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THE INTRINSIC FLAT DISTANCE

BETWEEN RIEMANNIAN MANIFOLDS AND

OTHER INTEGRAL CURRENT SPACES

Christina Sormani & Stefan Wenger

Abstract

Inspired by the Gromov-Hausdorff distance, we define a new
notion called the intrinsic flat distance between oriented m di-
mensional Riemannian manifolds with boundary by isometrically
embedding the manifolds into a common metric space, measuring
the flat distance between them and taking an infimum over all iso-
metric embeddings and all common metric spaces. This is made
rigorous by applying Ambrosio-Kirchheim’s extension of Federer-
Fleming’s notion of integral currents to arbitrary metric spaces.

We prove the intrinsic flat distance between two compact ori-
ented Riemannian manifolds is zero iff they have an orientation
preserving isometry between them. Using the theory of Ambrosio-
Kirchheim, we study converging sequences of manifolds and their
limits, which are in a class of metric spaces that we call integral
current spaces. We describe the properties of such spaces includ-
ing the fact that they are countably Hm rectifiable spaces and
present numerous examples.
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1. Introduction

1.1. A brief history. In 1981, Gromov introduced the Gromov-
Hausdorff distance between Riemannian manifolds as an intrinsic ver-
sion of the Hausdorff distance. Recall that the Hausdorff distance mea-
sures distances between subsets in a common metric space [Gro07]. To
measure the distance between Riemannian manifolds, Gromov isometri-
cally embeds the pair of manifolds into a common metric space, Z, then
measures the Hausdorff distance between them in Z, and then takes the
infimum over all isometric embeddings into all common metric spaces,
Z. Two compact Riemannian manifolds have dGH(M1,M2) = 0 if and
only if they are isometric. This notion of distance enables Riemannian
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geometers to study sequences of Riemannian manifolds which are not
diffeomorphic to their limits and have no uniform lower bounds on their
injectivity radii. The limits of converging sequences of compact Rie-
mannian manifolds with a uniform upper bound on diameter need not
be Riemannian manifolds at all. However, they are compact geodesic
metric spaces.

Gromov’s compactness theorem states that a sequence of compact
metric spaces, Xj, has a Gromov-Hausdorff converging subsequence to
a compact metric space, X, if and only if there is a uniform upper
bound on diameter and a uniform upper bound on the function, N(r),
equal to the number of disjoint balls of radius r contained in the metric
space. He observes that manifolds with nonnegative Ricci curvature, for
example, have a uniform upper bound on N(r) and thus have converging
subsequences [Gro07]. Such sequences need not have uniform lower
bounds on their injectivity radii (cf. [Per97]) and their limit spaces can
have locally infinite topological type [Men00]. Nevertheless, Cheeger-
Colding proved these limit spaces have many intriguing properties which
has led to a wealth of further research. One particularly relevant result
states that when the sequence also has a uniform lower bound on volume,
then the limit spaces are countablyHm rectifiable of the same dimension
as the sequence [CC00]. However, Gromov-Hausdorff convergence does
not apply well to sequences with positive scalar curvature.

In 2004, Ilmanen described the following example of a sequence of
three dimensional spheres with positive scalar curvature which has no
Gromov-Hausdorff converging subsequence. He felt the sequence should
converge in some weak sense to a standard sphere [Figure 1].

Figure 1. Ilmanen’s sequence of increasingly hairy spheres.

Viewing the Riemannian manifolds in Figure 1 as submanifolds of
Euclidean space, they are seen to converge in Federer-Fleming’s flat
sense as integral currents to the standard sphere. One of the beautiful
properties of limits under Federer-Fleming’s flat convergence is that they
are countably Hm rectifiable with the same dimension as the sequence.
In light of Cheeger-Colding’s work, it seems natural, therefore, to look
for an intrinsic flat convergence whose limit spaces would be countably
Hm rectifiable metric spaces. The intrinsic flat distance introduced in
this paper leads to exactly this kind of convergence. The sequence of 3
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dimensional manifolds depicted in Figure 1 does in fact converge to the
sphere in this intrinsic flat sense [Example A.7].

Ambrosio-Kirchheim’s 2000 paper [AK00] developing the theory of
currents on arbitrary metric spaces is an essential ingredient for this
paper. Without it we could not define the intrinsic flat distance, we
could not define an integral current space and we could not explore the
properties of converging sequences. Other important background to this
paper is prior work of the second author, particularly [Wen07], and a
coauthored piece [SW10]. Riemannian geometers may not have read
these papers (which are aimed at geometric measure theorists), so we
review key results as they are needed within.

1.2. An overview. In this paper, we view a compact oriented Rie-
mannian manifold with boundary, Mm, as a metric space, (X, d), with
an integral current, T ∈ Im(M), defined by integration overM : T (ω) :=
∫

M ω. We write M = (X, d, T ) and refer to T as the integral current
structure. Using this structure, we can define an intrinsic flat distance
between such manifolds and study the intrinsic flat limits of sequences
of such spaces. As an immediate consequence of the theory of Ambrosio-
Kirchheim, the limits of converging sequences of such spaces are count-
ably Hm rectifiable metric spaces, (X, d), endowed with a current struc-
ture, T ∈ Im(Z), which represents an orientation and a multiplicity
on X.

In Section 2 we describe these spaces in more detail, referring to
them as m dimensional integral current spaces [Defn 2.35] [Defn 2.46].
The class of such spaces is denoted Mm and includes the zero current
space, denoted 0 = (0,0,0). Given an integral current space (X, d, T ),
we define its boundary using the boundary, ∂T , of the integral current
structure [Defn 2.46]. We also define the mass of the space using the
mass, M(T ), of the current structure [Defn 2.41]. When (X, d, T ) is an
oriented Riemannian manifold, the boundary is just the usual boundary
and the mass is just the volume.

Recall that the flat distance between m dimensional integral currents
S, T ∈ Im (Z) is given by

(1) dZF (S, T ) := inf{M (U) +M (V ) : S − T = U + ∂V }

where U ∈ Im (Z) and V ∈ Im+1 (Z). This notion of a flat distance was
first introduced by Whitney in [Whi57] and later adapted to rectifiable
currents by Federer-Fleming [FF60]. The flat distance between integral
currents on an arbitrary metric space was introduced by the second
author in [Wen07].

Our definition of the intrinsic flat distance between elements of Mm

is modeled after Gromov’s intrinsic Hausdorff distance [Gro07]:
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Definition 1.1. ForM1 = (X1, d1, T1) andM2 = (X2, d2, T2) ∈ Mm,
let the intrinsic flat distance be defined:

(2) dF (M1,M2) := inf dZF (ϕ1#T1, ϕ2#T2) ,

where the infimum is taken over all complete metric spaces (Z, d) and
isometric embeddings ϕ1 :

(

X̄1, d1
)

→ (Z, d) and ϕ2 :
(

X̄2, d2
)

→ (Z, d)

and the flat norm dZF is taken in Z. Here X̄i denotes the metric com-
pletion of Xi and di is the extension of di on X̄i, while φ#T denotes the
push forward of T .

All notions from Ambrosio-Kirchheim’s work needed to understand
this definition are reviewed in detail in Section 2. As in Gromov, an
isometric embedding is a map φ : A→ B which preserves distances, not
just the Riemannian metric tensors:

(3) dB (φ (x) , φ (y)) = dA (x, y) ∀x, y ∈ A.

For example, a map f : S1 → D2 mapping the circle to the boundary
of a flat disk is not an isometric embedding while the map ϕ : S1 →
S2 mapping the circle to a great circle in the sphere is an isometric
embedding. If the infimum in (2) were taken over maps preserving
the Riemannian metric tensors rather than isometric embeddings in the
sense of Gromov, then the value would not be positive.

It is fairly easy to estimate the intrinsic flat distances between com-
pact oriented Riemannian manifolds using standard methods from Rie-
mannian geometry. If Mm

1 and Mm
2 are m dimensional Riemannian

manifolds which isometrically embed into an m + 1 dimensional Rie-
mannian manifold, V , such that the boundary, ∂V = ϕ(M1)⊔ϕ(M2)⊔U ,
then by (1) we have

dF (M1,M2) ≤ Volm(U) + Volm+1(V ).

This technique and others are applied in the Appendix to explicitly
compute the intrinsic flat limits of converging sequences of manifolds
depicted here.

It should be noted that dF (M,0) is related to Gromov’s filling volume
of a manifold [Gro83] via [Wen07] and [SW10]. DePauw and Hardt
have recently defined a flat norm a la Gromov for chains in a metric
space. When the chain is an isometrically embedded Riemannian man-
ifold, M , then their “flat norm” of M seems to take on the same value
as dF (M,0) [DPH].

In Section 3 we explore the properties of our intrinsic flat distance, dF .
It is always finite and, in particular, satisfies dF (M1,M2) ≤ Vol (M1)+
Vol (M2) when Mi are compact oriented Riemannian manifolds [Re-
mark 3.3]. We prove dF is a distance on Mm

0 , the space of precompact
integral current spaces [Theorem 3.2 and Theorem 3.27]. In particular,
for compact oriented Riemannian manifolds, M and N , dF (M,N) = 0
iff there is an orientation preserving isometry from M to N .
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Applying the Compactness Theorem of Ambrosio-Kirchheim, we see
that when a sequence of Riemannian manifolds, Mj , has volume uni-
formly bounded above and converges in the Gromov-Hausdorff sense to
a compact metric space, Y , then a subsequence of the Mj converges
to an integral current space, X, where X ⊂ Y [Theorem 3.20]. Exam-
ple A.4, depicted in Figure 2, demonstrates that the intrinsic flat and
Gromov-Hausdorff limits need not always agree: the Gromov-Hausdorff
limit is a sphere with an interval attached while the intrinsic flat limit
is just the sphere.

Figure 2. A sphere with a disappearing hair [Ex A.4].

Gromov-Hausdorff limits of Riemannian manifolds are geodesic spaces.
Recall that a geodesic space is a metric space such that

(4) d(x, y) = inf{L(c) : c is a curve s.t. c(0) = x, c(1) = y}
and the infimum is attained by a curve called a geodesic segment. In
Example A.12, depicted in Figure 3, we show that the intrinsic flat
limit of Riemannian manifolds need not be a geodesic space. In fact,
the intrinsic flat limit is not even path connected.

While the limit spaces are not geodesic spaces, they are countably
Hm rectifiable metric spaces of the same dimension. These spaces,
introduced and studied by Kirchheim in [Kir94], are covered almost
everywhere by the bi-Lipschitz charts of Borel sets in Rm. Gromov-
Hausdorff limits do not in general have rectifiability properties.

An interesting example of such a space is depicted in Figure 4 [Exam-
ple A.14]. The intrinsic flat limit depicted here is the disjoint collection
of spheres while the Gromov-Hausdorff limit has line segments between
them.

If a sequence of Riemannian manifolds, Mm
j , has volume converging

to 0 or has a Gromov-Hausdorff limit whose dimension is less than
m, then the intrinsic flat limit is the zero space [Corollary 3.21 and
Remark 3.22]. See Figure 5 [Example A.16]. Such sequences are referred
to as collapsing sequences.
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Figure 3. The intrinsic flat limit is a disjoint pair of
spheres [Ex A.12].

Figure 4. The limit is a countably Hm rectifiable space [Ex A.14].

Figure 5. The Gromov-Hausdorff limit is lower dimen-
sional and the intrinsic flat limit is the zero space [Ex-
ample A.16].

Sequences may also converge to the zero integral current space due to
an effect called cancellation. With significantly growing local topology,



124 C. SORMANI & S. WENGER

a sequence of Mm
j which Gromov-Hausdorff converges to a Riemannian

manifold, X, of the same dimension might cancel with itself so that
Y = 0. In [SW10], the authors gave an example of two standard
three dimensional spheres joined together by increasingly dense tunnels,
providing a sequence of compact manifolds of positive scalar curvature
which converges in the Gromov-Hausdorff sense to a standard sphere.
However, the sequence could be isometrically embedded into a common
space ϕj :Mj → Z such that ϕj#Mj converges in the flat sense to 0 due

to cancellation. ThusMj
F−→ 0. In Figure 6 we depict a two dimensional

example. Here two sheets are joined together by many tunnels so that
they isometrically embed into the boundary of a Riemannian manifold
of arbitrarily small volume.

Figure 6. A sequence converging in the intrinsic flat
sense to the zero space due to cancellation [Exam-
ple A.19].

It is also possible for a sequence of Riemannian manifolds with in-
creasing local topology to overlap with itself so that the limit Y = 2X
[Example A.20]. If one provides a twist in the middle of each tunnel in
Figure 6 so as to flip the orientation of one of the two sheets, then the
sequence of manifolds doesn’t cancel in the limit but instead doubles.
We say the limit space has weight or multiplicity 2. In general, intrinsic
flat limit spaces have a weight function, which is an integer valued Borel
measurable function, just like integral currents [Defn 2.9].

In Section 4 we examine the properties of intrinsic flat convergence.
We first have a section proving that converging and Cauchy sequences
embed into a common metric space. This allows us to then immediately
extend properties of weakly converging sequences of integral currents to
integral current spaces. In particular, the mass is lower semicontinuous
as in Ambrosio-Kirchheim [AK00] and the filling volume is continuous
as in [Wen07].

When Mm
j have nonnegative Ricci curvature, the intrinsic flat lim-

its and Gromov-Hausdorff limits agree [SW10]. In this sense one may
think of intrinsic flat convergence as a means of extending to a larger
class of manifolds the rectifiability properties already proven by Cheeger-
Colding to hold on Gromov-Hausdorff limits of noncollapsing sequences
of such manifolds [CC97].
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When Mm
j have a common lower bound on injectivity radius or a

uniform linear local contractibility radius, then work of Croke apply-
ing Berger’s volume estimates and work of Greene-Petersen applying
Gromov’s filling volume inequality imply that a subsequence of theMm

j

converge in the Gromov-Hausdorff sense [Cro84][GPV92]. In [SW10],
the authors proved cancellation does not occur in that setting either, so
that the Gromov-Hausdorff limit X agrees with the flat limit Y and is
countable Hm rectifiable.

The second author has proven a compactness theorem: Any sequence
of oriented Riemannian manifolds with boundary, Mm

j , with a uniform

upper bound on diam
(

Mm
j

)

, Volm

(

Mm
j

)

, and Volm−1

(

∂Mm
j

)

always

has a subsequence which converges in the intrinsic flat sense to an in-
tegral current space [Wen11]. In fact, Wenger’s compactness theorem
holds for integral current spaces. We do not apply this theorem in this
paper except for a few immediate corollaries given in Subsection 4.5 and
occasional footnotes.

Unlike the limits in Gromov’s compactness theorem, the sequences
in Wenger’s compactness theorem need not converge to a compact limit
space. In Figure 7 we see that the limit space need not be precompact
even when the sequence of manifolds has a uniform upper bound on
volume and diameter.

Figure 7. Spheres with increasingly thin extra bumps
converging to a bounded noncompact limit [Ex A.11].

In Section 5, we describe the relationship between the intrinsic flat
convergence of Riemannian manifolds and other forms of convergence
including C∞ convergence, Ck,α convergence, and Gromov’s Lipschitz
convergence.

In the Appendix by the first author, we include many examples of
sequences explicitly proving they converge to their limits. Although the
examples are referred to throughout the textbook, they are deferred
to the final section so that proofs of convergence may apply any or all
lemmas proven in the paper.

While we do not have room in this introduction to refer to all the
results presented here, we refer the reader to the beginning of each
section with a more detailed description of what is contained within it.
Some sections mention explicit open problems and conjectures.
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1.3. Recommended reading. For Riemannian geometry, recom-
mended background is a standard one semester graduate course. For
metric geometry background, the beginning of Burago-Burago-Ivanov
[BBI01] is recommended or Gromov’s classic [Gro07]. For geometric
measure theory, a basic guide to Federer is provided in Morgan’s text-
book [Mor09]. One may also consult Lin-Yang [LY02]. We try to cover
what is needed from Ambrosio-Kirchheim’s seminal paper [AK00], but
we recommend that paper as well.

Acknowledgments. The first author would like to thank Columbia for
its hospitality in Spring-Summer 2004 and Ilmanen for many interesting
conversations at that time regarding the necessity of a weak convergence
of Riemannian manifolds and what properties such a convergence ought
to have. She would also like to thank Courant Institute for its hospi-
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to develop the notion of the intrinsic flat distance between Riemannian
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research environment. The first author would also like to thank Paul
Yang, Blaine Lawson, Steve Ferry, and Carolyn Gordon for their com-
ments on the 2008 version of the paper, as well as the participants in the
CUNY 2009 Differential Geometry Workshop1 for suggestions leading
to many of the examples added as an appendix that summer.

The first author was partially supported by a PSC CUNY Research
Grant. The second author was partially supported by NSF DMS
#0956374.

2. Defining current spaces

In this section we introduce current spaces (X, d, T ). Everything
in this section is a reformulation of Ambrosio-Kirchheim’s theory of
currents on metric spaces, so that we may clearly define the new notions
of an integer rectifiable current space [Defn 2.35] and an integral current
space [Defn 2.46]. Experts in the theory of Ambrosio-Kirchheim may
wish to skip to these definitions. In Section 3 we will discuss the intrinsic
flat distance between such spaces. This section is aimed at Riemannian
geometers who have not yet read Ambrosio-Kirchheim’s work [AK00].

In Subsection 2.1, we provide a description of these spaces as weighted
oriented countably Hm rectifiable metric spaces. Our spaces need not be
complete but must be “completely settled” as defined in Definition 2.11.
In Subsections 2.2 and 2.3, we review Ambrosio-Kirchheim’s integer rec-
tifiable currents on complete metric spaces, emphasizing a parametric

1Marcus Khuri, Michael Munn, Ovidiu Munteanu, Natasa Sesum, Mu-Tao Wang,
William Wylie
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perspective and proving a couple lemmas regarding this parametriza-
tion. In Subsection 2.3, we introduce the notion of an integer rectifiable
current structure on a metric space [Definition 2.35] and prove in Propo-
sition 2.40 that metric spaces with such current structures are exactly
the completely settled weighted oriented rectifiable metric spaces de-
fined in the first subsection. In Subsection 2.4, we introduce the notion
of the boundary of a current space and define integral current spaces
[Definition 2.46].

2.1. Weighted oriented countably Hm rectifiable metric spaces.

We begin with the following standard definition ([Fed69] cf. [AK00]):

Definition 2.1. A metric space X is called countably Hm rectifiable
iff there exist countably many Lipschitz maps ϕi from Borel measurable
subsets Ai ⊂ Rm to X such that the Hausdorff measure

(5) Hm

(

X \
∞
⋃

i=1

ϕi (Ai)

)

= 0.

Remark 2.2. Note that Kirchheim [Kir94] defined a metric differ-
ential for Lipschitz maps ϕ : A ⊂ Rk → Z where Z is a metric space.
When A is open,

(6) mdϕy (v) := lim
r→0+

d (ϕ (y + rv) , ϕ (y))

r
,

if the limit exists. In fact, Kirchheim has proven that for almost every
y ∈ A, mdϕy (v) is defined for all v ∈ Rm and mdϕy is a seminorm. On
a Riemannian manifold Z with a smooth map f , mdfy (v) = |dfy (v) |.
See also Korevaar-Schoen [KS93].

In [Kir94], Kirchheim proved this collection of charts can be chosen
so that the maps ϕi are bi-Lipschitz. So we may extend the Riemannian
notion of an atlas to this setting:

Definition 2.3. A bi-Lipschitz collection of charts, {ϕi}, is called an
atlas of X.

Remark 2.4. Note that when ϕ : A ⊂ Rm → X is bi-Lipschitz, then
mdϕy is a norm on Rm. In fact there is a notion of an approximate
tangent space at almost every y ∈ X which is a normed space of dimen-
sion m whose norm is defined by the metric differential of a well chosen
bi-Lipschitz chart (cf. [Kir94]).

Recall that by Rademacher’s Theorem we know that given a Lipschitz
function f : Rm → Rm, ∇f is defined Hm almost everywhere. In partic-
ular, given two bi-Lipschitz charts, ϕi, ϕj , det[∇

(

ϕ−1
i ◦ ϕj

)

] is defined
almost everywhere. So we can extend the Riemannian definitions of an
atlas and an oriented atlas to countably Hm rectifiable spaces:
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Definition 2.5. An atlas on a countably Hm rectifiable space X is
called an oriented atlas if the orientations agree on all overlapping
charts:

(7) det
[

∇
(

ϕ−1
i ◦ ϕj

)]

> 0

almost everywhere on Aj ∩ ϕ−1
j (ϕi (Ai)).

Definition 2.6. An orientation on a countably Hm rectifiable space
X is an equivalence class of atlases where two atlases, {ϕi}, {ϕ̄j}, are
considered to be equivalent if their union is an oriented atlas.

Remark 2.7. Given an orientation [{ϕi}], we can choose a represen-
tative atlas such that the charts are pairwise disjoint, ϕi(Ai)∩ϕj(Aj) =
∅, and the domains Ai are precompact. We call such an oriented atlas
a preferred oriented atlas.

Remark 2.8. Orientable Riemannian manifolds and, more gener-
ally, connected orientable Lipschitz manifolds have only two standard
orientations because they are connected metric spaces and their charts
overlap. Countably Hm rectifiable spaces may have uncountably many
orientations as each disjoint chart may be flipped on its own. Recall
that a Lipschitz manifold is a metric space, X, such that for all x ∈ X
there is an open set U about x with a bi-Lipschitz homeomorphism to
the open unit ball in Euclidean space. A Lipschitz manifold is said to be
orientable when the bi-Lipschitz maps can be chosen so that (7) holds
for all pairs of charts.

When we say “oriented,” we will mean that the orientation has been
provided, and we will always orient Riemannian manifolds and Lipschitz
manifolds according to one of their two standard orientations, and we
will always assign them an atlas restricted from the standard charts
used to define them as manifolds.

Definition 2.9. A multiplicity function (or weight) on a countably
Hm rectifiable spaceX withHm(X) <∞ is a Borel measurable function
θ : X → N whose weighted volume,

(8) Vol (X, θ) :=

∫

X
θdHm,

is finite.

Note that on a Riemannian manifold, with multiplicity θ = 1, the
weighted volume is the volume. Later we will define the mass of these
spaces which will agree with the weighted volume on Riemannian man-
ifolds with arbitrary multiplicity functions but will not be equal to the
weighted volume for more general spaces.

Remark 2.10. Given a multiplicity function and an atlas, one may
refine the atlas so that the multiplicity function is constant on the image
of each chart.
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Recall the notion of the lower m dimensional density, θ∗m(µ, p), of a
Borel measure µ at p ∈ X is defined by

(9) Θ∗m (µ, p) := lim inf
r→0+

µ(Bp(r))

ωmrm
.

We introduce the following new concept:

Definition 2.11. A weighted oriented countably Hm rectifiable met-
ric space, (X, d, [{φi}], θ), is called completely settled iff

(10) X = {p ∈ X̄ : Θ∗m (θHm, p) > 0}.

Example 2.12. An oriented Riemannian manifold with a conical sin-
gular point and constant multiplicity θ = 1, which includes the singular
point, is a completely settled space. An oriented Riemannian manifold
with a cusped singular point and constant multiplicity θ = 1, which
does not include the singular point, is a completely settled space. In
particular, a completely settled space need not be complete.

An oriented Riemannian manifold with a cusped singular point p and
a multiplicity function θ, approaching infinity at p such that

(11) lim
r→0+

1

rm

∫

Bp(r)
θ dHm > 0,

is completely settled only if it includes p.

In Subsection 2.3 we will define our current spaces as metric spaces
with current structures. We will prove in Proposition 2.40 that a met-
ric space is a nonzero integer rectifiable current space iff it is a com-
pletely settled weighted oriented countably Hm rectifiable metric space.
Note that the notion of a completely settled space does not appear in
Ambrosio-Kirchheim’s work and is introduced here to allow us to un-
derstand current spaces in an intrinsic way. Integral current spaces will
have an added condition that their boundaries are integer rectifiable
metric spaces as well.

2.2. Reviewing Ambrosio-Kirchheim’s currents on metric

spaces. In this subsection we review all definitions and theorems of
Ambrosio-Kirchheim and Federer-Fleming necessary to define current
structures on metric spaces [AK00][FF60].

For readers familiar with the Federer-Fleming theory of currents, one
may recall that an m dimensional current, T , acts on smooth m forms
(e.g. ω = fdπ1 ∧ · · · ∧ dπm). An integer rectifiable current is defined
by integration over a rectifiable set in a precise way with integer weight
and the notion of the boundary of T is defined as in Stokes’ theorem:
∂T (ω) = T (dω). This approach extends naturally to smooth manifolds
but not to metric spaces which do not have differential forms.
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In the place of differential forms, Ambrosio-Kirchheim use m + 1
tuples, ω ∈ Dm(Z),

(12) ω = fπ = (f, π1, . . . , πm) ∈ Dm(Z)

where f : Z → R is a bounded Lipschitz function and πi : Z → R are
Lipschitz. They credit this approach to DeGiorgi [DeG95].

In [AK00] Definitions 2.1, 2.2, 2.6, and 3.1, anm dimensional current
T ∈ Mm(Z) is defined as a multilinear functional on Dm(Z) such that
T (f, π1, . . . , πm) satisfies a variety of functional properties similar to
T (ω) where ω = fdπ1 ∧ · · · ∧ dπm in the smooth setting as follows:

Definition 2.13 (Ambrosio-Kirchheim). An m dimensional cur-

rent, T , on a complete metric space, Z, is a real valued multilinear
functional on Dm(Z), with the following required properties:

i) Locality:

(13)
T (f, π1, . . . , πm) = 0 if ∃i ∈ {1, . . . m} s.t. πi

is constant on a nbd of {f 6= 0}.
ii) Continuity:

T is continuous with respect to the pointwise convergence of the πi

such that Lip(πi) ≤ 1.

iii) Finite mass: There exists a finite Borel measure µ on Z such
that
(14)

|T (f, π1, . . . , πm)| ≤
m
∏

i=1

Lip(πi)

∫

Z
|f | dµ ∀(f, π1, . . . , πm) ∈ Dm(Z).

The space of m dimensional currents on Z is denoted Mm(Z).

Example 2.14. Given an L1 function h : A ⊂ Rm → Z, one can
define an m dimensional current [h℄ as follows:
(15) [h℄ (f, π) := ∫

A⊂Rm

hf det (∇π) dLm =

∫

A⊂Rm

hf dπ1∧· · ·∧dπm.

Given a Borel measurable set, A ⊂ Rm, the current [1A℄ is defined
by the indicator function 1A : Rm → R. Ambrosio-Kirchheim prove[h℄ ∈ Mm(Z) [AK00].

Remark 2.15. Stronger versions of locality and continuity, as well
as product and chain rules, are proven in [AK00, Theorem 3.5]. In
particular, they prove

(16) T (f, πσ(1), . . . , πσ(m)) = sgn(σ)T (f, π1, . . . , πm)

for any permutation, σ, of {1, 2, . . . ,m}.
The following definition will allow us to define the most important

currents explicitly:
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Definition 2.16 (Ambrosio-Kirchheim). Given a Lipschitz map ϕ :
Z → Z ′, the push forward of a current T ∈ Mm(Z) to a current ϕ#T ∈
Mm(Z ′) is given in [AK00, Defn 2.4] by

(17) ϕ#T (f, π1, . . . , πm) := T (f ◦ ϕ, π1 ◦ ϕ, . . . , πm ◦ ϕ)
exactly as in Federer-Fleming when everything is smooth.

Example 2.17. If one has a bi-Lipschitz map, ϕ : Rm → Z, and a
Lebesgue function h ∈ L1(A,Z) where A ⊂ Rm, then ϕ#[h℄ ∈ Mm(Z)
is an example of an m dimensional current in Z. Note that

(18) ϕ#[h℄(f, π1, . . . , πm) =

∫

A⊂Rm

(h◦ϕ)(f◦ϕ) d(π1◦ϕ)∧· · ·∧d(πm◦ϕ)

where d(πi ◦ϕ) is well defined almost everywhere by Rademacher’s The-
orem. All currents of importance in this paper are built from currents
of this form.

The following are Definition 2.3 and Definition 2.5 in [AK00]:

Definition 2.18 (Ambrosio-Kirchheim). The boundary of T ∈
Mm+1(Z) is defined

(19) ∂T (f, π1, . . . , πm) := T (1, f, π1, . . . , πm)

since in the smooth setting

(20) ∂T (fdπ1 ∧ · · · ∧ dπm) = T (1df ∧ dπ1 ∧ · · · ∧ dπm).

Note that ϕ#(∂T ) = ∂(ϕ#T ) and ∂∂T = 0.

Definition 2.19 (Ambrosio-Kirchheim). The restriction T ω ∈
Mm(Z) of a current T ∈Mm+k(Z) by a k+1 tuple ω = (g, τ1, . . . , τk) ∈
Dk(Z):

(21) (T ω)(f, π1, . . . , πm) := T (f · g, τ1, . . . , τk, π1, . . . , πm).

The following definition of the mass of a current is technical [AK00,
Defn 2.6]. A simpler formula for mass will be given in Lemma 2.34 when
we restrict ourselves to integer rectifiable currents.

Definition 2.20 (Ambrosio-Kirchheim). The mass measure ‖T‖
of a current T ∈ Mm(Z) is the smallest Borel measure µ such that (14)
holds for all m+ 1 tuples, (f, π). The mass of T is defined

(22) M (T ) = ||T || (Z) =
∫

Z
d‖T‖.

In particular

(23)
∣

∣

∣
T (f, π1, . . . , πm)

∣

∣

∣
≤ M(T )|f |∞ Lip(π1) · · ·Lip(πm).
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Note that the currents in Mm(Z) defined by Ambrosio-Kirchheim
have finite mass by definition. Urs Lang develops a variant of Ambrosio-
Kirchheim theory that does not rely on the finite mass condition in
[Lanar].

Note the integral current, [h℄ ∈ Mm(Rm), in Example 2.14 has mass
measure

(24) ||[h℄|| = |h|dLm

and mass

(25) M ([h℄) = ∫
A
|h|dLm.

Remark 2.21. In (2.4) [AK00], Ambrosio-Kirchheim show that

(26) ||ϕ#T || ≤ [Lip(ϕ)]mϕ#||T ||,
so that when ϕ is an isometry ||ϕ#T || = ϕ#||T || and M(T ) = M (ϕ#T ).

Computing the mass of the push forward current in Example 2.17 is
a little more complicated and will be done in the next section.

2.3. Parametrized integer rectifiable currents. Ambrosio and
Kirchheim define integer rectifiable currents, Im (Z), on an arbitrary
complete metric space Z [AK00, Defn 4.2]. Rather than giving their
definition, we will use their characterization of integer rectifiable cur-
rents given in [AK00, Thm 4.5]: A current T ∈ Mm(Z) is an integer
rectifiable current iff it has a parametrization of the following form:

Definition 2.22 (Ambrosio-Kirchheim). A parametrization ({ϕi},
{θi}) of an integer rectifiable current T ∈ Im (Z) with m ≥ 1 is a
countable collection of bi-Lipschitz maps ϕi : Ai → Z with Ai ⊂ Rm

precompact Borel measurable and with pairwise disjoint images and
weight functions θi ∈ L1 (Ai,N) such that

(27) T =

∞
∑

i=1

ϕi#[θi℄ and M (T ) =

∞
∑

i=1

M (ϕi#[θi℄) .
The mass measure is

(28) ||T || =
∞
∑

i=1

||ϕi#[θi℄||.
Note that the current in Example 2.17 is an integer rectifiable current.

Example 2.23. If one has an oriented Riemannian manifold, Mm,
of finite volume and a bi-Lipschitz map ϕ :Mm → Z, then T = ϕ#[1M ℄
is an integer rectifiable current of dimension m in Z. If ϕ is an isom-
etry, and Z = M , then M(T ) = Vol(Mm). Note further that ||T || is
concentrated on ϕ(M) which is a set of Hausdorff dimension m.
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In [AK00, Theorem 4.6] Ambrosio-Kirchheim define a canonical set
associated with any integer rectifiable current:

Definition 2.24 (Ambrosio-Kirchheim). The canonical set of a
current, T , is the collection of points in Z with positive lower density:

(29) set (T) = {p ∈ Z : Θ∗m (‖T‖,p) > 0},
where the definition of lower density is given in (9).

Remark 2.25. In [AK00, Thm 4.6], Ambrosio-Kirchheim prove
that given a current T ∈ Im (Z) on a complete metric space Z with
a parametrization ({ϕi}, θi) of T , we have

(30) Hm

(

set (T)Λ
∞
⋃

i=1

ϕi (Ai)

)

= 0,

where Λ is the symmetric difference,

(31) AΛB = (A \B) ∪ (B \ A) .
In particular, the canonical set, set (T), endowed with the restricted
metric, dZ , is a countably Hm rectifiable metric space, (set (T) ,dZ).

Example 2.26. Note that the current in Example 2.23 has

(32) set (ϕ#[1M℄) = ϕ(M),

when M is a smooth oriented Riemannian manifold. If M has a conical
singularity, then (33) holds as well. However, ifM has a cusp singularity
at a point p then

(33) set (ϕ#[1M℄) = ϕ(M \ {p}).
Recall that the support of a current (cf. [AK00] Definition 2.8) is

(34) spt(T ) := spt ||T || = {p ∈ Z : ‖T‖(Bp(r)) > 0 ∀r > 0}.
Ambrosio-Kirchheim show the closure of set(T) is spt(T ).

Remark 2.27. Note that there are integer rectifiable currents Tm

on Rn such that the support is all of Rn. For example, take a countable
dense collection of points pj ∈ R3; then X =

⋃

j∈N ∂Bpj

(

1/2j
)

is the

set of the current T ∈ Im
(R3
)

defined by integration over X and yet

the support is R3.

Remark 2.28. Given a parametrization of an integer rectifiable cur-
rent T , one may refine this parametrization by choosing Borel measur-
able subsets A′

i of the Ai such that ϕi : A
′
i → set (T ). The new collection

of maps {ϕi : A
′
i → Z} is also a parametrization of T and we will call it

a settled parametrization. Unless stated otherwise, all our parametriza-
tions will be settled. We may also choose precompact A′

i ⊂ Ai such that
ϕi(A

′
i) ∩ ϕj(A

′
j) = ∅. We will call such a parametrization a preferred

settled parametrization.
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Recall the definition of orientation in Definition 2.6 and the defini-
tion of multiplicity in Definition 2.9. The next lemma allows one to
define the orientation and multiplicity of an integer rectifiable current
[Definition 2.30].

Lemma 2.29. Given two currents T, T ′ ∈ Im (Z) on a complete
metric space Z and respective parametrizations ({ϕi}, θi), ({ϕ′

i}, θ′i) we
have T = T ′ iff the following hold:

i) The symmetric difference satisfies

(35) Hm

(

∞
⋃

i=1

ϕi (Ai) Λ
∞
⋃

i=1

ϕ′
i

(

A′
i

)

)

= 0.

ii) The union of the atlases {ϕi} and {ϕ′
i} is an oriented atlas of

(36) X =

∞
⋃

i=1

ϕi (Ai) ∪
∞
⋃

i=1

ϕ′
i

(

A′
i

)

.

iii) The sums:

(37)

∞
∑

i=1

θi ◦ ϕ−1
i 1ϕi(Ai) =

∞
∑

i=1

θ′i ◦ ϕ′
i
−1

1ϕ′

i(A′

i)
Hma.e. on Z.

Definition 2.30. Given T , the sum in (37) will be called the multi-

plicity function, θT . This function is an Hm measurable function from
Z to N∪{0}. The uniquely defined equivalence class of oriented atlases
of set (T) will be called the orientation of T .

A similar result is in [AK00, Thm 9.1] with a less Riemannian ap-
proach to the notion of orientation. The θ in their theorem is our θT .

Proof. We begin by relating some equations and then prove the the-
orem.

Note that by restricting to Ai,j := ϕi (Ai) ∩ ϕ′
j (A

′
j), we can focus

on one term in the parametrization at a time:

(38) T Ai,j =

∞
∑

k=1

ϕk#[θk℄ Ai,j = ϕi#[θi℄ Ai,j = ϕi#[θi1ϕ−1
i (Ai,j)

℄.
Thus T Ai,j = T ′ A′

i,j iff

(39)
ϕi#[θi1ϕ−1

i (Ai,j)
℄ = ϕ′

j#[θ′j1ϕ′−1
j (Ai,j)

℄ iff[θ′j1ϕ′−1
j

(Ai,j)
℄ = ϕ′

j#
−1
ϕi#[θi1ϕ−1

i
(Ai,j)

℄.
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This is true iff for any Lipschitz function f defined on A′
j we have

(40)

∫

ϕ
′−1
j (Ai,j)

θ′j · f dLm =

∫

ϕ−1
i (Ai,j)

θi · (f ◦ ϕ′
j
−1 ◦ ϕi) det

(

∇
(

ϕ′
j
−1 ◦ ϕi

))

dLm.

By the change of variables formula, this is true iff

(41)

∫

ϕ
′−1
j

(Ai,j)
θ′j · f dLm =

∫

ϕ
′−1
j (Ai,j)

(θi ◦ ϕ−1
i ◦ ϕ′

j) · f sgn det
(

∇(ϕ−1
i ◦ ϕ′

j)
)

dLm

because the change of variables formula involves the absolute value of
the determinant. This is true iff the following two equations hold:

(42) θ′j = θi ◦ ϕ−1
i ◦ ϕ′

j Lm a.e. on ϕ′
j
−1

(Ai,j)

and

(43) sgn det(∇(ϕ−1
i ◦ ϕ′

j)) = 1 Lm a.e. on ϕ′
j
−1

(Ai,j) .

Setting

(44) Y :=
∞
⋃

i=1

ϕi(Ai) and Y
′ :=

∞
⋃

j=1

ϕ′
j(A

′
j),

we have X = Y ∪ Y ′ and
⋃

∞

i,j=1Ai,j = Y ∩ Y ′. Furthermore, by Re-
mark 2.25, we have

(45) (i) iff Hm
(

Y ΛY ′
)

iff Hm
(

set (T )Λset
(

T ′
))

= 0.

We may now prove the theorem. If T = T ′, then set (T) = set (T′)
and we have (i). Furthermore, T Ai,j = T ′ Ai,j for all i, j which
implies (43), which implies (ii). We also have (42), which implies

(46)

∞
∑

i=1

θi ◦ ϕ−1
i 1ϕi(Ai) =

∞
∑

i=1

θ′i ◦ ϕ−1
i 1ϕ′

i(A′

i)

holds Hm almost everywhere on
⋃

∞

i,j=1Ai,j = Y ∩ Y ′. Since we already

have (i), then (45) implies (46) holdsHm almost everywhere on Y ∪Y ′ =
X and we get (iii).

Conversely, if (i), (ii), (iii) hold for a pair of parametrizations, then
(ii) implies (43) and (iii) implies (42). Thus, by (39) we have T Ai,j =
T ′ Ai,j for all i, j. Summing over i and j, we have T X = T ′ X. By
(i) and (45), we have

(47) T = T
∞
⋃

i=1

ϕi (Ai) = T Y = T ′ Y ′ = T ′

∞
⋃

j=1

ϕj

(

A′
j

)

= T ′.

q.e.d.
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In Proposition 2.40 we will prove that if T ∈ Im(Z) is an integer rec-
tifiable current, then (set(T),dZ, [{ϕi}], θT) as defined in Definition 2.30
is a completely settled weighted oriented countably Hm rectifiable metric
space as in Definitions 2.9 and 2.11. To prove this we must show set(T)
is completely settled. Thus we must better understand the relationship
between the mass measure of T , ||T ||, which is used to define the canon-
ical set, and the weight θTHm, which is used to defined settled. Both
measures must have positive density at the same locations.

Remark 2.31. In the proof of [AK00, Theorem 4.6], Ambrosio-
Kirchheim note that

(48) ||T || = Θ∗m(||T ||, ·)Hm set(T).

Example 2.32. Suppose T ∈ Im(Mm) in a smooth oriented Rie-
mannian manifold of finite volume is defined T = [1M ℄. Then θT = 1
while ||T || is the Lebesgue measure on M . Since the Hausdorff and
Lebesgue measures agree on a smooth Riemannian manifold, we have
Θ∗m(||T ||, p) = 1 as well. The Hausdorff and Lebesgue measures also
agree on manifolds that have point singularities as in Example 2.26, so
that set(T) is completely settled with respect to θTdHm in both cases
given in that example as well. In that case we again have θT = 1 every-
where, but Θ∗m(||T ||, p) = Θ∗m(θTHm, p) < 1 at conical singularities
and 0 at cusp points.

In general, however, the lower density of T need not agree with the
weight, θT . To find a formula relating the multiplicity θT to the lower
density of ||T || we need a notion called the area factor of a normed space
V (cf. [AK00](9.11)):

(49) λV :=
2m

ωm
sup

{Hm(B0(1))

Hm(R)

}

,

where the supremum is taken over all parallelepipeds R ⊂ V which
contain the unit ball B0(1).

Remark 2.33. In [AK00, Lemma 9.2], Ambrosio-Kirchheim prove
that

(50) λV ∈ [m−m/2, 2m/ωm]

and observe that λV = 1 whenever B0(1) is a solid ellipsoid. This will
occur when V is the tangent space on a Riemannian manifold because
the norm is an inner product. It is also possible that λV = 1 when V
does not have an inner product norm (cf. [AK00] Remark 9.3).

The following lemma consolidates a few results in [AK00] and [Kir94]:

Lemma 2.34. Given an integer rectifiable current T ∈ Im(Z), in a
complete metric space Z there is a function

(51) λ : set(T) → [m−m/2, 2m/ωm]
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satisfying

(52) Θ∗m(||T ||, x) = θT (x)λ(x),

for Hm almost every x ∈ set(T) such that

(53) ||T || = θTλHm set(T).

In particular, set(T) with the restricted metric from Z is a completely
settled weighted oriented countably Hm rectifiable metric space with re-
spect to the weight function θT defined in Definition 2.30.

When T = ϕ#[1A℄, with a bi-Lipschitz function, ϕ, then for x ∈ ϕ(A)
we have λ(x) = λVx where Vx is Rm with the norm defined by the metric
differential mdϕϕ−1(x).

Proof. On the top of page 58 in [AK00], Ambrosio-Kirchheim ob-
serve that for Hm almost every x ∈ S = set(T), one can define an
approximate tangent space Tanm(S, x) which is Rm with a norm. Tak-
ing λ(x) = λTanm(S,x) and applying [AK00](9.10), one sees they have
proven (53). We then deduce (52) using the fact that Θ∗m(Hm set(T), x)
= 1 almost everywhere [Kir94, Theorem 9].

The bounds on λ in (51) come from (50) and they allow us to conclude
that the lower density of θTHm and the lower density of ||T || are positive
at the same collection of points.

Examining the proof of [AK00], Theorem 9.1, one sees that Vx =
Tanm(S, x) in this setting. q.e.d.

In this section we introduce the notion of an integer rectifiable current
structure on a metric space and define integer rectifiable current spaces.
We then prove Proposition 2.40 that integer rectifiable current spaces
are completely settled weighted oriented Hm rectifiable metric spaces
using the lemmas from Subsection 2.2.

Definition 2.35. An m dimensional integer rectifiable current

structure on a metric space (X, d) is an integer rectifiable current T ∈
Im
(

X̄
)

on the completion, X̄, of X such that set (T) = X. We call such
a space an integer rectifiable current space and denote it (X, d, T ).

Given an integer rectifiable current space M = (X, d, T ) , we let
set (M) and XM denote X, dM = d, and [M℄ = T .

Remark 2.36. By [AK00] Defn 4.2, any metric space with an m
dimensional current structure must be countably Hm rectifiable because
the set of an m dimensional integer rectifiable current is countably Hm

rectifiable. By [AK00] Thm 4.5, there is a countable collection of bi-
Lipschitz charts with compact domains which map onto a dense subset
of the metric space (because we only include points of positive density).
In particular, the space is separable.
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Remark 2.37. We do not use the support, spt(T ), in this definition
as it is not necessarily countably Hm rectifiable and may have a higher
dimension as described in Remark 2.27. See Example A.22.

Remark 2.38. Recall that in Remark 2.8 we said that any m di-
mensional oriented connected Lipschitz or Riemannian manifold, M , is
endowed with a standard atlas of charts with a fixed orientation. We
will also view these spaces as having multiplicity or weight 1. If M has
finite volume and we’ve chosen an orientation, then we can define an
integer rectifiable current structure, T = [M℄ ∈ Im (M), parametrized
by a finite disjoint selection of charts with weight 1. It is easy to verify
that set (T) = M.

Lemma 2.39. Suppose (X, d, T ) is an integer rectifiable current space
and Z is a complete metric space. If φ : X → Z is an isometric em-
bedding then the induced map on the completion, φ̄ : X̄ → Z, is also an
isometric embedding. Furthermore, the pushforward φ̄#T is an integer
rectifiable current on Z and

(54) φ : X → set
(

φ̄#T
)

is an isometry.

Proof. Follows from the fact that set
(

φ̄#T
)

= φ̄ (set (T)) [AK00].
q.e.d.

Conversely, if T is an integer rectifiable current in Z, then (set (T) ,
dZ , T ) is an m dimensional integer rectifiable current space.

Proposition 2.40. There is a one-to-one correspondence between
completely settled weighted oriented countably Hm rectifiable metric
spaces, (X, d, [{φ}], θ), and integer rectifiable current spaces (X, d, T )
as follows:

Given (X, d, T ), we define a weight θ = θT and orientation [{ϕi}] as
in Definition 2.30, so that

(55) θ := θT =

∞
∑

i=1

θi ◦ ϕ−1
i 1ϕi(Ai),

and the corresponding space is (X, d, [{ϕi}], θ).
Given (X, d, [{ϕ}], θ), we define a unique induced current structure

T ∈ Im
(

X̄
)

given by
(56)

T (f, π) =
∑

ϕi#[θ◦ϕi℄ (f, π) =∑∫

Ai

θ◦ϕif◦ϕi det (∇ (π ◦ ϕi)) dLm,

and the corresponding space is then (X, d, T ) because set(T) = X.
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Proof. Given (X, d, [{ϕi}], θ), we first define a current on the comple-
tion X̄ using a preferred oriented atlas as in (56). This is well defined
because

(57)
∞
∑

i=1

M (ϕi#[θ ◦ ϕi℄) ≤ Cm

∞
∑

i=1

∫

ϕi(Ai)
θ dHm <∞

where Cm is a constant that may be computed using Lemma 2.34. The
sum is then finite by Definition 2.9.

So we have a current with a parametrization ({ϕi}, {θi}) where θi :=
θ◦ϕi. The weight function θT of the current T defined below Lemma 2.29
agrees with the weight function θ on X because for almost every x ∈ X
there is a chart such that x ∈ ϕi (Ai), and

(58) θT (x) = θi ◦ ϕ−1
i (x) = θ (x) .

Furthermore, set (T) = {p ∈ X̄ : Θ∗m (‖T‖,p) > 0}, so by Lemma 2.34
we have

(59) set (T) =

{

p ∈ X̄ : Θ∗m

(

θ dHm
∞
⋃

i=1

ϕi (Ai) ,p

)

> 0

}

which is X because X is completely settled. Since X is a countably
Hm rectifiable space, we know T ∈ Im

(

X̄
)

. Thus we have an integer
rectifiable current space (X, d, T ).

Conversely, we start with (X, d, T ). Applying Lemma 2.29, we have a
unique well defined orientation and weight function θT . Thus (set (T) ,d,
[{ϕi}], θT ) is an oriented weighted countablyHm rectifiable metric space.
Since set (T) = X in the definition of a current space, we have shown
(X, d, [{ϕi}], θT ) is an oriented weighted countably Hm rectifiable met-
ric space. As in the above paragraph, we see that set (T) is a completely
settled subset of X̄. So X is completely settled.

Note that since the {ϕi} from the preferred atlas are the {ϕi} of the
parametrization and the weights agree in (58), this pair of maps is a
correspondence. q.e.d.

We may now define the mass and relate it to the weighted volume:

Definition 2.41. The mass of an integer rectifiable current space
(X, d, T ) is defined to be the mass, M (T ), of the current structure, T .

Note that the mass is always finite by (iii) in the definition of a
current.

Lemma 2.42. If ϕ : X → Y is a 1-Lipschitz map, then M(ϕ#(T )) ≤
M(T ). Thus if ϕ : X → Y is an isometric embedding, then M(T ) =
M(ϕ#(T )).

Recall Definition 2.9 of the weighted volume, Vol (X, θ). We have the
following corollary of Lemma 2.34 and Proposition 2.40:
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Lemma 2.43. The mass of an integer rectifiable current space (X, d, T )
with multiplicity or weight, θT , satisfies

(60) M(T ) =

∫

X
θT (x)λ(x)dHm(x).

In particular,

(61) M (T ) ∈
[

m−m/2 Vol(X, θ),
2m

ωm
Vol(X, θ)

]

,

where Vol(X, θ) is the weighted volume defined in Definition 2.9.

Note that on a Riemannian manifold with multiplicity one, the mass
and the weighted volume agree and are both equal to the volume of the
manifold. On reversible Finsler spaces, λ(x) depends on the norm of
the tangent space at x.

2.4. Integral current spaces. In this subsection, we define the bound-
aries of integer rectifiable current spaces and the notion of an inte-
gral current space. We begin with Ambrosio-Kirchheim’s extension of
Federer-Fleming’s notion of an integral current [AK00, Defn 3.4 and
4.2]:

Definition 2.44 (Ambrosio-Kirchheim). An integral current is an
integer rectifiable current, T ∈ Im(Z), such that ∂T defined as

(62) ∂T (f, π1, . . . , πm−1) := T (1, f, π1, . . . , πm−1)

satisfies the requirements to be a current. One need only verify that ∂T
has finite mass as the other conditions always hold. We use the standard
notation, Im (Z), to denote the space of m dimensional integral currents
on Z.

Remark 2.45. By the boundary rectifiability theorem of Ambrosio-
Kirchheim [AK00, Theorem 8.6], ∂T is then an integer rectifiable cur-
rent itself. And in fact it is an integral current whose boundary is 0.

Thus we can make the following new definition:

Definition 2.46. An m dimensional integral current space is an
integer rectifiable current space, (X, d, T ), whose current structure, T ,
is an integral current (that is, ∂T is an integer rectifiable current in X̄).
The boundary of (X, d, T ) is then the integral current space:

(63) ∂ (X, dX , T ) := (set (∂T) ,dX̄, ∂T) .

If ∂T = 0 then we say (X, d, T ) is an integral current without boundary
or with zero boundary.

Note that set (∂T) is not necessarily a subset of set (T) = X but it is
always a subset of X̄. As in Definition 2.35, given an integer rectifiable
current space M = (X, d, T ) we will use set (M) or XM to denote X,
dM = d, and [M℄ = T .
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Remark 2.47. On an oriented Riemannian manifold with boundary
M , the boundary ∂M defined as a current space agrees with the defini-
tion of ∂M in Riemannian geometry. In that setting an atlas of M can
be restricted to provide an atlas for ∂M . It is not always possible to
do this on integer rectifiable current spaces. In fact, the boundaries of
charts need not even have finite mass for an individual chart. If a chart
ϕ : K ⊂ Rm → Z with K compact, then ∂ϕ#[1K℄ is an integral current
iff K has finite perimeter.

Remark 2.48. SupposeM and N are connected m dimensional ori-
ented Lipschitz manifolds with the standard current structures [M℄ and[N ℄ as in Remark 2.8 and ψ : M → N a bi-Lipschitz homeomorphism.
Then one can do a computation, mapping charts on M to charts on N
and applying Lemma 2.29, to see that

(64) ψ#[M℄ = ±[N ℄.
That is, the bi-Lipschitz homeomorphism is either a current preserving
or a current reversing map. When M and N are isometric, then the
isometry is also current preserving or current reversing.

When M and N are integral current spaces, they may have multi-
plicity, so that a bi-Lipschitz homeomorphism or isometry from set (M)
to set (N) does not in general push [M℄ to [N ℄. Even with multiplicity
1, the fact that orientations are defined using disjoint charts can lead
to different signs on different charts so that (64) fails.

As in Federer, Ambrosio-Kirchheim define the total mass and we do
as well:

Definition 2.49. The total mass of an integral current with bound-
ary, T , is

(65) N (T ) = M (T ) +M (∂T ) .

Naturally, we can extend this concept to current spaces: N (X, d, T ) =
N (T ).

Recall that by Remark 2.36, an integral current space is separable and
has a collection of disjoint bi-Lipschitz charts whose image is dense and
the boundary of the integral current space has the same property. An
integral current space need not be precompact or bounded. An integral
current space is not necessarily a geodesic space.

3. The intrinsic flat distance between current spaces

Let Mm be the space of m dimensional integral current spaces as de-
fined in Definition 2.46. Recall they have the form M = (XM , dM , TM )
where TM ∈ Im

(

X̄M

)

and set(TM) = XM. Note Mm also includes the
zero current denoted 0.
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Definition 1.1 in the introduction naturally applies to any M,N ∈
Mm so that

(66) dF (M,N) := inf{M (U) +M (V )}
where the infimum is taken over all complete metric spaces, (Z, d), and
all integral currents, U ∈ Im (Z) , V ∈ Im+1 (Z), such that there exist
isometric embeddings

(67) ϕ :
(

X̄M , dX̄M

)

→ (Z, d) and ψ :
(

X̄N , dX̄N

)

→ (Z, d)

with

(68) ϕ#TM − ψ#TN = U + ∂V.

Here we consider the 0 space to isometrically embed into any Z with
ϕ#0 = 0 ∈ Im (Z).

Note that, by the definition, dF is clearly symmetric. In Subsec-
tion 3.1 we prove that dF satisfies the triangle inequality on Mm [The-
orem 3.2]. As a consequence, the distance between integral current
spaces is always finite and is easy to estimate [Remark 3.3].

In Subsection 3.2, we review the compactness theorems of Gromov
and of Ambrosio-Kirchheim, and present a compactness theorem for
intrinsic flat convergence [Theorem 3.20], which follows immediately
from theirs.

In Subsection 3.3, we prove Theorem 3.23 that the infimum in the
definition of the intrinsic flat distance is attained between precompact
integral current spaces. That is, there exist a common metric space,
Z, and integral currents, U ∈ Im(Z) and V ∈ Im+1(Z), achieving the
infimum in (66).

In Subsection 3.4 we prove that dF is a distance on Mm
0 . That

is, we prove that when two precompact integral current spaces are a
distance zero apart, there is a current preserving isometry between them
[Theorem 3.27]. Thus dF is a distance on Mm

0 where

(69) Mm
0 = {M ∈ Mm : XM is precompact}.

Remark 3.1. Note that the flat distance dZF given above Defini-
tion 1.1 has an infimum that is taken over all U ∈ Im (Z) , V ∈ Im+1 (Z)
where the supports of U and V may be noncompact or even unbounded
as long as they have finite mass. Thus we can have unbounded limits
[Example A.10] and bounded noncompact limits [Example A.11].

3.1. The triangle inequality. In this section we prove the triangle
inequality for the intrinsic flat distance between integral current spaces:

Theorem 3.2. For all M1,M2, N ∈ Mm, we have

(70) dF (M1,M2) ≤ dF (M1, N) + dF (N,M2) .
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In the proof of this theorem, we do not assume the infimum in (66)
is finite. Naturally, the theorem is immediately true if the right hand
side of (70) is infinite. It is a consequence of the theorem that when the
right hand side is finite, the left hand side is finite as well. Applying
the theorem with N1 = 0, we may then conclude the distance is finite
and estimate it using the masses of M1 and M2:

Remark 3.3. Taking U = M and V = 0 in (66), we see that
dF (M, 0) ≤ M (M) , so the intrinsic flat distance between any pair
of integral current spaces of finite mass is finite

(71) dF (M1,M2) ≤ dF (M1, 0) + dF (0,M2) ≤ M (M1) +M (M2) .

In particular, when Mi are Riemannian manifolds, then M (Mi) =
Vol (Mi) and we have

(72) dF (M1,M2) ≤ Vol (M1) + Vol (M2) .

To prove Theorem 3.2 we apply the following well-known gluing
lemma (cf. [BBI01]):

Lemma 3.4. Given three metric spaces (Z1, d1), (Z2, d2), and (X, dX )
and two isometric embeddings ϕi : X → Zi, we can glue Z1 to Z2

along the isometric images of X to create a space Z = Z1 ⊔X Z2 where
dZ (x, x′) = di (x, x

′) when x, x′ ∈ Zi and

(73) dZ
(

z, z′
)

= inf
x∈X

(

d1 (z, ϕ1 (x)) + d2
(

ϕ2 (x) , z
′
))

whenever z ∈ Z1, z
′ ∈ Z2. There exist natural isometric embeddings

fi : Zi → Z such that f1 ◦ ϕ1 = f2 ◦ ϕ2 is an isometric embedding of X
into Z.

We now prove Theorem 3.2:

Proof. Let Mi = (Xi, di, Ti) and N = (X, d, T ), and let Z1, Z2 be
metric spaces and let ψi : X̄i → Zi and ϕi : X̄ → Zi be isometric
embeddings. Let Ui ∈ Im(Zi) and Vi ∈ Im+1(Zi) such that

(74) ϕi#T − ψi#Ti = Ui + ∂Vi.

Applying Lemma 3.4, we create a metric space Z with isometric embed-
dings fi : Zi → Z such that f1 ◦ϕ1 = f2 ◦ϕ2 is an isometric embedding
of X into Z. Pushing forward the current structures to Z, we have
f1#ϕ1#T = f2#ϕ2#T , so

f1#ψ1#T1 − f2#ψ2#T2

= f1#ψ1#T1 − f1#ϕ1#T + f2#ϕ2#T − f2#ψ2#T2(75)

= f1#(ψ1#T1 − ϕ1#T ) + f2#(ϕ2#T − ψ2#T2)(76)

= f1#(−U1 − ∂V1) + f2#(U2 + ∂V2)(77)

= −f1#U1 − ∂f1#V1 + f2#U2 + ∂f2#V2(78)

= f2#U2 − f1#U1 + ∂(f2#V2 − f1#V1).(79)
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So by (66) applied to the isometric embeddings fi ◦ ψi : X̄i → Z, we
have

(80) dF (M1,M2) ≤ M(f2#U2 − f1#U1) +M(f2#V2 − f1#V1).

Applying the fact that mass is a norm and Lemma 2.42, we have

dF (M1,M2) ≤ M(f2#U2) +M(f1#U1) +M(f2#V2) +M(f1#V1)
(81)

= M(U2) +M(U1) +M(V2) +M(V1).(82)

Taking an infimum over all Ui and Vi satisfying (74), we see that

(83) dF (M1,M2) ≤ dZ1

F (ϕ1#T, ψ1#T1) + dZ2

F (ϕ2#T, ψ2#T2).

Taking an infimum over all metric spaces Z1, Z2 and all isometric embed-
dings ψi : X̄i → Zi and ϕi : X̄ → Zi, we obtain the triangle inequality.
q.e.d.

3.2. A brief review of existing compactness theorems. Gromov
defined the following distance between metric spaces in [Gro07]:

Definition 3.5 (Gromov). Recall that the Gromov-Hausdorff dis-
tance between two metric spaces (X, dX ) and (Y, dY ) is defined as

(84) dGH (X,Y ) := inf dZH (ϕ (X) , ψ (Y ))

where Z is a complete metric space, and ϕ : X → Z and ψ : Y → Z are
isometric embeddings, and where the Hausdorff distance in Z is defined
as

(85) dZH (A,B) = inf{ǫ > 0 : A ⊂ Tǫ (B) and B ⊂ Tǫ (A)}.

Gromov proved that this is indeed a distance on compact metric
spaces: dGH (X,Y ) = 0 iff there is an isometry between X and Y .
There are many equivalent definitions of this distance; we choose to
state this version because it inspired our definition of the intrinsic flat
distance. Gromov also introduced the following notions:

Definition 3.6 (Gromov). A collection of metric spaces is said to be
equibounded or uniformly bounded if there is a uniform upper bound
on the diameter of the spaces.

Remark 3.7. We will write N (X, r) to denote the maximal number
of disjoint balls of radius r in a space X. Note that X can always be
covered by N (X, r) balls of radius 2r.

Definition 3.8 (Gromov). A collection of spaces is said to be equicom-
pact or uniformly compact if they have a common upper bound N (r)
such that N (X, r) ≤ N (r) for all spaces X in the collection.
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Note that Ilmanen’s Example depicted in Figure 1 is not equicom-
pact, as the number of balls centered on the tips approaches infinity
[Example A.7].

Gromov’s Compactness Theorem states that sequences of equibounded
and equicompact metric spaces have a Gromov-Hausdorff converging
subsequence [Gro81]. In fact, Gromov proves a stronger version of this
statement in a subsequent work, [Gro82, p. 65], which we state here so
that we may apply it:

Theorem 3.9 (Gromov’s Compactness Theorem). If a sequence of
compact metric spaces, Xj , is equibounded and equicompact, then there
is a pair of compact metric spaces Y ⊂ Z, and a subsequence Xji which
isometrically embed into Z: ϕji : Xji → Z such that

(86) lim
i→∞

dZH (ϕji (Xji) , Y ) = 0.

So (Y, dZ) is the Gromov-Hausdorff limit of the Xij .

Gromov’s proof of the stronger statement involves a construction of
a metric on the disjoint union of the sequence of spaces. This method
of proving the Gromov compactness theorem relies on the fact that
infimum in (3.5) can be estimated arbitrarily well by taking Z to be a
disjoint union of the spaces and choosing a clever metric on Z.

The reason we have stated this stronger version of Gromov’s Com-
pactness Theorem is because it can be applied in combination with
Ambrosio-Kirchheim’s compactness theorem to prove our first compact-
ness theorem for integral current spaces [Theorem 3.20].

Recall the notion of total mass [Definition 2.49]. Ambrosio-Kirchheim’s
Compactness Theorem, which extends Federer-Fleming’s Flat Norm
Compactness Theorem, is stated in terms of weak convergence of cur-
rents. See Definition 3.6 in [AK00] which extends Federer-Fleming’s
notion of weak convergence:

Definition 3.10 (Weak Convergence). A sequence of integral cur-
rents Tj ∈ Im (Z) is said to converge weakly to a current T iff the
pointwise limits satisfy

(87) lim
j→∞

Tj (f, π1, . . . , πm) = T (f, π1, . . . , πm)

for all bounded Lipschitz f and Lipschitz πi.

Remark 3.11. If we suppose one has a sequence of isometric em-
beddings, ϕi : X → Z, which converge uniformly to ϕ : X → Z, and
T ∈ Im(X), then ϕi#T converges to ϕ#T . This can be seen by applying
properties (ii) and (iii) in the definition of a current as follows:

lim
i→∞

ϕi#T (f, π1, . . . , πm) = lim
i→∞

T (f ◦ ϕi, π1 ◦ ϕi, . . . , πm ◦ ϕi)

= T (f ◦ ϕ, π1 ◦ ϕ, . . . , πm ◦ ϕ)
= ϕ#T (f, π1, . . . , πm).
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Remark 3.12. If Tj ∈ Im(Z) has M(Tj) → 0, then by (23),

(88)
∣

∣

∣
Tj(f, π1, . . . , πm)

∣

∣

∣
≤ M(Tj)|f |∞ Lip(π1) · · ·Lip(πm) → 0,

so Tj converges weakly to 0.

Remark 3.13. Note that flat convergence implies weak convergence

because Tj
F−→ T implies there exists Uj, Vj with M(Uj) +M(Vj) → 0

such that Tj−T = Uj+∂Vj . This implies that Uj and Vj must converge
weakly to 0 and ∂Vj must as well. So Tj − T ⇀ 0 and Tj ⇀ T .

Remark 3.14. Immediately below the definition of weak conver-
gence [AK00] Defn 3.6, Ambrosio-Kirchheim prove the lower semi-
continuity of mass. In particular, if Tj converges weakly to T , then
lim infj→∞M(Tj) ≥ M(T ).

Remark 3.15. It should be noted here that weak convergence as
defined in Federer [Fed69] is tested only with differential forms of com-
pact support while weak convergence in Ambrosio-Kirchheim does not
require the test tuples to have compact support. Sequences of unit
spheres in Euclidean space whose centers diverge to infinity converge
weakly to 0 in the sense of Federer but not in the sense of Ambrosio-
Kirchheim.

Theorem 3.16 (Ambrosio-Kirchheim Compactness). Given any com-
plete metric space Z, a compact set K ⊂ Z, and any sequence of integral
currents Tj ∈ Im (Z) with a uniform upper bound on their total mass
N (Tj) = M (Tj) +M (∂Tj) ≤M0, such that set (Tj) ⊂ K, there exist a
subsequence, Tji, and a limit current T ∈ Im (Z) such that Tji converges
weakly to T .

The key point of this theorem is that the limit current is an integral
current and has a rectifiable set with finite mass and rectifiable boundary
with bounded mass.

In order to apply Ambrosio-Kirchheim’s result, we need a result of the
second author from [Wen07, Theorem 1.4] which generalizes a theorem
of Federer-Fleming relating the weak and flat norms. As in Federer-
Fleming, one needs a uniform bound on total mass to have the relation-
ship. To simplify the statement of [Wen07, Theorem 1.4], we restrict
the setting to Banach spaces although his result is far more general:

Theorem 3.17 (Wenger Flat=Weak Convergence). Let E be a Ba-
nach space and m ≥ 1. If we assume a sequence of integral currents,
Tj ∈ Im (E), has a uniform upper bound on total mass M (Tj)+M (∂Tj),
then Tj converges weakly to T ∈ Im (E) iff Tj converges to T in the flat
sense.

For our purposes, it suffices to have a Banach space, because we may
apply Kuratowski’s embedding theorem to embed any complete metric
space into a Banach space:
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Theorem 3.18 (Kuratowski Embedding Theorem). Let Z be a com-
plete metric space, and ℓ∞ (Z) be the space of bounded real valued func-
tions on Z endowed with the sup norm. Then the map ι : Z → ℓ∞ (Z)
defined by fixing a basepoint z0 ∈ Z and letting ι (z) = dZ (z0, ·)−dZ (z, ·)
is an isometric embedding.

Remark 3.19. By the Kuratowski embedding theorem, the infimum
in (66) can be taken over Banach spaces, Z.

Combining Kuratowski’s Embedding Theorem with Gromov and
Ambrosio-Kirchheim’s Compactness Theorems, we immediately obtain:

Theorem 3.20. Given a sequence of m dimensional integral current
spaces Mj = (Xj , dj , Tj) such that Xj are equibounded and equicompact
and such that N (Tj) is uniformly bounded above, then a subsequence
converges in the Gromov-Hausdorff sense (Xji , dji) → (Y, dY ) and in
the intrinsic flat sense (Xji , dji , Tji) → (X, d, T ) where either (X, d, T )
is an m dimensional integral current space with X ⊂ Y or it is the 0

current space.

Note that X might be a strict subset of Y as seen in Example A.12,
depicted in Figure 3.

Proof. By Gromov’s Compactness Theorem, there exist a compact
space Z and isometric embeddings ϕj : Xj → Z such that a subsequence
of the ϕj (Xj), still denoted ϕj(Xj), converges in the Hausdorff sense
to a closed subset, Y ′ ⊂ Z. We then apply Kuratowski’s Theorem to
define isometric embeddings ϕ′

j = ι ◦ ϕj : Xj → ℓ∞ (Z). Note that

K = ι (Z) ⊂ ℓ∞ (Z) is compact and

(89) sptϕ′
j# (Tj) ⊂ Cl

(

ϕ′
j (Xj)

)

⊂ ι (Z) = K.

Let Y = ι(Y ′) with the restricted metric.
We now apply the Ambrosio-Kirchheim Compactness Theorem to see

that there exists a further subsequence ϕ′
ji#
Tji converging weakly to an

integral current S ∈ Im (ℓ∞ (Z)). We claim sptS ⊂ Y . If not, then there
exists x ∈ sptS \ Y , and there exists r > 0 such that B(x, r) ∩ Y = 0.
By definition of support, ||S||(B(x, r/2)) > 0. By weak convergence,
there is an i sufficiently large that ||Sji ||(B(x, r)) > 0. In particular,
x ∈ Tr/2(sptSji). Taking i → ∞, we see that x ∈ Tr(Y ) because Y is
the Hausdorff limit of the sptSji.

Since E = ℓ∞ (Z) is a Banach space and there is a uniform upper
bound on the total mass, we apply Wenger’s Flat=Weak Convergence
Theorem to see that

(90) dEF
(

ϕ′
ji#Tji , S

)

→ 0.

We now define our limit current space (X, d, T ) by taking X = set(S),
d = dE , and T = S. The identity map isometrically embeds X into E
and takes T to S. Since set(S) ⊂ spt(S) ⊂ Y, we are done. q.e.d.
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We have the following immediate corollary of Theorem 3.20:

Corollary 3.21. Given a sequence of precompact m dimensional in-
tegral current spaces, Mj = (Xj , dj , Tj), with a uniform upper bound on
their total mass such that Xj converge in the Gromov-Hausdorff sense to
a compact limit space, Y , of lower Hausdorff dimension, dimH(Y ) < m,
then Mj converges in the intrinsic flat sense to the 0 current space be-
cause the zero current is the only m dimensional integral current whose
canonical set has Hausdorff dimension less than m.

Remark 3.22. Note that by Remark 3.3 any collapsing sequence of
Riemannian manifolds, Mm

j such that Vol (Mj) → 0, converges in the
intrinsic flat sense to the 0 integral current space. Thus even when the
Gromov-Hausdorff limit is higher dimensional as in Example A.17 the
intrinsic flat limit may collapse to the 0 current space.

3.3. The infimum is achieved. In this subsection we prove the infi-
mum in the definition of the intrinsic flat distance (66) is achieved for
precompact integral current spaces.

Theorem 3.23. Given a pair of precompact integral current spaces,
M = (X, d, T ) and M ′ = (X ′, d′, T ′), there exist a compact metric space,
Z, integral currents U ∈ Im (Z) and V ∈ Im+1 (Z), and isometric em-
beddings ϕ : X̄ → Z and ϕ′ : X̄ ′ → Z with

(91) ϕ#T − ϕ′
#T

′ = U + ∂V

such that

(92) dF
(

M,M ′
)

= M (U) +M (V ) .

In fact, we can take Z = spt (U) ∪ spt(V ).

This theorem also holds for M ′ = 0, where we just take T ′ = 0 and
do not concern ourselves with embedding X ′ into Z.

In our proof of this theorem, we use the notion of an injective met-
ric space and Isbell’s theorem regarding the existence of an injective
envelope of a metric space [Isb64]:

Definition 3.24. A metric space W is said to be injective iff it has
the following property: given any pair of metric spaces, Y ⊂ Z, and any
1-Lipschitz function, f : Y ⊂ Z →W , we can extend f to a 1-Lipschitz
function f̄ : Z →W .

Theorem 3.25 (Isbell). Given any metric space X, there is a small-
est injective space, which contains X, called the injective envelope. Fur-
thermore, when X is compact, its injective envelope is compact as well.

We now prove Theorem 3.23.
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Proof. Let Zn and Un ∈ Im (Zn) and Vn ∈ Im+1 (Zn) approach the
infimum in the definition of the flat distance between current spaces
(66). That is, there exist isometric embeddings ϕn : X̄ → Zn and
ϕ′
n : X̄ ′ → Zn such that

(93) ϕn#T − ϕ′
n#T

′ = Un + ∂Vn

where

(94) M (Un) +M (Vn) ≤ dF
(

M,M ′
)

+
1

n
.

We would like to apply Ambrosio-Kirchheim’s Compactness Theo-
rem, so we need to find a common compact metric space, Z, and push
Un and Vn into this common space and then take their limits to find U
and V . We will build Z in a few stages using Gromov’s Compactness
Theorem and Isbell’s Theorem. The Zn we have right now need not be
equicompact or equibounded.

We first claim that ϕn, ϕ
′
n and Zn may be chosen so that

(95)
diam(Zn) ≤ 3 diam(ϕn(X̄))+3diam(ϕ′

n(X̄
′)) = 3diam(X)+3diam(X ′).

If not, then there exist pn ∈ ϕn(X̄) and p′n ∈ ϕ′
n(X̄

′) such that the
closed balls

(96) B̄(pn, 2 diam(X)) ∩ B̄(p′n, 2 diam(X ′)) = ∅.
Taking An = Zn \ (B̄(pn, 2 diam(X)) ∪ B̄(p′n, 2 diam(X ′))), we would
then define Z ′

n := Zn/An with the quotient metric
(97)
dZ′

n
([z1], [z2]) := inf {dZn(x1, a1) + dZn(a2, x2) : xi ∈ [zi], ai ∈ An} .

Then Z ′
n has the required bound on diameter and we need only construct

the embeddings.
Let p : Zn → Zn/A be the projection. Then p is an isometric em-

bedding when restricted to ϕn(X) ⊂ B̄(pn,diam(X)) or to ϕn(X
′) ⊂

B̄(p′n,diam(X ′)). Thus p ◦ϕn : X̄ → Zn/A and p ◦ϕ′
n : X̄ ′ → Zn/A are

isometric embeddings. Furthermore, p is 1-Lipschitz on Zn, so

(98) p#ϕn#T − p#ϕ
′
n#T

′ = p#Un + ∂p#Vn

and, by Lemma 2.42,

(99) M (p#Un) +M (p#Vn) ≤ M (Un) +M (Vn) .

So our first claim is proven.
Now let Yn := ϕn(X̄) ∪ ϕ′

n(X̄
′) ⊂ Zn with the restricted metric from

Zn. By our first claim, the diameters of the Yn are uniformly bounded.
In fact, the Yn are equicompact because the number of disjoint balls of
radius r may easily be estimated:

(100) N(Yn, r) ≤ N(ϕn(X), r) +N(ϕ′
n(X

′), r) = N(X, r) +N(X ′, r).
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Thus, by Gromov’s Compactness Theorem, there exist a compact metric
space, Z ′, and isometric embeddings ψn : Yn → Z ′.

Recall that Un ∈ Im (Zn) and Vn ∈ Im+1 (Zn), so we need to extend
ψn to Zn in order to push forward these currents into the common
compact metric space, Z, and take their limits.

By Isbell’s Theorem, we may take Z to be the injective envelope of
Z ′. Since Z is injective, we can extend the 1-Lipschitz maps, ψn, to
1-Lipschitz maps, ψ̄n : Zn → Z. So now we have a common compact
metric space, Z, and isometric embeddings ψ̄n◦ϕn : X̄ → Z and ψ̄n◦ϕ′

n :
X̄ ′ → Z, such that

(101) ψ̄n#ϕn#T − ψ̄n#ϕ
′
n#T

′ = ψ̄n#Un + ∂ψ̄n#Vn

where

(102) M
(

ψ̄n#Un

)

+M
(

ψ̄n#Vn
)

≤ dF
(

M,M ′
)

+
1

n
.

By Arzela-Ascoli’s Theorem, after taking a subsequence, the isometric
embeddings ψ̄ ◦ϕn : X → Z and ψ̄ ◦ϕ′

n : X ′ → Z converge uniformly to
isometric embeddings ϕ : X → Z and ϕ′ : X ′ → Z. As in Remark 3.11,
we then have weak convergence:

(103) ψ̄n#ϕn#T ⇀ ϕ#T and ψ̄n#ϕ
′
n#T

′ ⇀ ϕ′
#T

′.

By Ambrosio-Kirchheim’s Compactness Theorem, after possibly tak-
ing a further subsequence, there exist U ∈ Im (Z) , V ∈ Im+1 (Z) such
that

(104) ψ̄#Un ⇀ U and ψ̄#Vn ⇀ V.

In particular, ϕ#T − ϕ′
#T

′ = U − ∂V .

By the lower semicontinuity of mass (cf. Remark 3.14),

(105) M(U) +M(V ) ≤ dF
(

M,M ′
)

+
1

n
∀n ∈ N

and we are done. q.e.d.

3.4. Current preserving isometries. We can now prove that the in-
trinsic flat distance is a distance on the space of precompact oriented
Riemannian manifolds with boundary and, more generally, on precom-
pact integral current spaces in Mm

0 .

Definition 3.26. Given M,N ∈ Mm, an isometry f : XM → XN is
called a current preserving isometry between M and N , if its extension
f̄ : X̄M → X̄N pushes forward the current structure onM to the current
structure on N : f̄#TM = TN .

When M and N are oriented Riemannian manifolds or other Lip-
schitz manifolds with the standard current structures as described in
Remark 2.8, then orientation preserving isometries are exactly current
preserving isometries. See Remark 2.48.
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Theorem 3.27. If M,N are precompact integral current spaces such
that dF (M,N) = 0 then there is a current preserving isometry from M
to N . Thus dF is a distance on Mm

0 .

It should be noted that a pair of precompact metric spaces, X,Y such
that dGH(X,Y ) = 0 need not be isometric (e.g. the Gromov-Hausdorff
distance between a Riemannian manifold, and the same manifold with
one point removed, is 0). However, if X and Y are compact, then
Gromov proved dGH(X,Y ) = 0 implies they are isometric [Gro07].

While we do not require that our spaces be complete, the definition
of an integral current space requires that the spaces be completely set-
tled [Defn 2.11] so that X = set(T) [Defn 2.46]. This is as essential to
the proof of Theorem 3.27 as the compactness is essential in Gromov’s
theorem. Precompactness, on the other hand, is not a necessary con-
dition. Theorem 3.27 can be extended to noncompact integral current
spaces applying Theorem 6.1 in the second author’s compactness paper
[Wen11].

Proof. By Theorem 3.23 and the fact that an integral current has zero
mass iff it is 0, we know there exist a compact space Z and isometric
embeddings, ϕ :

(

X̄M , dX̄
)

→ (Z, d) and ψ :
(

X̄N , dX̄N

)

→ (Z, d), with

(106) ϕ#TM − ψ#TN = 0 ∈ Im (Z) .

Thus

(107) set (ϕ#TM) = set (ψ#TN) .

By Lemma 2.39, we know ϕ : XM → set (ϕ#TM) and ψ : XN →
set (ψ#TN) are isometries.

We define our isometry f : XM → XN to be f = ψ−1 ◦ ϕ. Then
f̄ : X̄M → X̄N pushes TM ∈ Im

(

X̄M

)

to f̄#TM ∈ Im
(

X̄N

)

, so that
with (106) we have

(108) ψ#f̄#TM = ϕ#TM = ψ#TN .

Since ψ# (f#TM − TN ) = 0 ∈ Im (Z) and ψ is an isometry, we have
f#TM − TN = 0 ∈ Im

(

X̄N

)

. q.e.d.

The following is an immediate consequence of Theorem 3.27:

Corollary 3.28. If Mm and Nm are precompact oriented Riemann-
ian manifolds with finite volume, then dF (M

m, Nm) = 0 iff there is an
orientation preserving isometry, ψ :Mm → Nm. Thus dF is a distance
on the space of precompact oriented Riemannian manifolds with finite
volume.

Remark 3.29. Initially we were hoping to prove that if the intrinsic
flat distance between two Riemannian manifolds is zero then the mani-
folds are isometric. This is false unless the manifold has an orientation
reversing isometry as we prove in Theorem 3.27. We thought we might
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use a Z2 notion of integral currents to avoid the issue of orientation.
However, at the time there was no such theory, so we settled on this
version of the theorem with this notion of intrinsic flat distance. Very re-
cently, Ambrosio-Katz [AK10] and Ambrosio-Wenger [AW] completed
work covering this theory, and one expects this will lead to interesting
new ideas. Alternatively, one could try to use the even more recent
theory of DePauw-Hardt [DPH].

4. Sequences of integral current spaces

In this section we describe the properties of sequences of integral
current spaces which converge in the intrinsic flat sense.

In Subsection 4.1 we take a Cauchy or converging sequence of precom-
pact integral current spaces and construct a common metric space, Z,
into which the entire sequence embeds [Theorem 4.1 and Theorem 4.2].
Note that Z need not be compact even when the spaces are. Relevant
examples are given and an open question appears in Remark 4.5.

In Subsection 4.2 we remark on the properties of converging sequences
of integral current spaces. We prove the lower semicontinuity of mass
[Theorem 4.6] which is a direct consequence of Ambrosio-Kirchheim
[AK00]. We remark on the continuity of filling volume which follows
from work of the second author [Wen07].

In Subsection 4.3 we state consequences of the authors’ first paper
[SW10] concerning limits of sequences of Riemannian manifolds with
contractibility conditions as in work of Greene-Petersen [GPV92]. We
discuss how to avoid the kind of cancellation in Example A.19, depicted
in Figure 6, using Gromov’s filling volume [Gro83].

In Subsection 4.4 we discuss noncollapsing sequences of manifolds
with nonnegative Ricci or positive scalar curvature, particularly in The-
orem 4.16 and Conjecture 4.18, which appear in our first paper [SW10].

In Subsection 4.5 we state the second author’s compactness theorem
[Theorem 4.19] which is proven in [Wen11]. We then prove Theo-
rem 4.20 which provides a common metric space Z for a Cauchy se-
quence bounded as in the compactness theorem. In particular, any
Cauchy sequence of integral current spaces with a uniform upper bound
on diameter and total mass converges to an integral current space.

4.1. Embeddings into a common metric space. In this subsection
we prove Theorems 4.1, 4.2, and 4.3 which describe how Cauchy and
converging sequences of integral current spaces,Mi, can be isometrically
embedded into a common separable complete metric space Z as a flat
Cauchy or converging sequence. These theorems are essential to under-
standing sequences of manifolds which do not have Gromov-Hausdorff
limits. We will also apply them to prove Theorem 4.20.
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Theorem 4.1. Given an intrinsic flat Cauchy sequence of integral
current spaces, Mj = (Xj , dj , Tj) ∈ Mm, there exist a separable com-
plete metric space Z, and a sequence of isometric embeddings ϕj : Xj →
Z such that ϕj#Tj is a flat Cauchy sequence of integral currents in Z.

The classic example of a Cauchy sequence of integral currents con-
verging to Gabriel’s Horn shows that a uniform upper bound on mass is
required to have a limit space which is an integral current space [Exam-
ple A.23]. So the Cauchy sequence in this theorem need not converge
without an additional assumption on total mass. In Example A.10 we
see that even with the uniform bound on total mass, the sequence may
have a limit which is unbounded. In Example A.11, depicted in Figure 7,
we see that even with a uniform bound on total mass and diameter, the
limit space need not be precompact. See also Remark 4.5 and Theo-
rem 4.20.

If we assume that the Cauchy sequence of integral current spaces
converges to a given integral current space, then we can embed the
entire sequence including the limit into a common metric space Z:

Theorem 4.2. If a sequence of integral current spaces, Mj =
(Xj , dj , Tj), converges to an integral current space, M0 = (X0, d0, T0),
in the intrinsic flat sense, then there is a separable complete metric
space, Z, and isometric embeddings ϕj : Xj → Z such that ϕj#Tj flat
converges to ϕ0#T0 in Z and thus converges weakly as well.

Note that one cannot construct a compact Z as Gromov did in
[Gro82], even when one knows the sequence converges in the intrin-
sic flat sense to a compact limit space and that the sequence has a
uniform bound on total mass. The sequence of hairy spheres in Exam-
ple A.7 converges to a sphere in the flat norm but cannot be isometrically
embedded into a common compact space because the sequence is not
equicompact.

The special case of Theorem 4.2 where Mj converges to the 0 space
can have prescribed pointed isometries:

Theorem 4.3. If a sequence of integral current spaces Mj =
(Xj , dj , Tj) converges in the intrinsic flat sense to the zero integral cur-
rent space, 0, then we may choose points pj ∈ Xj and a separable com-
plete metric space, Z, and isometric embeddings ϕj : X̄j → Z such that
ϕj(pj) = z0 ∈ Z and ϕj#Tj flat converges to 0 in Z and thus converges
weakly as well.

We prove this theorem first since it is the simplest.

Proof. By the definition of the flat distance, we know there exists a
complete metric space Zj and Uj ∈ Im(Zj) and Vj ∈ Im+1(Zj) and an
isometry ϕj : Xj → Zj such that ϕj#Tj = Uj + ∂Vj and

(109) dF (Mj ,0) ≤ M(Uj) +M(Vj) → 0.
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We may choose Zj = sptUj ∪ sptVj , so it is separable.
We then create a common complete separable metric space Z by

gluing all the Zj together at the common point ϕj(pj):

(110) Z = Z1 ⊔ Z2 ⊔ · · ·

where dZ(z1, z2) = dZi
(z1, z2) when there exists an i with z1, z2 ∈ Zi

and

(111) dZ(zi, zj) = dZi
(zi, ϕi(pi)) + dZj

(zj , ϕj(pj)).

We then identify all the ϕi(pi) = ϕj(pj) ∈ Z so that this is a met-
ric. Since mass is preserved under isometric embeddings, we have
dZF (ϕj#Tj , 0) ≤ M(Uj) +M(Vj) → 0. q.e.d.

To prove Theorems 4.1 and 4.2, we need to glue together our spaces
Z in a much more complicated way. So we first prove the following
two lemmas and then prove the theorems. We close the section with
Remark 4.5 which discusses a related open problem.

Recall the well known gluing lemma [Lemma 3.4] that we applied to
prove the triangle inequality in Subsection 3.1. One may apply this glu-
ing of metric spaces countably many times, to glue together countably
many distinct metric spaces:

Lemma 4.4. We are given a connected tree with countable vertices
{Vi : i ∈ A ⊂ N} and edges {Ei,j : (i, j) ∈ B} where B ⊂ {(i, j) : i <
j, i, j ∈ A}, and a corresponding countable collection of metric spaces
{Xi : i ∈ A} and {Zi,j : (i, j) ∈ B} and isometric embeddings

(112) ϕi,(i,j) : Xi → Zi,j and ϕj,(i,j) : Xj → Zi,j ∀(i, j) ∈ B.

Then there is a unique metric space Z defined by gluing the Zi,j along the
isometric images of the Xi. In particular, there exist isometric embed-
dings fi,j : Zi,j → Z for all (i, j) ∈ B such that for all (i, j), (j, k) ∈ B
we have isometric embeddings

(113) fi,j ◦ ϕj,(i,j) = fj,k ◦ ϕj,(j,k) : Xj → Z.

If Zi,j are separable, then so is Z.

Proof. Let Z be the disjoint union of the Zi,j. We define a quasimetric
on Z and then identify the images of the Xi so that the quasimetric
becomes a metric. Let z, z′ ∈ Z, so each lies in one of the Zi,j and thus
has a corresponding edge E (z) , E (z′) ∈ {Ei,j : (i, j) ∈ B}.

If E (z) = E (z′), then they lie in the same Zi,j and we let dZ (z, z′) :=
dZi,j

(z, z′) which we denote as di,j to avoid excessive subscripts below.
If E(z) 6= E(z′), then because the graph is a connected tree there

is a unique sequence of distinct edges {Ei0,i1 , Ei1,i2 , . . . , Ein,in+1
} where
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E (z) = Ei0,i1 and E (z′) = Ein,in+1
. We define

dZ
(

z, z′
)

= inf

{

di0,i1
(

z, ϕi1,(i0,i1) (y1)
)

+

n−1
∑

j=1

dij ,ij+1

(

ϕij ,(ij ,ij+1) (yj) , ϕij+1,(ij ,ij+1) (yj+1)
)

+ din,in+1

(

ϕin,(in,in+1) (yn) , z
′
)

: (y1, . . . , yn) ∈ Xi1 × · · · ×Xin

}

.

One may then easily verify the triangle inequality dZ (a, b) + dZ (b, c) ≥
dZ (a, c) by breaking into cases regarding the location of E (b) relative to
E (a) and E (c). Finally we identify points z and z′ such that dZ (z, z′) =
0. q.e.d.

We can now prove Theorem 4.1:

Proof. Recall that we have a Cauchy sequence of current spaces, so
for all ǫ > 0, there exists Nǫ ∈ N such that

(114) ri,j = dF (Mi,Mj) < ǫ ∀i, j ≥ Nǫ.

By the definition of the intrinsic flat distance between Mi and Mj in
(66), there exist metric spaces Zi,j and isometric embeddings ϕi,(i,j) :

X̄i → Zi,j and ϕj,(i,j) : X̄j → Zi,j and integral currents Ui,j ∈ Im (Zi,j)
and Vi,j ∈ Im+1 (Zi,j) with

(115) ϕi,(i,j)#Ti − ϕj,(i,j)#Tj = Ui,j + ∂Vi,j ∈ Im (Zi,j)

such that

(116)
ri,j := dF (Mi,Mj) = d

Zi,j

F

(

ϕi,(i,j)#Ti, ϕj,(i,j)#Tj
)

≤ M (Ui,j) +M (Vi,j) ≤ 3ri,j/2.

We choose Zi,j = sptUj ∪ sptVj and so it is separable.
Since the sequence is Cauchy, we know there exists a subsequence

jk ∈ N such that j1 = 1, and when k ≥ 2 we have rjk,i ≤ 1/2k ∀i ≥ jk. In

particular, rjk,jk+1
≤ 1/2k when k ≥ 2. We call this special subsequence

a geometric subsequence.
We now apply Lemma 4.4 to the graph whose vertices are {Vi : i ∈

A = N} and edges {Ei,j : (i, j) ∈ B ⊂ N× N} where

(117) B = {(jk, jk+1) : k ∈ N} ∪ {(jk, i) : i = jk, . . . , jk+1 − 1}.
Intuitively, this is a tree whose trunk is the geometric subsequence and
whose branches consist of single edges attached to the nearest vertex on
the trunk.
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As a result, we have a complete metric space Z and isometric embed-
dings fi,j : Zi,j → Z such that

(118) fi,j ◦ ϕj,(i,j) = fj,i′ ◦ ϕj,(j,i′) : Xj → Z

are isometric embeddings for all (i, j), (j, i′) ∈ B. In particular, each
current space Mj has been mapped to a unique current in Z:

(119) T ′
j := fi,j#ϕj,(i,j)#Tj = fj,i′#ϕj,(j,i′)#Tj ∈ Im (Z) .

So fi,j ◦ ϕj,(i,j) is a current preserving isometry from Mj = (Xj, dj , Tj)

to
(

set(T′
j),dZ,T

′
j

)

.

Applying (115), we have for any (i, j) ∈ B:
(120)
T ′
i−T ′

j = fi,j#ϕi,(i,j)#Ti−fi,j#ϕj,(i,j)#Tj = fi,j#Ui,j+∂fi,j#Vi,j ∈ Im (Z) .

Since mass is conserved under isometries (cf. Lemma 2.42), we have
(121)

dZF
(

T ′
i , T

′
j

)

≤ M (fi,j#Ui,j)+M (fi,j#Vi,j) = M (Ui,j)+M (Vi,j) = 3ri,j/2.

In particular, by our choice of B in (118), we have for the geometric
subsequence:

(122) dZF

(

T ′
jk
, T ′

jk+1

)

≤ 3/2k ∀k ≥ 2.

For i, i′ ≥ j2 we have k, k′ ≥ 2 respectively such that (i, jk) , (i
′, jk′) ∈ B

and

(123) dZF
(

T ′
jk
, T ′

i

)

≤ 3/2k and dZF

(

T ′
jk′
, T ′

i′

)

≤ 3/2k
′

.

So we have

(124)

dZF
(

T ′
i , T

′
i′
)

≤ dZF
(

T ′
jk
, T ′

i

)

+

k′−1
∑

h=k

dZF

(

T ′
jh
, T ′

jh+1

)

+ dZF

(

T ′
jk′
, T ′

i′

)

≤ 3/2k +
(

3/2k + 3/2k+1 + · · · + 3/2k
′

)

< 9/2k(125)

and thus our sequence of integral current spaces has been mapped into
a Cauchy sequence of integral currents. q.e.d.

We now prove Theorem 4.2. Since we have already proven Theo-
rem 4.3, we will assume we have a nonzero limit in this proof:

Proof. As in the proof of Theorem 4.1, we take a geometrically con-
verging subsequence of the converging sequence of current spaces. This
time we apply Lemma 4.4 to the tree whose vertices are {Vi : i ∈ A =
0 ∪N} and edges {Ei,j : (i, j) ∈ B ⊂ N× N} where

(126) B = {(jk, 0) : k ∈ N} ∪ {(jk, i) : i = jk, . . . , jk+1 − 1}
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so that all the terms in the geometric subsequence will be directly at-
tached to the limit, and everything else will be attached to the subse-
quence as before. As in (119) we obtain unique currents T ′

j ∈ Im (Z)

such that
(

set(T′
j),dZ,T

′
j

)

has a current preserving isometry with

(Xj , dj , Tj). This time our currents flat converge, because for any
i ∈ [jk, jk+1 − 1] we have

(127) dZF
(

T ′
i , T

′
0

)

≤ dZF
(

T ′
jk
, T ′

0

)

+ dZF
(

T ′
i , T

′
jk

)

≤ 3/2k + 3/2k.

Weak convergence then follows by Remark 3.13. q.e.d.

Remark 4.5. We do not know if the sequence ϕj#Tj in Theorem 4.1
when given a uniform bound on total mass converges in the flat sense
to an integral current in Z. Without a uniform bound on total mass it
is possible there is no limit integral current space [Example A.23].

It is an open question whether flat Cauchy sequences with uniform
upper bounds on total mass have flat converging subsequences which
converge to an integral current in the sense of Ambrosio-Kirchheim.
In Federer-Fleming, one needs to add a diameter bound because inte-
gral currents in Federer-Fleming have compact support. In Ambrosio-
Kirchheim compactness is never assumed, so an unbounded limit like
the one in Example A.10 is not a counter example here.

In Theorem 4.20 we prove that by adding a uniform bound on diam-
eter as well as the bound on total mass, we can find a common metric
space Z where ϕj#Tj do converge. The metric space Z in that theorem
may not be the metric space constructed in Theorem 4.1. To prove that
theorem, we need Theorem 4.2 as well as the second author’s compact-
ness theorem, Theorem 4.19. It would be of interest to eliminate the
bound on diameter or find a counter example.

4.2. Properties of intrinsic flat convergence. As a consequence of
Theorems 4.2 and 4.3 and Kuratowski’s Embedding Theorem, we may
now observe that sequences of integral current spaces that converge in
the intrinsic flat sense have all the same properties Ambrosio-Kirchheim
have proven for sequences of integral currents that converge weakly in
a Banach space. Most importantly, one has the lower semicontinuity of
mass. Applying work of the second author in [Wen07] [Theorem 1.4],
one also observes that one has continuity of the filling volume. Here we
only give the details on lower semicontinuity of mass and leave it to the
reader to extend the ideas to other properties of integral currents.

Theorem 4.6. If a sequence of integral current spaces Mj = (Xj , dj ,
Tj) converges in the intrinsic flat sense to M0 = (X0, d0, T0) then ∂Mj

converges to ∂M0 in the intrinsic flat sense

(128) lim inf
j→∞

M (Mj) ≥ M (M0) and lim inf
j→∞

M (∂Mj) ≥ M (∂M0) .
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In Example A.19, depicted in Figure 6, we see that the mass of the
limit space may be 0 despite a uniform lower bound on the mass of the
sequence.

Proof. First we isometrically embed the converging sequence into a
common metric space, Z, applying Theorem 4.2 and Theorem 4.3: ϕj :
X̄j → Z such that ϕj#Tj converges in the flat sense in Z to ϕ0#T0.
Note that

dZF (∂ϕj#Tj, ∂ϕ0#T0) ≤ dZF (ϕj#Tj , ϕ0#T0) → 0.

By the definition of ∂M = (set(∂T),d, ∂T) and the fact that ∂ϕj#T =
ϕj#∂T , we have

(129) dF (∂Mj , ∂M0) ≤ dZF (ϕj#∂Tj , ϕ0#T0) → 0.

Immediately below the definition of weak convergence of currents in a
metric space Z in [AK00, Defn 3.6], Ambrosio-Kirchheim remark that
the mapping T 7→ ||T ||(A) is lower semicontinuous with respect to weak
convergence for any open set A ⊂ Z. Since ϕj#Tj converge weakly to
ϕ0#T0, we may take A = Z and apply Lemma 2.42, to see that

(130) lim inf
j→∞

M(Mj) = lim inf
j→∞

M(ϕj#Tj) ≥ M(ϕ0#T0) = M(M0).

The same may be done to the boundaries to conclude that

lim inf
j→∞

M (∂Mj) ≥ M (∂M0) .
q.e.d.

Remark 4.7. Note that there are also local versions of the lower
semicontinuity of mass which can be seen by taking A in the proof
above to be a ball Bϕ0(x0)(r). These local versions require an application
of Ambrosio-Kirchheim’s Slicing Theorem [AK00] [Thm 5.6], which
implies that ϕj#Tj Bϕ0(x0)(r) is an integral current for almost all values
of r. The reader is referred to [SW10] where local versions of lower
semicontinuity of mass and continuity of filling volume are applied.

4.3. Cancellation and intrinsic flat convergence. When a sequence
of integral currents converges to the 0 current due to the effect of two
sheets of opposing orientation coming together, this is referred to as
cancellation. In Example A.19, depicted in Figure 6, we see that the
same effect can occur causing a sequence of Riemannian manifolds to
converge in the intrinsic flat sense to the 0 current space. Naturally, it
is of great importance to avoid this situation.

In [SW10], the authors proved a few theorems providing conditions
that prevent cancellation of certain weakly converging sequences of inte-
gral currents. These theorems immediately apply to prevent the cancel-
lation of certain sequences of Riemannian manifolds, although they do
not extend to arbitrary integral current spaces. The reader is referred
to [SW10] for the most general statements of these results.
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In this section we give some of the intuition that led to these results,
then review Greene-Petersen’s compactness theorem, and finally review
a result of [SW10], Theorem 4.14, which states that under the condi-
tions of Greene-Petersen’s theorem, there is no cancellation and, in fact,
the intrinsic flat and Gromov-Hausdorff limits agree.

Remark 4.8. The initial observation that led to the results in [SW10]
was that the sequence in Example A.19, depicted in Figure 6, has in-
creasing topological type. The only way to bring two sheets together
with an intrinsic distance on a smooth Riemannian manifold was to cre-
ate many small tubes between the two sheets, and all these tubes led to
increasing local topology.

Remark 4.9. The second observation was that, in order to avoid
cancellation, one needed to locally bound the filling volume of spheres
away from 0. More precisely, the filling volumes of distance spheres of
radius r had to be bounded below by Crm, so that the filling volumes
in the limit would have the same bound. Since the volume of a ball is
larger than the filling volume of the sphere, we could then prove the
limit points had positive density.

Note that if a sequence of Riemannian manifolds converges to a Rie-
mannian manifold with a cusp singularity as in Example A.9 (depicted
in Figure 8), the cusp point disappears in the limit because it does not
have positive density [Example 2.12, Example 2.26]. To avoid cancella-
tion, we need to prevent points from disappearing.

Figure 8. The intrinsic flat limit does not include the
tip of the cusp.

In Gromov’s initial paper defining filling volume, he proved the fill-
ing volume could be bounded from below by the filling radius and the
filling radius could be bounded from below by applying contractibility
estimates [Gro83]. Greene-Petersen applied Gromov’s technique to es-
timate the filling volumes of balls and consequently prove the following
compactness theorem [GPV92]. They needed a uniform estimate on
contractibility to prove their theorem:
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Definition 4.10. On a Riemannian manifold, Mm, a geometric con-
tractibility function, ρ : (0, r0] → (0,∞), is a function such that
limr→0 ρ(r) = 0 and such that any ball Bp(r) ⊂ Mm is contractible
in Bp (ρ (r)) ⊂Mm.

Theorem 4.11 (Greene-Petersen). If a sequence of Riemannian man-
ifolds Mm

j without boundary have a uniform geometric contractibility

function, ρ : (0, r0] → (0,∞) then one can construct uniform lower
bound νρ,m : (0,D] → (0,∞) such that

(131) Vol (Bp (r)) ≥ Fillvol(∂Bp(r)) ≥ νρ,m(r)

for all balls Bp(r) in all the manifolds. If, in addition, there is a uniform

upper bound on volume Vol(Mm
j ) ≤ V , then a subsequence Mm

j
GH−→ Y .

Immediately below the statement of this theorem, Greene-Petersen
mention that if ρ is linear, ρ(r) = λr, then there exists a constant
Cm > 0 such that νρ,m(r) ≥ Cmr

m. This is exactly the bound needed
to avoid cancellation.

If the geometric contractibility function ρ is not linear then one can
have a sequence of Riemannian manifolds which converge to a Riemann-
ian manifold with a cusp singularity as in Example A.9 depicted, in Fig-
ure 8. The lack of a uniform linear geometric contractibility function
for that sequence is depicted in Figure 9.

Figure 9. The first ball contracts in a ball of twice its
radius, the second in a ball of 3 times its radius, the next
in a ball of five times its radius. . .

Cones have linear geometric contractibility functions (as seen in Fig-
ure 10). Riemannian manifolds with conical singularities viewed as in-
tegral current spaces include their conical singularities [Example 2.12,
Example 2.26].

In [SW10], we dealt with a far more general class of integral current
spaces than Riemannian manifolds. We began by applying Gromov’s
compactness theorem to isometrically embed the sequence into a com-
mon metric space where we used a notion of integral filling volume (cf.
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Figure 10. The contractibility function is ρ(r) = 2r here.

[Wen05]), which is well defined for integral currents without bound-
ary. We did not use Greene-Petersen’s smoothing arguments, applying
Ambrosio-Kirchheim’s Slicing Theorem instead. We needed to adapt
everything to integral filling volumes, so we applied a new Lipschitz
extension theorem akin to that of Lang-Schlichenmaier [LS05]. This
led to the following local theorem we could apply to avoid cancellation.
The following is a simplified restatement of [SW10] Theorem 4.1:

Theorem 4.12. [SW10] If Mm is an oriented Lipschitz manifold of
finite volume with integral current structure, T , and if there is a ball,
Bx(r) ⊂Mm, that has ∂T Bx(r) = 0, and if Bx(r) has a uniform linear
geometric contractibility function, ρ : [0, 2r] → [0,∞), with ρ(r) = λr,
then
(132)
||T ||(Bx(s)) ≥ Fillvol∞(∂(T B̄x(r)) ≥ Cλs

m a.e. s ∈ [0, r/(2m+6λm+1)].

Example 4.13. Note that the condition here that ∂T Bx(r) = 0
is necessary. If Mm were a thin flat strip [0, 1] × [0, ǫ], all balls in Mm

would have ρ(r) = r, but the volumes of the balls would be less than
2rǫ.

This theorem combined with the ideas described in Remark 4.9 leads
to the following theorem demonstrating that the limits occurring in
Greene-Petersen’s compactness theorem have no cancellation:

Theorem 4.14. [SW10] If a sequence of connected oriented Lip-
schitz manifolds without boundary, Mm

j = (Xj , dj , Tj), has a uniform

linear geometric contractibility function, ρ : [0, r0] → [0,∞), with ρ(r) =
λr, and a uniform upper bound on volume, then a subsequence converges
in both the intrinsic flat sense and the Gromov-Hausdorff sense to the
same space Mm = (X, d, T ). In particular, Mm is a countably Hm

rectifiable metric space.
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A more general version of Theorem 4.14, which allows for boundaries,
is stated as Corollary 1.6 in our paper [SW10].

Remark 4.15. If the contractibility function is not linear, Schul-
Wenger have shown the limit space need not be countably Hm rectifiable
[SW10, Appendix]. Note that Ferry-Okun have shown that without a
uniform upper bound on volume, these sequences can converge to an
infinite dimensional space [FO95].

4.4. Ricci and Scalar curvature. Gromov proved that a sequence of
manifolds, Mm

j , with nonnegative Ricci curvature and a uniform upper
bound on diameter, have a subsequence which converges in the Gromov-
Hausdorff sense to a compact geodesic space, Y [Gro07]. Cheeger-
Colding proved that in the noncollapsed setting, where the volumes are
uniformly bounded below, the manifolds converge in the metric measure
sense to Y with the Hausdorff measure, Hm. In particular, if pj ∈ Mj

converge to y ∈ Y then Vol(Bpj(r)) converges to Hm(By(r)). Fur-
thermore, Y is countably Hm rectifiable with Euclidean tangent cones
almost everywhere. Points with Euclidean tangent cones are called reg-
ular points and, at such points, the density of the Hausdorff measure is
1. In fact, limr→0Hm(By(r))/r

m = ωm. [CC97].
Such sequences do not have uniform geometric contractibility func-

tions as seen by Perelman’s example in [Per97]. In fact Menguy proved
the limit space could have infinite topological type [Men00]. Never-
theless, in [SW10], the authors proved that the Gromov-Hausdorff and
intrinsic flat distances agree in this setting:

Theorem 4.16. [SW10] If a noncollapsing sequence of oriented Rie-
mannian manifolds without boundary, Mm

j = (Xj , dj , Tj), has nonneg-
ative Ricci curvature and a uniform upper bound on diameter, then a
subsequence converges in both the intrinsic flat sense and the Gromov-
Hausdorff sense to the same space Mm = (X, d, T ).

This theorem can be viewed as an example of a noncancellation the-
orem. The proof is based on Theorem 4.12 and the fact that Perel-
man proved that balls of large volume in a manifold with nonnegative
Ricci curvature are contractible [Per94]. We also applied the work of
Cheeger-Colding [CC97], which states that in this setting the volumes
of balls converge and that almost every point in the Gromov-Hausdorff
limit is a regular point. Regular points have Euclidean tangent cones
and limr→0Hm(By(r))/r

m = ωm.

Remark 4.17. It would be interesting if one could prove this theorem
directly without resorting to the powerful theory of Cheeger-Colding.
That would give new insight, perhaps allowing one to extend this result
to situations with weaker conditions on the curvature.
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In [SW10] we presented an example of a sequence of three dimen-
sional Riemannian manifolds with positive scalar curvature that con-
verge in the intrinsic flat sense to the 0 integral current space. Exam-
ple A.19, depicted in Figure 6, is a two dimensional version of this exam-
ple. The example with positive scalar curvature is constructed by con-
necting a pair of standard three dimensional spheres by an increasingly
dense collection of tunnels. Each tunnel is constructed using Schoen-
Yau or Gromov-Lawson’s method [SY79] [GL80]. This sequence has
increasingly negative Ricci and sectional curvatures within the tunnels,
but the scalar curvature remains positive. Note that each tunnel has
a minimal two sphere inside. It is natural, in the study of general rel-
ativity, to require that a manifold have positive scalar curvature and
no interior minimal surfaces. The boundary is allowed to consist of
minimal surfaces.

The following conjecture is based upon discussions with Ilmanen:

Conjecture 4.18. A converging sequence of three dimensional Rie-
mannian manifolds with positive scalar curvature, a uniform lower bound
on volume, and no interior minimal surfaces converges without cancel-
lation to a nonzero integral current space.

A solution to this conjecture would have applications in general rel-
ativity and is essential to solving Ilmanen’s 2004 proposal that a new
weak form of convergence needs to be developed to better understand
manifolds with positive scalar curvature.

4.5. Wenger’s compactness theorem. In [Wen11], the second au-
thor has proven the key compactness theorem for the intrinsic flat dis-
tance:

Theorem 4.19. [Wen11] [Theorem 1.2] Let m,C,D > 0 and let
X̄j be a sequence of complete metric spaces. Given Tj ∈ Im(X̄j) with
uniform bounds on total mass and diameter

(133) M(Tj) +M(∂Tj) ≤ C

and

(134) diam(spt(Tj)) ≤ D,

then there exist a subsequence Tji, a complete metric space Z, an integral
current T ∈ Im(Z), and isometric embeddings ϕji : X̄ji → Z such that

(135) dZF (ϕji#Tji , T ) → 0.

In particular, if Mn = (Xn, dn, Tn) is a sequence of integral current
spaces satisfying (133) and (134), then a subsequence converges in the
intrinsic flat sense to an integral current space of the same dimension.
The limit space is in fact M = (set(T),dZ,T).
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In particular, sequences of oriented Riemannian manifolds with
boundary with a uniform upper bound on volume, on the volume of
the boundary, and on diameter have a subsequence which converges in
the intrinsic flat sense to an integral current space. Note that even
when the sequence of manifolds is compact, the limit space need not be
precompact, as seen in Example A.11, depicted in Figure 7.

We now apply this compactness theorem combined with techniques
from the proof of Theorem 4.2 to prove Theorem 4.20. We do not apply
this compactness theorem anywhere else in this paper.

Contrast this with Theorem 4.1 and see Remark 4.5.

Theorem 4.20. Given an intrinisic flat Cauchy sequence of integral
current spaces, Mm

j = (Xj , dj , Tj), with a uniform bound on total mass,

N(Mj) ≤ V0, and a uniform bound on diameter, diam(Mj) ≤ D, there
exist a complete metric space Z and a sequence of isometric embeddings
ϕj : Xj → Z such that ϕj#Tj is a flat Cauchy sequence of integer
rectifiable currents in Z which converges in the flat sense to an integral
current T ∈ Im(Z).

Thus Mm
j converges in the intrinsic flat sense to an integral current

space (set(T),dZ,T).

Proof. First there is a subsequence (Xji , dji , Tji) which converges in
the intrinsic flat sense to an integral current space (X, d, T ), by Wenger’s
compactness theorem. Since (Xj , dj , Tj) is Cauchy, it also converges to
(X, d, T ). Theorem 4.2 then yields the claim. q.e.d.

5. Lipschitz maps and convergence

We review Lipschitz convergence and prove that when sequences of
manifolds converge in the Lipschitz sense, then they converge in the
intrinsic flat sense. As a consequence, sequences of manifolds which
converge in the Ck,α sense or the C∞ sense also converge in the intrinsic
flat sense. Lemmas in this section will also be useful when proving the
examples in the final section of the paper.

5.1. Lipschitz maps. The purpose of this subsection is to list some
basic properties of the intrinsic flat norm of an integral current space.
Some of the lemmas will be used later on for the construction of ex-
amples in Appendix A. Others will be used to relate the Lipschitz
convergence to intrinsic flat convergence [Theorem 5.6].

Recall that a metric space X is called injective if for every metric
space Y , every subset A ⊂ Y , and every Lipschitz map ϕ : A→ X, there
exists a Lipschitz extension ϕ̄ : Y → X of ϕ with the same Lipschitz
constant. It is not difficult to check that given a set Z, the Banach
space l∞ (Z) of bounded functions, endowed with the supremum norm,
is injective (cf. [BL00] p 12–13).
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Given a complete metric space X and T ∈ Im (X), we define
(136)

FX (T ) :=

inf {M (U) +M (V ) : U ∈ Im (X) , V ∈ Im+1 (X) , T = U + ∂V }
whereas
(137)
F (T ) :=

inf {FZ (ϕ#T ) : Z metric space, ϕ : X →֒ Z isometric embedding} .
Lemma 5.1. Given an injective metric space X and T ∈ Im (X), we

have F (T ) = FX (T ) .

Proof. Let Z be a metric space and ϕ : X →֒ Z an isometric em-
bedding. Since X is injective, there exists a 1-Lipschitz extension ψ :
Z → X of ϕ−1 : ϕ (X) → X. Let U ∈ Im (Z) and V ∈ Im+1 (Z) with
ϕ#T = U + ∂V and observe that U ′ := ψ#U and V ′ := ψ#V satisfy
T = U ′ + V ′ and

(138) M
(

U ′
)

+M
(

V ′
)

≤ M (U) +M (V ) .

Since U and V were arbitrary, it follows that FX (T ) ≤ F (T ). q.e.d.

Lemma 5.2. Let X and Y be complete metric spaces and let ϕ :
X → Y be a λ-bi-Lipschitz map. Then for each T ∈ Im (X) we have

F (T ) ≤ λm+1FY (ϕ#T ) .

Proof. Let ι : X → l∞ (X) be the Kuratowski embedding and let
ϕ̄ : Y → l∞ (X) be a λ-Lipschitz extension of ι◦ϕ−1. Given U ∈ Im (Y )
and V ∈ Im+1 (Y ) with ϕ#T = U + ∂V then ι#T = ϕ̄#U + ∂ (ϕ̄#V )
and thus
(139)
F (T ) = Fl∞(X) (ι#T ) ≤ M (ϕ̄#U)+M (ϕ̄#V ) ≤ λmM (U)+λm+1M (V ) .

Minimizing over all U and V selected as above completes the proof.
q.e.d.

Lemma 5.3. Let X be a complete metric space and ϕ : X → RN a
λ-Lipschitz map where λ ≥ 1. For T ∈ Im (X) we have

(140) F (T ) ≥
(√

Nλ
)−(m+1)

FRN (ϕ#T ) .

We illustrate the use of the lemma by a simple example: Let M
be an m dimensional oriented submanifold of RN of finite volume and
finite boundary volume. Endow M with the length metric and call the
so-defined metric space X. Clearly, the inclusion ϕ : X → RN is 1-
Lipschitz. Let T be the integral current in X induced by integration
over M . The above lemma thus implies

(141) F (T ) ≥ N−
m+1

2 FRN ([M℄)
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where [M℄ is the current in RN induced by integration over M .

Proof. Let A = ι (X) ⊂ l∞ (X) where ι : X → l∞ (X) denotes the
Kuratowski embedding. Then ϕ◦ι−1 : A→ RN is a λ-Lipschitz map. By
McShane’s extension theorem there exists a

√
Nλ-Lipschitz extension

ψ : l∞ (X) → RN of ϕ ◦ ι−1 : A→ RN [McS34].
Thus, if U ∈ Im (l∞ (X)) and V ∈ Im+1 (l

∞ (X)) are such that ι#T =
U + ∂V , then

(142) ϕ#T = ψ#ι#T = ψ#U + ψ# (∂V ) = ψ#U + ∂ (ψ#V )

and
(143)

FRN (ϕ#T ) ≤ M (ψ#U) +M (ψ#V ) ≤
(√

Nλ
)m+1

[M (U) +M (V )].

We now obtain the claim by minimizing over all U and V and using
Lemma 5.1. q.e.d.

In the following lemma we bound the intrinsic flat distance between
an integral current space and its image under a bi-Lipschitz map. Recall
the total mass N (T ) = M (T ) +M (∂T ) [Definition 2.49].

Lemma 5.4. Let X and Y be complete metric spaces and let ϕ :
X → Y be a λ-bi-Lipschitz map for some λ > 1. Then for T ∈ Im (X)
viewed as an integral current space T = (set (T) ,dX,T) and ϕ#T =
(set (ϕ#T) ,dY, ϕ#T), we have

(144) dF (T, ϕ#T ) ≤ kλ,mmax{diam (sptT ) ,diam (ϕ (sptT ))}N (T )

where kλ,m := 1
2 (m+ 1)λm−1 (λ− 1).

Proof. Let C0 := sptT , C1 := ϕ (C0), and denote by d0 and d1 the
metric on C0 and C1, respectively. Let D := max{diamC0,diamC1}.
Let dZ be the metric on Z := C0 ⊔ C1 which extends d0 on C0 and d1
on C1 and which satisfies

(145) dZ
(

x, x′
)

= inf{d0 (x, x̄) + d1
(

ϕ (x̄) , x′
)

: x̄ ∈ C0}+ λ′D,

whenever x ∈ C0 and x′ ∈ C1 and where λ′ := 1
2λ

−1 (λ− 1). It is not
difficult to verify that dZ is in fact a metric.

Let ϕi : Ci → l∞ (Z) be the composition of the inclusion map with
the Kuratowski embedding. Note that these are isometric embeddings.
Define a map ψ : [0, 1] × C0 → l∞ (Z) using linear interpolation:

(146) ψ (t, x) := (1− t)ϕ0 (x) + tϕ1 (ϕ (x)) .

It is then clear that
(147)
Lip (ψ (·, x)) = λ′D ∀x ∈ C0 and Lip (ψ (t, ·)) ≤ λ ∀t ∈ [0, 1].
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We now apply the linear interpolation to define two currents,

U := ψ# ([0, 1] × ∂T ) ∈ Im (l∞ (Z)) and

V := ψ# ([0, 1] × T ) ∈ Im+1 (l
∞ (Z)) ,

(148)

where the product of currents is defined as in [Wen05] Defn 2.8. By
Theorem 2.9 in [Wen05],

(149) ∂ ([0, 1] × T ) = [1]× T − [0] × T − [0, 1] × ∂T.

So if we push forward by ψ applying (146), we get

∂V = ψ# ([1]× T )− ψ# ([0]× T )− ψ# ([0, 1] × ∂T )

= ϕ1#ϕ0#T − ϕ0#T − U.

Since ϕ0 is an isometric embedding, we have

(150) dF (ϕ#T, T ) ≤ dZF (ϕ0#ϕ#T, ϕ0#T ) ≤ M (U) +M (V ) .

By Proposition 2.10 in [Wen05], we have

(151) M (U) +M (V ) ≤ mλm−1λ′DM (∂T ) + (m+ 1)λmλ′DM (T ) .

Thus we obtain the lemma. q.e.d.

5.2. Lipschitz and smooth convergence. Over the years, various
notions of smooth convergence and compactness theorems have been
proven. We recommend Petersen’s textbook [Pet06] for a survey of
these various notions of convergence, progressing from C1,α to C∞ con-
vergence. All these notions involve maps fj : Mj → M∞ and the push
forward of the metric tensors gj from Mj to positive definite tensors
fj∗gj on M and then studying the appropriate convergence of these
tensors to g.

A weaker notion than these notions is Gromov’s Lipschitz convergence
introduced in 1979 which does not require one to examine the metric
tensors but rather just the distances on the spaces [Gro07, Defn 1.1 and
Defn 1.3]. In this section we will briefly review Lipschitz convergence
and prove that whenever a sequence of manifolds converges in the Lip-
schitz sense, then it converges in the intrinsic flat sense [Theorem 5.6].
As a consequence, C1,α convergence and all other smooth forms of con-
vergence are stronger than intrinsic flat convergence as well. That is,
any sequence of manifolds converging in the smooth sense to a manifold,
converges in the intrinsic flat sense as well.

Definition 5.5 (Gromov). The Lipschitz distance between two met-
ric spaces X,Y , is defined as
(152)
dL (X,Y ) = inf{ | log dil (f) |+| log dil

(

f−1
)

| : bi-Lipschitz f : X → Y }
where

(153) dil (f) = sup

{

d (f (x) , f (y))

d (x, y)
: x, y ∈ X s.t. x 6= y

}

.
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When there is no bi-Lipschitz map from X to Y , one says dL(X,
Y ) = ∞.

Note that if a sequence of orientable Riemannian manifolds Mj con-
verges in the Lipschitz sense to a metric spaceM , thenM is bi-Lipschitz
to an orientable Riemannian manifold. In particular,M is an orientable
Lipschitz manifold and by Remarks 2.48 and 2.38, it has a natural struc-
ture as an integral current space determined completely by choosing an
orientation on the space.

Theorem 5.6. If Mj are orientable Lipschitz manifolds converging
in the Lipschitz sense to an oriented Lipschitz manifold M , then after
matching orientations of the Mj to the limit manifold, M , the oriented
Lipschitz manifolds [Mj℄ converge in the intrinsic flat sense to [M℄.

In fact, whenever M and N are Lipschitz manifolds with matching
orientations,
(154)
dF (M,N) < kλ,mmax{diam (M) ,diam (N)} (Vol (M) + Vol(∂M))

where kλ,m := 1
2 (m+ 1)λm−1 (λ− 1) and where λ = edL(M,N).

Gromov has proved that Lipschitz convergence implies Gromov-
Hausdorff convergence [Gro07, Prop 3.7], so that in this setting the
Gromov-Hausdorff limits and intrinsic flat limits agree. Gromov’s proof
applies to any sequence of metric spaces. We cannot extend our theo-
rem to arbitrary integral current spaces because, in general, one cannot
just reverse orientations to match the orientations between a pair of
bi-Lipschitz homeomorphic integral current spaces.

Proof. Recall Remarks 2.48 and 2.38, that when ψ : Mm → Nm

is a bi-Lipschitz homeomorphism between connected oriented Lipschitz
manifolds, then ψ#[M℄ = ±[N ℄. Once the orientations have been fixed
to match, the sign becomes positive.

Lemma 5.4 implies that

(155)
dF (M,N) ≤ 1

2
(m+ 1)λm−1 (λ− 1)max{diam (M) ,

diam (N)} (Vol (M) + Vol(∂M))

where λ > 1 is the bi-Lipschitz constant for ψ. Note further that

(156) log λ ≤ | log dil (ψ) |+ | log dil
(

ψ−1
)

| ≤ 2 log λ.

Taking the infimum of this sum over all ψ and applying (155), we see
that
(157)
dF (M,N) ≤ kλ.mmax{diam (M) ,diam (N)} (Vol (M) + Vol(∂M))

where λ = edL(M,N).



THE INTRINSIC FLAT DISTANCE 169

Now whenever a sequence of Lipschitz manifolds, Mj , converges in
the Lipschitz sense to a Lipschitz manifold, M , then

(158) λj = edL(Mj ,M) → 1 and diam (Mj) → diam (M) .

Thus dF (Mj ,M) is less than or equal to

(159) kλj ,mmax {diam (Mj) ,diam (M)} (Vol (M) + Vol(∂M))

which converges to 0 as j → ∞. q.e.d.

Appendix A. Examples by C. Sormani

In this section we present proofs of all the examples referred to
throughout the paper. In order to prove our examples converge in the
intrinsic flat sense, we need convenient ways to isometrically embed our
Riemannian manifolds into a common metric space, Z. In most ex-
amples we explicitly construct Z. Two major techniques we develop
are the bridge construction [Lemma A.2 and Proposition A.3] and the
pipe filling construction [Remark A.13]. In all examples in this section,
the common metric space Z is an integral current space whose tangent
spaces are Euclidean almost everywhere so that the weighted volume
and mass agree [Lemma 2.34 and Remark 2.33]. We also have mul-
tiplicity one (so that the volume and mass agree), enabling us to use
volumes to estimate the intrinsic flat distance.

A.1. Isometric embeddings. Recall that a metric space is a geodesic
or length space if the metric is determined by taking an infimum over the
lengths of all rectifiable curves. In Riemannian manifolds, the lengths
of curves are defined by integrating the curve using the metric tensor.
Given a connected subset, X, of a metric space, Z, one has the restricted
metric, dZ , on X as well as an induced length metric on X, dX , which
is found by taking the infimum of all lengths of rectifiable curves lying
within X where the lengths of the curves are computed locally using
dZ :

(160) L (C) = sup
0=t0<t1<···tk=1

k
∑

i=1

dZ (c (ti) , c (ti−1)) .

When one uses this induced length metric on X, then X may no longer
isometrically embed into Z.

In our first lemma, we describe a process of attaching one geodesic
metric space, Y , to another metric space, Z, along a closed subset,
X ⊂ Z, to form a metric space, Z ′, into which Z isometrically embeds.
This lemma is one sided, as Y need not isometrically embed into Z ′ [see
Figure 11].

Lemma A.1. Let (Z, dZ) and (Y, dY ) be geodesic metric spaces and
let X ⊂ Z be a closed subset. Suppose ψ : (X, dX) → (Y, dY ) is an
isometric embedding.
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Then we can create a metric space Z ′ = Z ⊔ Y/ ∼ where z ∼ y iff
z ∈ X ⊂ Z and y = ψ (z). We endow Z ′ with the induced length metric
where lengths of curves are measured by dZ between points in Z and by
dY between points in Y . The natural map ϕZ : Z → Z ′ is an isometric
embedding.

If we assume further that Y \ψ (X) is locally convex then the natural
map f : Y → Z ′ is a bijection onto its image which is a local isometry
on Y \ ψ (X).

We will say that Z ′ is created by attaching Y to Z along X. Note
that f : Y → Z ′ need not be an isometry. This can be seen, for example,
when Z is the flat Euclidean plane, X is the unit circle in Z, and Y is
a hemisphere. See Figure 11.

Figure 11. Lemma A.1.

Proof. First we show ϕZ is an isometry. Let z0, z1 ∈ Z, so dZ (z0, z1) =
LY (γ) where γ : [0, 1] → Z, γ (0) = z0 and γ (1) = z1. Since ϕZ ◦
γ runs from ϕZ (z0) to ϕZ (z1) and has the same length, we know
dZ′ (ϕZ (z0) , ϕZ (z1)) ≤ dZ (z0, z1). Now suppose there is a shorter
curve C : [0, 1] → Z ′ running from ϕZ (z0) to ϕZ (z1). If C were the
image of a curve in Z under ϕZ , then C would not be shorter than γ,
so C passes through ϕZ (X) into f (Y ) ⊂ Z ′.

We claim there is a curve C ′ : [0, 1] → ϕZ (Z) running from C (0) to
C (1) with L (C ′) ≤ L (C), contradicting the fact that γ is the shortest
such curve.

Since Z \ X is open, U = Z ′ \ ϕZ (Z) is open, and C−1 (U) is a
collection of open intervals in [0, 1]. Let t0, t1 be any endpoints of a pair
of such intervals so that C : [t0, t1] → f (Y ) ⊂ Z ′ and C (t0) , C (t1) ∈
ϕZ (X) ⊂ Z. Since X isometrically embeds into Y , the shortest curve
η from C (t0) to C (t1) lies in ϕ (X). Thus we can replace this segment
of C with η without increasing the length. We do this for all segments
passing into f (Y ) and we have created C ′, proving our claim. Thus ϕZ

is an isometric embedding.
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Assuming now that Y \ ψ(X) is locally convex, we know that ∀p ∈
Y \ψ (X) there exists a convex ball Bp (rp). We claim f is an isometry on
Bp (rp/2). If y1, y2 ∈ Bp (rp/2), then the shortest curve between them,
γ, has L (γ) < rp and lies in Bp (rp). If there were a shorter curve, C,
between f (y1) and f (y2) in Z, then it could not be restricted to f (Y ),
and in particular it would have to be long enough to reach ∂Bp (rp)
and would thus have length L (C) ≥ 2 (rp/2), which is a contradiction.

q.e.d.

When we wish to isometrically embed two spaces with isometric sub-
domains into a common space Z ′, we may attach them using an isomet-
ric product as a bridge between them. Recall that the isometric product
Z × [a, b] of a geodesic space, Z, has a metric defined by

(161) d ((z1, s1) , (z2, s2)) :=

√

(dZ (z1, z2))
2 + (s1 − s2)

2,

and it is a geodesic metric space with this metric, and a geodesic, γ,
projects to a geodesic, π ◦ γ, in Z.

Lemma A.2. Suppose there exists an isometry, ψ : U1 ⊂M1 → U2 ⊂
M2, between smooth connected open domains, Ui, in a pair of geodesic
spaces, Mi, each endowed with their own induced length metrics, dUi

.
Let

(162) hi =
√

diamUi
(∂Ui) (2 diamUi

(Ui) + diamUi
(∂Ui)).

Then there exist isometric embeddings ϕi from each Mi into a common
complete geodesic metric space,

(163) Z =M1 ⊔ (U1 × [−h1, h2]) ⊔M2 / ∼ ,

where z1 ∼ z2 if and only if one of the following holds:

(164) z1 ∈ U1 and z2 = (z1,−h1) ∈ U1 × [−h1, h2]
or visa versa or

(165) z1 ∈ U2 and z2 = (ψ (z1) , h2) ∈ U1 × [−h1, h2]
or visa versa. The length metric on Z is computed by taking the lengths
of segments from each region using dMi

and the product metric on U1×
[−h1, h2]. The isometries ϕi are mapped bijectively onto the copies of
Mi lying in Z.

We will say that we have joined M1 and M2 with the bridge U1 ×
[−h1, h2] and refer to the hi as the heights of the bridge. See Figure 12.

Proof. Suppose x, y ∈ M1; then there exists a geodesic γ running
from x to y achieving the length between them, and clearly ϕ1 ◦ γ has
the same length, so dM1

(x, y) ≥ dZ (ϕ1 (x) , ϕ1 (y)). Suppose on the
contrary that ϕ1 is not an isometric embedding. So there is a curve
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Figure 12. The Bridge Construction [Lemma A.2].

c : [0, 1] → Z running from c (0) = ϕ1 (x) to c (1) = ϕ1 (y) which is
shorter than any curve running from x to y in M1.

If the image of c lies inM1⊔(U1 × [−h1, h2]) ⊂ Z, then the projection
of c to M1, π ◦ c would be shorter than c and lie in M1 and we would
have a contradiction. Thus c must pass into M2 \ U2 ⊂ Z.

We divide c into parts: c1 runs from ϕ1 (x) to x′ ∈ ∂ (M2 \ U2), c3
runs from a point y′ ∈ ∂ (M2 \ U2) to ϕ (y), and c2 lies between these.
Note that the projections π (x′) = ϕ1 (x

′′) and π (y′) = ϕ2 (y
′′) where

x′′, y′′ ⊂ ∂U1. Then

L (c) = L (c1) + L (c2) + L (c3)

(166)

=

√

L (π ◦ c1)2 + (h1 + h2)
2 + L (c2) +

√

L (π ◦ c2)2 + (h1 + h2)
2

(167)

≥
√

L (γ1)
2 + (h1)

2 +

√

L (γ2)
2 + (h1)

2

(168)

where γ1 is the shortest curve from x to x′′ and γ2 is the shortest curve
from y to y′′ in U1 ⊂M1.

By the definition of hi we know

L (γi)
2 + h2i = L (γi)

2 + diam (∂Ui) (2 diam (Ui) + diam (∂Ui))

≥ L (γi)
2 + diam (∂Ui) (2L (γi) + diam (∂Ui))

= (L (γi) + diam (∂Ui))
2 .

Thus

(169)
L (c) ≥ L (γ1) + diam (∂U1) + L (γ2) + diam (∂U1)

> L (γ1) + L (γ2) + diam (∂ (Ui)) .
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Thus c is longer than a curve lying in M1 which runs from x to y via
x′′, y′′ ∈ ∂U1. This is a contradiction. We can similarly prove ϕ2 is an
isometric embedding. q.e.d.

The difficulty with applying Lemma A.2 is that often M1 and M2 do
not end up close together in the flat norm on Z ′. This can occur when
Mi \ Ui have large volume. In the next proposition we combine this
lemma with the prior lemma to create a better Z ′.

Proposition A.3. Suppose two oriented Riemannian manifolds with
boundary, Mm

i = (Mi, di, Ti), have connected open subregions, Ui ⊂Mi,
such that Ti Ui ∈ Im (Mi), and there exists an orientation preserving
isometry, ψ : U1 → U2. Taking Vi =Mi \Ui, and geodesic metric spaces
Xi such that

(170) ψi : (Vi, dVi
) → (Xi, dXi

)

are isometric embeddings and Xi \ ψi (Vi) are locally convex, and Bi ∈
Im+1 (Xi) and Ai ∈ Im (Xi) with set (Bi) , set (Ai) ⊂ Xi \ψi (Vi) satisfy-
ing

(171) ψi# (Ti Vi) = Ai + ∂Bi,

then we have
(172)
dF (M1,M2) ≤ Vol (U1) (h1 + h2)+M (B1)+M (B2)+M (A1)+M (A2)

where hi is as in (162) and

(173) dGH (M1,M2) ≤ (h1 + h2) + diam (M1 \ U1) + diam (M2 \ U2) .

Note that when Xi = Vi, taking Bi = 0 and Ai = T Vi, we have

(174) dF (M1,M2) ≤ Vol (U1) (h1 + h2) + Vol (V1) + Vol (V2) .

See Figure 13.

Figure 13. Proposition A.3
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Proof. First we construct Z exactly as in Lemma A.2. We obtain the
estimate on the Gromov-Hausdorff distance by observing that
(175)

dZH (ϕ1 (M1) , ϕ2 (M2)) ≤ (b1 + b2) + diam (M1 \ U1) + diam (M2 \ U2) .

To estimate the flat distance, we construct Z ′ by applying Lemma A.1
to attach bothXi to Z. Note that fi#Bi ∈ Im+1 (Z) and fi#Ai ∈ Im (Z)
have the same mass as Bi and Ai respectively because fi : Xi − ψi (Vi)
are locally isometries on set (Bi) and set (Ai). Since Z isometrically
embeds in Z ′, the manifolds Mi are isometrically embedded and we will
call the embeddings ϕ′

i. Furthermore,

ϕ′
1#T1 − ϕ′

2#T2 = ϕ′
i# (T1 V1)− ϕ′

2# (T2 V2)

+ϕ′
i# (T1 U1)− ϕ′

2# (T2 U2)

= f1#A1 − f2#A2 + f1#∂B1 − f2#∂B2 + ∂B3

where B3 ∈ Im+1 (Z) is defined as integration over U1 × [−h1, h2] with
the correct orientation. Thus
(176)

dZF (ϕ1#T1, ϕ2# (T2)) ≤ M (B3) +M (B1) +M (B2) +M (A1) +M (A2)

and we obtain the required estimate. q.e.d.

A.2. Disappearing tips and Ilmanen’s example. In this subsec-
tion we apply the bridge and filling techniques from the last subsection
to prove a few key examples. We remark upon Gromov’s square conver-
gence [Figure 14, Remark A.5]. We close with a proof that Ilmanen’s
Example, depicted in Figure 1, does in fact converge in the intrinsic flat
sense [Example A.7]. Each example is written as a statement followed
by a proof.

Example A.4. Let Mm
j be spheres which have one increasingly thin

tip as in Figure 2. In each Mj there is a subdomain, Uj , which is
isometric to U ′

j = M0 \ Bp (rj) where M0 is the round sphere. We

further assume that Vj = Mj \ Uj have Vol (Vj) → 0. We claim Mj

converges to M0 in the intrinsic flat sense.

We prove this example converges with an explicit construction:

Proof. Since there is an isometry ψ : Uj → U ′
j we join Mj to the

sphere M0 with a bridge Uj × [−hj, h′j ], creating a metric space Z as in

Lemma A.2, where hj , h
′
j → 0 as j → ∞. Furthermore, the isometric

embeddings ϕj : Mj → Z and ϕ′
j : M0 → Z push forward the current

structures Tj on Mj and T0 on M0 so that

(177)
ϕj#Tj − ϕ′

jT0 = ϕj# (Tj Uj)− ϕ′
j

(

T0 U ′
j

)

+ ϕj# (Tj Vj)− ϕ′
j

(

T0 V ′
j

)
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where Vj = Mj \ Uj and V ′
j = M0 \ U ′

j . We define Bj ∈ I3 (Z) by

integration over the bridge Uj × [−hj , h′j ] so that we have

(178) ϕj#Tj − ϕ′
jT0 = ϕj# (Tj Uj)− ϕ′

j

(

T0 U ′
j

)

+ ∂Bj .

Note that M (Tj Vj) = Vol (Vj) ≤ 2/j2 and M
(

T0 V ′
j

)

both con-

verge to 0 as j → ∞, and M (Bj) ≤ Vol (Uj)
(

hj + h′j

)

does as well,

because diam (∂Uj) → 0 while diam (Mj) ≤ 4π. Thus Mj converge to
the sphere M0 in the intrinsic flat sense. q.e.d.

Remark A.5. The above example is similar to Gromov’s Example
on page 118 in [Gro07]. The �λ limit agrees with the flat limit for
λ > 0. The Gromov-Hausdorff limit of this sequence is the sphere with

a unit length segment attached. Gromov points out that if Mj
GH−→M∞

and pj ∈ Mj → p∞ ∈ M∞ have a uniform positive lower bound on the
measure of Bpj (1), the �1 limit of the Mj which is a subset of M∞

includes p∞. This is not true for the intrinsic flat limit, as can be seen
in the following example.

Figure 14. Contrasting with Gromov’s square limit.

Example A.6. Let Mm
j be spheres which have one increasingly thin

tip with uniformly bounded volume as in Figure 14. In each Mj there
is a subdomain Uj which is isometric to U ′

j =M0 \Bp (rj) where M0 is

the round sphere. We further assume that Vj = Mj \ Uj have Vol (Vj)
decreasing but ≥ V0 > 0 while Vj converge in the Gromov-Hausdorff
sense to a line segment. Then Mj converges to M0 in the intrinsic flat
sense.

Proof. Since there is an isometry ψ from Uj to U
′
j, we join Mj to the

sphere M0 with a bridge Uj × [−hj, h′j ], creating a metric space Z as in

Lemma A.2 where hj , h
′
j → 0 as j → ∞. Furthermore, the isometric

embeddings ϕj : Mj → Z and ϕ′
j : M0 → Z push forward the current

structures Tj on Mj and T0 on M0.
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By Corollary 3.21 and Vj
GH−→ [0, 1], we know (Vj , dj , Tj Vj) con-

verges to 0 as an integral current space. By Theorem 3.23, there is a
metric space Xj with an isometry φj : Vj → Xj and integral currents
Aj , Bj such that φj# (T Vj) = Aj + ∂Bj with M (Aj) +M (Bj) → 0.
We now apply Proposition A.3, attaching Xj to Z to create Z ′, and we
have
(179)
dF (Mj ,M0) ≤ Vol (Uj)

(

hj + h′j
)

+M (Bj)+M (Aj)+Vol
(

M0 \ U ′
j

)

→ 0.

Note that here we did not bother with two fillings as in the proposition.
q.e.d.

We now prove Ilmanen’s Example in Figure 1 converges to a stan-
dard sphere in the intrinsic flat sense. Although Ilmanen’s sequence of
examples have positive scalar curvature and are three dimensional, here
we show convergence in any dimension including two.

Example A.7. We assume Mj are diffeomorphic to spheres with
a uniform upper bound on volume and that each Mj contains a con-
nected open domain Uj which is isometric to a domain U ′

j = M0 \
⋃Nj

i=1Bpj,i (Rj) where M0 is the round sphere and Bpj,i (Rj) are pairwise
disjoint. We assume that each connected component Uj,i of Vj =Mj \Uj

and each ball Bpj,i (Rj) has volume ≤ vj/Nj where vj → 0. Then
Mj converges to a round sphere in the intrinsic flat sense as long as

Nj

√

Rj → 0.

Proof. We cannot directly apply Proposition A.3 in this setting be-
cause diam (∂Uj) are not converging to 0. So instead of building a bridge
Z directly from Mj to M0, we build bridges from M0 =Mj,0 to Mj,1 to
Mj,2 and up to Mj,Nj

= Mj by adding one bump at a time. Each pair
has only one new bump and so we can show

(180) dF (Mj,i,Mj,i+1) ≤ Vol (Uj,i)
(

hj,i + h′j,i
)

+ 2vj/Nj

where

hi,j, h
′
i,j ≤

√

diam (∂Uj,i+1) (diam (Mj,i) + diam (∂Uj,I+1))

≤
√

πRj (diam (Mj) + πRj).

Summing from i = 1 to Nj we see that

(181) dF (M0,Mj) ≤ Vol (Uj) 2
√

πRj (diam (Mj) + πRj) + 2vj → 0.

q.e.d.
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A.3. Limits with point singularities. Recall that when defining an
integral current space, (X, d, T ), we required that set(T) = X so that
all points in the space have positive density [Defn 2.24, Defn 2.35]. In
this subsection, we present two related examples.

Example A.8. In Figure 15 we have a sequence of Riemannian sur-
faces, Mj , diffeomorphic to the sphere converging in the intrinsic flat
sense to a Lipschitz manifold, M0, with a conical singularity. Since this
sequence clearly converges in the Lipschitz sense to M0, this is proven
by applying Theorem 5.6.

Figure 15. The intrinsic flat limit does include the tip
of the cone.

Example A.9. In Figure 8 we see a sequence of Riemannian sur-
faces, Mj , diffeomorphic to the sphere converging in the intrinsic flat
sense to a Riemannian manifold, M∞, with a cusp singularity. The
cusp singularity is not included in the limit current space because we
only include points of positive lower density.

There is no Lipschitz convergence here even if we were to include the
cusp point, so we prove this example:

Proof. Note that M∞ is a geodesic space because no minimizing
curves pass over a cusp point. So we apply Lemma A.2 to build a bridge
Z between Mj and M∞, removing small balls Vj near their tips so that
Uj =Mj \ Vj are locally isometric. Now we apply Proposition A.3 with
Xi = Vi, which works even though M∞ has a point singularity because
M (V∞) = Vol (V∞). So we have:

(182) dF (Mj ,M∞) ≤ Vol (Uj) hj +Vol (Vj) + Vol (V∞)

where hj =
√

diam (∂Uj) (diam (Mj) + diam (∂Uj)). q.e.d.
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A.4. Limits need not be precompact. In this subsection, we present
a pair of integral current spaces which are not precompact and yet are
the limits of a sequence of Riemannian surfaces diffeomorphic to the
sphere with a uniform upper bound on volume. Example A.10 is not
bounded and is a classic surface of revolution of finite area. Exam-
ple A.11, depicted in Figure 7, is the limit of a sequence with a uniform
upper bound on diameter and is bounded but has infinitely many tips.

Example A.10. Let M0 be the surface of revolution in Euclidean
space defined by

(183) M0 = {(x, y, z) : x2 + y2 = 1/(1− z)4, z ≥ 0} ⊂ E3

with the outward orientation and the induced Riemannian length metric.
Since M0 has finite area and its boundary has finite length, it is an
integral current space.

Let

(184) Mj = {(x, y, z) : x2 + y2 = fj(z)/(1 − z)4, z ≥ 0} ⊂ E3

where fj(z) = 1 for z ≤ j and such that fj(z) = 0 for z ≥ j + 1/j and
smoothly decreasing between these values so that Mj is smooth at z =
j+1/j. We also orient Mj outward and give it the induced Riemannian
length metric. Note that diam(Mj) → ∞ so Mj is not Cauchy in the
Gromov-Hausdorff sense. However, Mj converges to M0 in the intrinsic
flat sense.

Proof. Note that Uj ∈ Mj defined as Mj ∩ {z ∈ [0, j]} is locally
isometric to U ′

j ∈ M0 defined by M0 ∩ {z ∈ [0, j]}. We join Mj to the

sphereM0 with a bridge Uj× [−hj, h′j ], creating a metric space Z where

hj , h
′
j are bounded by

(185)

√

π

(1− j)4

(

2(2j) +
π

(1− j)4

)

→ 0 as j → ∞.

From here onward we may apply Proposition A.3 using the fact that
Vj =Mj \ Uj and V ′

j =M0 \ U ′
j both have area converging to 0. q.e.d.

Example A.11. The sequence of Riemannian manifolds Mj in Fig-
ure 7 is defined by taking a sequence of pj lying on a geodesic in the
sphere M0 converging to a point p∞ and choosing balls Bpj (rj) that
are disjoint. The tips are Riemannian manifolds Nj , with boundary
such that ∂Nj is isometric to ∂Bpj (rj) and Nj can be glued smoothly
to M0 \Bpj (rj). We further require that diam (Nj) ≤ 2 and Vol (Nj) ≤
(1/2)j . Then Mj is formed by removing the first j balls from M0 and
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gluing in the first j tips, N1, N2, . . . , Nj, with the usual induced Rie-
mannian length metric:

(186) Mj :=

(

M0 \
j
⋃

i=1

Bpi(ri)

)

⊔N1 ⊔N2 ⊔ · · · ⊔Nj.

So the diameter and volume of Mj are uniformly bounded above.
The intrinsic flat limit M∞ is defined by removing all the balls and

gluing in all the tips:

(187) M∞ :=

(

M0 \
j
⋃

i=1

Bpi(ri)

)

⊔N1 ⊔N2 ⊔ · · ·

so that M∞ is not smooth at p∞ but it is a countably Hm rectifiable
space. There are natural current structures Tj and T∞ on these spaces
with weight 1 and orientation defined by the orientation on M0. Note
that M∞ has finite volume and diameter but is not precompact because
it contains infinitely many disjoint balls of radius 1.

Proof. Let ǫj = dM0
(pj, p∞). Then there is an isometry ψ : Uj → U ′

j

where Uj = Mj \ Bp∞ (ǫj − rj) and U ′
j ⊂ M∞. So we join Mj to M∞

with a bridge Uj × [−hj, h′j ] creating a metric space Z as in Lemma A.2

where hj, h
′
j → 0 as j → ∞. Furthermore, the isometric embeddings

ϕj :Mj → Z and ϕ′
j :M∞ → Z push forward the current structures Tj

on Mj and T∞ on M∞ so that

(188)
ϕj#Tj − ϕ′

jT∞ = ϕj# (Tj Uj)− ϕ′
j

(

T∞ U ′
j

)

+ ϕj# (Tj Vj)− ϕ′
j

(

T∞ V ′
j

)

where Vj =Mj \Uj and V
′
j =M∞\U ′

j . Letting B ∈ Im+1 (Z) be defined

by integration over the bridge Uj × [−hj, h′j ], we have

(189) ϕj#Tj − ϕ′
jT0 = ∂Bj + ϕj# (Tj Vj)− ϕ′

j

(

T∞ V ′
j

)

.

However,

M (Tj Vj) = Vol (Vj) ≤ ωm (ǫj − rj)
m → 0 and

M
(

T∞ V ′
j

)

≤
∞
∑

i=j+1

1

2j
→ 0 and

M (Bj) ≤ Vol (Uj)
(

hj + h′j
)

→ 0

(190)

because diam (∂Uj) → 0 while diam (Mj) ≤ π + 2. Thus Mj converge
to the sphere M∞ in the intrinsic flat sense. q.e.d.
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A.5. Pipe filling and disconnected limits. In this subsection we
study sequences of Riemannian manifolds which converge to spaces
which are not geodesic spaces. Our examples consist of spheres joined
by cylinders where the cylinders disappear in the intrinsic flat limit.
For these examples we cannot just apply Lemma A.2 because we do not
have connected isometric domains.

We develop a new concept called “pipe filling” [see Remark A.13].
Note that a cylinder, Sm−1 × [0, 1], does not isometrically embed into
a solid Euclidean cylinder, Dm × [0, 1], but that it does isometrically
embed into a cylinder of higher dimension Sm × [0, 1]. We prove Ex-
ample A.12, depicted in Figure 3, and Example A.14, depicted in Fig-
ure A.14.

Example A.12. The sequence of manifolds in Figure 3 are smooth
manifolds, M ′

j , which are bi-Lipschitz close to Lipschitz manifolds,

(191) Mj = {(x, y, z) : x2 + z2 = f2j (y) , y ∈ [−3, 3]},
where fj (y) is a smooth function such that

(192) fj (y) :=

√

1− (y + 2)2 for y ∈ [−3,−2 +

√

1− (1/j)2],

(193) fj (y) :=

√

1− (y − 2)2 for y ∈ [2−
√

1− (1/j)2, 3]

and fj (y) = 1/j between these two intervals. For j = ∞ we let f∞ (y)
satisfy (192) and (193) and f∞(y) := 0 between the two intervals so
that M∞ is two spheres joined by a line segment.

All Mj for j = 1, 2, 3 . . . are endowed with geodesic metrics and out-
ward orientations. Then Mj Gromov-Hausdorff converges to the con-
nected geodesic space M∞ but converges in the intrinsic flat sense to
two disjoint spheres, N∞ = (set (T∞) ,dM∞

,T∞) where T∞ ∈ I2 (M∞)

is integration over the spheres. Since dlip

(

Mj,M
′
j

)

→ 0 we also have a

sequence of Riemannian manifolds converging to this disconnected limit
space.

Proof. We construct a common metric space Zj as in Figure 16. More
precisely,
(194)

Zj = {(x, y, z, w) : x2 + z2 = f̄2j (y,w) , y ∈ [−3, 3], w ∈ [0, 1/j]}
where

(195) f̄j (y,w) = max
{

fj (y)
√

1− j2w2, f∞ (y)
}

with the induced length metric from four dimensional Euclidean space.
Zj is roughly two spheres of radius 1 crossed with intervals, S2× [0, 1/j],
with a thin half cylinder, S2

+,1/j × [−1, 1], between them. This half
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cylinder is filling in the thin cylinder in Mj and is the key step in the
pipe filling construction.

Figure 16. Here the cylinder in the xzy plane is filled
in by a half cylinder.

It is easy to see that ϕ∞ : M∞ → Zj such that ϕ∞ (p) = (p, 1/j)
is an isometric embedding because there is a distance nonincreasing
retraction from Zj to the level set w = 1/j. It is also an isometric
embedding when restricted to N∞.

Regrettably, ϕj : Mj → Zj with ϕj (p) = (p, 0) is not isometric
embedding. It preserves distances between points which both lie in one
of the balls or which both lie in the thin cylinder, but not necessarily
between points in different regions. Let

(196) hj =
√

π/j + (π/(2j))2

and glue Mj × [−hj , 0] to Zj to create Z ′
j which can be viewed as a

metric space lying in four dimensional Euclidean space with the induced
intrinsic length metric. Then ϕ′

j : Mj → Z ′
j where ϕ′

j(p) = (p,−hj) is

an isometry. Any minimizing curve in Z ′
j between points (p,−hj) and

(q,−hj) can either be retracted down to the w = −hj level, or it must

travel up at least to the w = 0 level. So the curve has length
√

l21 + h2j
before reaching w = 0 and then travels some distance, l2, within the

half thin cylinder and then comes back down with length
√

l23 + h2j .

However, a curve lying in the w = −hj level set would travel only l1
then l2 in the thin cylinder, then πr around the thin cylinder, and then
l3 to its endpoint. However,

(197)
√

l21 + h2j + l2 +
√

l23 + h2j ≥ l1 + l2 + l3 + πr

by our choice of hj . Thus ϕ
′
j is an isometric embedding.
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Now Z ′
j has a naturally defined current structureBj such thatM(Bj) =

Vol(Z ′
j) and such that ∂Bj = ϕj#Tj−ϕ∞#T∞. So we haveM(Bj) equal

to
(198)

2Vol
(

S2 × [−hj , 1/j]
)

+
1

2
Vol

(

[−1, 1] × S2
1/j

)

+Vol
(

[−1, 1] × S1
1/j

)

hj

and thus

(199) d
Zj

F (ϕj#Tj , ϕ∞#T∞) ≤ M (Bj) = Vol (Zj) → 0.

Furthermore, it is easy to see that

(200) dGH (Mj ,M∞) ≤ d
Zj

H (ϕj (Mj) , ϕ0 (M∞)) ≤ π

2j
.+ hj → 0.

So Mj converge in the intrinsic flat sense to N∞ but in the Gromov-
Hausdorff sense to M∞. q.e.d.

Remark A.13. The process used in Example A.12 can be used more
generally to show that an integral current space M which is a collection
of k disjoint spheres, Sm

Rj
, of radius Rj ≤ R for j = 1 . . . k connected by

n cylinders Sm−1
ri × [0, Li] of length Li ≤ L and radius r for i = 1 . . . n

between them is close to an integral current space N which is defined by
integration over the same collection of spheres with the metric restricted
from the metric space X, which is the same collection of spheres joined
by line segments of length Li rather than cylinders.

More precisely, one can construct a Z by gluing together the collection
of Sm

Rj
× [0, πr/2] together with thin half cylinders of radius r and length

Li, and then take h =
√

πrR+ (πr/2)2, and define Z ′ by attaching
M × [−h, 0] to Z. Thus the Gromov-Hausdorff distance

(201) dGH (M,X) ≤ πr + h

and the intrinsic flat distance can be estimated using the volume of Z ′.
In particular,

(202) dF (M,N) ≤ V (r + h) + Volm−1 (S
m
r )L/2 + Volm

(

Sm−1
r

)

Lh,

where L =
∑k

i=1 Li and V =
∑n

j=1Volm (Sm
R ). Note that if one has

r → 0, the product rm−1/2L → 0 and R and V are uniformly bounded
above, then the right hand side of (202) goes to 0. We will call this pipe
filling.

Example A.14. In Figure 4 we have an example of a sequence of
Riemannian manifolds, M ′

j , which are collections of spheres of various
sizes joined by cylinders, which converge in the intrinsic flat sense to a
compact integral current space N∞ consisting of countably many spheres
oriented outward whose metric is restricted from the Gromov Hausdorff
limit, X∞, formed by joining the spheres in N∞ with line segments. The
explicit inductive construction is given in the proof.
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Proof. We begin the inductive construction of the collection of spheres
Nj used to build the Riemannian manifolds,M ′

j . Let N0 be four disjoint
spheres of radius R0 lying in Euclidean space whose centers form a
square of side length L0 + 2R0.

To build Nj, we first rescale Nj−1 by a factor of 3 and make 5 copies,
then place them symmetrically around N0, thus creating Nj where Rj =
R0/3

j is the radius of the smallest sphere and
(203)

Vol (Nj) =
5

32
Vol (Nj−1)+Vol (N0) =

j
∑

i=0

(

5

9

)j

Vol (N0) ≤
9

4
Vol (N0) .

Now Mj is built by joining the spheres in Nj with cylinders of radius
ǫj << Rj chosen so that the total length Lj of all the cylinders satisfies
ǫjLj < 1/j and limj→∞Vol (Mj) = 9Vol (N0) /4. We give Mj the
outward orientation and note that there are Riemannian manifolds M ′

j

arbitrarily close to Mj in the Lipschitz sense which will have the same
intrinsic flat and Gromov-Hausdorff limits as Mj by Theorem 5.6.

Let Xj be created by joining the Nj with line segments and give Xj

the induced length metric so that it is a geodesic metric space. Let X∞

be the union of all these metric spaces, which is also a compact geodesic
metric space with the induced length metric. The integral current space
N∞ is defined as the union of all the Nj with the metric d∞ restricted
from the length metric on X∞.

Note that for any ε > 0, we can find j sufficiently large that
dGH(Mj ,Xj) < ǫ and dF (Mj , Nj) < ǫ. This can be seen by creat-
ing a pipe filling from Mj to Xj as in Remark A.13 with r = ǫj L = Lj ,

R = 1 and V = 9
4 Vol (N0).

Next we observe that the maps ψj : Xj → X∞ are isometric embed-
dings because paths between points in ψj (Xj) are shorter if they stay
in ψj (Xj). Thus

dF (Nj, N∞) ≤ dX∞

F (ψj#[Nj℄, N∞)

≤ M (ψj#[Nj℄−N∞)

≤
∞
∑

i=j+1

(

5

9

)j

Vol (N0) → 0.

SinceX∞ ⊂ TRj
(ψj(Xj)) whereRj → 0 we see that dH (ψj (Xj) ,X∞) →

0. Combining this with our pipe filling estimates above, we see that the
integral current spaces Mj converge to N∞ in the intrinsic flat sense
and to X∞ in the Gromov-Hausdorff sense. q.e.d.

Remark A.15. Note that in the pipe filling construction described in
Remark A.13, one might have a single sphere with many thin cylinders
looping around and back to it. One does not need to view the space as
a subset of Euclidean space.
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One can apply the pipe filling approach to any collection of Rie-
mannian manifolds joined by collections of thin cylinders. A very small
sphere in a Riemannian manifold is arbitrarily close to a small Euclidean
sphere. As long as the cylinders are standard isometric products of
spheres with line segments, this technique works. The metric space Z
can be created with thin half cylinders between products of the mani-
folds with small intervals, and Z ′ can be built using the diameter of the
manifolds in the place of πR when defining h.

A.6. Collapse in the limit. A sequence of Riemannian manifolds,
Mj , is said to collapse if Vol(Mj) → 0. Such sequences do not con-
verge in the Lipschitz or smooth sense because the limit spaces have the
same dimension and volume converges in that setting. They have been
studied using Gromov-Hausdorff and metric measure convergence. As
mentioned in Remark 3.22, collapsing sequences of Riemannian mani-
folds converge in the intrinsic flat sense to the 0 current space. In fact,
if Mj converges in the Gromov-Hausdorff sense to a lower dimensional
limit space, then they converge in the intrinsic flat sense to 0 as well
[Corollary 3.21].

Example A.16. The sequence of tori, Mj = S1
π/j × S1

π, depicted in

Figure 5 has volume Vol(Mj) = π/j → 0, soMj converges in the intrin-
sic flat sense to 0. Note that Mj converges in the Gromov-Hausdorff
sense to S1 because

(204) dGH(S1,Mj) ≤ dH({p} × S1
π, S

1
π/j × S1

1) = π/(2j) → 0.

In the next example is the well known “jungle-gym” example where
the Gromov-Hausdorff limit is higher dimensional than the sequence.
Here we see that the intrinsic flat limit is 0:

Example A.17. The Riemannian surface, Mj , is defined as a sub-
manifold of Euclidean space by attaching adjacent disjoint spheres of ra-
dius Rj centered on lattice points of the form (n1

2j
, n2

2j
, n3

2j
) where ni ∈ N

with cylinders of radius rj << Rj with

(205)
23j
∑

i=1

4

3
πR2

j ≤ A0,

and total area of the cylinders approaches 0.
As j → ∞ this sequence converges to the cube [0, 1]3 with the taxicab

norm:

(206) dtaxi((x1, x2, x3), (y1, y2, y3)) =
3
∑

i=1

|xi − yi|

and in the intrinsic flat sense to 0.
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We skip the proof of the Gromov-Hausdorff convergence since this is
best done using Gromov’s ǫ nets [Gro07].

Proof. By Theorem 3.20, a subsequence ofMj converges in the intrin-
sic flat sense to some integral current space M0 ⊂ [0, 1]3 since area(Mj)
is uniformly bounded by (205) and the diminishing areas of the cylin-
ders. By the pipe filling technique [Remark A.13], we know the collec-
tions of spheres, Nj , converge in the intrinsic flat sense to M0 as well.
However, each sphere isometrically embeds into a hemisphere of higher
dimension, so we can embed Nj into a collection of hemispheres and see
that

(207) dF (Mj ,0) ≤
23j
∑

i=1

5

8
π R3

j ≤ A0Rj → 0,

so M0 is the zero space. q.e.d.

A.7. Cancellation in the limit. Sometimes sequences of integral cur-
rent spaces converge to the 0 current space even when their total mass
is uniformly bounded below. We begin with a classical example of inte-
gral currents in Euclidean space and then give a sequence of Riemannian
manifolds which cancel in the limit [Example A.19].

Example A.18. Let Tj ∈ I2(R3) be defined as integration over
{(x, y, 1/j) : x2 + y2 ≤ 1} oriented upward plus integration over
{(x, y,−1/j) : x2 + y2 ≤ 1} oriented downward. As j → ∞, Tj con-
verges in the flat sense to the 0 current. Thus the integral current spaces,
(set(Tj),dR3 ,Tj), converge to the 0 current space.

Proof. This example is easily proven taking Bj equal to integration
over the solid cylinder between the disks in Tj , and Aj equal to integra-
tion over the cylinder. q.e.d.

To create a sequence of Riemannian manifolds which cancel in the
limit like this is more tricky. If one tries to fold a surface onto itself so
that it is close enough to cancel, it is not isometrically embedded into
the space. To create an isometric embedding in a folded position we
need to provide shortcuts between the two sheets. See Figure 6.

Example A.19. Given any compact oriented Riemannian manifold,
Mm

0 , one can find a sequence of oriented Riemannian manifolds, Mm
j ,

which converge in the Gromov-Hausdorff sense to Mm
0 and yet in the

intrinsic flat sense to 0. The sequence, Mm
j , have volumes converging

to twice the volume of Mm
0 .

This example is also described in [SW10] but the proof there is not
constructive.
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Proof. First, letM0 be an arbitrary closed oriented Riemannian man-
ifold and fix j ∈ N before defining Mj . Choose a collection of points

(208) {p1, p2, . . . pNj
} ⊂M0

such that d (pi, pk) > 3/j and M0 ⊂ ⋃iB (pi, 10/j). We choose any rn
such that rn ≤ min{1/j, injrad (M0) /2}, where injrad (M0) denotes the
injectivity radius of M0.

Define an integral current space Wj as a Riemannian manifold with
corners via the isometric product

(209) Wj = (M0 \ Uj)× [0, δj ]

where

(210) Uj =

Nn
⋃

i=1

B (pi, rn) and δj < min
{

(Volm−1 (∂Uj))
−1 , 1/j

}

.

Let Mj = ∂Wj so that Mj is two copies of M0 \ Uj with opposite
orientations glued together by cylinders of the form ∂B (pi, rn)× [0, δj ]
as in Figure 6. There are smooth Riemannian manifolds arbitrarily close
to the Mj in the Lipschitz sense.

Note that dW ((x, δj) , (x, 0)) = δj while dMj
((x, δj) , (x, 0)) is achieved

by a curve traveling to a cylinder, then a distance δj and back again, so
Mj does not isometrically embed into Wj. One might try constructing
a bridge Zj fromMj toWj using Lemma A.2 but since diam(∂Mj) does
not converge to 0, we cannot apply this lemma directly. Instead, we will
use a similar technique, taking advantage of the increasing density of
∂Mj .

First we set ǭj = 10/j + δj + 10/j; then, by the density of the balls,

(211) dMj
((x, 0) , (x, s)) ≤ ǭj,

for all choices of (x, s) ∈Mj = ∂Wj.
We now construct another Lipschitz manifold Zj into which Mj does

isometrically embed and such thatMj = ∂Zj whereM (Zj) = Vol (Zj) →
0, proving that Mj flat converges to 0. Taking

(212) ǫj := 2
√

ǭ2j + ǭj diam (Mj),

we define our metric space:

(213) Zj = ∂Wj × [0, ǫj ] ∪Wj × {ǫj} ⊂Wj × [0, ǫj ],

where the product is an isometric product and Zj is endowed with the
induced length metric. Clearly M , ∂Wj , and ∂Zj are all isometric and

Vol (Zj) = Volm (Mj) ǫj +Volm+1 (Wj)

= (2Volm (M0 \ Uj) + Volm−1 (∂Uj) 2δj) ǫj +Volm (M0 \ Uj) δj

≤ (2Volm (M0) + 2) ǫj +Volm (M0) δj ,
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by the choice of δj . Thus to prove dF (Mj , 0) → 0, we need only show
that the map φj : Mj = ∂Wj → Mj × {0} ⊂ Zj is an isometric embed-
ding.

Recall that all points inMj may be denoted (x, s) where x ∈M0 \Uj ,
s ∈ [0, δj ]. Note that when s ∈ (0, δj), then we are on a tube and x ∈
∂Uj . Thus all points in Zj may be denoted (x, s, r) where x ∈M0 \Uj ,
s ∈ [0, δj ] and r ∈ [0, ǫj ]. Note that when s ∈ (0, δj) then either we
are in a tube, in which case x ∈ ∂Uj , or we are in the interior of W , in
which case r = ǫj . Then φj (x, s) := (x, s, 0).

Let γ (t) = (x (t) , s (t) , r (t)) run minimally in Zj from φj (x0, s0) to
φj (x1, s1). So r (0) = r (1) = 0. If r (t) < ǫj for all t, then γ may be
deformed, decreasing its length to

(214) η (t) = (x (t) , s (t)) ⊂ φj (Mj) ,

where η runs minimally between the endpoints, in which case the length
is L (γ) = dMj

((x1, s1) , (x2, s2)).
So we may assume there exists t where r (t) = ǫj. Let t0, t1 be the first

and last times where r (t) = ǫj , respectively. For t < t0 and t > t1 we
can again use the fact that η (t) = (x (t) , s (t)) lies in Mj, but this time
we make a more careful estimate on the length. Since γ runs minimally
from γ (0) = (x (0) , s (0) , 0) to γ (t0) = (x (t0) , s (t0) , ǫj) and our space
has an isometric product metric Mj × [0, ǫj ],

(215) L (γ ([0, t0])) =
√

L (η ([0, t0]))
2 + ǫ2j =

√

d20 + ǫ2j

where d0 = dMj
((x0, s0) , (x(t0), s(t0))). Similarly,

(216) L (γ ([t1, 1])) =
√

L (η ([t1, 1]))
2 + ǫ2j =

√

d21 + ǫ2j

where d1 = dMj
((x (t1) , s (t1)) , (x1, s1)). We can project the middle

segment to M0 \ Uj to see that

(217) L (γ ([t0, t1])) ≥ L (x ([t0, t1])) = dMj
((x (t0) , 0) , (x (t1) , 0)) .

By (211) we can estimate the distance in Mj from (x(ti), 0) to (x(ti),
s(ti)) and apply the triangle inequality to see that

L (γ ([t0, t1])) ≥ dMj
((x (t0) , s (t0)) , (x (t1) , s (t1)))− 4ǭj(218)

= dMj
((x0, s0) , (x1, s1))− d0 − d1 − 4ǭj .(219)

Combining (215), (216), and (218), and applying the definition of ǫj in
(212) using the fact that dj ≤ diam (Mj), we have:
(220)

L (γ)−dMj
((x0, s0) , (x1, s1)) ≥

√

d20 + ǫ2j+
√

d21 + ǫ2j−d0−d1−4ǭj ≥ 0.

Thus we have an isometric embedding. q.e.d.
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A.8. Doubling in the limit. In this subsection we provide an example
of a sequence of Riemannian manifolds which converge to an integral
current space whose integral current structure is twice the standard
structure and whose mass is twice its volume. The construction is the
same as the one in the last subsection of a canceling sequence except
that all tubes are now twisted so that the orientations line up instead
of canceling with each other.

Example A.20. Given any compact oriented Riemannian manifold
Mm

0 = (M0, d0, T0) we can find a sequence of a sequence of oriented
Riemannian manifolds Nm

j which converge in the Gromov-Hausdorff
sense to Mm

0 and yet in the intrinsic flat sense to Mm
0 with weight 2:

(M0, d0, 2T0). The sequence Nm
j have volumes converging to twice the

volume of Mm
0 and large regions converging smoothly to Mm

0 .

Proof. We begin the construction exactly as in the beginning of the
construction of Example A.19, creating a sequence of Mj = ∂Wj which
flat converge to 0. We cut Mj along the level s = δj/2 which is a
disjoint union of spheres. These spheres may be made isometric to a
standard sphere of appropriate radius with a bi-Lipschitz map whose
constant is very close to 1. These spheres are glued back together with
the reverse orientation to create an oriented Riemannian manifold Nj .
Note that there are two copies of M0 \ Uj in Nj , both with the same
orientation defined by T0, and that there is an orientation preserving
isometry between these two copies.

Let (Xj , dj) be the metric space formed by taking two copies of
M0 with line segments of length δj joining the corresponding points
pj,1, . . . , pj,Nj

endowed with the length metric. Applying an adaption of
the pipe filling technique [Remark A.15] to Nj and Mj respectively, we
see that both are Gromov Hausdorff close to Xj . Furthermore,

(221) lim
j→∞

dF (Nj, (Xj , dj , Tj)) → 0 and

(222) lim
j→∞

dF (Mj , (Xj , dj , Sj)) → 0,

where the distinction is that Tj has the same orientation on both copies
of M0 in Xj while Sj has opposite orientations on each slice.

Thus the canonical set, set (Tj + Sj), is a copy of M0 lying in Xj , and
there is a current preserving isometry

(223) ϕ : (M0, d0, 2T0) → (set (Tj + Sj) ,dj,Tj + Sj) .

By Example A.19, we know that dF (Mj, 0) → 0. Combining this
fact with (222), we see that dF ((Xj , dj , Sj) , 0) → 0 as well. So there
exists a metric space Zj and an isometric embedding ψ : Xj → Zj such
that

(224) d
Zj

F (ψ#Sj , 0) → 0.
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By (223), we see that ψ ◦ ϕ isometrically embeds M0 in Zj as well.
Thus,

dF ((Xj, dj , Tj) , (M0, d0, 2T0)) ≤ d
Zj

F (ψ#Tj , ψ ◦ ϕ#2T0)

= d
Zj

F (ψ#Tj , ψ# (Tj + Sj))

= d
Zj

F (0, ψ# (Sj)) → 0.

By (221), we then have Mj converging to (M0, d0, 2T0). q.e.d.

A.9. Taxi cab limit space. In this subsection we give an example of a
sequence of Riemannian manifolds which converge in both the Gromov-
Hausdorff and intrinsic flat sense to the square torus with the taxicab
metric, Mtaxi =

(

T 2, dtaxi
)

, where

(225) d ((x1, x2) , (y1, y2)) = |x1 − y1|+ |x2 − y2|.
Although the sequence converges without cancellation, the mass does
not converge.

This sequence was described to the first coauthor by Dimitri Burago
as a sequence which converges in the Gromov-Hausdorff sense. Here
we describe Burago’s proof and then prove that the flat and Gromov-
Hausdorff limits agree in this setting. We show an integral current
structure exists on the taxicab torus but we do not explicitly construct
this structure. It would be of interest to investigate this in more detail.

Example A.21. There exists a sequence of Riemannian manifolds
M2

j which converge in the intrinsic flat and Gromov-Hausdorff sense to

the flat 1 × 1 torus with the taxi metric Mtaxi =
(

T 2, dtaxi
)

. In this
example the mass drops in the limit.

Proof. The manifolds can be described as submanifolds of T 2 × R
with the standard flat metric by the following graph:

(226) M2
n,j =

{

(x, y, fn,j (x, y)) : fn,j (x, y) =
(

1− sinn
(

2jπt
))

/2j
}

.

The metric onM2
n,j is defined as the length metric induced by the metric

tensor defined by this embedding (which is not an isometric embedding).
Let Gj be the grid of 1/2j squares defined by

(227) Gj =M2
n,j ∩ T 2 × {0}.

As n → ∞ for fixed j, fn,j converge pointwise to hj : T 2 → R where
hj (x, y) = 0 for (x, y) ∈ Gj and is 1 elsewhere.

Note also thatM2
n,j converges in the Gromov-Hausdorff and Lipschitz

sense as n→ ∞ to a metric space Xj defined by attaching disjoint five-
sided 1/2j cubes to each square in the 1/2j grid, Gj , so that Gj with
the induced length metric isometrically embeds into Xj with its natural
length metric. We see it is an isometric embedding because a minimizing
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geodesic between points in the grid would never be shorter going over
the top of a cube rather than going around the base square.

This spaceXj converges in the Gromov-Hausdorff sense to T 2
taxi. This

can be seen because grid Gj isometrically embeds into both spaces so

dGH

(

Xj , T
2
taxi

)

≤ dGH (Xj , Gj) + dGH

(

Gj , T
2
taxi

)

≤ d
Xj

H (Xj , Gj) + d
T 2
taxi

H

(

Gj , T
2
taxi

)

≤ 2/2j + 1/2j → 0.

Here we will see that the flat limit is also the torus with the taxicab
metric.

By the Lipschitz convergence we have a natural current structure Tj
onXj and we can choose nj large enough that dF

(

(Xj , dj , Tj) ,Mnj ,j

)

<

1/j and dGH

(

Xj ,Mnj ,j

)

< 1/j. So if we set Mj =Mnj ,j and prove Mj

converges in the intrinsic flat sense to T 2
taxi, we are done.

By Theorem 3.20, we know a subsequence (Xji , dji , Tji) converges to
an integral current space (X, dtaxi, T∞) where X ⊂ T 2

taxi. Since Xji are
locally contractible, we may apply Theorem 1.3 from [SW10], to see
that X = T 2

taxi (cf. Theorem 4.12). It is not immediately clear what
the limit current structure on T 2

taxi looks like, so we just call it T∞.
We can also explicitly check that (Xj , dj , Tj) is a Cauchy sequence

with respect to the intrinsic flat distance. This can be seen because Gj

isometrically embeds into Gj+1 and so we may glue Xj to Xj+1 along
this embedding to create a geodesic metric space Wj. The metric space

Wj consists of
(

2j
)2

copies of a
(

1/2j
)

×
(

1/2j
)

five-sided cube attached

to four
(

1/2j+1
)

×
(

1/2j+1
)

five-sided cubes. The restriction of Tj−Tj+1

to this collection of five cubes has no boundary (as can be seen because
the collection of five cubes is bi-Lipschitz to a sphere). By isometrically
embedding Wj into a Banach space, we may apply the second author’s
filling theorem [Wen07] to fill in each collection of five cubes with a

three dimensional integral current of mass M0

(

1/2j
)3
. Thus

(228)

dF ((Xj , dj , Tj) , (Xj+1, dj+1, Tj+1)) ≤
(

2j
)2
M0

(

1/2j
)3

=M0/2
j ,

and our sequence is Cauchy.
Thus (Xj , dj , Tj) converges to the limit of the subsequence (T 2

taxi,
dtaxi, T∞).

Note M(Tj) → 5 due to the five faces on each cube. ThusM(T∞) ≤ 5
by the lower semicontinuity of mass.

Now we slightly alter the top face of each cube to have a central peak,
creating a new sequence of manifolds which also converge to the taxi-
cab space in both the Gromov-Hausdorff and intrinsic flat sense with
the exact same arguments as above. These new manifolds have mass
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converging to a limit strictly greater than 5. Thus we have found a se-
quence of integral current spaces whose Gromov-Hausdorff and intrinsic
flat limits agree but whose masses do not converge. q.e.d.

A.10. Limit whose completion has higher dimension. There were
many reasons that we defined integral current spaces using the set of
positive lower density of the current rather than the support [Defini-
tion 2.35]. The key reason is that the set of a current has the correct
dimension so that our integral current spaces are always countable Hk

rectifiable of the correct dimension even though they need not be com-
pact or complete. If one takes the completion on an integral current
space, it may have higher dimension as we see here:

Example A.22. There is a sequence of Riemannian surfaces M ′
j

that converge to a nonzero 2 dimensional integral current space N∞

such that the closure of N3 is the solid 3 dimensional cube with the
standard Euclidean metric.

Proof. As in Example A.14, our sequence of M ′
j will be constructed

using spheres joined by cylinders. In that example, we never used any-
thing special about the arrangement of the spheres used to define Mj

except that the total volumes of the spheres were uniformly bounded
and the radii ǫj of the connecting cylinders were chosen small enough
that the total length of the cylinders Lj satisfied Ljǫj → 0. Note that
it was not necessary that the spheres and cylinders isometrically embed
into Euclidean space as this embedding was only used to describe the
locations of the spheres. Here we will again start with a sequence of
inductively defined spheres embedded into Euclidean 3 space, but we
will connect them with abstract cylinders so that we need not concern
ourselves with intersections.

We begin by constructing a sequence of outward oriented spheres
which are disjoint and dense in the solid unit cube, [0, 1]3. The first
n1 = 8 spheres are centered on points of the form (n/4,m/4) where
(n,m) ∈ {1, 2, 3} × {1, 2, 3} and have radius r1 > 0 and sufficiently
small that they are disjoint, they have total area n14πr

2
1 < 1, and

the total of their diameters is n1πr1 < 1/2. The next collection of n2
spheres are centered on points of the form (n/8,m/8) where (n,m) ∈
{1, 2, 3 . . . 7}×{1, 2, 3 . . . 7} but excluding any such points which already
lie on the first n1 spheres. Then the radius r2 of these n2 spheres is
chosen small enough that all the n1 + n2 spheres are disjoint, the total
area of the spheres, n14πr

2
1+n24πr

2
2 < 1, and the total of the diameters,

n2πr2 < 1/4. We continue in this matter, creating a dense collection of
disjoint spheres lying in [0, 1]3 whose closure is [0, 1]3 and whose total
area is ≤ 1 and total of the last nj spheres’ diameters is < 1/2j . We
will let Vj denote the first n1 + · · ·+ nj disjoint spheres.
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We next create geodesic metric spacesXj by connecting the spheres in
Vj with line segments, and prove Xj converges in the Gromov-Hausdorff
sense to [0, 1]3 with the standard Euclidean metric. The Xj will have
induced length metrics and will not isometrically embed into [0, 1]3. The
line segments connecting the spheres may appear to intersect in [0, 1]3

but, by definition, do not intersect. More precisely, we will say we have
connected a sphere, S1, to a sphere, S2, if we find points x1 ∈ S1 and
x2 ∈ S2 such that d[0,1]3 (x1, x2) achieves the distance, d, between S1 and

S2 as measured in [0, 1]3, and then we attach an abstract line segment
of length d between these two points.

Figure 17. Here the spheres are drawn as circles.

Each space Xj is a connected collection of the first n1 + · · · + nj
spheres. Not all spheres will be connected to each other. See Figure 17
for a view of a tiny region in the cube where the spheres are depicted
as circles and the endpoints of segments connecting spheres are solid
points. To build Xj we take each sphere ∂B1 of radius rj and connect
it to any other neighboring sphere ∂B2 of radius r ≤ rj (whose line
segment is of length at most 1/j) and such that B1 ∩ B2 = ∅. This
second condition will help with orientation later. Note that none of the
larger spheres are connected directly to each other, only via connections
among the smaller spheres. ThisXj is a connected geodesic metric space
and let Lj be the total lengths of all segments in Xj . We can create an
integral current space Nj =

(

set (Tj) ,dXj
,Tj

)

where Tj is integration
over the spheres in Xj with outward orientation.

We define Lipschitz Riemannian manifolds, Mj = ∂Tǫj (Xj), as the
boundary of an abstract tubular neighborhood around Xj , where ǫj is
taken so small that any pair of spheres in Xj is still disjoint when the
radii are ǫj larger and such that ǫjLj < 1/j, and such that the area
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of Mj is less than 1 + 1/j. This abstractly defined space does not lie
in [0, 1]3 but each geodesic segment has been replaced by a cylinder
of the appropriate width so that Mj immerses into Xj with a local
isometry. Note that by our careful connection of the spheres in the
previous paragraph, Mj is orientable and we orient it so that all the
spheres are outward oriented. See Figure 18.

Figure 18. Note the outward orientation.

By the pipe filling technique [Remark A.13] and the bounds on ǫj ,
Lj, and the total area, dF (Mj , Nj) → 0 and dGH (Mj ,Xj) → 0. To
complete our example we need only prove that Xj converges in the
Gromov-Hausdorff sense to [0, 1]3 and Nj converges in the intrinsic flat
sense to N∞, where N∞ =

(

set(T∞),d[0,1]3 ,T∞

)

and T∞ is defined by
integration over all the spheres in our collection with outward orienta-
tion. Note that by the density of the spheres in [0, 1]3 the completion
of N∞ is [0, 1]3.

Notice that dGH (Nj,Xj) ≤ d
Xj

H (Nj,Xj) ≤ 1/j by the shortness of
the joining line segments in the creation of Xj . So we need only prove
Nj converges in the Gromov-Hausdorff sense to [0, 1]3 and in the flat
sense to N∞.

There is a natural map fj : Nj → [0, 1]3 which is not an isometry.
However, we claim there is a uniform distortion, Dj , such that if x, y ∈
Nj , then

(229) d[0,1]3 (fj (x) , fj (y))− dXj
(x, y) | ≤ Dj → 0

as j → ∞. After proving this claim we will use it to prove our conver-
gence claims.

Given x ∈ Nj, there exists x′ in a sphere of radius rj in Nj outside
the sphere containing x such that d[0,1]3 (x

′, x) < 6/2j by the density of
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the smallest spheres in [0, 1]3. See Figure 17 again. By the connecting
of the spheres by line segments, we know dXj

(x′, x) ≤ π6/2j +1/j since
an arclength can always be bounded by π times a secant length and we
need travel down at most one line segment to reach the smaller sphere.
Similarly for y ∈ Nj, there exists y′ with dXj

(y′, y) ≤ 26/2j + 1/j. So
we need only prove (229) for x′, y′ lying in smallest spheres in Xj .

Between x′ and y′, one can draw a straight line segment in [0, 1]3

and then select the smallest spheres in Xj with radius rj which are
closest to this line segment. By the density of the smallest spheres
we know there are many spheres very close to this segment, but we
need to avoid zigzagging between them. We apply the fact that the
connecting segments in Xj get as long as 1/j while the density of the
spheres is 1/2j , so that we may actually select smallest spheres between
x′ and y′ which are joined by segments whose total length approximates
d[0,1]3 (x

′, y′). Between the segments a path between x′ and y′ lying in
Xj must go around the small spheres; however, their total diameter
has been bounded above by 1/2j , so this does not add to the error
significantly and we have (229).

We now create spaces Zj = Xj × [0, hj ] ⊔ [0, 1]3 where

(230) hj =
√

(Dj/2)(2 diam(Nj) +Dj/2

so that (x, hj) is identified with fj (x) with the induced length metric.
Note that there is a distance nonincreasing retraction to [0, 1]3, so there
is an isometry ϕ : [0, 1]3 → Zj . We claim there is also an isometric
embedding ψ : Nj → Nj × {0} ⊂ Zj since a shortest curve between
points in Nj ×{0} either stays in the Xj ×{0} level or enters the [0, 1]3

region where we can apply (229) to control the short cut in that region.

To enter the [0, 1]3 region, it first travels a distance
√

L2
1 + h2j to the

region, then a distance greater than L2 − Dj in the region, and then

a distance
√

L2
3 + h2j back from the region where L1 + L2 + L3 equals

the distance in Nj between the endpoints of the curve. However, by the
choice of hj this causes a contradiction.

Thus dGH
(

Nj , [0, 1]
3
)

≤ d
Zj

H

(

ψ (Nj) , ϕ
(

[0, 1]3
))

→ 0. Furthermore,

(231) dF (Nj, N∞) ≤ d
Zj

F (ψ#Nj , ϕ#N∞) ≤ M (Aj) +M (Bj)

where Aj ∈ I2 (Zj) is integration over the spheres of radius rj in [0, 1]3

and Bj ∈ I3 (Zj) is integration over the collection of cylinders Nj ×
[0, hj ]. By our bound on the total area of the spheres, MAj → 0 and
M (Bj) ≤ hj → 0. So we are done. q.e.d.

A.11. Gabriel’s horn and the Cauchy sequence with no limit.

In this section we present an example of a sequence of compact Rie-
mannian manifolds which are Cauchy with respect to the intrinsic flat
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distance but have no limit. This example demonstrates the necessity of
the uniform bound on volume in Theorem 4.20. See also Remark 4.5.
It is based on the classical example of Gabriel’s Horn:

(232) M0 = {(x, y, z) : x2 + y2 = 1/(1− z)2, z ≥ 0} ⊂ E3

which is a rotationally symmetric surface of infinite area enclosing a
finite volume. Note that M0 is not an integral current space because
it has infinite mass. The fact that it is unbounded is not a problem as
seen in Example A.10.

Example A.23. Define the sequence of Riemannian manifolds dif-
feomorphic to the sphere

(233) Mj = {(x, y, z) : x2 + y2 = fj(z)/(1 − z)2, } ⊂ E3

such that fj(z) is sin(z) for z ∈ [0, 1], is 1 for z ∈ [1, j], and then
decreases to 0 at z = j + 1/j so that each Mj is smooth. This is a
sequence of integral current spaces without a uniform upper bound on
their total mass that is Cauchy with respect to the intrinsic flat distance
but has no limit in the intrinsic flat sense.

Proof. First we prove that Mj is a Cauchy sequence by explicitly
building a metric space Z between an arbitrary pair Mi and Mj with
fixed i ≥ j. Let T1 be the current structure on Mj and T2 the current
structure on Mi. Let U1 =Mj ∩ {z ∈ [0, j]} and U2 = Mi ∩ {z ∈ [0, j]}
so U1 and U2 with the induced length metrics are isometric. We now
apply Proposition A.3 to estimate the flat distance between them. In
applying this proposition we take X1 = V1 = Mj \ U1 and B1 = 0 and
A1 to be integration over X1. Then one can find a constant C1 not
depending on i or j such that

(234) M(A1) ≤
C1

j2
and M(B1) = 0.

Unlike V1, V2 may be very long and have large area. So let
(235)
X2 = {(x, y, z, w) : x2 + y2 + w2 = fi(z)/(1 − z)2, z ≥ j w ≥ 0} ⊂ E3

so that V2 isometrically embeds into X2 and let B2 be integration over
X2 and A2 be integration over the disk, X2 ∩ {z = j}, with the appro-
priate orientation. Then there exist constants C2, C3 such that

(236) M(A2) ≤ C2/j
2 and M(B2) = Vol(V2) ≤ C3/j.

So by Proposition A.3, we have
(237)
dF (Mi,Mj) ≤ Vol (U1) (h1 + h2)+M (B1)+M (B2)+M (A1)+M (A2)
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where

hi ≤ diam(∂Ui) (2 diam(Ui) + diam(∂Ui))

≤ π/(1 − j)2
(

2(2j) + π/(1− j)2
)

≤ C4

j
.

(238)

By integrating, one sees that Vol(U1) ≤ C5Ln(j). Substituting this into
(237), we see that the sequence is Cauchy.

To prove there is no limit for this sequence, we assume on the contrary
that Mj converge in the intrinsic flat sense to an integral current space
M∞. We will prove that there are large balls in M∞ isometric to large
balls in

(239) N∞ = {(x, y, z) : x2 + y2 = f∞(z)/(1 − z)2, } ⊂ E3

where f∞(z) is sin(z) for z ∈ [0, 1], and is 1 for z ∈ [1,∞). Then apply
this to force M(M∞) = ∞, which is a contradiction.

Suppose M∞ is not the 0 integral current space. Then there exists
x ∈M∞ and there exists yj ∈Mj converging to x, and for almost every
R > 0, there exists Rj increasing to R, such that

(240) lim inf
j→∞

Vol(B(yj, Rj)) ≥ M(B(x,R)) > 0.

However, we need a lower bound M(B(x,R)).
By our particular choice of Mj , there thus exists D > 0 such that

yj ⊂ Mj ∩ {z ∈ [0,D]}, otherwise the volumes would go to zero. For j
sufficiently large, there also exist isometries

(241) ϕj :Mj ∩ {z ∈ [0,D]} → N∞ ∩ {z ∈ [0,D]}.
Since N∞ ∩ {z ∈ [0,D]} is compact, a subsequence of the ϕj(yj) con-
verges to some y∞ ∈ N∞. By the fact that Rj increases to R, B(ϕj(yj),
Rj) converges in the Lipschitz sense to the open ball B(y,R) ⊂ M∞.
Thus by Theorem 5.6, S(yj , Rj) = Tj B(yj, Rj) converge in the in-
trinsic flat sense to the integral current space TR defined by integration
over B(y,R) in N∞. Note that M(TR) → ∞.

The Lipschitz convergence also implies that the total masses of S(yj, Rj)
are uniformly bounded above. We see that S(yj , Rj) converge in the in-
trinsic flat sense to S(x,R) = T∞ B(y,R) ∈ I2(M∞). Thus there is a
current preserving isometry from B(x,R) ⊂ M∞ to B(y,R) ⊂ N∞ for
almost every R > 0. In particular, we see that

(242) M(M∞) ≥ lim
R→∞

M(B(x,R)) = lim
R→∞

(TR) = ∞,

which contradicts the fact that M∞ is an integral current space.
The only other possibility is that the Mj converge to the 0 current

space. Then by Theorem 4.3, we can choose points pj ∈ Mj and find
isometric embeddings ϕj : Mj → Z such that ϕj(pj) = z ∈ Z and

ϕj#(Tj)
F−→ 0 in Z.
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We can choose the pj = (0, 0, 0) ∈ Mj so that all the B(pj, R) are
isometric for j sufficiently large. Note that ϕj maps B(pj, R) isomet-
rically onto B(z,R) ∩ ϕj(Mj). So for almost every R > 0 fixed, we

have ϕj#S(pj , R) = ϕj#Tj B(z,R)
F−→ 0. However, this is a constant

sequence of nonzero integral current spaces, so we have a contradiction.
q.e.d.
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MA, 2007, based on the 1981 French original, with appendices by M. Katz,
P. Pansu and S. Semmes, translated from the French by Sean Michael
Bates, MR 2307192 (2007k:53049).

[Isb64] J. R. Isbell, Six theorems about injective metric spaces, Comment. Math.
Helv. 39 (1964), 65–76, MR 0182949 (32 #431).

[Kir94] Bernd Kirchheim, Rectifiable metric spaces: local structure and regularity of

the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), no. 1, 113–123,
MR 1189747 (94g:28013).

[KS93] Nicholas J. Korevaar & Richard M. Schoen, Sobolev spaces and harmonic

maps for metric space targets, Comm. Anal. Geom. 1 (1993), no. 3–4, 561–
659, MR 1266480 (95b:58043).

[Lanar] Urs Lang, Local currents in metric spaces, J. Geom. Anal. (to appear).

[LS05] Urs Lang & Thilo Schlichenmaier, Nagata dimension, quasisymmetric em-

beddings, and Lipschitz extensions, Int. Math. Res. Not. (2005), no. 58,
3625–3655, MR 2200122 (2006m:53061).

[LY02] Fanghua Lin & Xiaoping Yang, Geometric measure theory—an introduc-

tion, Advanced Mathematics (Beijing/Boston), vol. 1, Science Press, Bei-
jing, 2002, MR 2030862 (2005a:28001).

[McS34] E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40
(1934), no. 12, 837–842, MR 1562984.

[Men00] Xavier Menguy, Noncollapsing examples with positive Ricci curvature and

infinite topological type, Geom. Funct. Anal. 10 (2000), 600–627, MR
1779615 (2001g:53074).

[Mor09] Frank Morgan, Geometric measure theory, fourth ed., Elsevier/Academic
Press, Amsterdam, 2009, A beginner’s guide, MR 2455580.

[Per94] G. Perelman, Manifolds of positive Ricci curvature with almost maximal

volume, J. Amer. Math. Soc. 7 (1994), no. 2, 299–305, MR 1231690
(94f:53077).

[Per97] ———, Construction of manifolds of positive Ricci curvature with big vol-

ume and large Betti numbers, Comparison geometry (Berkeley, CA, 1993–
94), Math. Sci. Res. Inst. Publ., vol. 30, Cambridge Univ. Press, Cambridge,
1997, pp. 157–163, MR 1452872 (98h:53062).

[Pet06] Peter Petersen, Riemannian geometry, second ed., Graduate Texts in Math-
ematics, vol. 171, Springer, New York, 2006, MR 2243772 (2007a:53001).

[SW10] Christina Sormani & Stefan Wenger, Weak convergence of currents and

cancellation, Calc. Var. P.D.E. 38 (2010), no. 1–2, 183–206.

[SY79] R. Schoen & S. T. Yau, On the structure of manifolds with positive scalar

curvature, Manuscripta Math. 28 (1979), no. 1–3, 159–183, MR 535700
(80k:53064).



THE INTRINSIC FLAT DISTANCE 199

[Wen05] Stefan Wenger, Isoperimetric inequalities of Euclidean type in metric

spaces, Geom. Funct. Anal. 15 (2005), no. 2, 534–554. , MR 2153909
(2006d:53039).

[Wen07] ———, Flat convergence for integral currents in metric spaces, Calc. Var.
Partial Differential Equations 28 (2007), no. 2, 139–160, MR 2284563
(2007i:49054).

[Wen11] ———, Compactness for manifolds and integral currents with bounded di-

ameter and volume, Calc. Var. Partial Differential Equations 40 (2011),
no. 3–4, 423–448.

[Whi57] Hassler Whitney, Geometric integration theory, Princeton University Press,
Princeton, N. J., 1957, MR 0087148 (19,309c).

CUNY Graduate Center
and Lehman College

E-mail address: sormanic@member.ams.org

Department of Mathematics
University of Illinois at Chicago

851 S. Morgan Street
Chicago, IL 60607-7045

E-mail address: wenger@math.uic.edu


