ 0.

Proof. We use Riemann-Roch in the following form (see e.g. [GHJ03],
Corollary 23.18)

χ(mL) =

n∑
i=0

bim
iqX(L)i,

where bi are some numbers which do not depend on L. Since X is
assumed to be non-algebraic, we have qX(L) = 0 and Riemann-Roch
reads

χ(mL) = b0 = χ(OX) = n+ 1.

Here the last equality follows from [Be83], Proposition 3:

Hq(X,OX ) = 0

for q odd and

dimHq(X,OX ) = 1

for q even, 0 ≤ q ≤ 2n.
Note that X is a hyperkähler manifold of dimension 2n. If h0(mL) ≥
n + 1 for all m >> 0, then κ(L) ≥ 1, in particular a(X) ≥ 1. Since L
defines the algebraic reduction in the sense of the setup 3.2 (recall that
NS(X) must be parabolic and that we have only one nef line bundle
up to scalars), we obtain κ(L) = a(X).
So we may assume that there is a sequence (mk) converging to ∞ and
some number q > 0 (actually even) such that

Hq(X,mkL) 6= 0

for all mk. Fix a Kähler form ω. By the Hard Lefschetz Theorem in the
semi-positive case [DPS01], Corollary 2.2 (see also [Mou99], Théorème
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2.6 and [Ta97], Theorem 1), the canonical morphism

∧ωq : H0(X,Ω2n−q
X ⊗mkL) → Hq(X,mkL) (∗)

is surjective. Thus

H0(X,Ω2n−q
X ⊗mkL) 6= 0

for all k. Now we apply [DPS01], Proposition 2.15: one has a(X) ≥ 1 or
κ(L) ≥ 0. In both cases we argue as above and conclude κ(L) = a(X).

q.e.d.

The arguments of Theorem 6.1 actually sometimes work also in the nef
case, namely when the zero locus of a suitable multiplier ideal is not too
large. This leads to the following

Theorem 6.2. Let X be a parabolic hyperkähler manifold of dimen-
sion 2n ≥ 4. Then X contains a positive dimensional compact subvari-
ety of dimension at least 2.

Proof. Assume to the contrary that all compact subvarieties of X
have dimension at most 1, in particular a(X) = 0. Since NS(X) is par-
abolic, there is, as already mentioned at the beginning of this section, a
non-trivial nef line bundle L, unique up to a scalar . On L⊗m we intro-
duce a singular metric hm with multiplier ideal Im with zero locus Vm.
We argue similarly as in Theorem 6.1. From Riemann-Roch we deduce
the existence of a positive even number q ≥ 2 such thatHq(X,mkL) 6= 0
for a sequence (mk) converging to ∞. Since dimVmk

≤ 1 by our assump-
tion, we conclude

Hq(X,mkL⊗ Imk
) 6= 0

for all k. By the Hard Lefschetz Theorem for nef line bundles [DPS01],
Theorem 2.1 (see also [Ta97], Theorem 1), we obtain the non-vanishing

H0(X,Ω2n−q
X ⊗mkL⊗ Imk

) 6= 0.

Now [DPS01], Proposition 2.15 implies a(X) ≥ 1 or κ(L) ≥ 0. Since
the only positive-dimensional subvarieties in X are curves, the first al-
ternative is only possible when a(X) = 2n − 1, contradicting Theorem
3.6. In the second alternative X contains a divisor, since L cannot be
trivial, again a contradiction. q.e.d.
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