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Abstract

Consider the following problem. Given n, k ∈ N, X ⊂ R2, let Qk(X) denote the
number of convex k-gons in X, where no three points are collinear. Put

f(n, k) = inf
|X|=n

Qn,k(X),

and find properties of f(n, k).
In this paper, only cases of k = 4 are dealt. So f(n) is used in short for

f(n, 4) when there can be no misunderstanding.
By using methods such as mathematical induction and structuring, etc.,

f(4) = 0, f(5) = 1, f(6) = 3, f(7) = 9, f(8) = 19 and f(9) = 36 can be
obtained, and upper and lower bounds can be found for f(n) when n ≥ 9,
which are

f(n) ≥ n(n− 1)(n− 2)(n− 3)/84 =
2

7

(
n

4

)
,

and
f(n) ≤ t(n),

where t(n) as an upper bound of f(n) has a form as

t(n) = 2t(n− 3)− t(n− 6) + 6n− 33 + R(n) (n ≥ 9),

R(n) being

R(n) =

{
(n− 6)(7n− 52)/4, n even;

(n− 7)(7n− 45)/4, n odd.
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Chapter 1

Introduction

This paper is about the number of convex quadrilaterals in a given point set of
n distinct points with no three collinear. This problem is originated from the
Happy Ending Problem, posed by Esther Klein in 1933.

The Happy Ending Problem is as follows. Given integer n ≥ 3, let N(n) be
the smallest natural number such that for all m ≥ N(n), any point set with m
distinct points with no three collinear has at least a convex n-gon. See [1].

Erdos P. and Szekeres G. further studied this problem and came up with the
upper and lower bound of N(n) in [1] and [2],

2n−2 + 1 ≤ N(n) ≤
(

2n− 4

n− 2

)
+ 1.

N(3) = 3, N(4) = 5 and N(5) = 9 are already known but for n ≥ 6, no
proof is found. However, [3] gives an inequality that

2n−2 + 1 ≤ N(n) ≤
(

2n− 5

n− 3

)
+ 2.

Now consider a related question. Let f(n, k) be the infimum of the number
of convex k-gons in any point set of n distinct points with no three collinear.

We only studied the k = 4 cases. So f(n) is used to denote f(n, 4) for
convinience.

Feng Yuefeng did some study on this problem in [4]. And the Angle Cover
in Chapter 1 is from [4]’s inspiration. However, some incorrectness exists in [4].
For example, the solution for n = 7 and the proof for n = 8 have some mistakes.

And in this paper we did some improvement on his method.
Chapter 2 gives the values of f(n) when n ≤ 9 and presents the proof.
The lower and upper bound are separately put forward in Chapter 3 and

Chapter 4.
Note that all the theorems and lemmas in this paper has a precondition that

no three points are collinear.
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Chapter 2

For n ≤ 9

This chapter will need a notion called Angle Cover.

Definition 2.1. A region (always a plane) is called an Angle Cover of graph G
(with n points) if

1. No three points in G are collinear;

2.
(
n
2

)
distinct lines that each passes through two points in G divide the region

into several subregions.

3. Each subregion is associated with a number, called the degree of the subre-
gion, which shows how many angles formed over G can cover it (∠ABC
is said to be formed over G if A,B,C ∈ G). Then a subregion of degree k
can be called as a k-subregion.

2.1 shows an example of Angle Cover.

Figure 2.1: An example of Angle Cover of three points

The Angle Covers used later in this paper is in fact Angle Cover outside a
convex hull (we don’t consider the interior of the convex hull).
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2.1 For n < 7

Obviously f(4) = 0. As for f(5) = 1, it can be obtained by the result from [3].
See Figure 2.2.

Figure 2.2: Solutions for n = 4, 5

Consider n = 6.
A point set of 6 points has

(
6
5

)
= 6 subsets of 5 points. Each 5-point subset

has at least one convex quadrilateral. Each convex quadrilateral can at most be
counted twice in this way, thus we have,

f(6) ≥
(

6

5

)
/2 = 3.

And Figure 2.3 suggests f(6) = 3.

Figure 2.3: Solution for n = 6
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2.2 For n = 7

First we prove f(7) ≥ 9, which needs two lemmas.

Lemma 2.2. For P , an inner point of a convex hull formed by n (n ≥ 4) points,
the number of convex quadrilaterals formed by P and three vertices of the convex
hull is at least n− 2.

Figure 2.4: Proof for Lemma 2.2

Proof. See Figure 2.2. Consider the n triangles formed by three adjoint vertices
of convex polyhedron A1A2 . . . An, i.e. 4A1A2A3,4A2A3A4, . . . ,4AnA1A2,
then P is at most inside two of the triangles, and thus it’s outside the other
n− 2 ones. Hence P could form a convex quadrilateral with the three vertices
of each of the n− 2 triangles. And it completes the proof.

Lemma 2.3. For two inner points, P, Q, of a convex hull of n points. The
number of convex quadrilaterals formed by P , Q and two vertices of the convex

hull is at least n(n−2)
4 .

Proof. See Figure 2.5. Line PQ divides the vertices of the convex hull into two
groups. Let x, y separately denote the number of vertices of the two groups,
and then x+ y = n. Properties of convex hulls promise that any two vertices of
the same group can form a convex quadrilateral with P and Q.

Hence, when x, y > 1, we have at least(
x

2

)
+

(
y

2

)
=

x2 + y2 − n

2

convex quadrilaterals. According to the inequality of arithmetic and geometric
means,

x2 + y2 − n

2
≥

(x+y)2

2 − n

2
=

n(n− 2)

4
.
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Figure 2.5: Proof for Lemma 2.3

When x = 1 or y = 1, the number of convex quadrilaterals of this kind is(
n− 1

2

)
=

(n− 1)(n− 2)

2
>

n(n− 2)

4
.

Thus it proves 2.3.

Back to the proof of the proposition (f(7) ≥ 9). Let S be the convex hull of
the 7 points. Discuss the following situations.

1. S is a hexagon or a heptagon.
(
6
4

)
= 15 > 9 completes the proof.

2. S is a pentagon. Let A,B be two inner points of the convex hull. Ac-
cording to Lemma 2.2, each point at least form three convex quadrilaterals
with three vertices of the convex hull. Hence

(
5
4

)
+2×3 = 11 > 9 completes

the proof.

3. S is a quadrilateral, say D1D2D3D4. Let A,B,C be the three inner points
of it. Similarly, according to Lemma 2.2, each inner point can form two
convex quadrilaterals with three vertices of the convex hull.

As for A,B according to Lemma 2.3, they can at least form two convex
quadrilaterals with two vertices of the convex hull. Same for C,A or B,C.
Then 1 + 2× 3 + 3 = 10 > 9 completes the proof.

4. S is a triangle, say A1A2A3. And B1, B2, B3, B4 are the four inner points.

Connect each two of the four inner points and we get six lines. Accord-
ing to Lemma 2.3, each two of the four inner points form one convex
quadrilaterals with two vertices of the convex hull.

Then discuss the convex hull of the four inner points, B1, B2, B3, B4.

(a) It’s a quadrilateral. It’s easy to consider when two sides of the quadri-
lateral is parallel with each other. Here we only consider other general
cases.

Draw the Angle Cover on the plane of these four points. See Figure
2.7.

We have the following results for Angle Cover.
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Figure 2.6: Proof for Lemma 2.4

Lemma 2.4. In a Angle Cover in region R of graph G, let H denote
the convex hull of the points of G. For any point x ∈ R\H, the
number of convex quadrilaterals it can form with the vertices of G
equals to the degree of the subregion x lies in.

Proof. The lemma is equivalent to the following proposition: a point
outside H can form a convex hull with three of the points in G if and
only if x can be covered by an angle formed by the three points. For
any three points, A1, A2, A3, in G (see 2.6), connect each two of them.
Then the three lines divide the plane into 7 parts, one of them being
4A1A2A3. The 1-subregions can all be covered by angles formed by
A1, A2, A3 exactly for once, while 0-subregions can’t be covered then.

Obviously, if P lies in a 1-subregion, then it can form a convex poly-
hedron with A1, A2, A3. Otherwise, no convex polyhedron can be
formed.

And it completes the proof.

Back to the proof that f(7) ≥ 9.

See Figure 2.7. Obviously, at least one point in {A1, A2, A3} is not in
0-subregions. If two of them are in 0-subregions, the other one must
be in a 4-subregion. If there is at most one point in a 0-subregion,
the other two are at lest in 2-subregions. Hence by Lemma 2.4, we
have at least 4 convex quadrilaterals.

Thus 6 + 1 + 4 > 9 completes the proof in this situation.

(b) It’s a triangle, say 4B1B2B3. Then radials B4B1, B4B2 and B4B3

divide the plane into three parts, which covered the whole plane. So
A1 must be in one part and then form a convex quadrilateral with
the three vertices of that region. Same for A2, A3. Hence in this
situation 6 + 3 = 9 completes the proof.

Above completes the proof of f(7) ≥ 9. And according to the proof of
situation 4b, we know there exist exactly 9 convex quadrilaterals in Figure 2.8,
where A1, A2, A3 are in 0-subregions of B1, B2, B3, and that they are separately
covered by ∠B1CB2,∠B1CB2,∠B3CB1. These 9 convex quadrilaterals can be
found by discussing different situations.

Let their convex hull, 4A1A2A3 be S.
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Figure 2.7: Angle Cover for general convex quadrilaterals

1. Convex quadrilaterals formed by two vertices of S and two of the four
inner points. Lemma 2.3 shows there are six convex quadrilaterals of this
kind. They are CB1A1A2, CB2A2A1, CB3A3A1, B2B1A1A2, B2B3A3A2,
and B3B1A1A3.

2. Convex quadrilaterals formed by one vertices of S and three of the four
inner points. There are three convex quadrilaterals of this kind. They are
CB1A1B2, CB1A2B2, and CB1A3B3.

3. Convex quadrilaterals formed by four inner points. Zero.

Figure 2.8: Solution for f(7) = 9

Hence f(7) = 6 + 3 = 9.
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2.3 For n = 8

First we prove f(8) ≥ 19, by discussing the convex hull S, of the eight points.

1. S is an octagon or a heptagon.
(
7
4

)
= 35 > 19 completes the proof.

2. S is a hexagon. The vertices form
(
6
4

)
= 15 convex quadrilaterals. For the

two inner points, say A,B, each at least form four convex quadrilaterals
with three vertices, similarly to the proof of n = 7 case. See 2.

Hence
(
6
4

)
+ 4× 2 > 19 completes the proof.

3. S is a pentagon. The vertices form
(
5
4

)
= 5 convex quadrilaterals.

Let A,B,C be the three inner points. Similarly to situation 3 in the proof
of n = 7 case, it can be proved that each inner point at least form three
convex quadrilaterals with the vertices of the convex hull. While for each
two inner points, they form at least four convex quadrilaterals with the
vertices.

Hence, 5 + 3× 3 + 4× 3 > 19 completes the proof of this situation.

4. S is a quadrilateral. Then there are four inner points. Method similar to
the proof of situation 3 in n = 7 case can prove that each of the inner
point can form two convex quadrilaterals with the vertices while each two
inner points can form at least two convex quadrilaterals with the vertices.

Hence 1 + 2× 4 + 2×
(
4
2

)
= 21 > 19 completes the proof of this situation.

5. S is a triangle. According to Lemma 2.3, each two inner points can form
a convex quadrilateral with two vertices. There are

(
5
2

)
= 10 convex

quadrilaterals of this kind.

Then discuss the convex hull of the five inner points, S1.

(a) S1 is a pentagon, say A1A2A3A4A5. Use a similar methoed used in
proving n = 7 case when discussing the situation that the convex hull
is a triangle. Draw the Angle Cover. See situation 4b in n = 7 case.

We need two further lemmas related to the notion Angle Cover.

Lemma 2.5. If the points of G form a polyhedron, the Angle Cover
of G can at most have two 0-subregions.

Proof. A 0-subregion should satisfy the condition that the sum of
degrees of two of its adjacent internal angles is less than 180◦. As
a matter of fact, if the condition is not satisfied, according to the
Euclidean Axiom V, lines will be parallel with each other or will
intersect at a point that is outside the convex hull, off the common
line segment of the two angles, see Figure 2.9. Then ∠DAB and
∠CBA cover the region by line AB that doesn’t contain E. Hence in
the figure there can’t be a 0-subregion off the right side of line AB.
So there must be two adjacent internal angle in a 0-subregion such
that the sum of their degree is less than 180◦.

See Figure 2.10. It is easy to see that the region the vertical angle of
∠ACB covers is a 0-subregion, and that the region off line AB that
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contains this 0-subregion exist no other 0-subregions (because all the
subregions are covered by ∠1,∠2).

This conclusion also suggests some properties of 0-subregions that
their shape are generally the same, i.e. they are bounded by two
intersectant lines; and each is associated with an only pair of adjacent
internal angle that the sum of their degrees is less than 180◦.

Back to the lemma that needs proof. According to the previous
discussion, 0-subregions exist if and only if there exist two adjacent
internal angle that the sum of their degrees is less than 180◦. So
the sum of the degrees of the two corresponding external angles are
greater than 180◦. If there exist three 0-subregions, then the external
angles of at least two of them are not the same, which contradicts
the rule that the sum of external angles should obey.

Thus it completes the proof of Lemma 2.5.

Figure 2.9: The condition of 0-subregions

Figure 2.10: Proof for Lemma 2.5

Now we need another lemma.

Lemma 2.6. In a Angle Cover by a convex pentagon, if a point
out side the pentagon lies in a Great Angle (angle formed by three
adjacent vertices of the pentagon, the center one being the vertex of
the angle), then it can at least form three convex quadrilaterals with
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the five inner points that the quadrilaterals cover the vertex of the
angle and that the vertex of the angle and the point are a pair of
opposite vertices.

Figure 2.11: Proof for Lemma 2.6

Proof. See Figure 2.11, F,G are all covered by ∠BAE. Nevertheless,
F is also covered by ∠BAC and ∠BAD, so it can form 3 convex
quadrilaterals, while G is also covered by ∠BAD, ∠CAE and ∠CAD,
which makes another four convex quadrilaterals. And all the convex
quadrilaterals satisfy the conditions mentioned in the lemma, which
proves Lemma 2.6.

Back to the proposition. Draw Figure 2.12.

According to Lemma 2.5, there are at most two 0-subregions. See
Figure 2.12, in the up-left region of line A5A3 and A5A2, i.e. the
interior of ∠TA5A2 in the figure (when there at less than two 0-
subregions, we can do some adjustment to the figure and use the
same method to prove it), there exist no 0-subregions. And it is easy
to prove that points in this area are at least covered by two great
angles. And obviously at least one of the three outside points lies in
this area. Hence by Lemma 2.6, this point can at least form 6 convex
quadrilaterals with A1A2A3A4A5. And according to the property
that the vertex of the Great Angle and this point are opposite ver-
tices, the three convex quadrilaterals this point forms with the vertex
of every Great Angle are different from each other, i.e. the 6 convex
quadrilaterals are all different.

Besides, there are
(
5
4

)
= 5 convex quadrilaterals in a convex pentagon.

Hence we have 5 + 6 + 10 = 21 > 19 completes the proof.

(b) S1 is a quadrilateral, say A1A2A3A4, B being the inner point. Pre-
vious proof shows it itself has 3 convex quadrilaterals. Radials BA1,

12



Figure 2.12: Proof for the situation when the inner convex hull is a pentagon

BA2, BA3 and BA4 divide the plane into four areas, then the ver-
tices of the outer triangle are all contained in one of the areas. Hence
we have at least three convex quadrilaterals.

Last is the situation when convex quadrilaterals are formed by one
point from the seven points (A1A2A3A4 and the outer three points)
and three of the inner points. According to the proof of situation 4a
in n = 7 case, there are at least 4 convex quadrilaterals.

Hence 10 + 3 + 3 + 4 > 19 completes the proof.

(c) S1 is a triangle. Similarly to Lemma 2.4 of n = 7, we draw Angle
Cover in Figure 2.13.

Consider the number of points that lie in the only 2-subregion. Obvi-
ously it’s less than 3. And if there two in the 2-subregion, the other
point must be in a 7-region, adding the number of convex quadri-
laterals by 2 + 2 + 7 = 11. But if there is at most one point in the
2-subregion, the number of convex quadrilaterals is added by at least
2 + 3 + 3 = 8.

Adding f(5) = 1 to the number, 10 + 8 + 1 = 19 completes the proof.

Finally we have f(8) ≥ 19.
And Figure 2.14 shows the solution. Let S be the triangle convex hull

1. Convex quadrilaterals formed by two vertices of S and two inner points.
According to Lemma 2.3, we have

(
5
2

)
= 10 convex quadrilaterals of this

kind.

2. Convex quadrilaterals formed by one vertex of S and three inner points.
Three vertices of S separately lie in 2-subregion, 3-subregion and 3-subregion

13



Figure 2.13: Angle Cover when S1 is a triangle

in Figure 2.14, according to the proof of 5c. Hence we have 2 + 3 + 3 = 8
convex quadrilaterals of this kind.

3. Convex quadrilaterals formed by four inner points. Only f(5) = 1.

Figure 2.14: Solution for f(8) = 19

Hence we have 10 + 8 + 1 = 19 convex quadrilaterals, which gives f(8) = 19.

2.4 For n = 9

Similarly to the proof of n = 8, by discussing different situations, we can obtain
f(9) ≥ 36. Here we just present how we may prove this.

Let S be the convex hull of the nine points.

1. S is an octagon or an enneagon.
(
8
4

)
> 36 completes the proof.
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2. S is a heptagon. According to Lemma 2.2, the number of the convex
quadrilaterals formed by one of its inner point and three vertices is greater
than or equal to 7 − 2 = 5; while the vertices alone can form

(
7
4

)
= 35

convex quadrilaterals. Hence 35 + 5 > 36 completes the proof.

3. S is a hexagon. According to Lemma 2.3, the number of convex quadri-
laterals formed by two inner points and two vertices is at least 3× 6 = 18.
Furthermore, according to Lemma 2.2, we have at least 3 × (6 − 2) = 12
convex quadrilaterals formed by one inner point and three vertices. Hence
18 + 12 +

(
6
4

)
> 36 completes the proof.

4. S is a pentagon. According to Lemma 2.3, we have at least 4×
(
4
2

)
= 24

convex quadrilaterals formed by two inner points and two vertices. While
Lemma 2.2 promises at least 4×(5−2) = 12 convex quadrilaterals formed
by one inner point and three vertices. Then 24 + 12 = 36 completes the
proof.

5. S is a quadrilateral. According to Lemma 2.3, we have at least 2×
(
5
2

)
= 20

convex quadrilaterals formed by two inner points and two vertices. Ac-
cording to Lemma 2.2, we have at least 5 × (4 − 2) = 10 convex quadri-
laterals formed by one inner points and three vertices.

Then discuss the convex of the five inner points, S1.

(a) S1 is a pentagon, which promises 5 convex quadrilaterals. Then
20 + 10 + 1 + 5 = 36 completes the proof.

(b) S1 is a quadrilateral. We have 1+2 = 3 convex quadrilaterals formed
by points in S1. By the Angle Cover of a quadrilateral, it is easy to
know the number of convex quadrilaterals formed by three of S’s
inner points and the one vertex of S is at least 4. Hence 20 + 10 +
1 + 3 + 4 > 36 completes the proof.

(c) S1 is a triangle. Then it has a Angle Cover similar to Figure 2.13.
It’s easy to know the number of convex quadrilaterals formed by
three of S’s inner points and a vertex of S is at least 8. Hence
20 + 10 + 1 + 8 > 36 completes the proof.

6. S is a triangle. According to Lemma 2.3, we have at least 1 ×
(
6
2

)
= 15

convex quadrilaterals formed by two inner points and two vertices. Let S1

be the convex hull of the 6 inner points.

(a) S1 is a hexagon. Its vertices form
(
6
4

)
= 15 convex quadrilaterals.

Using the method similar to the proof of 5a in 2.3, we firstly draw
the Angle Cover by the convex hexagon, and discuss the 0-subregions,
and then prove that at least one of the three vertices of S lies in the
two Great Angle of S1. So like Lemma 2.6, we can prove this point
can at least form 6 convex quadrilaterals with the vertices of S1.
Hence 15 + 15 + 6 = 36 completes the proof.

(b) S1 is a pentagon. S1’s vertices can form 5 convex quadrilaterals. Ap-
plying the conclusion of 5a in 2.3, we have at least 6 convex quadri-
laterals formed by three vertices of S1 and one vertex of S.

Then, let C be the inner point of S1.
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We need to improve Lemma 2.2, i.e. we are to prove that C can
at least form 5 convex quadrilaterals with the vertices of S1. The
method is as follows.

See Figure 2.15, discuss the location of C, i.e. region a, region b,
or region c. Then prove each situation. Then with similar method

Figure 2.15: Proof for the improvement of Lemma 2.2

we can prove the number of convex quadrilaterals formed by C, two
vertices of S1 and a vertex of S is at least 5. Then 15+5+6+5+5 = 36
completes the proof.

(c) S1 is a quadrilateral. Then the two diagonal lines divide the quadri-
lateral into four areas. Let P,Q be the two inner points of S1, and
let S2 = {P,Q}. Similarly, by discussing the location of P,Q in the
quadrilateral, we can obtain the fact that P,Q and the vertices of S1

can at least form 7 convex quadrilaterals.

Then estimate the number of convex quadrilaterals formed by one
point of S2, two vertices of S1 and a vertex of S. Here we need a
lemma almost equivalent to the Angle Cover, just for convenience.

Lemma 2.7. A,B,C,D form a convex quadrilateral in the given
order if and only if AC intersects with BD.

Proof. Trivial.

Back to the original problem. Firstly prove that we have at least
5 convex quadrilaterals formed by P , two vertices of S1 and one
vertex of S. Obviously, line segment between P and any vertex of S
intersects with an edge of S1. So according to Lemma 2.7, we have at
least 3 convex quadrilaterals. Then prove that the number of convex
quadrilaterals where P and a vertex of S are adjacent is at least k

2 ,
where k is degree of the region that point lies in.

See Figure 2.16. This two figures separately give the situation when
A is in a 2-subregion and a 4-subregion (situation is similar when
A and P change their location). Then according to Lemma 2.7, we
can complete the proof of the proposition. According to the proof
of n = 7 and Figure 2.7, we know that at least two vertices of S
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lie in 2-subregions or at least one lies in a 4-subregion. Hence ac-
cording to the proposition we just proved, we have at least 2 convex
quadrilaterals of this kind.

Figure 2.16: How the line segments intersect with each other when A lies in
different ares

Hence we have at least 5 of this kind of convex quadrilaterals. Same
for Q.

Finally estimate the number of convex quadrilaterals formed by two
vertices of S1 and two vertices of S. Again, according to the proof of
n = 7, we at least have 4 of this kind of convex quadrilaterals.

Hence, 15 + 5× 2 + 7 + 4 = 36 completes the proof of this situation.

(d) S1 is a triangle. This situation can be solved by Angle Cover. First
categorize the location of the six inner points of S. Then for each
category draw the Angle Cover and discuss different possible sub-
situations. Here we just draw an Angle Cover for one sub-situation.

Figure 2.17: Angle Cover of six points when the convex hull is a triangle

See Figure 2.17. It’s easy to know that the number of convex quadri-
laterals formed by one vertex of S and three inner points of S is at
least 6+6+6 = 18. And the number of convex quadrilaterals formed
only by inner points is f(6) = 3. Hence 18 + 15 + 3 = 36 completes
the proof.
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All discussions above proves that f(9) ≥ 36. Then see Figure 2.18. By
previous proofs, we can prove that ther are only 36 convex quadrilaterals here.
In fact, we will obtain the upper bound of f(n). And there will be related
structuring method that suggests there are only 36 convex quadrilaterals in this
figure.

Figure 2.18: Solution for n = 9
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Chapter 3

Lower Bound for n > 9

This chapter gives a lower bound of f(n),

f(n) ≥ n(n− 1)(n− 2)(n− 3)/84 =
2

7

(
n

4

)
.

To obtain this, the following theorem will be considered.

Theorem 3.1. Let f(n) be the infimum of the number of convex quadrilaterals
formed over a set with n distinct points where no three are collinear, then

f(n) ≥ n

n− 4
f(n− 1), (∀n ∈ N∗).

Proof. Given n ∈ N∗, suppose a point set X (|X| = n) gives an optimal situation
where the number of convex quadrilaterals formed by n points are the smallest,
i.e. Qk(X) = f(n). Then there exists a point x ∈ X such that the number of
convex quadrilaterals that has x as a vertex is no less than ≥ 4

nf(n).
Consider X\{x}, we have

f(n) ≥ 4

n
f(n) + Qk(X\{x}) ≥ 4

n
f(n) + f(n− 1), (3.1)

which gives

f(n) ≥ n

n− 4
f(n− 1).

And it completes the proof of Theorem 3.1.

Furthermore, by using the fact that f(9) = 36, f(n) could be bounded below
as

f(n) ≥ n(n− 1)(n− 2)(n− 3)/84 =
2

7

(
n

4

)
.
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Chapter 4

Upper Bound for n > 9

A structuring method is used in this chapter to form a point set of n points of
near optimal situation.

Consider the cases for n = 4, 5, 6, 7, 8, see Figure 4.1.

Figure 4.1: Special cases of small n’s

Then we structure a point set of n distinct points, Xn. Let t(n) = Qk(Xn),
and t(n) can be seen as an upper bound of f(n).

Following shows the method of structuring by induction and simultaneously
calculates the value of t(n).

Suppose the convex hull of Xn (n < k, k ≥ 10) is a triangle.
When n = k, we structure Xn based on Xn−3. By the hypothesis of induc-

tion, the convex hull of Xn−3 is a triangle, say4A1A2A3. Let P = {A1, A2, A3},
and let Q = Xn−3\P = Xn−6. Then we can position three points, B1, B2, B3

(let R = {B1, B2, B3}) that 4B1B2B3 is the convex hull of Xn−3
⋃

R, and that
these three points satisfy the following conditions.

1. B1 lies in the angle formed by the reversed extensional line of A1A2 and

the reversed extensional line of A1A3, i.e.
−−−→
A2A1 ×

−−−→
A1B1 > 0 and

−−−→
A1B1 ×−−−→

A3A1 > 0.

2. Bi is sufficiently close to Ai such that for any line l that passes through
two distinct points in X\P , we have l

⋂
AiBi = ∅ (here AiBi denotes line

segment AiBi).

3. Line AiBi (i = 1, 2, 3) divides the points in Q into two parts whose num-
bers of points are approximately the same.
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See Figure 4.2.

Figure 4.2: Form Xn from Xn−3

Now t(n) can be obtained from t(n− 3) and t(n− 6).
The convex quadrilaterals in Xn can be sorted into the following six cate-

gories.

1. Formed over P
⋃
Q, t(n− 3) convex quadrilaterals;

2. Formed over R
⋃
Q, t(n− 3) convex quadrilaterals according to condition

2 mentioned above; (but the first two categories has t(n − 6) common
convex quadrilaterals)

3. Formed over R
⋃
P , f(6) = 3 convex quadrilaterals;

4. Formed by one point in Q, two points in P and one point in R;

5. Formed by one point in Q, one point in P and two points in R;

6. Formed by two points in Q, one point in P and one point in R.

For Category 4 and Category 5, they should have the same result. Firstly
calculate the 4th category. See Figure 4.3.

It does no harm in assuming A1 and A2 are the two points we choose from
P .

If we choose B3 ∈ R, they form no convex quadrilaterals according to con-
dition 1.

If we choose B2 ∈ R, x ∈ Q can form a convex quadrilateral with A1, A2

and B2 only when x is inside ∠A1B2A2. And if we choose B2, A2, A3 at the
beginning, x ∈ Q can form a convex quadrilateral with A2, A3 and B2 only
when x is inside ∠A3B2A2. Hence these two situations together make (n − 6)
convex quadrilaterals.

Similarly, we have the same result in other situations and thus Category 4
and Category 5 each has 3(n− 6) convex quadrilaterals.

As for Category 6. Let R(n) be the number of convex quadrilaterals in this
category.

Suppose we choose Ai ∈ P and Bj ∈ R, and R(n) can then be obtained by
discussing the following two situations.
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1. i = j. Consider i = j = 2.

Line A2B2 divides 4A1A2A3 into two parts, simultaneously dividing Q
into two parts.

We are to proof that for two distinct points, say C and D, in Q can form a
convex quadrilateral with A2, B2 if and only if they are in the same part
of Q.

Proof. See Figure 4.4. When line CD is parallel with A2B2, A2, B2, C,D
certainly form a convex quadrilateral and C,D are obviously in the same
part. Else, if CD is not parallel with A2B2 but C, D are in the same part,
their crossing point can’t be on line segment CD or A2B2 (according to
condition 2), hence they form a convex quadrilateral. However, when
CD are divided into two different parts of Q by line segment A2B2, their

Figure 4.3: Convex Quadrilaterals formed by one point in Q, two points in P
and one point in R

Figure 4.4: Sufficient and necessary conditions for C,D,A2, B2 forming a convex
quadrilateral
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crossing point surely lies on line segment CD and they can’t form a convex
quadrilateral.

Let x and y separately denote the number of points in Q’s two parts. We
have x + y = n − 6. Then the number of convex quadrilaterals in this
situations is(

x

2

)
+

(
y

2

)
=

x2 + y2

2
− x + y

2
=

x2 + y2 − (n− 6)

2
.

The properties of inequalities promise when x is as close to y as possible,
the expression gets its minimum value.

Hence (
x

2

)
+

(
y

2

)
≥

{(
(n−6)/2

2

)
+
(
(n−6)/2

2

)
, (n− 6) even;(

(n−5)/2
2

)
+
(
(n−7)/2

2

)
, (n− 6) odd.

2. i 6= j. See Figure 4.5.

Figure 4.5: Situation where i 6= j

For any two distinct points, C,D, in Q. Assume line CD intersects with
A1A3 and A2A3.

For 4A1A3B1, because A1A3 intersects with line CD, we have that CD
intersects with A3B1 according to condition 2. For the same reason, line CD
intersects with A1B3, B2A3 and A2B3. And it won’t intersect with A1B2,A2B1.

Hence C,D can only form convex quadrilaterals with A2, B1 or A1, B2. Same
result for other point-pair in Q.

The total number of convex quadrilaterals in this situation is then 2
(
n−6
2

)
.
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Finally the two situations above complete the calculation of R(n),

R(n) =

{
(n− 6)(7n− 52)/4, n even;

(n− 7)(7n− 45)/4, n odd.

And then we have

t(n) = 2t(n− 3)− t(n− 6) + 6n− 33 + R(n) (n ≥ 9). (4.1)

Furthermore, we estimate t(n) for more direct result.
We have R(n) ≤ (n− 7)(7n− 45)/4 whether n is an even number of an odd

number.
Hence consider n mod 3, we have the following results (for k ≥ 3).

t(3k) ≤ k − 1

16
(21k3 + 245k2 + 354k − 1908); (4.2)

t(3k + 1) ≤ k − 1

16
k(21k2 − 7k + 2); (4.3)

t(3k + 2) ≤ k − 1

16
(21k3 + 21k2 + 16k + 4). (4.4)
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