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RATIONAL TANGENTS AND APPLICATIONS TO

RATIONAL HOMOGENEOUS MANIFOLDS
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Abstract

In a series of works, one of the authors has developed with J.-
M. Hwang a geometric theory of uniruled projective manifolds,
especially those of Picard number 1, basing on the study of vari-
eties of minimal rational tangents. A fundamental result in this
theory is a principle of analytic continuation under very mild as-
sumptions, called Cartan-Fubini extension, of biholomorphisms
between connected open subsets of two Fano manifolds of Picard
number 1 which preserve varieties of minimal rational tangents.
In this article we develop a generalization of Cartan-Fubini ex-
tension for non-equidimensional holomorphic immersions from a
connected open subset of a Fano manifold of Picard number 1
into a uniruled projective manifold, under the assumptions that
the map sends varieties of minimal rational tangents onto linear
sections of varieties of minimal rational tangents and that it sat-
isfies a mild geometric condition formulated in terms of second
fundamental forms on varieties of minimal rational tangents. For-
merly such a result was known only in the very special case of
irreducible Hermitian symmetric manifolds of rank at least two,
and the proof relied on the existence of flattening coordinates, viz.,
Harish-Chandra coordinates, with respect to which the varieties
of minimal rational tangents form a constant family. The proof of
the main result, which is based on the deformation theory of ra-
tional curves, is differential-geometric in nature and is applicable
to the general situation of uniruled projective manifolds without
any assumption on the existence of special coordinate systems. As
an application, we give a characterization of standard embeddings
for certain pairs of rational homogeneous manifolds in terms of
embeddings of varieties of minimal rational tangents.

1. Introduction

For a polarized uniruled projective manifold X, by a minimal ratio-
nal curve we mean a free rational curve of minimal degree among such
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curves. A connected component K of the space of (unparametrized)
minimal rational curves, which carries a natural topology, will be called
a minimal rational component. K carries naturally the structure of a
quasi-projective manifold. At a general point x ∈ X we have corre-
spondingly a moduli space Kx of minimal rational curves marked at x,
and Kx is a projective manifold by minimality. By associating a mini-
mal rational curve immersed at the marking at x to the tangent line of
the curve at the marking, we obtain a rational map Φx : Kx → PTx(X)
called the tangent map, and its strict transform Cx ⊂ PTx(X) is called
the variety of minimal rational tangents at x. The union of Cx over
general points x ∈ X gives the fibered space π : C → X of varieties of
minimal rational tangents associated to K. We will use the notations
Cx(X) and C(X) when we need to emphasize that they are associated
to a minimal rational component defined on X.

In a series of works of one of the authors with J.-M. Hwang, it was
revealed that there is a rich geometry on uniruled projective manifolds,
especially those of Picard number 1, embodied in the fibered spaces of
varieties of minimal rational tangents. A prototypical example is given
by the hyperquadric Qn of dimension n ≥ 3, which is equipped with a
holomorphic conformal structure, and for which the variety of minimal
rational tangents at any point is given by the projectivization of the
cone of null vectors. The holomorphic conformal structure is an exam-
ple of S-structures modeled after an irreducible Hermitian symmetric
manifold S of rank ≥ 2. For the theory of S-structures there is the re-
sult of Ochiai [Oc70], according to which any biholomorphism between
two nonempty connected open subsets of S preserving the S-structure
can be analytically continued to a biholomorphic automorphism of S.
Ochiai’s result was proved using cohomological methods on Lie algebras,
but it can be interpreted as a statement about analytic continuation of
germs of holomorphic maps which preserve varieties of minimal rational
tangents. With this interpretation, Hwang-Mok gave in [HM01] and
[HM04] a far-reaching generalization of Ochiai’s Theorem to a result
of analytic continuation on Fano manifolds of Picard number 1, called
Cartan-Fubini extension (which is related to the works of Fubini and
of Cartan on second fundamental forms of smooth hypersurfaces in the
projective space), as follows.

Theorem (Equidimensional Cartan-Fubini extension [HM01],
[HM04]). Let Z and X be two Fano manifolds of Picard number 1 with

minimal rational components. Assume that Cz(Z) is positive-dimensional

and is not a finite union of linear subspaces at a general point z ∈ Z. Let

f : U → V be a biholomorphic map from a connected open subset U ⊂ Z
to V ⊂ X. If the differential df sends each irreducible component of

C(Z)|U to an irreducible component of C(X)|V biholomorphically, then

f extends to a biholomorphic map F : Z → X.
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Cartan-Fubini extension lies at the heart of the theory of geometric
structures modeled on varieties of minimal rational tangents. It was
used in Hwang-Mok [HM99a, HM04] to give solutions of Lazarsfeld’s
Problem on finite holomorphic maps f : G/P → X from a rational
homogeneous manifold of Picard number 1 onto a Fano manifold X.
Cartan-Fubini extension on irreducible Hermitian symmetric manifolds
S of Picard number 1, in the form of Ochiai’s Theorem, was used in
[HM98] as a first step towards proving rigidity under Kähler deforma-
tion of rational homogeneous manifolds G/P of Picard number 1 (cf.
[HM04] and the references there). In this paper we generalize Cartan-
Fubini extension to the non-equidimensional situation for a holomorphic
immersion from a connected open subset U ⊂ Z of a Fano manifold Z of
Picard number 1 into a uniruled projective manifold X which respects
varieties of minimal rational tangents in the sense that it sends varieties
of minimal rational tangents onto linear sections of varieties of minimal
rational tangents, i.e.,

df(Cz(Z)) = df(P(TzZ)) ∩ Cf(z)(X)

for every z ∈ U . Our main result is as follows.

Theorem 1.1. Let (Z,H) and (X,K) be two uniruled projective man-

ifolds with minimal rational components. Assume that Z is of Picard

number 1 and that Cz(Z) is positive-dimensional at a general point

z ∈ Z. Let f : U → X be a holomorphic immersion defined on a con-

nected open subset U ⊂ Z. If f respects varieties of minimal rational

tangents and is non-degenerate with respect to (K,H), then f extends

to a rational map F : Z → X.

We say that f : U → X is non-degenerate with respect to (K,H)
whenever the image f(U) is not contained in the bad locus of K and,

at a general point z ∈ U and a general smooth point α ∈ C̃z(Z),

df(α) is a smooth point of C̃f(z)(X) such that the second fundamen-

tal form σ of C̃f(z)(X) ⊂ Tf(z)(X) at df(α), restricted to the subspace

Tdf(α)(df(C̃z(Z))) of Tdf(α)(C̃f(z)(X)), has trivial kernel, i.e.,
{
ζ ∈ Tdf(α)(C̃f(z)(X)) : σ(ζ, ξ) = 0 for any ξ ∈ Tdf(α)(df(C̃z(Z)))

}

= Cdf(α).

In the equidimensional case, the non-degenerate condition corresponds
to the generical finiteness of the Gauss map of Cz(Z) for a general point
z ∈ U , which was assumed in [HM01].

A first instance of non-equidimensional Cartan-Fubini extension was
implicitly established in the special case of holomorphic immersions be-
tween connected open subsets of irreducible Hermitian symmetric mani-
folds S of rank ≥ 2, by a combination of the differential-geometric proof



542 J. HONG & N. MOK

of Ochiai’s Theorem of Mok [Mk99] and the proof of the equidimen-
sional Cartan-Fubini extension result of Hwang-Mok [HM01] under a
non-degeneracy assumption on the Gauss map. The starting point of
the proof of Theorem 1.1 relies on a comparison of the tautological
foliation F on the fibered space C(X) of varieties of minimal rational
tangents on the ambient manifold X and the image of the tautologi-
cal foliation E on the fibered space C(Z) under a holomorphic embed-
ding f : U → X, U ⊂ Z, which respects varieties of minimal rational
tangents. More precisely, we compare over the image of f(U) the 1-
dimensional distribution F|f(U) with the foliation f∗E . The method of
Mok [Mk99] in the Hermitian symmetric case relies on the existence
of flattening coordinates for S-structures, viz., Harish-Chandra coordi-
nates, with respect to which the varieties of minimal rational tangents
form a constant family. We establish first of all the special case of The-
orem 1.1 where the Fano manifolds Z and X of Picard number 1 are
equipped with privileged E-linearizing resp. F-linearizing coordinate
systems in the sense that the minimal rational curves are lines with
respect to these coordinate systems. In terms of privileged coordinate
systems the differential-geometric arguments using Euclidean geometry
and second fundamental forms work out in analogy to the Hermitian
symmetric case, and the basis for such a generalization is the fact that
the positive part of the Grothendieck decomposition of the holomorphic
tangent bundle constitutes a constant family along a minimal rational
curve (which is a line with respect to a privileged coordinate system),
a crucial fact which results from the deformation theory of (minimal)
rational curves. While such coordinate systems exist for rational ho-
mogeneous manifolds of Picard number 1 through the use of minimal
canonical embeddings into projective spaces, where minimal rational
curves are mapped onto projective lines, and through the use of linear
projections, both for the sake of completeness and for anticipated appli-
cations to non-homogeneous uniruled projective manifolds we establish
Theorem 1.1 in full generality through the use of coordinate systems
which are in some sense approximations of privileged coordinate sys-
tems along a given minimal rational curve.

While equidimensional Cartan-Fubini extension provides a funda-
mental result for the study of germs of open holomorphic immersions
between uniruled projective manifolds of Picard number 1, we expect
non-equidimensional Cartan-Fubini extension to provide a basic tool for
the study of germs of non-equidimensional holomorphic immersions be-
tween such manifolds. Furthermore, we expect that Theorem 1.1 can be
used as a basic tool to study complex-analytic subvarieties of Fano man-
ifolds of Picard number 1 which are distinguished from the perspective
of the theory of geometric structures modeled on varieties of minimal
rational tangents. From this perspective, taking minimal rational curves
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to play heuristically the role of geodesics in Riemannian geometry, the
class of complex subvarieties which are saturated (cf. [Mk07]) with
respect to the adjunction of minimal rational tangents can be taken as
the analogue of totally geodesic submanifolds in Riemannian geometry.
In this vein Mok [Mk07] provides a first example of such characteri-
zation theorems where non-equidimensional Cartan-Fubini extension in
the Hermitian symmetric case was applied to give a characterization of
standard embeddings between complex Grassmannians of rank ≥ 2. In
this article, by means of Theorem 1.1 we give a vast generalization of
the latter characterization theorem covering a great variety of pairs of
rational homogeneous manifolds of Picard number 1. Specifically, we
consider rational homogeneous manifolds X = G/P of Picard number 1
associated to long simple roots of simple Lie groups G and characterize
the standard embedding of certain rational homogeneous submanifolds
Z →֒ X of Picard number 1 in terms of embeddings of varieties of
minimal rational tangents, as follows.

Theorem 1.2. Let X = G/P be a rational homogeneous manifold

associated to a long simple root and let Z = G0/P0 be a rational ho-

mogeneous manifold associated to a subdiagram of the marked Dynkin

diagram of G/P . Assume that Z is not linear. If f : U → X is a

holomorphic embedding from a connected open subset U of Z into X
which respects varieties of minimal rational tangents for a general point

z ∈ U , then f is the restriction of a standard embedding of Z into X.

Here, the choice of a subdiagram induces naturally an embedding
ϕ : G0/P0 → G/P . By a standard embedding of G0/P0 into G/P we
will mean the composite g ◦ ϕ for any automorphism g of X = G/P .

Acknowledgments. J. Hong’s research was partially supported by
KOSEF grant R01-2007-000-20064-0. N. Mok’s research was partially
supported by GRF grant HK7039/06P of the Research Grants Council
of Hong Kong.

2. Preservation of tautological foliations and analytic

continuations

2.1. Definitions and statements. Let X be a polarized uniruled pro-
jective manifold, let H be a connected component of parametrized free
rational curves h : P1 → X of minimal degree among such curves, and let
K := H/Aut(P1) be the associated quotient space of (unparametrized)
free rational curves, which inherits the structure of a quasi-projective
manifold. We call K a minimal rational component. At a general point
x ∈ X we have correspondingly a moduli space Kx of minimal rational
curves marked at x, and Kx is a projective manifold by minimality. For
a member u of Kx, represented by f : P1 → X, f(0) = x, which is an
immersion at the marking at x, the tangent map Φ associates u to the
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tangent line [Φ(u)] ∈ PTx(X) at the marking, i.e., Φ(u) = [df(T0(P
1))].

By Kebekus [Ke] any minimal rational curve passing through a gen-
eral point is immersed, so that the tangent map Φ : Kx → PTx(X) is
holomorphic. Its image Cx := Φ(Kx) is called the variety of minimal
rational tangents at x, and by Hwang-Mok [HM01, HM04] the map
Φ : Kx → Cx is a normalization. (Originally the variety of minimal
rational tangents Cx ⊂ PTx(X) was defined in Hwang-Mok [HM99a]
as the strict transform of the tangent map which was only known to
be a rational map.) The union of Cx over general points x ∈ X gives
the fibered space π : C → X of varieties of minimal rational tangents
associated to K.

Let ρ : U → K and µ : U → X denote the universal family morphisms.
The fibers of ρ : U → K induce a foliation F on C, called the tautological
foliation on C associated to K. We assume that Cx is irreducible, of
positive dimension, and non-linear for a generic point x ∈ X. Here Cx
is said to be linear whenever it is a finite union of linear subspaces, and
non-linear otherwise. Then the tautological foliation F is univalent at
a generic point of C([HM04]).

For a general reference on the deformation theory of rational curves
from an algebro-geometric perspective, the reader is referred to Kollár
[Ko]. For surveys on the theory of geometric structures modeled on
varieties of minimal rational tangents at various stages of its develop-
ment, the reader may consult Hwang-Mok [HM99b], Hwang [Hw01],
and Mok [Mk08]. The article Hwang [Hw07] contains discussions on
rational homogeneous manifolds in the frame work of a theory of geo-
metric structures modeled on varieties of minimal rational tangents.

Now we consider two uniruled projective manifolds (Z,H), (X,K)
each equipped with a minimal rational component. Denote by C(Z),
C(X) the associated fibered spaces of varieties of minimal rational tan-
gents and denote by F(Z), F(X) the associated tautological foliations.
A main ingredient in the proof of Theorem 1.1 is to prove that f sends
minimal rational curves passing through U to minimal rational curves in
X whenever f : U → X respects varieties of minimal rational tangents
(Proposition 2.1).

For a finite-dimensional vector space V and a complex-analytic sub-

variety E ⊂ P(V ), we denote by Ẽ ⊂ V − {0} the pre-image π−1(E)
of the canonical projection π : V − {0} → P(V ). We recall the defini-

tion of the second fundamental form on C̃x(X) ⊂ TxX for x ∈ X. For

η ∈ C̃x(X) the second fundamental form

ση : Tη(C̃x(X)) × Tη(C̃x(X)) → TxX/Tη(C̃x(X))

on C̃x(X) ⊂ TxX at η ∈ C̃x(X) is defined by

ση(ξ, ζ) = ∇ξ ζ̂ mod Tη(C̃x(X))
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for any ξ, ζ ∈ Tη(C̃x(X)), where ζ̂ is a local vector field with ζ̂(η) = ζ
and ∇ is the Euclidean flat connection on the Euclidean space TxX.

For a subspace W of Tη(C̃x(X)), define Kerση(W, · ) by

Kerση(W, · ) := {ζ ∈ Tη(C̃x(X)) : ση(ζ, ξ) = 0 for any ξ ∈ W}.

Since C̃x(X) is a cone, Cη is contained in Kerση(W, · ) for any subspace

W of Tη(C̃x(X)).

Definition. Let (X,K) and (Z,H) be two polarized uniruled projec-
tive manifolds each equipped with a minimal rational component. Let
f : U → X be a holomorphic immersion defined on a connected open
subset U ⊂ Z. We say that

1) f respects varieties of minimal rational tangents if

df(C(Z)|U ) = df(P(TZ|U)) ∩ C(X)|f(U)

and
2) f is non-degenerate with respect to (K,H) if

a) f(U) is not contained in the bad locus of K

b) for a general point z ∈ U and a general smooth point α ∈ C̃z(Z),

df(α) is a smooth point of C̃f(z)(X) such that

Kerσdf(α)(Tdf(α)(df(C̃z(Z))), · ) = Cdf(α).

Here, the bad locus of K is the smallest subvariety E of X such that for
any x ∈ X\E, any minimal rational curve passing through x is free and
a general minimal rational curve passing through x is standard.

Proposition 2.1. Let (X,K) and (Z,H) be two polarized uniruled

projective manifolds each equipped with a minimal rational component.

Assume that Cz(Z) is irreducible and is positive-dimensional for a gen-

eral point z ∈ Z. Let f : U → X be a holomorphic immersion defined

on a connected open subset U ⊂ Z. If f respects varieties of minimal

rational tangents and is non-degenerate with respect to (K,H), then f
preserves the tautological foliations.

We remark that when Cf(z)(X) = df(Cz(Z)), the non-degenerate
condition is equivalent to the generic finiteness of the Gauss maps of
Cf(z)(X) = df(Cz(Z)). Under this assumption Proposition 2.1 was
proved in [HM99b] Section 3.1, and, together with analytic contin-
uation, it implies the equidimensional Cartan-Fubini type extension
theorem: if dimZ = dimX and if f : U → X preserves varieties of
minimal rational tangents, then f extends to a biholomorphism F :
Z → X([HM01]).

In our non-equidimensional case, once we have a holomorphic immer-
sion f : U → X preserving the tautological foliations, the arguments
using the method of parametrized analytic continuation in [HM01],
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Sections 2–4 work word by word, except that in our case the extension
F is just a rational map.

Proposition 2.2. Let X and Z be two polarized uniruled projective

manifolds each equipped with a minimal rational component. Assume

that Z is of Picard number 1. Let f : U → X be a holomorphic im-

mersion defined on a connected open subset U ⊂ Z which preserves the

tautological foliations. Then f extends to a rational map F : Z → X.

Together with Proposition 2.1, this completes the proof of Theorem
1.1. It remains to prove Proposition 2.1, whose proof relies on Proposi-
tion 2.4 in Section 2.2.

2.2. The difference of two tautological foliations. In this section
we investigate the conditions which ensure the preservation of the tau-
tological foliations for a holomorphic immersion f : U → X defined on
a connected open subset U ⊂ Z respecting varieties of minimal rational
tangents. In what follows we assume for notational simplicity that f is
injective.

Consider two rank-1 subbundles E and F of the tangent bundle
TC(X) of C(X) restricted on R := df(C(Z)|U ) ⊂ C(X)|f(U). The first
one E is defined by vectors tangent to liftings of the image f(C) of
germs of minimal rational curves C passing through U , and the sec-
ond one F = F(X) is defined by vectors tangent to liftings of germs of
minimal rational curves in X.

The subbundles E and F are tautological in the sense that for η ∈
Rf(z), dπη(Eη) = dπη(Fη) = Cη, where π : C(X) → X is the projection
map. Furthermore, E and F are equal if and only if f maps germs of
minimal rational curves in H passing through U to germs of minimal
rational curves in K. We are going to express the difference of E and F
at η as the Hessian of f with respect to some coordinate systems.

Fix α ∈ Cz(Z) and let C be the minimal rational curve tangent to α
at z. We say that a coordinate system (z1, . . . , zm) around z is adapted
to α whenever there is a parametrization (z1(s), . . . , zm(s)) of C with
linear coordinates zi(s). Let (u1, . . . , um) be the fiber coordinate system

on TZ induced by (z1, . . . , zm). Then the lifting Ĉ of C to P(TZ) has

constant coordinates in (u1, . . . , um), and thus the tangent vector to Ĉ

at α has zero coefficients in
{

∂
∂u1

, . . . , ∂
∂um

}
when expressed in terms of

the standard basis
{

∂
∂z1

, . . . , ∂
∂zm

, ∂
∂u1

, . . . , ∂
∂um

}
. For η = df(α), take a

coordinate system (x1, . . . , xn) around x = f(z) adapted to η, too.
Define the Hessian d2f : TzZ × TzZ → Tf(z)X of f by

d2f(α, β) =
∑

i,j,k

αiβj ∂2fk

∂zi∂zj

∂

∂xk
|f(z) ∈ Tf(z)X
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for α =
∑

αi ∂
∂zi

and β =
∑

βi ∂
∂zi

. We remark that the definition of

the Hessian d2f of f depends on the choice of the coordinate systems
(z1, . . . , zm) and (x1, . . . , xn) around z and f(z).

Lemma 2.3. Let z ∈ Z and α ∈ Cz(Z). Let (z1, . . . , zm) be a co-

ordinate system on U adapted to α and let (x1, . . . , xn) be a coordinate

system on V adapted to η = df(α). Then the Hessian d2f(α,α) is con-

tained in Tdf(α)(Cf(z)(X)), and the Hessian d2f(α,α) ≡ 0 mod η if and

only if E[η] = F[η].

Proof. Let η♯ ∈ E[η] and η♭ ∈ F[η] be such that dπ(η♯) = dπ(η♭) = η

for the projection π : C(X) → X. Then η♯ − η♭ ∈ T[η](Cf(z)(X)) ⊂
Tf(x)X/Cη.

The coordinate systems (z1, . . . , zm) and (x1, . . . , xn) induce the fiber
coordinate systems (u1, . . . , um) and (v1, . . . , vn) on TZ|U and TX|V .
With respect to the coordinate systems (z1, . . . , zm) and (x1, . . . , xn),
the map f is given by

(f1(z1, . . . , zm), . . . , fn(z1, . . . , zm)).

Let (z1(s), . . . , zm(s)) be a parametrization of C with
(
dz1
ds , . . . ,

dzm
ds

)

|s=0 = (α1, . . . , αm) such that zi(s) are linear for all i = 1, . . . ,m. Then
the image f(C) is parametrized by

(f1(z1(s), . . . , zm(s)), . . . , fn(z1(s), . . . , zm(s)))

and the lifting of f(C) is parametrized by
(
f1(z1(s), . . . , zm(s)), . . . , fn(z1(s), . . . , zm(s)),

∑

j

df1

dzj

dzj
ds

, . . . ,
∑

j

dfn

dzj

dzj
ds

)
.

Thus the vector η♯ tangent to the lifting of f(C) at η = df(α) is given

by
∑

j,k α
j dfk

dzj
∂

∂xk
|η +

∑
i,j,k α

iαj ∂2fk

∂zi∂zj
∂

∂vk
|η because the zi(s) are linear

functions. But η♭ is
∑

j,k α
j dfk

dzj
∂

∂xk
|η because (x1, . . . , xn) is adapted to

η. Thus η♯ − η♭, after being canonically identified as a tangent vector
in Tf(x)X, is equal to the Hessian d2f(α,α) of f with respect to the
coordinate systems (z1, . . . , zm) and (x1, . . . , xn). q.e.d.

Proposition 2.4. Let (X,K) and (Z,H) be two uniruled projective

manifolds each equipped with a minimal rational component. Assume

that Cz(Z) is irreducible and is of positive dimension for a general point

z ∈ Z. Let f : U → X be a holomorphic immersion defined on a

connected open subset U ⊂ Z respecting varieties of minimal rational

tangents. Then, there exist a coordinate system around z adapted to α
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and a coordinate system around x = f(z) adapted to df(α) with respect

to which the Hessian d2f(α,α) satisfies

σdf(α)
(
d2f(α,α), ξ

)
= 0

for any α ∈ C̃x(X) and for any ξ ∈ Tdf(α)(df(C̃z(Z)).

For the moment we assume the validity of Proposition 2.4 and pro-
ceed to complete the proof of Proposition 2.1.

Proof of Proposition 2.1. By Lemma 2.3 the Hessian d2f(α,α) is a

tangent vector in Tdf(α)(C̃x(X)), and by Proposition 2.4 there are, a co-
ordinate system around z adapted to α and a coordinate system around
x = f(z) adapted to df(α) such that d2f(α,α) is contained in the vec-

tor subspace Kerσdf(α)(Tdf(α)(df(C̃z(Z))), · ) ⊂ Tdfd(C̃z(X)). By the as-

sumption that f is non-degenerate, Kerσdf(α)(Tdf(α)(df(C̃z(Z))), · ) =

Cdf(α) and thus d2f(α,α) ≡ 0 mod df(α). By Lemma 2.3, the two
subbundles E and F are equal, i.e., f preserves the tautological folia-
tions. q.e.d.

In the remaining sections we will prove Proposition 2.4 by construct-
ing special coordinate systems adapted to the tautological foliations,
which will be given in Section 2.3 for the special case where X and Z
are uniruled by projective lines, and in Section 2.4 for the general case.

2.3. Privileged system of F-linearizing coordinates. Let X be a
uniruled projective manifold and let K be a minimal rational compo-
nent. Denote by C the fibered space of varieties of minimal rational
tangents associated to K and denote by F the tautological foliation on
C associated to K. Let E be the bad locus of K and let W = X\E.

Definition. Let U ⊂ W be a chart with a coordinate system (z1, . . . , zn).
We say that (z1, . . . , zn) is F-linearizing if C ∩ U is an open subset of
an affine line with respect to (z1, . . . , zn) for any minimal rational curve
C such that C ∩ U 6= ∅.

Let C be a minimal rational curve passing through U ⊂ W and
denote by α(x) a non-zero element of Tx(C). We have T[α(x)](Cx) =
Pα(x)/Cα(x), where Pα(x) ⊂ Tx(X) is the fiber (O(2) ⊕ [O(1)]p)x with
respect to a Grothendieck decomposition TX|C ∼= O(2) ⊕ [O(1)]p ⊕
Oq over C. The positive part Pα(x) is independent of the choice of
Grothendieck decomposition of TX|C .

Definition. Let (z1, . . . , zn) be an F-linearizing system of coordi-
nates. We say that π : C|U → U is tangentially constant along F
with respect to (z1, . . . , zn) if along each minimal rational curve C,
T[α(x)](Cx) = Pα(x)/Cα(x) with Pα(x) = PC ⊂ C

n for some complex
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vector subspace PC of Cn depending only on C, when one identifies TU
with C

n ×U by the standard trivialization with respect to (z1, . . . , zn).
We will say for short that (z1, . . . , zn) is a privileged system of F-

linearizing coordinates on U , meaning that (z1, . . . , zn) is F-linearizing
and π : C|U → U is tangentially constant along F with respect to
(z1, . . . , zn).

There are many examples of uniruled manifolds having privileged sys-
tems of F-linearizing coordinates. An irreducible Hermitian symmetric
space of compact type equipped with Harish-Chandra coordinates gives
such an example. As we will see in the proof of Proposition 2.4, a
privileged system of F-linearizing coordinates will play a similar role
as Harish-Chandra coordinates when we deal with a family of minimal
rational curves, with an error term which we will prove to be irrelevant.

Proposition 2.5. Let X ⊂ P
N be a projective submanifold of P

N

uniruled by projective lines. Let K be a minimal rational component

consisting of projective lines on X. Assume that for a general point

x of X, the subvariety Kx of K consisting of projective lines passing

through x is irreducible. Then, at any general point x ∈ X, there exists

an open neighborhood U of x and a privileged system of F-linearizing

coordinates (z1, . . . , zn) on U .

Proof. Let E be the bad locus of K and let W = X\E. Let x ∈ W , let
C be a projective line on X passing through x, and write Tx(C) = Cα.
The minimal rational curve C is standard, i.e., TX|C ∼= O(2)⊕[O(1)]p⊕
Oq.

Let P ⊂ TX|C be the subbundleO(2)⊕ [O(1)]p, which is well-defined
independent of the choice of Grothendieck decomposition. We have also
TPN |C ∼= O(2)⊕ [O(1)]N−1. Consider now P as a subbundle of TPN |C .
Write P

N = P(CN+1). The projective line C is the projectivization
P(Eo) for some 2-dimensional complex vector subspace Eo ⊂ C

N+1. We
assert that there exists a (p + 2)-dimensional complex vector subspace
E ⊂ C

N+1 such that E ⊃ Eo and such that TP(E)|C agrees with P
on C. Geometrically, our assertion means that there exists a (p + 1)-
dimensional projective subspace of PN tangent toX along the projective
line C.

To prove our assertion, pick any point x ∈ C, x = [Cη], and let E ⊂
C
N be the (p + 2)-dimensional vector subspace such that E/Cη = Px.

We are going to show that our assertion is valid with this choice of
E. For a complex submanifold A of a complex manifold B, we denote
by NA|B the holomorphic normal bundle of A in B. Both P/TC and

TP(E)|C/TC = NC|P(E) are holomorphic subbundles of TPN |C/TC =
NC|PN . We have thus two injective holomorphic bundle homomorphisms

µ, ν: [O(1)]p → [O(1)]N−1 over C with identical images at the point
x ∈ C. Obviously, µ and ν can be normalized to agree at the point
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x. Since Hom([O(1)]p, [O(1)]N−1) ∼= Op(N−1), any global holomorphic
section of the former is determined by its value at one point, implying
that P = TP(E)|C , as asserted.

Let now (z1, . . . , zN ) be a system of inhomogeneous coordinates for
P
N at the point x ∈ W , chosen so that (z1, . . . , zn) serves as a system of

holomorphic coordinates for X on some connected open neighborhood
U of x in W . Any minimal rational curve C belonging to K and passing
through U lies on an affine line with respect to the inhomogeneous coor-
dinates (z1, . . . , zN ) on an affine part of PN , and hence with respect to
the coordinates (z1, . . . , zn) on U ⊂ W ⊂ X. It follows that (z1, . . . , zn)
is F-linearizing. Given any projective line C on X passing through U ,
P ∼= TP(E)

∣∣
C
implies that there exists a (p+1)-dimensional complex vec-

tor subspace A of Cn such that A is parallel to Pα ⊂ Tx(X) with respect
to the F-linearizing coordinates (z1, . . . , zn), for any x ∈ C ∩U and for
any non-zero vector α tangent to C at x. In other words, π : C|U → U
is tangentially constant along F , and (z1, . . . , zn) serves as a privileged
system of holomorphic coordinates on U with respect to F . The proof
of Proposition 2.5 is complete. q.e.d.

Example. The following are examples of projective submanifolds of
P
N uniruled by projective lines; by Proposition 2.5, each of them has a

privileged system of F-linearizing coordinates where F is associated to
the family of projective lines lying on it:

(1) Rational homogeneous manifolds G/P of Picard number 1 in the
first canonical embedding,

(2) Smooth hypersurfaces of PN of degree 1 < d ≤ N − 1
(3) More generally, smooth complete intersections of dimension ≥ 2

and of degree (d1, . . . , dℓ) with 1 < d1 + · · ·+ dℓ ≤ N − 1

Before considering general privileged systems of F-linearizing coordi-
nates, we give a proof of Proposition 2.4 in the case when X = Z is a
Hermitian symmetric space so that it has Harish-Chandra coordinates,
the simplest privileged system of F-linearizing coordinates. For the sake
of completeness we recall the proof of Proposition 2.2.1 of [Mk99] after
simplifying it, in order to explain what we need to modify in the general
case.
Proof of Proposition 2.4 in the case where X = Z is a Hermitian sym-

metric space. Choose Harish-Chandra coordinates, which flatten the

fibered spaces C̃(Z) over U and C̃(X) over V = f(U). Denote by ∇ the
Euclidean connection on U defined by Harish-Chandra coordinates. We
may assume that f(z) = z and dfz : TzZ → Tf(z)X is the identity map.

For any α, β ∈ C̃z(Z), consider a minimal rational curve C through

z and tangent to α and consider the constant section β̃ of C̃(Z)|C
with β̃(z) = β. Since β̃ is parallel, d2f(α, β) = ∇df(α)df(β̃) and thus

d2f(α, β) ∈ Pβ = Tβ(C̃z(Z)). Similarly, considering the constant section
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α̃ of C̃(Z)|C′ along a minimal rational curve C ′ tangent to β, we have

d2f(β, α) = ∇df(β)df(α̃) ∈ Pα = Tα(C̃z(Z)). By the symmetry of the
Hessian,

d2f(α, β) ∈ Pα ∩ Pβ .

Now for ξ ∈ Tα(C̃z(Z)), put β = α(t) = α+ tξ + t2ζt, |t| < ǫ. Then

d2f(α,α(t)) ∈ Pα ∩ Pα(t) (∗)

and thus we get d2f(α, ξ) ∈ Pα. Since α(t) is a curve in C̃z(Z) through

α tangent to ξ and d2f(α(t), α(t)) ∈ Pα(t) = Tα(t)(C̃z(Z)),

σα(d
2f(α,α), ξ) =

d

dt
|t=0d

2f(α(t), α(t)) mod Pα.

But d
dt |t=0d

2f(α(t), α(t)) = 2d2f(α, ξ) ∈ Pα and thus σα(d
2f(α,α), ξ) =

0. q.e.d.

We proceed now to give a proof of Proposition 2.4 in the case of
projective manifolds Z,X having privileged systems of F-linearizing
coordinates. From the argument above, it is clear that the conclusion
σ(d2f(α,α), ξ) = 0 remains true if in place of (∗) we have the weaker
statement 




pr
(
d2f
(
α,α(t)

)
, P⊥

α

)
= O(t2);

pr
(
d2f
(
α,α(t)

)
, P⊥

α(t)

)
= O(t2).

(∗∗)

In fact, according to the proof in the case of Hermitian symmetric
spaces, we need only the first half of (∗∗) and the second half of (∗∗)
is redundant. The proofs for the two statements are the same in the
case we consider in this section because in a privileged system of F-
linearizing coordinates, α is indistinguishable from α(t) and the argu-
ments are symmetric in α and α(t). But it will be different in a more
general case which will be dealt with next section.

In the proof of (∗) we make use of constant sections of C|U resp. C|V
over U resp. V with respect to Harish-Chandra coordinates. In the
case where there is a privileged system of F-linearizing coordinates, we
have the following replacement for constant sections. Given a minimal

rational curve C, x ∈ C with Tx(C) = Cα, we can find a section of C̃

extending β ∈ C̃x along C whose deviation from being a constant section
at x is a function vanishing to the order ≥ 2 at β = α. More precisely,
we have:

Lemma 2.6. Let (z1, . . . , zn) be a privileged system of F-linearizing

coordinates on U . Let x ∈ U and Dx be a non-empty relatively compact

open subset of C̃x − {0}. Then there exists a constant K for which

the following holds true: Let α, β ∈ Dx and C be a minimal rational
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curve passing through x with Tx(C) = Cα. Then there is a holomorphic

section β̃ of C̃ over L := C ∩ U such that β̃(x) = β and such that

|∇αβ̃(x)| ≤ K|α− β|2,

where ∇ stands for the Euclidean flat connection with respect to (z1, . . . ,
zn), and norms are measured with respect to the standard Euclidean

metric.

Proof. For any point y ∈ U , Ty(U) will sometimes be identified with
Tx(U) by the standard trivialization TU ∼= U × C

n with respect to
(z1, . . . , zn). Parametrize C by a complex linear map γ such that γ(0) =
x and such that γ′(s) = α for the complex parameter s. When it is
necessary to identify the base point γ(s) over which the tangent vector
α lies, we will write α(γ(s)). By the definition of privileged systems
of F-linearizing coordinates, Pα(γ(s)) are independent of s. We may
assume that α corresponds to ∂

∂z1
, and that Pα is the linear span of

∂
∂zj

, 1 ≤ j ≤ p+ 1.

We denote by Bk a Euclidean ball of Ck. For the proof of Lemma
2.6, without loss of generality we may take Dx to be the intersection of
C̃x − {0} with the Cartesian product of two Euclidean balls Bp+1 ×Bq

of sufficiently small radii, so that the restriction of the projection maps
ρx : D′

x → C
p+1 into the first p+1 factors is an open immersion on some

open subset D′
x of C̃x − {0} which contains the closure Dx. The same

is valid when x is replaced by γ(s) for s sufficiently small, say, |s| < ǫ.
Define now ϕs : Dx → Dγ(s) by ϕs(β) := ρ−1

γ(s)(ρx(β)).

Define ϕ : △(ǫ)×Dx → C̃|γ(△(ǫ)) by ϕ(s, β) = (γ(s), ϕs(β)). The tan-
gent vector α corresponds to (1, 0, . . . , 0) in the coordinates (z1, . . . , zn).
Write e = ρx(α) = (1, 0, . . . , 0) ∈ C

p+1. Write β − α = (ξ, ζ), where
ξ := (β1 − 1, β2, . . . , βp+1) = ρx(β − α) ∈ C

p+1 and ζ := (βp+2, . . . , βn).
Then

ϕs(β) = ρ−1
γ(s)(e+ ξ) ∈ Dγ(s).

Since ∂
∂xj

, 1 ≤ j ≤ p+ 1 spans Pα(γ(s)) for every s, we conclude that

|ρ−1
γ(s)(e+ ξ)| ≤ C|ξ|2

for some constant C. As ϕ′
s(β) =

∂
∂s(ρ

−1
γ(s)(e+ξ)), from Cauchy estimates

we conclude that

|∇αβ̃(x)| =
∣∣∣ϕ′

s(β)|s=0

∣∣∣ ≤ K|ξ|2

for some constant K. Now write β̃(γ(s)) for ϕ(s, β) to finish the proof,
observing that K can be chosen to be independent of α as α runs over
a small open set. q.e.d.
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Proof of Proposition 2.4 in the case where X resp. Z has privileged sys-

tems of F-linearizing resp. H-linearizing coordinates. Let (z1, . . . , zm)
be a privileged system of F-linearizing coordinates on U ⊂ Z and
let (x1, . . . , xn) be a privileged system of H-linearizing coordinates on
V ⊂ X. It now remains to establish the estimate (∗∗).

For a tangent vector µ of type (1,0) at z ∈ U we identify Tµ(TU) with
Tz(U)⊕Tz(U) using the privileged F-linearizing coordinates (z1, . . . , zm).
Similarly for x = f(z) and a tangent vector µ′ of type (1,0) at x we
have Tµ′(TV ) ∼= Tx(V )⊕ Tx(V ). We maintain furthermore the normal-

ization dfz = id|TzZ with respect to the basis
{

∂
∂z1

|z, . . . ,
∂

∂zm
|z
}

and
{

∂
∂x1

|x, . . . ,
∂

∂xn
|x
}
and identify Tz(U) with a vector subspace of Tx(V ).

Let C be a minimal rational curve in Z tangent to α at z and let C ′

be the minimal rational curve in X tangent to α = df(α) at x = f(z).
Apply Lemma 2.6 simultaneously to U at z and V at x. Then there
exist a constant K, and tangent vectors η ∈ Tz(U), η′ ∈ Tx(V ) such
that

(α, η) ∈ Tβ(C̃(Z)|U ), (α, η′) ∈ Tβ(C̃(X)|V ) ; |η|, |η
′| ≤ K|α− β|2.

More precisely, writing ∇ for the Euclidean flat connection on U with
respect to (z1, . . . , zm) and writing ∇′ for the Euclidean flat connection

on V with respect to (x1, . . . , xn), for the section β̃ of C̃(Z) over C ∩ U

and for the section β̃′ of C̃(X) over C ′∩U , given in Lemma 2.6, we have

∇αβ̃ = η and ∇′
αβ̃

′ = η′.

From

∇′
df(α)

(df(β̃)) = d2f(α, β) + η,

it follows that
(
α, d2f(α, β) + η

)
∈ Tβ(C̃(X)|V ).

Comparing with (α, η′) ∈ Tβ(C̃(X)|V ), we conclude that the difference

projects to zero on U and hence gives a vertical vector tangent to C̃x(X)
at β. Hence,

d2f(α, β) + (η − η′) ∈ Tβ(C̃x(X)).

In other words,

pr
(
d2f
(
α, β

)
, P⊥

β

)
= O(|α− β|2).

By the same arguments we can take a section α̃ of C̃ along the min-
imal rational curve tangent to β. Thus the same remains true if P⊥

β is

replaced by P⊥
α . Fixing α and letting β = α(t) vary over a smooth local
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curve on C̃z(Z) (equivalently C̃x(X)), we conclude that




pr
(
d2f
(
α,α(t)

)
, P⊥

α

)
= O(t2);

pr
(
d2f
(
α,α(t)

)
, P⊥

α(t)

)
= O(t2).

(∗∗)

As we explained before the statement of Lemma 2.6, this completes the
proof of Proposition 2.4 in the case where X resp. Z has privileged
systems of F-linearizing resp. H-linearizing coordinates. q.e.d.

2.4. The general case. In general we do not know whether a privi-
leged system of F-linearizing coordinates exists. In the previous section
we give a proof of Proposition 2.4 in the case where X resp. Z has
privileged systems of F-linearizing resp. H-linearizing coordinates. As
its proof shows, it suffices to prove the following Lemma, which is a
generalization of Lemma 2.6.

Lemma 2.7. Let X be a uniruled projective manifold with a minimal

rational component K. Let E be the bad locus of K. For a point x ∈
X\E and for a standard minimal rational curve C with α ∈ Tx(C) a

smooth point of C̃x, there is a coordinate system (z1, . . . , zn) on U ⊂
X\E adapted to α satisfying the following properties: For a relatively

compact neighborhood Dx of α in C̃x\{0}, there is a constant K such

that for each β ∈ Dx

(1) there is a holomorphic section β̃ of C̃ over C∩U such that β̃(x) = β

and |∇αβ̃(x)| ≤ K|α− β|2, and

(2) there is a holomorphic section α̃ of C̃ over Cβ ∩ U , where Cβ is

the minimal rational curve tangent to β at x, such that α̃(x) = α
and |∇βα̃(x)| ≤ K|α− β|2,

where ∇ stands for the Euclidean flat connection with respect to (z1, . . . ,
zn), and norms are measured with respect to the standard Euclidean

metric.

The section β̃ in (1) can be used to show that the second half of
the estimate (∗∗) is valid and the section α̃ in (2) can be used to show
that the first half of the estimate (∗∗) is valid: just take a local curve

α(t) in C̃x with α(0) = α and apply Lemma 2.7 to β = α(t) and to
df(β) = df(α(t)) as in the proof of Proposition 2.4 in the case where
X resp. Z has privileged systems of F-linearizing resp. H-linearizing
coordinates. The same arguments work verbatim in the general case
once we have proved Lemma 2.7.

To construct a coordinate system (z1, . . . , zn) around x having the
properties as in Lemma 2.7, we will first choose a coordinate system on
a neighborhood of x in the locus of the family Ky for y ∈ C\{x}, which is
analogous to polar coordinates on the Euclidean plane. More precisely,
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denote by ρ : U → K, µ : U → X the universal family associated to K.
For a subset D of K, the image µ(ρ−1(D)) is the subset of X wiped out
by minimal rational curves belonging to D.

Lemma 2.8. Let x ∈ X be a general point and assume that the

variety Cx of minimal rational tangents at x is of dimension p ≥ 1.
Let C be a standard minimal rational curve passing through x and let

y ∈ C be a smooth point different from x. Denote by κ ∈ Ky the element

corresponding to the minimal rational curve C with a marking at y. Let

D ⊂ Ky be a sufficiently small neighborhood of κ so that the tangent

map Φ|D : D → PTy(X) is an embedding. Denote by w ∈ ρ−1(κ)
the point corresponding to x. Let W ⊂ ρ−1(D) be a sufficiently small

open neighborhood of w in ρ−1(D) and define Σ := µ(W) (which is a

set containing x wiped out by open subsets of minimal rational curves

belonging to D). Then

(1) Σ is a locally closed complex submanifold of dimension p+ 1 and

(2) the tangent space TxΣ of Σ at x can be identified with the tangent

space of C̃x at α ∈ Tx(C).

Proof. (1) By construction Σ := µ(W) is a locally closed complex
submanifold of dimension p+ 1.

(2) Choosing a smaller neighborhood Dy of κ if necessary, we may
assume that the universal P1-bundle ρ−1(Dy) over Dy is holomorphically
trivial. Without loss of generality, suppose x ∈ C corresponds to 0 ∈ P

1,
and y ∈ C corresponds to ∞. Let z1 be the standard coordinate on
P
1 = C∪{∞} and let (z2, . . . , zp+1) be a holomorphic coordinate system

on Dy at κ. (This system is analogous to polar coordinates (r, θ) on the
Euclidean plane, where z1 plays the role of r, and (z2, . . . , zp+1) plays the
role of θ.) We are going to make use of (z1, . . . , zp+1) as a holomorphic
coordinate system of the germ of Σ at x by regarding the evaluation
map µ : ρ−1(Dy) ≃ Dy × P

1 → X as a chart. Then the tangent space

TxΣ of Σ at x is generated by
{

∂
∂z1

|x, . . . ,
∂

∂zp+1
|x
}
.

On the other hand, the tangent space to Kx at the point in Kx corre-
sponding to the minimal rational curve C marked at x is H0(C,NC|X ⊗
mx), where NC|X is the normal bundle of C in X and mx is the maximal

ideal sheaf of x on C. Any section σ ∈ H0(C,NC|X ⊗mx) can be lifted
to a section σ̃ of TX|C vanishing to the order 1 at x. Write σ̃(z1) =
z1σ̃1(z1). Then the differential dΦ of the tangent map Φ : Kx → P(TxX)
sends σ to σ̃1(x) mod Tx(C), where we identify Tα(TxX) with TxX in a
canonical way for any nonzero α ∈ Tx(C). Now that Cx is the image of
the tangent map Φ : Kx → P(TxX), these vectors σ̃1(x) ∈ Tx(X)/Tx(C)
constitute the tangent space T[α](Cx) at [α] = [Tx(C)].

Assume that the choice of coordinates (z1, . . . , zp+1) is such that ∂
∂z1

extends to a holomorphic vector field on C vanishing to the order 2 at
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y, and such that ∂
∂z2

, . . . , ∂
∂zp+1

each extends to a holomorphic section of

TX over C vanishing to the order 1 at y. Then z1
∂

∂z2
, . . . , z1

∂
∂zp+1

extend

to holomorphic sections of TX over C, which span H0(C,NC|X ⊗ mx).

Thus Tα(C̃x) agrees with the vector space spanned by
{

∂
∂z1

|x, . . . ,
∂

∂zp+1
|x
}

after we identify Tα(TxX) with TxX in a canonical way. Therefore, TxΣ

can be identified with Tα(C̃x). q.e.d.

Proof of Lemma 2.7 Let (z1, . . . , zp+1) be the coordinate system of
Σ around x given in the proof of Lemma 2.8, and complete (z1, . . . ,
zp+1) in an arbitrary way to a holomorphic coordinate system (z1, . . . , zn)
for X at the point x. In terms of the “polar coordinates” (z1, . . . , zp+1)
the positive part of the Grothendieck decomposition of TX over C
agrees with the vector space spanned by

{
∂

∂z1
, . . . , ∂

∂zp+1

}
around x.

This is precisely what was needed to prove Lemma 2.6, which is the
same statement as (1).

We note that at this point, unlike the case where there exists a privi-
leged system of F-linearizing coordinates, there is no symmetry between
α and β = α(t) in the argument here. We were verifying some estimates
on d2f(α, β) with respect to a coordinate system chosen to be adapted
to a general point x on a fixed minimal rational curve C. Thus, along C

the vector β = α(t) can be translated within C̃|C so that the holomor-

phic section β̃ defined on a fixed neighborhood U of x in C is almost
constant, with an error of the order O(|t|2) which is uniform on U . To
get the statement (2) we have to invert the roles of α and β = α(t).

Let ξ ∈ Tα(C̃x). Consider ξ as a vector
∑

i ξi
∂
∂zi

|x in TxX. Let

f0 : P
1 → X be the parametrization of C given by f0(z1) = (z1, 0, . . . , 0)

for z1 ∈ C. After considering ∂
∂z1

, . . . , ∂
∂zp+1

as sections of f∗
0TX, we will

use the same symbol ξ to denote the section of f∗
0TX with constant coef-

ficients ξi with respect to ∂
∂z1

, . . . , ∂
∂zp+1

. Then ξ̂(z1) = z1ξ(z1) for z1 ∈ C

extends to a section ξ̂ ∈ H0(P1, f
∗
0TX⊗m0). SinceH

0(P1, f∗
0TX⊗m0) is

the tangent space to the space Hol((P1, 0), (X,x)) of holomorphic maps
P
1 → X sending 0 to x and H1(P1, f∗

0TX⊗m0) is zero, f0 : P
1 → X can

be extended to a 1-parameter family of curves ft : P
1 → X, t ∈ ∆(ǫ),

with ft(0) = x and d
dt |t=0ft = ξ̂.

Write f : ∆(ǫ)×P
1 → X for the map defined by f(t, s) = ft(s). Then

for s ∈ C,
∂

∂t
f(t, s)

∣∣∣∣
t=0

= sξ.

Write
∂

∂t
f(t, s) =: sξ(t, s);

∂

∂s
f(t, s) =: α(t, s).

Here ξ(0, s) = ξ and α(0, s) = α. We may take α(t) = α(t, 0).
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Now for any t ∈ ∆(ǫ), ξ(t, s) is tangent to the germ of complex
submanifold Σ′ wiped out by the family {ft} at f(t, s). By Lemma 2.8,
we have an identification

Tf(t,s)Σ
′ ≃ Tα(t,s)C̃f(t,s),

so that we may regard ξ(t, s) as a vector tangent to C̃f(t,s). Thus the

tangent vector α at x = f(t, 0) can be translated within C̃|Ct to give

ϕ(t, s) ∈ C̃f(t,s) such that

ϕ(t, s) = α(t, s)− tξ(t, s) +O
(
|t|2
)
.

From the commutativity of second derivatives, it follows that

∂

∂t
α(t, s) =

∂

∂t

∂

∂s
f(t, s)

=
∂

∂s

∂

∂t
f(t, s)

=
∂

∂s
(sξ(t, s))

= ξ(t, s) + s
∂

∂s
ξ(t, s).

Since ξ(0, s) = ξ for all s, we have α(t, s) = α+ tξ +O
(
|t|2
)
and thus

ϕ(t, s) = (α+ tξ)− tξ(t, s) +O
(
|t|2
)

= α+ t(ξ − ξ(t, s)) +O
(
|t|2
)

= α+O
(
|t|2
)
.

By the Cauchy estimates we have∣∣∣∣
∂

∂s
ϕ(t, s)

∣∣∣∣ = O
(
|t|2
)
,

from which the statement (2) follows. q.e.d.

3. Characterization of the standard embedding between

homogeneous manifolds

3.1. Homogeneous manifold associated to a subdiagram of the

marked Dynkin diagram. Let G be a complex simple Lie group. Let
Φ be the set of all roots of G with respect to a Cartan subalgebra h and
let ∆ be a simple root system of G. To a subset Γ of ∆ we associate a
parabolic subgroup P of G whose Lie algebra is

h+
∑

α∈Z(∆\Γ)

gα +
∑

α∈Z−Γ

gα.

In particular, the whole set ∆ corresponds to a Borel subgroup B of G.
The Dynkin diagram D(G) of G is the graph consisting of nodes and

edges such that each node corresponds to a simple root in ∆ and two
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nodes are connected by an edge if and only if the corresponding simple
roots are not orthogonal. We will identify nodes with the corresponding
simple roots. We call (D(G),Γ) the marked Dynkin diagram of the
rational homogeneous manifold G/P .

A subdiagram D0 of D(G) is the Dynkin diagram D(G0) of a semisim-
ple Lie subgroup G0 of G. When D(G0) contains Γ, the homogeneous
space X0 of G0 by the parabolic subgroup P0 associated to Γ is called
the homogeneous manifold associated to the subdiagram (D(G0),Γ) of
(D(G),Γ).

Assume that Γ consists of one simple root γ. Consider the first canon-
ical embedding of X = G/P into P

N . Then we have a canonical choice
of a minimal rational component K(X), i.e., the irreducible family of
lines in P

N which are contained in X. Similarly we have a canonical
choice of a minimal rational component K(Z) of Z = G0/P0. Since the
ample generater of the Picard group of Z is the restriction of the ample
generator of the Picard group of X, lines in K(Z) are lines in K(X)
which are contained in Z. With this canonical choice of a minimal ra-
tional component, the variety of minimal rational tangents is given as
follows.

Proposition 3.1 ([HM02]). Let X = G/P be a rational homoge-

neous manifold associated to a long simple root γ and let Z = G0/P0

be a homogenous manifold associated to a subdiagram of the marked

Dynkin diagram of G/P . Let L be the semisimple part of P and let Υ
be the set of simple roots which are adjacent to γ in the Dynkin diagram

of G. Then:

(1) The variety A of minimal rational tangents of X at the base point

is the homogeneous manifold L/R of L by the parabolic subgroup

R associated to Υ.

(2) The variety B of minimal rational tangents of Z at the same base

point is the homogeneous manifold associated to the subdiagram

(D(G0)∩D(L),Υ) of the marked Dynkin diagram (D(L),Υ) of A.

More concretely, the variety A = Cx(X) of minimal rational tangents
of X at x ∈ X associated to K(X) is one of the following form ([HM02],
p. 176):

I. A ⊂ P(V ), an irreducible Hermitian symmetric space of compact
type in the first canonical embedding

II. P(E1)×P(E2) ⊂ P(E1⊗E2), the Segre embedding of the product
of two projective spaces P(E1) and P(E2)

III. P(E) ⊂ P(S2E), the Veronese embedding of a projective space
P(E)

IV. P(E1)×A2 ⊂ P(E1 ⊗E2), the Segre embedding of the product of
a projective space P(E1) and an irreducible Hermitian symmetric
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space of compact type, A2 ⊂ P(E2), in the first canonical embed-
ding

V. Pa × Pb × Pc, P1 × ν(P2)

The variety B = Cz(Z) of minimal rational tangents of Z at z ∈ Z
associated to K(Z) is one of the following form:

I. B ⊂ P(W ), an irreducible Hermitian symmetric space of compact
type in the first canonical embedding, where P(W ) ⊂ P(V ) is a
subspace and B = A ∩ P(W )

II. P(F1)× P(F2) ⊂ P(F1 ⊗ F2), the Segre embedding the product of
two projective spaces P(F1) and P(F2), where Fi is a subspace of
Ei for i = 1, 2

III. P(F ) ⊂ P(S2F ), the Veronese embedding of a projective space
P(F ), where F is a subspace of E

IV. P(F1)× B2 ⊂ P(F1 ⊗ F2), the Segre embedding of the product of
a projective space P(F1) and an irreducible Hermitian symmetric
space of compact type, B2 ⊂ P(F2), in the first canonical embed-
ding, where Fi is a subspace of Ei for i = 1, 2 and B2 = A2∩P(F2)

V. Pa′ × Pb′ × Pc′ , P1 × ν(P1), pt× ν(P2)

3.2. Transport of varieties of minimal rational tangents. Theo-
rem 1.2 in the case where X is a Grassmannian of rank ≥ 2 is proved
[Mk07] Section 3, applying a simple version of Theorem 1.1 [Mk99]. A
main idea in the proof is parallel transport of varieties of minimal ratio-
nal tangents along minimal rational curves, based on the deformation
theory minimal rational curves (Lemma 2.8).

Let X be a uniruled manifold with a minimal rational component.
A subvariety Z of X is said to be rationally saturated whenever (1)
P(TzZ)∩Cz(X) 6= ∅ for a smooth point z ∈ Z and (2) for every smooth
point z ∈ Z and for every minimal rational curve C on X passing
through z, C must lie on Z whenever C is tangent to Z at z. Then the
family of minimal rational curves contained in Z can be considered as
a minimal rational component of Z, with respect to which the variety
Cz(Z) of minimal rational tangents of Z at z ∈ Z is equal to P(TzZ) ∩
Cz(X).

Let Z1, Z2 be rationally saturated subvarieties of X. If Cz(Z1) =
Cz(Z2) at an intersection point z ∈ Z1∩Z2, then by Lemma 2.8, varieties
of minimal rational tangents of Z1 and Z2 are tangent along a minimal
rational curve, i.e., for any minimal rational curve C passing through z
and for a generic point y ∈ C, Cy(Z1) is tangent to Cy(Z2) at [TyC].

In certain circumstances, such as the cases which we will consider in
the proof of Theorem 1.2, this tangency implies the equality of Cy(Z1)
and Cy(Z2), eventually leading to an identification of Z1 and Z2. This
can be considered as an analogue of the parallel transport along a geo-
desic in Riemannian geometry.
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Proof of Theorem 1.2. Let X = G/P be a rational homogeneous mani-
fold associated to a long simple root and let Z = G0/P0 be a rational ho-
mogenous manifold associated to a subdiagram of the marked Dynkin di-
agram of G/P . Let f : U → X be a holomorphic embedding from a con-
nected open subset U of Z into X, which respects varieties of minimal
rational tangents, i.e., for which df(C(Z)|U ) = dfP(TZ)|U ∩ C(X)|f(U)

holds true.

Proposition 3.2. Let X = G/P and Z = G0/P0 and f : U → X
be as in Theorem 1.2. Assume that Z is not linear. Then f is non-

degenerate.

By Proposition 3.2, we can apply Theorem 1.1 to get a rational ex-
tension F : Z → X of f . In the middle of the proof of Theorem 1.1, we
also proved that F sends minimal rational curves to minimal rational
curves (Proposition 2.1). In our case, F sends lines in Z to lines in X.
So F (Z) is rationally saturated.

Furthermore, since Z is of Picard number 1 and is uniruled, there
is a sequence of irreducible varieties U0 = {z0} ⊂ U1 ⊂ · · · ⊂ Uk with
dimUk = dimZ such that a general point in U i+1 can be connected to a
point in U i by a line in Z [HM98], Section 4.3; [Mk07], Section 3. By
the fact that F sends lines to lines, a general point in V i+1 := F (U i+1)
can be connected to a point in V i := F (U i) by a line in X.

We may assume that z0 ∈ U and f(z0) = z0 up to the action of G.
We may assume further that df(Cz0(Z)) = Cz0(Z) up to the action of G
by (1) of the following proposition.

Proposition 3.3. Let X = G/P be a rational homogeneous mani-

fold associated to a long simple root and let Z = G0/P0 be a rational

homogenous manifold associated to a subdiagram of the marked Dynkin

diagram of G/P . Assume that Z is not linear. Let f : U → X be a

holomorphic embedding from an open subset U of Z into X respecting

varieties of minimal rational tangents. Then:

(1) For any z ∈ U , there is g = g(z) ∈ G such that f(z) ∈ gZ and

dfz(Cz(Z)) = Cf(z)(gZ).
(2) If there is g1 ∈ G such that f(z) ∈ g1Z and dfz(Cz(Z)) is tangent

to Cf(z)(g1Z) at an intersection point, then we have dfz(Cz(Z)) =
Cf(z)(g1Z).

We continue the proof of Theorem 1.2. From the fact dF (Cz0(Z)) =
Cz0(Z), it follows that F (Σ) = Σ, where Σ is the locus of the family
of lines in Z passing through z0. The locus Σ is equal to U1 and thus
F (U1) is contained in Z. We will use Lemma 2.8 and induction to prove
that F (Uk) is contained in Z. Then F (Z) = Z and F is the identity
map up to the action of G.

Let C be a line in Z passing through z0 and let y 6= x ∈ C. Then by
Lemma 2.8, Cy(F (Z)) is tangent to Cy(Z) at [TyC] ∈ Cy(F (Z))∩Cy(Z).
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But by Proposition 3.3 (2) we have Cy(F (Z)) = Cy(Z). Thus F (Z) and
Z share the locus of the family of lines in Z passing through y, too.
Hence F (U2) is contained in Z. By induction, we have the desired re-
sult. q.e.d.

It remains to prove Proposition 3.2 and Proposition 3.3, which will
be given in Section 3.3.

3.3. Projective geometry of varieties of minimal rational tan-

gents of G/P and of G0/P0. In this section we will prove Proposition
3.2 and Proposition 3.3, which can be rephrased as statements about
varieties of minimal rational tangents of X and Z as follows.

Proposition 3.4. Let X = G/P be a rational homogeneous mani-

fold associated to a long simple root and let Z = G0/P0 be a rational

homogenous manifold associated to a subdiagram of the marked Dynkin

diagram of G/P . Let A := Cx(X) ⊂ P(V ) and B := Cx(Z) ⊂ P(W ) be

the varieties of minimal rational tangents at a common base point x of

X and Z, where V := TxX and W := TxZ.

(1) The pair (A,B) is non-degenerate in the sense that

Kerσβ(TβB̃, · ) = Cβ

for any β ∈ B̃, where σβ : TβÃ × TβÃ → V/Tβ(Ã) is the second

fundamental form of the affine cone Ã in V at β.
(2) If h ∈ Aut0(A) is such that hB and B are tangent at a point of

intersection, then hB is equal to B.
(3) If B′ = C∩P(W ′) is another linear section such that (B ⊂ P(W )) is

projectively equivalent to (B′ ⊂ P(W ′)), then there is h ∈ Aut(A)
such that B′ = hB.

Proof of Proposition 3.2. Proposition 3.4 (3) and (1). q.e.d.

Proof of Proposition 3.3. (1) Proposition 3.4 (2).
(2) Proposition 3.4 (3) and (2). q.e.d.

One can check the properties (1) through (3) in Proposition 3.4 one
by one for the varieties in the list of the varieties of minimal rational
tangents in Section 3.1. However, when X is associated to a long root,
the varieties of minimal rational tangents are homogeneous manifolds
and we can use Lie group theory and representation theory to prove (1)
through (2) uniformly. Then (3) follows by inductive arguments.

Let X = G/P be a rational homogeneous manifold associated to
a long simple root γ and let Z = G0/P0 be a rational homogenous
manifold associated to a subdiagram of the marked Dynkin diagram of
G/P . Let L be the semisimple part of P and let Υ be the set of simple
roots which are adjacent to γ in the Dynkin diagram of G, i.e., the set
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of simple roots which are not orthogonal to γ with respect to the Killing
form.

By Proposition 3.1, the variety A of minimal rational tangents of X
at the base point is the homogeneous manifold L/R of L by the para-
bolic subgroup R associated to Υ and the variety B of minimal rational
tangents of Z at the same base point is the homogeneous manifold as-
sociated to the subdiagram (D(G0) ∩ D(L),Υ) of the marked Dynkin
diagram (D(L),Υ) of A.

Denote by

σα : TαÃ × TαÃ → V/TαÃ

the second fundamental form of the affine cone Ã at α ∈ Ã. We say that
the pair (A,B) is non-degenerate if the kernel of the second fundamental

form σβ(TβB̃, · ) restricted to TβB̃ is trivial at each point β ∈ B̃.

Lemma 3.5. Let X = G/P be a rational homogeneous manifold

associated to a long simple root γ. Let x ∈ X be an arbitrary point

and denote by A ⊂ P(TxX) the variety of minimal rational tangents

of X at the base point x. Let σ : TαA × TαA → TxX/TαA be the

second fundamental form of A ⊂ P(TxX) at α = [Eγ ] ∈ A. Then, for

Eν , Eη ∈ TαA, we have

σ(Eν , Eη) =

{
Eν+η−γ if ν + η − γ is a root,
0 otherwise .

Here, Eν denotes a root vector of root ν for a root ν.

Proof. This follows from the description of A as the closure of a vector
valued cubic polynomial in [HM99b], Section (4.2). q.e.d.

Proof of Proposition 3.4 (1) By Lemma 3.5 it suffices to show that for
any Eν ∈ TαA, there is Eη ∈ TαB such that ν + η − γ is a root.

The tangent space TxX is linearly spanned by Eν where ν is a root
with positive coefficient in γ. Let L be the semisimple part of P and
let L1, L2, . . . be its simple components. L has at most three simple
components. Then A = L.Eγ and the tangent space TαA at α = [Eγ ] is
linearly spanned by root vectors Eν of roots ν = γ + θ for some roots θ
of Li for some i. The root vectors in TxZ and in TαB can be expressed
in the same way. But in this case, we consider only the roots in the
subgroup G0, i.e., the roots whose coefficients with respect to simple
roots outside the subdiagram D(G0) are zero.

Suppose that γ is not an end of the Dynkin diagram of G0. Then γ
is not an end of the Dynkin diagram of G. So the semisimple part L0

of P0 (and thus the semisimple part L of P ) is the product of two or
three simple Lie groups. Assume that L is the product of two simple Lie
groups L1, L2. The proof for the case where it is the product of three
simple Lie groups will be the same. Then B and A are Segre embeddings
of two rational homogeneous spaces. Let Eν ∈ TαA. Then ν = γ+θ for
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some root θ of, say, L1. Let θ
′ be the simple root of L2 adjacent to γ in

the Dynkin diagram of G. Then γ + θ′ is a root and Eγ+θ′ is contained
in TαB. Furthermore, ν + (γ + θ′) − γ = ν + θ′ = γ + θ + θ′ is a root
because 〈γ + θ, θ′〉 = 〈γ, θ′〉 < 0, where 〈 , 〉 is the Killing form of g.
Hence, σ(Eν , Eγ+θ′) 6= 0 by Lemma 3.5.

Suppose that γ is an end of the Dynkin diagram of G0. By the same
argument as above, it suffices to consider the case where γ is also an end
of the Dynkin diagram of G. Then the classification in Section 3.1 shows
that A is either a Hermitian symmetric space in the first canonical em-
bedding or a projective space Pa in the Veronese embedding. Therefore
the semisimple part L of P acts on TαA irreducibly.

The space of root vectors Eν ∈ TαA of roots ν = ν1 + κ1 where ν1 is
a root with Eν1 ∈ TαB and κ1 is either zero or a root is a subspace of
TαA which is invariant under the action of L. By the irreducibility of
TαA, any root ν with Eν ∈ TαA is either in TαB or the sum ν1 + κ1 of
two roots ν1 and κ1 with Eν1 ∈ TαB. By the same reasoning, any root
η with Eη ∈ TαB is of the form η = γ + σ for some root σ.

If Eν ∈ TαB, then since B is non-linear and smooth, there is Eη ∈ TαB
with σ(Eν , Eη) 6= 0. Assume that ν = ν1+κ1 with Eν1 ∈ TαB. Then κ1
has a positive coefficient in some simple root outside the Dynkin diagram
of B and thus ν1 − κ1 is not a root. Since B is a non-linear smooth
subvariety of TxZ, the kernel of the Gauss map of B ⊂ TxZ is zero.
Hence, there is Eη ∈ TαB such that σ(Eν1 , Eη) 6= 0, i.e., ν1 + η− γ =: σ
is a root. Note that η−γ is a root. We will show that σ1 := ν1+κ1+η−γ
is a root.

By the Jacobi identity,

[[Eν1 , Eκ], [Eσ, Eκ1 ]] = [Eσ, [[Eν1 , Eκ1 ], Eκ1 ]]− [Eκ1 , [[Eν1 , Eκ1 ], Eσ]].

By the construction, −η+ γ+κ1 has negative coefficients in some roots
of the subdiagram and positive coefficients in some roots outside of the
subdiagram. Thus ν1 + κ1 − σ = −η + γ + κ1 is not a root. Hence,
[Eκ1 , [[Eν1 , Eκ1 ], Eσ]] is zero.

Since ν1 − κ1 is not a root and η − γ = σ − ν1 is a root, it follows
that [Eσ, [[Eν1 , Eκ1 ], Eκ1 ]] = [Eσ, [Eν1 , [Eκ1 , Eκ1 ]] = c[Eσ, Eν1 ] 6= 0 for
some constant c 6= 0. Therefore [[Eν1 , Eκ1 ], [Eσ, Eκ1 ]] is not equal to
zero. Thus σ1 = σ + κ1 is a root. This implies that σ(Eν , Eη) 6= 0 by
Lemma 3.5. q.e.d.

Proposition 3.4 (2) is a special case of the following general result
about the action of L on the family of homogeneous submanifolds of
L/R.

Proposition 3.6. Let A = L/R be a homogeneous manifold asso-

ciated to Υ and let B = L0/R0 be a homogenous manifold associated

to a subdiagram of the marked Dynkin diagram of L/R. If gB and B
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are tangent to each other at an intersection point for some g ∈ L, then
gB = B.

Proof. Let Λ be the set of simple roots in D(L)\D(L0) which are
adjacent to D(L0). Then the parabolic subgroup Q of L associated to
Λ is the isotropy group of the L-action on the Chow variety of L/R at
[B], B being considered as a point in the Chow variety of L/R. Hence,
the L-orbit L[B] is isomorphic to L/Q [Tits].

Let x ∈ A be the point at which the isotropy group of L is R. Suppose
that gB intersects B at x for some g ∈ L. Then there is h in the reductive
part Rss of R such that gB = hB and thus {gB : g ∈ L, x ∈ gB} is the
homogeneous space of Rss by the parabolic subgroups of Rss associated
to Λ.

For a subset ∆′ of ∆, define n∆′ : Φ → Z from the root system Φ of
L to Z by

n∆′(α) =
∑

αj∈∆′

nj

where α =
∑

j njαj . Then the tangent space TxA ofA at x is
∑

nΥ(α)>0 gα

and the tangent space TxB of B at x is
∑

nΥ(α)>0, nΛ(α)=0 gα and the Lie

algebra of Rss is given by h +
∑

nΥ(α)=0 gα. Thus, the isotropy of the

action of Rss at the subspace TxB of TxA is the parabolic group of Rss

associated to Λ. In other words, the subvariety Rss[TxB] of the Grass-
mannian variety Gr(k, TxA) of k-dimensional subspaces of TxA is the
homogenous variety of Rss by the parabolic subgroup associated to Λ,
which is isomorphic to {gB : g ∈ L, x ∈ gB}. q.e.d.

Proof of Proposition 3.4 (3) We will divide the cases according to the
types I through V of the varieties of minimal rational tangents A,B in
Section 3.1 and we will use induction.
Case 1. If X is a Grassmannian, then the variety of minimal rational
tangents is of type II and Proposition 3.4 (3) follows from [Mk07],
Lemma 2.
Case 2. IfX is a Lagrangian Grassmannian, then the variety of minimal
rational tangents is of type III. Let A = ν(P(E)) ⊂ P(S2E) and let
B = ν(P(F )) ⊂ P(S2F ) for some subspace F of E, where ν : P(E) →
P(S2(E)) is the Veronese embedding. Assume that B′ = A∩P(W ′) is a
linear section ofA by a subspace P(W ′) of P(S2E) such that (B ⊂ P(W ))
is projectively equivalent to (B′ ⊂ P(W ′)) via λ : S2F → S2E. Then
λ : S2F → S2E is an injective complex linear map which sends the set

B̃ = {α ◦ α : α ∈ F} into the set Ã = {α ◦ α : α ∈ E}.
Let n be the dimension of E and let m be the dimension of F . Take

a basis {e1, . . . , en} of E such that {e1, . . . , em} is a basis of F . For each
1 ≤ i ≤ m, let ηi ∈ E be such that λ(ei ◦ ei) = ηi ◦ ηi. Then λ(S2F ) is a
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subspace of S2E, which is generated by λ(ei ◦ ej), where 1 ≤ i, j ≤ m.
We will show that λ(S2F ) is generated by ηi ◦ ηj , where 1 ≤ i, j ≤ m.

Fix 1 ≤ i, j ≤ m. Let F0 be the subspace of E generated by ei and
ej and let E0 be the subspace of E generated by ηi and ηj. Then
λ(ν(P(F0))) and ν(P(E0)) are conics in ν(P(E)) intersecting at two
points. Thus they are equal, which implies that λ(S2(F0)) = S2E0.
Thus ηi ◦ ηj , 1 ≤ i, j ≤ m is contained in λ(S2F ). Since ηi ◦ ηj ,
1 ≤ i, j ≤ m are linearly independent, they form a basis of λ(S2F ).
Take a linear map η : E → E which sends F to the subspace of E
generated by {η1, . . . , ηm}. Then λ is equal to S2η : S2F → S2E.
Case 3. If X is neither a Grassmannian nor a Lagrangian Grassman-
nian, the variety of minimal rational tangents is of type I, IV, or V.
In this case, we remark that the variety of minimal rational tangents
can be a Grassmannian or a Lagrangian Grassmannian (see [HM02],
p.176). Note that the proof of Proposition 3.4 (3) in the case where X
is either a Grassmannian or a Lagrangian Grassmannian (Case 1 and
Case 2) completes the proof of Theorem 1.2 in these cases.

We start with the proof of Proposition 3.4 (3) in the case where the
variety of minimal rational tangents is of type I.

Proposition 3.7. Let X ⊂ P(V ) be an irreducible Hermitian sym-

metric space G/P of compact type in the first canonical embedding and

let Z ⊂ P(W ) be an irreducible Hermitian symmetric space G0/P0 of

compact type in the first canonical embedding, corresponding to a sub-

diagram of the marked Dynkin diagram of G/P . If Z ′ = P(W ′) ∩ X
is another linear section of X such that (Z ′ ⊂ P(W ′)) is projectively

equivalent to (Z ⊂ P(W )), then there is g ∈ G such that Z ′ = gZ.

Proof. When X is either a Grassmannian or a Lagrangian Grassman-
nian, we proved above (Case 1 and Case 2) that the varieties Cx(X) and
Cx(Z) of minimal rational tangents of X and Z have the property that,
for any linear section C′ = P

m ∩Cx(X) of Cx(X) such that the inclusion
C′ ⊂ P

m is projectively equivalent to the inclusion Cx(Z) ⊂ P(TxZ),
there is h ∈ Aut(Cx(X)) such that C′ = hCx(Z).

Let Z ′ = P(W ′) ∩X be a linear section of X such that the inclusion
Z ′ ⊂ P(W ′) is projectively equivalent to the inclusion Z ⊂ P(W ′). Then
the variety Cx(Z

′) ⊂ P(TxZ
′) of minimal rational tangents is projectively

equivalent to the variety Cx(Z) ⊂ P(TxZ) of minimal rational tangents.
Thus, by Theorem 1.2 in the case where X is either a Grassmannian or
a Lagrangian Grassmannian, we get that Z ′ is the standard embedding
of Z in X up to the action of G, i.e., there is g ∈ G such that Z ′ = gZ.

Assume that X is neither a Grassmannian nor a Lagrangian Grass-
mannian. Then the variety Cx(X) ⊂ P(TxX) of minimal rational tan-
gents of X is again a Hermitian symmetric space L/R in the first canon-
ical embedding and the variety Cx(Z) ⊂ P(TxZ) of minimal rational
tangents of Z at x is induced by a subdiagram of L0/R0. Thus, by the
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inductive assumption on the dimension of X, which is applied to the
varieties Cx(Z) and Cx(X) of minimal rational tangents of Z and X,
and by Theorem 1.2, we get that for any linear section Z ′ = P(W ′)∩X
of X such that the inclusion Z ′ ⊂ P(W ′) is projectively equivalent to
the inclusion Z ⊂ P(W ), Z ′ is the standard embedding of Z in X up to
the action of G, i.e., there is g ∈ G such that Z ′ = gZ. q.e.d.

Proof of Proposition 3.4 (3) (continued) It remains to prove Proposition
3.4 (3) in the case where the variety of minimal rational tangents of X
is of type IV or of type V. We will give a proof in the case where it is
of type IV. The proof in the case where it is of type V will be similar.

Let λ : P(F1 ⊗ F2) → P(E1 ⊗ E2) be an injective linear map such
that λ(B1 × B2) ⊂ A1 ×A2. The proof of the case II [Mk07], Lemma
2 works in this case, too, after replacing P(Fi) by its non-degenerate
subvariety Bi for i = 1, 2 and noting that Ai intersects any line P

1 in
P(Fi) at least two points for i = 1, 2. The latter follows from the fact
that Ai is non-degenerate in P(Fi) and that Ai is either the whole space
P(Fi) or a non-linear subvariety. Thus, λ = η1⊗η2 for some linear maps
ηi : Fi → Ei, satisfying ηi(Ai) ⊂ Bi for i = 1, 2. Applying Proposition
3.7 to each ηi, we get λ = g1 ⊗ g2 for some gi ∈ Aut(Ai). q.e.d.
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