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Abstract

In this paper, some properties concerning the number of the first digit
in a given polynomial p(x) with positive integer coefficients under the
radix-l are investigated. Denotes λm,n,l(p) the count of the numbers of
p(x), whose first digit equals to m and value in 1, 2, . . . , n and N0 a suffi-
ciently large positive integer, we demonstrate that ∀l ∈ N∗, l ≥ 3

λ1,n,l(p) > λ2,n,l(p) > · · · > λl−1,n,l(p),

where n > N0.

Keywordsµµµ Number theory; Natural number power; Polynomial¶
The first digit

1 Introduction

In the elementary number theory, the law of distribution of the last
digit or the last k ones and their calculation have been investigated deeply
and many well properties or conclusions are proposed. However, ones pay
less attention to the law of distribution of the first digit. In fact, it also
has some well properties.

For example, when investigating the distribution of the first digit
1, 4, 9, 1, 2, 3, 4, 6, 8, 1, 1, . . . in the sequence of the perfect square num-
bers 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, . . . under the radix-10, we can
see that the count of the numbers of which the first digit equals 1 is larger
than the count of 2 and so on in accordance with the increasing of the
perfect square number.

In this literature, we investigate the distribution of the first digit in
the sequence of the perfect square numbers and the distribution of the
arbitrary positive integer power of the positive integer under the radix-
10, then extend to the radix of the arbitrary positive integer.

For convenient, all the alphabets in this paper represent integer except
described specially.
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2 The distribution of the first digit of the

perfect square numbers under the radix-10

Definition 1. For n ∈ N
∗, denotes δn the digit of the number n, i.e.,

δn = ⌊log10 n⌋ + 1.

Definition 2. For m ∈ {1, 2, . . . , 9}, n ∈ N
∗, denotes λm,n the count

of the perfect square numbers, whose first digit equals to m and value in
1 ∼ n.

Definition 3. For m ∈ {1, 2, . . . , 9}, n ∈ N
∗, denotes λ

′

m,n = λm,n −
λm,10δn−1

−1.

Definition 4. For m ∈ {1, 2, . . . , 9}, t ∈ N
∗, denotes σm,t the count of

the perfect square numbers between m ∗ 10t and (m + 1) ∗ 10t − 1.

Definition 5.

F (m) =
(

2 ∗
√

m + 1 −
√

m −
√

m + 2
)

, m ∈ N
∗

.

Lemma 1. For ∀p ≥ 0, denotes n = 10p+1 − 1, then

λm,n = λm,10p+1
−1 =

p
∑

t=0

σm,t

(This can be easily induced by the definitons of 2 and 4 )

Lemma 2. When n = 999999, for ∀u, v ∈ {1, 2, . . . , 9}, u < v§

λu,n > λv,n.

Proof. When t ≤ 5, one can obtain all σm,t by computer programme for
every m and t, further the sum λm,999999 by the Lemma 1, the results as
follows:

λ1, 999999 = 193,

λ2, 999999 = 146,

λ3, 999999 = 123,

λ4, 999999 = 111,

λ5, 999999 = 97,

λ6, 999999 = 91,

λ7, 999999 = 84,

λ8, 999999 = 78,

λ9, 999999 = 76.

From these, we can know that

λ1,n > λ2,n > λ3,n > λ4,n > λ5,n > λ6,n > λ7,n > λ8,n > λ9,n (1)

when n = 106 − 1 and Lemma 2 is proved.

Lemma 3. F (m) is monotone decreasing.

2

E27 ------  2



Proof. From the derivation of F (m) on m,

F
′(m) =

1√
m + 1

− 1

2
√

m
− 1

2
√

m + 2

=
1

2

[(

1√
m + 1

− 1√
m

)

+

(

1√
m + 1

− 1√
m + 2

)]

=
1

2

(√
m −

√
m + 1

√

m(m + 1)
+

√
m + 2 −

√
m + 1

√

(m + 2)(m + 1)

)

= −1

2

(

1
√

m(m + 1)
(√

m +
√

m + 1
) − 1

√

(m + 2)(m + 1)
(√

m + 2 +
√

m + 1
)

)

(2)

we can see
√

m(m + 1) <
√

(m + 2)(m + 1),
√

m +
√

m + 1 <
√

m + 2 +
√

m + 1

and F ′(m) < 0"

Lemma 4. ∀t ≥ 6,∀m ∈ {1, 2, . . . , 8}§
(

√

(m + 1) ∗ 10t − 1 −
√

m ∗ 10t

)

−
(

√

(m + 2) ∗ 10t − 1 −
√

(m + 1) ∗ 10t

)

> 2.

Proof. Rewrite this inequality as

(

√

(m + 1) ∗ 10t −
√

m ∗ 10t

)

−
(

√

(m + 2) ∗ 10t −
√

(m + 1) ∗ 10t

)

−
(

√

(m + 1) ∗ 10t −
√

(m + 1) ∗ 10t − 1
)

+
(

√

(m + 2) ∗ 10t −
√

(m + 2) ∗ 10t − 1
)

> 2. (3)

Since
(

√

(m + 1) ∗ 10t −
√

m ∗ 10t

)

−
(

√

(m + 2) ∗ 10t −
√

(m + 1) ∗ 10t

)

=
(

2 ∗
√

m + 1 −
√

m −
√

m + 2
)

∗
√

10t

and m ∈ {1, 2, . . . , 8}, one can get F (m) ≥ F (8) due to Lemma 3. Further,
from t ≥ 6,

(

2 ∗
√

m + 1 −
√

m −
√

m + 2
)

∗
√

10t

≥
(

2 ∗
√

9 −
√

8 −
√

10
)

∗
√

106

≈ 9.2952 > 3

(4)

is right. Obviously,

0 <

∣

∣

∣

√

(m + 1) ∗ 10t −
√

(m + 1) ∗ 10t − 1
∣

∣

∣
< 1, (5)

0 <

∣

∣

∣

√

(m + 2) ∗ 10t −
√

(m + 2) ∗ 10t − 1
∣

∣

∣
< 1. (6)
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From (4),(5) and (6), we can get:

(

√

(m + 1) ∗ 10t −
√

m ∗ 10t

)

−
(

√

(m + 2) ∗ 10t −
√

(m + 1) ∗ 10t

)

−
(

√

(m + 1) ∗ 10t −
√

(m + 1) ∗ 10t − 1
)

+
(

√

(m + 2) ∗ 10t −
√

(m + 2) ∗ 10t − 1
)

> 3 − 1 + 0 = 2. (7)

We can see (7) equals to (3), then Lemma 4 is proved.

Lemma 5. For ∀t ≥ 6,∀m ∈ {1, 2, . . . , 8}§then

σm,t > σm+1,t.

Proof. According to the properties of the perfect square number, we can
get

σm,t = ⌊
√

(m + 1) ∗ 10t − 1⌋ − ⌈
√

m ∗ 10t⌉ + 1. (8)

From the properties of Gauss function, we know that

⌊
√

(m + 1) ∗ 10t − 1⌋−⌈
√

m ∗ 10t⌉ ≤
√

(m + 1) ∗ 10t − 1−
√

m ∗ 10t (9)

and

⌊
√

(m + 1) ∗ 10t − 1⌋− ⌈
√

m ∗ 10t⌉ ≥
√

(m + 1) ∗ 10t − 1−
√

m ∗ 10t − 2
(10)

are right. From (9)(10) and the Lemma 4, we can see that:

(

⌊
√

(m + 1) ∗ 10t − 1⌋ − ⌈
√

m ∗ 10t⌉ + 1
)

−
(

⌊
√

(m + 2) ∗ 10t − 1⌋ − ⌈
√

(m + 1) ∗ 10t⌉ + 1
)

≥
(

√

(m + 1) ∗ 10t − 1 −
√

m ∗ 10t

)

−
(

√

(m + 2) ∗ 10t − 1 −
√

(m + 1) ∗ 10t

)

− 2

> 2 − 2 = 0. (11)

Expand σm,t and σm+1,t by (8) and then from (11), the lemma is proved.

Lemma 6. Let P is nonnegative integer, for sufficiently large positive
integer N0, and ∀n = 10p+1 − 1 > N0 ∀u, v ∈ {1, 2, . . . , 9}, u < v, then

λu,n > λv,n.

Proof. Since N0 is sufficiently large, we can write λm,n as

λm,n = λm,999999 +

p
∑

t=6

σm,t. (12)

For ∀u, v ∈ {1, 2, . . . , 9}, u < v, the Lemma (5) tells:

σu,t > σv,t. (13)
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After summing the inequality, we can get

p
∑

t=6

σu,t >

p
∑

t=6

σv,t. (14)

According to the Lemma 2:

λu,999999 > λv,999999 (15)

holds. Then from (14) and (15), the Lemma is proved.

Theorem 1. For sufficiently large positive integer N0§∀n > N0§∀u, v ∈
{1, 2, . . . , 9}, u < v§

λu,n > λv,n

Proof. From the definitions of (3) and (4), we can get

0 ≤ λ
′

m,n ≤ σm,δn−1. (16)

Denote φn the first digit of n.
If u < φn, then λ′

u,n = σu,δn−1. From (5) and (16), we can get

λ
′

u,n = σu,δn−1 ≥ σv,δn−1 ≥ λ
′

v,n;

If v > φn, then λ′

v,n = 0. From (16), we can get

λ
′

u,n ≥ 0 = λ
′

v,n.

Since u < v, one of the above two cases must be right, i.e,.

λ
′

u,n ≥ λ
′

v,n. (17)

Denote N0 in Lemma (6) as N ′

0 and n′ = 10δn−1 − 1. Due to N0 is
sufficiently large, we can take n′ > N ′

0 when n > N0. The condition in
Lemma (6) is satisfied and we can see that

λu,10δn−1
−1 > λv,10δn−1

−1. (18)

From the definition of (3) and (17) and (18), we can see the theorem is
right.

3 The distribution of the first digit of

the arbitrary positive integer power of the

positive integer under the radix-10

Definition 6. For m ∈ {1, 2, . . . , 9}, n ∈ N
∗, k ∈ N

∗, denotes λm,n,k the
count of the numbers of k power, whose first digit equals to m and value
in 1, 2, . . . , n.

Definition 7. For m ∈ {1, 2, . . . , 9}, n ∈ N
∗, k ∈ N

∗, let λ
′

m,n,k =
λm,n,k − λm,10δn−1

−1,k.
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Definition 8. For m ∈ {1, 2, . . . , 9}, t ∈ N
∗, k ∈ N

∗, denotes σm,t,k the
count of the numbers which is just the k power of a positive integer between
m ∗ 10t and (m + 1) ∗ 10t − 1.

Definition 9.

G(m, k) = k
√

m, m, k ∈ N
∗

.

Lemma 7. For ∀p ≥ 0, let n = 10p+1 − 1, then

λm,n,k = λm,10p+1
−1,k =

p
∑

t=0

σm,t,k.

(This can be easily proved by the definitions of (6) ana (8))

Lemma 8. For ∀m ∈ N
∗,∀k ∈ N

∗, k ≥ 2, then

2 k
√

m + 1 > k
√

m + k
√

m + 2

Proof. Since the second order derivation of G(m, k) satisfies

G
′′(m, k) =

1

k

(

1

k
− 1

)

m
1
k
−2

< 0,

we can see G(m,k) is a convex function and get the inequality by Jensen

inequality as:

k
√

m + k
√

m + 2

2
≤ k

√

m + (m + 2)

2
= k

√
m + 1. (19)

Since m 6= m + 2, so the equal sign can’t access in (19) and the lemma is
proved.

Lemma 9. For ∀m ∈ {1, 2, . . . , 8}, ∀k ∈ N
∗, k ≥ 2, we can see there is

t0 ∈ N
∗ when t ≥ t0 and

(

k
√

(m + 1) ∗ 10t − 1 − k
√

m ∗ 10t

)

−
(

k
√

(m + 2) ∗ 10t − 1 − k
√

(m + 1) ∗ 10t

)

> 2

holds.

Proof. Similar to the proof of (4), we rewrite the inequality as

(

k
√

(m + 1) ∗ 10t − k
√

m ∗ 10t

)

−
(

k
√

(m + 2) ∗ 10t − k
√

(m + 1) ∗ 10t

)

−
(

k
√

(m + 1) ∗ 10t − k
√

(m + 1) ∗ 10t − 1
)

+
(

k
√

(m + 2) ∗ 10t − k
√

(m + 2) ∗ 10t − 1
)

> 2. (20)

Similar to (5) and (6), we can see:

0 <

∣

∣

∣

k
√

(m + 1) ∗ 10t − k
√

(m + 1) ∗ 10t − 1
∣

∣

∣
< 1, (21)

0 <

∣

∣

∣

k
√

(m + 2) ∗ 10t − k
√

(m + 2) ∗ 10t − 1
∣

∣

∣
< 1. (22)
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Define Tm,k to satisfy:
(

k

√

(m + 1) ∗ 10Tm,k − k
√

m ∗ 10Tm,k

)

−
(

k

√

(m + 2) ∗ 10Tm,k − k

√

(m + 1) ∗ 10Tm,k

)

= 3.

i.e,.

Tm,k = log10

(

3

2 k
√

m + 1 − k
√

m − k
√

m + 2

)k

.

Due to Lemma (8), the Tm,k above really exists.
Taking t0 = max{⌈Tm,k⌉}, then when t ≥ t0, we can get
(

k
√

(m + 1) ∗ 10t − k
√

m ∗ 10t

)

−
(

k
√

(m + 2) ∗ 10t − k
√

(m + 1) ∗ 10t

)

≥ 3.

(23)
From (21),(22) and (23),

(

k
√

(m + 1) ∗ 10t − k
√

m ∗ 10t

)

−
(

k
√

(m + 2) ∗ 10t − k
√

(m + 1) ∗ 10t

)

−
(

k
√

(m + 1) ∗ 10t − k
√

(m + 1) ∗ 10t − 1
)

+
(

k
√

(m + 2) ∗ 10t − k
√

(m + 2) ∗ 10t − 1
)

> 3 − 1 + 0 = 2 (24)

holds. Since (24) equals to (20), the Lemma is proved.

Lemma 10. For ∀m ∈ {1, 2, . . . , 8}and∀k ∈ N
∗, we can see there is

t0 ∈ N
∗ when t ≥ t0 and

σm,t,k ≥ σm+1,t,k + 1

holds.

Proof. Similar to the proof of (5), by the definition of (8), we can get

σm,t,k = ⌊ k
√

(m + 1) ∗ 10t − 1⌋ − ⌈ k
√

m ∗ 10t⌉ + 1. (25)

According to the properties of the Gauss function,

⌊ k
√

(m + 1) ∗ 10t − 1⌋ − ⌈ k
√

m ∗ 10t⌉ ≤ k
√

(m + 1) ∗ 10t − 1 − k
√

m ∗ 10t,

(26)
and

⌊ k
√

(m + 1) ∗ 10t − 1⌋−⌈ k
√

m ∗ 10t⌉ ≥ k
√

(m + 1) ∗ 10t − 1− k
√

m ∗ 10t−2
(27)

hold and then we can see that

(

⌊ k
√

(m + 1) ∗ 10t − 1⌋ − ⌈ k
√

m ∗ 10t⌉ + 1
)

−
(

⌊ k
√

(m + 2) ∗ 10t − 1⌋ − ⌈ k
√

(m + 1) ∗ 10t⌉ + 1
)

≥
(

k
√

(m + 1) ∗ 10t − 1 − k
√

m ∗ 10t

)

−
(

k
√

(m + 2) ∗ 10t − 1 − k
√

(m + 1) ∗ 10t

)

− 2. (28)
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From (28) and Lemma (9), we know there is t0 ∈ N
∗ when t ≥ t0 such

that
(

⌊ k
√

(m + 1) ∗ 10t − 1⌋ − ⌈ k
√

m ∗ 10t⌉ + 1
)

−
(

⌊ k
√

(m + 1) ∗ 10t − 1⌋ − ⌈ k
√

m ∗ 10t⌉ + 1
)

> 0. (29)

Expanding σm,t,k and σm+1,t,k according to (25) and substitute into (29),
we know there is t0 ∈ N

∗ whent ≥ t0 such that

σm,t,k > σm+1,t,k. (30)

From the definitions of σm,t,k and σm+1,t,k, we know they are integer and
then (30) equivalent to this Lemma.

Lemma 11. Let p be positive integer and for sufficiently large positive in-
teger N0, for ∀n = 10p+1 −1 > N0, ∀k ∈ N

∗ and ∀u, v ∈ {1, 2, . . . , 9}, u <

v, the inequality
λu,n,k > λv,n,k

holds.

Proof. For ∀k ∈ N
∗, ∀u, v ∈ {1, 2, . . . , 9}, u < v and from Lemma (10),

we can see there is t0 ∈ N
∗ when t ≥ t0, and

σu,t,k ≥ σv,t,k + 1 (31)

holds. For these t0, denotes ∆ = max{λv,10t0−1,k − λu,10t0−1,k, 0}. Since

N0 is sufficiently large, we can choose p ≥ t0 + ∆, i.e., n ≥ 10t0+∆+1 − 1,
and get

λm,n,k = λm,10t0−1,k +

t0+∆
∑

t=t0

σm,t,k +

p
∑

t=t0+∆+1

σm,t,k (32)

by (7) and

(

λu,10t0−1,k +

t0+∆
∑

t=t0

σu,t,k

)

−
(

λv,10t0−1,k +

t0+∆
∑

t=t0

σv,t,k

)

=
(

λu,10t0−1,k − λv,10t0−1,k

)

+

(

t0+∆
∑

t=t0

σu,t,k −
t0+∆
∑

t=t0

σv,t,k

)

≥ −∆ + (∆ + 1) = 1 > 0 (33)

by (31). Similarly by (31), we can also get

p
∑

t=t0+∆+1

σu,t,k ≥
p
∑

t=t0+∆+1

σv,t,k. (34)

From (32), (33) and (34), we can see that the Lemma is right.
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Theorem 2. For sufficiently large positive integer N0, ∀n > N0, ∀k ∈ N
∗,

∀u, v ∈ {1, 2, . . . , 9}, u < v,

λu,n,k > λv,n,k

holds.

Proof. Similarly to the proof of the Theorem (1), from the definitions of
(7) and (8), we can get

0 ≤ λ
′

m,n,k ≤ σm,δn−1,k. (35)

Takeing the first digit of n and denoting it φn.
If u < φn, then λ′

u,n,k = σu,δn−1,k and from (10) and (35), we can get

λ
′

u,n,k = σu,δn−1,k ≥ σv,δn−1,k ≥ λ
′

v,n,k.

If v > φn, thenλ′

v,n,k = 0 and from (35), we can get

λ
′

u,n,k ≥ 0 = λ
′

v,n,k.

Since u < v, one of the above two cases must be held, i.e.,

λ
′

u,n,k ≥ λ
′

v,n,k (36)

Denoting N0 in Lemma 11 as N ′

0 and let n′ = 10δn−1 − 1. Since N0

is sufficiently large, we can choose n > N0 such that n′ > N ′

0. So the
conditions in Lemma (11) is satisfied and from it, the inequality

λu,10δn−1
−1,k > λv,10δn−1

−1,k (37)

holds. From (7), (36) and (37), this Lemma is proved.

4 The distribution of the first digit of

the arbitrary positive integer power of the

positive integer under the radix of the ar-

bitrary positive integer.

This section is the extension of the section (3) and the procedures of these
proofs are similar.

Definition 10. For n ∈ N
∗, l ∈ N

∗, l ≥ 3, denotes δn,l the digit of n

under the radix-l, i.e., δn,l = ⌊logl n⌋ + 1

Definition 11. For l ∈ N
∗, l ≥ 3, m ∈ {1, 2, . . . , l − 1}, n ∈ N

∗, k ∈ N
∗,

denotes λm,n,k,l the count of the numbers of k power, whose first digit
equals to m and value in 1, 2, . . . , n under radix-l.

Definition 12. For l ∈ N
∗, l ≥ 3, m ∈ {1, 2, . . . , l − 1}, n ∈ N

∗, k ∈ N
∗,

let λ
′

m,n,k,l = λm,n,k,l − λ
m,l

δn,l−1
−1,k,l
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Definition 13. For l ∈ N
∗, l ≥ 3, m ∈ {1, 2, . . . , l − 1}, t ∈ N

∗, k ∈ N
∗,

denotes σm,t,k,l the count of the numbers which is just the k power of a
positive integer between m ∗ lt and (m + 1) ∗ lt − 1.

Lemma 12. For ∀p ≥ 0,∀l ≥ 3, let n = lp+1 − 1, then

λm,n,k,l = λm,lp+1
−1,k,l =

p
∑

t=0

σm,t,k,l.

(This can be easily proved by the definitions of (11) ana (13))

Lemma 13. For ∀l ∈ N
∗, l ≥ 3, ∀m ∈ {1, 2, . . . , l − 2}, ∀k ∈ N

∗, ∃t0 ∈ N
∗

and when t ≥ t0, then
(

k
√

(m + 1) ∗ lt − 1 − k
√

m ∗ lt
)

−
(

k
√

(m + 2) ∗ lt − 1 − k
√

(m + 1) ∗ lt
)

> 2.

Proof. Similar to the proof of (9) and we rewrite this inequality as :

(

k
√

(m + 1) ∗ lt − k
√

m ∗ lt
)

−
(

k
√

(m + 2) ∗ lt − k
√

(m + 1) ∗ lt
)

−
(

k
√

(m + 1) ∗ lt − k
√

(m + 1) ∗ lt − 1
)

+
(

k
√

(m + 2) ∗ lt − k
√

(m + 2) ∗ lt − 1
)

> 2. (38)

and then
0 <

∣

∣

∣

k
√

(m + 1) ∗ lt − k
√

(m + 1) ∗ lt − 1
∣

∣

∣
< 1, (39)

0 <

∣

∣

∣

k
√

(m + 2) ∗ lt − k
√

(m + 2) ∗ lt − 1
∣

∣

∣
< 1. (40)

Define Tm,k,l to satisfy:

(

k

√

(m + 1) ∗ lTm,k,l − k
√

m ∗ lTm,k,l

)

−
(

k

√

(m + 2) ∗ lTm,k,l − k

√

(m + 1) ∗ lTm,k,l

)

= 3

i.e.,

Tm,k,l = logl

(

3

2 k
√

m + 1 − k
√

m − k
√

m + 2

)k

.

From Lemma 8, we can know Tm,k,l above really exists.
Taking t0 = max{⌈Tm,k,l⌉} and when t ≥ t0, we can see that

(

k
√

(m + 1) ∗ lt − k
√

m ∗ lt
)

−
(

k
√

(m + 2) ∗ lt − k
√

(m + 1) ∗ lt
)

≥ 3.

(41)
From (39),(40) and (41),

(

k
√

(m + 1) ∗ lt − k
√

m ∗ lt
)

−
(

k
√

(m + 2) ∗ lt − k
√

(m + 1) ∗ lt
)

−
(

k
√

(m + 1) ∗ lt − k
√

(m + 1) ∗ lt − 1
)

+
(

k
√

(m + 2) ∗ lt − k
√

(m + 2) ∗ lt − 1
)

> 3 − 1 + 0 = 2 (42)

holds. Since (42) equals to (38), this Lemma is proved.
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Lemma 14. For ∀l ∈ N
∗, l ≥ 3,∀m ∈ {1, 2, . . . , l − 2}, ∀k ∈ N

∗, we can
see there is t0 ∈ N

∗ when t ≥ t0 and

σm,t,k,l ≥ σm+1,t,k,l + 1

holds.

Proof. Similar to the proof of Lemma (10), by the definition of (13), we
can see that

σm,t,k,l = ⌊ k
√

(m + 1) ∗ lt − 1⌋ − ⌈ k
√

m ∗ lt⌉ + 1. (43)

According to the properties of the Gauss function,

⌊ k
√

(m + 1) ∗ lt − 1⌋ − ⌈ k
√

m ∗ lt⌉ ≤ k
√

(m + 1) ∗ lt − 1 − k
√

m ∗ lt (44)

and

⌊ k
√

(m + 1) ∗ lt − 1⌋−⌈ k
√

m ∗ lt⌉ ≥ k
√

(m + 1) ∗ lt − 1− k
√

m ∗ lt−2 (45)

hold and we can see that
(

⌊ k
√

(m + 1) ∗ lt − 1⌋ − ⌈ k
√

m ∗ lt⌉ + 1
)

−
(

⌊ k
√

(m + 2) ∗ lt − 1⌋ − ⌈ k
√

(m + 1) ∗ lt⌉ + 1
)

≥
(

k
√

(m + 1) ∗ lt − 1 − k
√

m ∗ lt
)

−
(

k
√

(m + 2) ∗ lt − 1 − k
√

(m + 1) ∗ lt
)

− 2. (46)

From (46) and Lemma (13), we know there is t0 ∈ N
∗ when t ≥ t0 and

(

⌊ k
√

(m + 1) ∗ lt − 1⌋ − ⌈ k
√

m ∗ lt⌉ + 1
)

−
(

⌊ k
√

(m + 2) ∗ lt − 1⌋ − ⌈ k
√

(m + 1) ∗ lt⌉ + 1
)

> 0 (47)

Expanding σm,t,k,l and σm+1,t,k,l according to (43) and substitute into
(47), we know there is t0 ∈ N

∗ when t ≥ t0 such that

σm,t,k,l > σm+1,t,k,l. (48)

From the definitions of σm,t,k,l and σm+1,t,k,l, we know they are integer
and then (48) equivalent to this Lemma.

Lemma 15. Let p is positive integer, for sufficiently large positive integer
N0, ∀l ∈ N

∗, l ≥ 3, ∀n = lp+1 −1 > N0, ∀k ∈ N
∗ and ∀u, v ∈ {1, 2, . . . , l−

1}, u < v,
λu,n,k,l > λv,n,k,l

holds.
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Proof. Similar to the proof of (11), for ∀k ∈ N
∗,∀l ∈ N

∗, l ≥ 3 and
∀u, v ∈ {1, 2, . . . , l − 1}, u < v, from 14, we know there is t0 ∈ N

∗ when
t ≥ t0 and

σu,t,k,l ≥ σv,t,k,l + 1. (49)

For these t0, denoting ∆ = max{λv,lt0−1,k,l − λu,lt0−1,k,l, 0}, since N0 is

sufficiently large, we can choose p ≥ t0 + ∆, i.e., n ≥ lt0+∆+1 − 1 and get

λm,n,k,l = λm,lt0−1,k,l +

t0+∆
∑

t=t0

σm,t,k,l +

p
∑

t=t0+∆+1

σm,t,k,l (50)

by Lemma (12) and

(

λu,lt0−1,k,l +

t0+∆
∑

t=t0

σu,t,k,l

)

−
(

λv,lt0−1,k,l +

t0+∆
∑

t=t0

σv,t,k,l

)

=
(

λu,lt0−1,k,l − λv,lt0−1,k,l

)

+

(

t0+∆
∑

t=t0

σu,t,k,l −
t0+∆
∑

t=t0

σv,t,k,l

)

≥ −∆ + (∆ + 1) = 1 > 0 (51)

by (49). Similarly by (49), we can also get

p
∑

t=t0+∆+1

σu,t,k,l ≥
p
∑

t=t0+∆+1

σv,t,k,l (52)

From (50), (51) and (52), we can see that the Lemma is right.

Theorem 3. For sufficiently large positive integer N0, ∀n > N0, ∀l ∈
N

∗, l ≥ 3, ∀k ∈ N
∗, and ∀u, v ∈ {1, 2, . . . , l − 1}, u < v,

λu,n,k,l > λv,n,k,l

holds.

Proof. Similarly to the proof of the Theorem (2), from the definitions of
(12) and (13), we can get

0 ≤ λ
′

m,n,k,l ≤ σm,δn,l−1,k,l (53)

Taking the first digit of n under the radix-l and denotes it φn ∈ {1, 2, . . . , l−
1}
If u < φn, then λ′

u,n,k,l = σu,δn,l−1,k,l, and from Lemma (14) and (53),
we can get

λ
′

u,n,k,l = σu,δn,l−1,k,l ≥ σv,δn,l−1,k,l ≥ λ
′

v,n,k,l;

If v > φn, then λ′

v,n,k,l = 0, and from (53) we can get

λ
′

u,n,k,l ≥ 0 = λ
′

v,n,k,l.

Since u < v, one of the above two cases must be held, i.e.,

λ
′

u,n,k,l ≥ λ
′

v,n,k,l. (54)
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Denoting N0 in Lemma (15) as N ′

0 and let n′ = 10δn−1 − 1. Since N0

is sufficiently large, we can choose n > N0 such that n′ > N ′

0. So the
conditions in Lemma (15) is satisfied and from it, the inequality

λ
u,l

δn,l−1
−1,k,l

> λ
v,l

δn,l−1
−1,k,l

(55)

holds. From (12), (54) and (55), this Lemma is proved.

5 The distribution of the first digit of

the polynomials with positive integer co-

efficients

Definition 14. Denotes P the set of the polynomial with positive integer
coefficient, i.e.,

P = {p(x) =
n
∑

k=0

akx
k : n ∈ N

∗

,∀k, ak ∈ N, an > 0}.

Definition 15. For ∀p(x) ∈ P , l ∈ N
∗, l ≥ 3, m ∈ {1, 2, . . . , l−1}, n ∈ N

∗,
denoting λm,n,l(p) the count of the numbers of p(x), whose first digit equals
to m and value in 1, 2, . . . , n under the radix-l.

Definition 16. For ∀p(x) ∈ P , l ∈ N
∗, l ≥ 3, m ∈ {1, 2, . . . , l−1}, n ∈ N

∗,
let λ

′

m,n,l(p) = λm,n,l(p) − λ
m,l

δn,l−1
−1,l

(p).

Definition 17. For ∀p(x) ∈ P , l ∈ N
∗, l ≥ 3, m ∈ {1, 2, . . . , l−1}, t ∈ N

∗,
denoting σm,t,l(p) the count of the solution of the inequality m∗lt ≤ p(x) ≤
(m + 1) ∗ lt − 1 in Z.

Lemma 16. For ∀p(x) ∈ P§p(x) is invertible and its inverse p−1(x)
monotone increasing.

Proof.

Lemma 17. For ∀s ≥ 0, ∀l ≥ 3, let n = ls+1 − 1, then

λm,n,l(p) = λm,ls+1
−1,l(p) =

s
∑

t=0

σm,t,l(p)

holds.
(This can be easily proved by the definitions of (15) ana (17))

Lemma 18. For ∀p ∈ P,∀l ∈ N
∗, l ≥ 3, ∀m ∈ {1, 2, . . . , l − 2}, ∀k ∈ N

∗,
we can see that there is t0 ∈ N

∗ when t ≥ t0 and

(

p
−1((m + 1) ∗ l

t − 1) − p
−1(m ∗ l

t)
)

−
(

p
−1(m + 2) ∗ l

t − 1) − p
−1((m + 1) ∗ l

t)
)

> 2

holds.
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Proof. Let r1 = p−1((m + 1) ∗ lt − 1)§l1 = p−1(m ∗ lt),
r2 = p−1((m + 2) ∗ lt − 1)§l2 = p−1((m + 1) ∗ lt), i.e., they satisfy:

(r1 − l1) − (r2 − l2) > 2. (56)

From the properties of the inverse function, we know that if

p(r1) − p(l1) = p(r2) − p(l2) = l
t − 1, (57)

i.e.,
n
∑

k=0

ak(rk
1 − l

k
1) = l

t − 1,

n
∑

k=0

ak(rk
2 − l

k
2) = l

t − 1,

(58)

then

r1 − l1 =
lt − 1

n
∑

k=1

(ak

k−1
∑

i=0

l
i
1r

k−1−i
1 )

,

r2 − l2 =
lt − 1

n
∑

k=1

(ak

k−1
∑

i=0

l
i
2r

k−1−i
2 )

.

(59)

hold. Subtracted the two equalities, we can get

(r1 − l1) − (r2 − l2)

=
lt − 1

n
∑

k=1

(ak

k−1
∑

i=0

l
i
1r

k−1−i
1 )

− lt − 1
n
∑

k=1

(ak

k−1
∑

i=0

l
i
2r

k−1−i
2 )

= (lt − 1)(
1

n
∑

k=1

(ak

k−1
∑

i=0

l
i
1r

k−1−i
1 )

− 1
n
∑

k=1

(ak

k−1
∑

i=0

l
i
2r

k−1−i
2 )

)

= (lt − 1)

n
∑

k=1

(ak

k−1
∑

i=0

l
i
2r

k−1−i
2 ) −

n
∑

k=1

(ak

k−1
∑

i=0

l
i
1r

k−1−i
1 )

n
∑

k=1

(ak

k−1
∑

i=0

l
i
1r

k−1−i
1 )

n
∑

k=1

(ak

k−1
∑

i=0

l
i
2r

k−1−i
2 )

= (lt − 1)

n
∑

k=1

ak

k−1
∑

i=0

(li2r
k−1−i
2 − l

i
1r

k−1−i
1 )

n
∑

k=1

(ak

k−1
∑

i=0

l
i
1r

k−1−i
1 )

n
∑

k=1

(ak

k−1
∑

i=0

l
i
2r

k−1−i
2 )

. (60)

Since l2 > l1, r2 > r1, ak > 0, so (r1−l1)−(r2−l2) is monotone increasing
on t.
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Define Tm,l(p) to satisfy:

(lTm,l(p) − 1)

n
∑

k=1

(ak

k−1
∑

i=0

l
i
2r

k−1−i
2 ) −

n
∑

k=1

(ak

k−1
∑

i=0

l
i
1r

k−1−i
1 )

n
∑

k=1

(ak

k−1
∑

i=0

l
i
1r

k−1−i
1 )

n
∑

k=1

(ak

k−1
∑

i=0

l
i
2r

k−1−i
2 )

= 2, (61)

i.e.,

Tm,l(p) = logl













2

n
∑

k=1

(ak

k−1
∑

i=0

l
i
1r

k−1−i
1 )

n
∑

k=1

(ak

k−1
∑

i=0

l
i
2r

k−1−i
2 )

n
∑

k=1

(ak

k−1
∑

i=0

l
i
2r

k−1−i
2 ) −

n
∑

k=1

(ak

k−1
∑

i=0

l
i
1r

k−1−i
1 )

+ 1













.

Take t0 = max{⌈Tm,l(p)⌉} and when t > t0, we can get (r1−l1)−(r2−l2) >

2, i.e.,

(

p
−1((m + 1) ∗ l

t − 1) − p
−1(m ∗ l

t)
)

−
(

p
−1(m + 2) ∗ l

t − 1) − p
−1((m + 1) ∗ l

t)
)

> 2 (62)

Lemma 19. For ∀p ∈ P, ∀l ∈ N
∗, l ≥ 3, ∀m ∈ {1, 2, . . . , l− 2}, we can see

there is t0 ∈ N
∗ when t ≥ t0 and

σm,t,l(p) ≥ σm+1,t,l(p) + 1

holds.

Proof. Similar to the proof of the Lemma (14), by the definition of (17)
and Lemma (16), we can get:

c− > qσm,t,l(p) = ⌊p−1((m + 1) ∗ l
t − 1)⌋ − ⌈p−1(m ∗ l

t)⌉ + 1. (63)

According to the properties of the Gauss function,

⌊p−1((m+1)∗lt−1)⌋−⌈p−1(m∗lt)⌉ ≤ p
−1((m+1)∗lt−1)−p

−1(m∗lt) (64)

and

⌊p−1((m+1)∗l
t−1)⌋−⌈p−1(m∗l

t)⌉ ≥ p
−1((m+1)∗l

t−1)−p
−1(m∗l

t)−2.

(65)
From (64) and (65), we can get

(

⌊p−1((m + 1) ∗ l
t − 1)⌋ − ⌈p−1(m ∗ l

t)⌉ + 1
)

−
(

⌊p−1((m + 2) ∗ l
t − 1)⌋ − ⌈p−1((m + 1) ∗ l

t)⌉ + 1
)

≥
(

p
−1((m + 1) ∗ l

t − 1) − p
−1(m ∗ l

t)
)

−
(

p
−1((m + 2) ∗ l

t − 1) − p
−1((m + 1) ∗ l

t)
)

− 2. (66)
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At the same time, from (66) and Lemma (18), we know that there is
t0 ∈ N

∗ when t ≥ t0,

(

⌊p−1((m + 1) ∗ l
t − 1)⌋ − ⌈p−1(m ∗ l

t)⌉ + 1
)

−
(

⌊p−1((m + 1) ∗ l
t − 1)⌋ − ⌈p−1(m ∗ l

t)⌉ + 1
)

> 0 (67)

holds. Expanded σm,t,l(p) and σm+1,t,l(p) on (63) and substitute them
into (67), we can know that there is t0 ∈ N

∗ when t ≥ t0 such that

σm,t,l(p) > σm+1,t,l(p). (68)

Due to the definitions of σm,t,l(p) and σm+1,t,l(p), they are integer. So
(68) equivalent to this Lemma.

Lemma 20. Let s be positive integer and for sufficiently large positive
integer N0, for ∀p ∈ P , ∀l ∈ N

∗, l ≥ 3, ∀n = ls+1 − 1 > N0 and ∀u, v ∈
{1, 2, . . . , l − 1}, u < v, the inequality

λu,n,l(p) > λv,n,l(p)

holds.

Proof. Similarly to the proof of the Theorem (15), for ∀l ∈ N
∗, l ≥ 3 and

∀u, v ∈ {1, 2, . . . , l − 1}, u < v and from Lemma 19, we can get there is
t0 ∈ N

∗ when t ≥ t0 such that

σu,t,l(p) ≥ σv,t,l(p) + 1. (69)

For these t0, let ∆ = max{λv,lt0−1,l(p) − λu,lt0−1,l(p), 0}. Since N0 is

sufficiently large, we can choose s ≥ t0 + ∆, i.e., n ≥ lt0+∆+1 − 1. Then
we can get

λm,n,l(p) = λm,lt0−1,l(p) +

t0+∆
∑

t=t0

σm,t,l(p) +
s
∑

t=t0+∆+1

σm,t,l(p). (70)

by the Lemma (17) and

(

λu,lt0−1,l(p) +

t0+∆
∑

t=t0

σu,t,l(p)

)

−
(

λv,lt0−1,l(p) +

t0+∆
∑

t=t0

σv,t,l(p)

)

=
(

λu,lt0−1,l(p) − λv,lt0−1,l(p)
)

+

(

t0+∆
∑

t=t0

σu,t,l(p) −
t0+∆
∑

t=t0

σv,t,l(p)

)

≥ −∆ + (∆ + 1) = 1 > 0 (71)

by (69). Similarly by (69), we can also get

s
∑

t=t0+∆+1

σu,t,l(p) ≥
s
∑

t=t0+∆+1

σv,t,l(p). (72)

From (70), (71) and (72)we can see that the Lemma is right.
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Theorem 4. For sufficiently large positive integer N0, ∀p ∈ P , ∀n > N0,
∀l ∈ N

∗, l ≥ 3, and ∀u, v ∈ {1, 2, . . . , l − 1}, u < v,

λu,n,l(p) > λv,n,l(p)

holds.

Proof. Similar to the proof of the Theorem 3 and from the definitions of
(16) and (17), we can get

0 ≤ λ
′

m,n,l(p) ≤ σm,δn,l−1,l(p) (73)

Taking the first digit of n under the radix-l and denoting it φn ∈ {1, 2, . . . , l−
1}.
If u < φn, then λ′

u,n,l(p) = σu,δn,l−1,l(p) and from Lemma 19 and (73),
we can get

λ
′

u,n,l(p) = σu,δn,l−1,l(p) ≥ σv,δn,l−1,l(p) ≥ λ
′

v,n,l(p).

If v > φn, then λ′

v,n,l(p) = 0 and from (73), we can get

λ
′

u,n,l(p) ≥ 0 = λ
′

v,n,l(p).

Since u < v, one of the above two cases must be held, i.e.,

λ
′

u,n,l(p) ≥ λ
′

v,n,l(p) (74)

Denoting N0 in Lemma 20 as N ′

0 and let n′ = lδn,l−1 − 1. Since N0

is sufficiently large, we can choose n > N0 such that n′ > N ′

0. So the
conditions in Lemma 20 are satisfied and from it, the inequality

λ
u,l

δn,l−1
−1,l

(p) > λ
v,l

δn,l−1
−1,l

(p) (75)

holds. From (16), (74) and (75), this Lemma is proved.

6 Conjecture and Prospect

Conjecture 1. For these integer polynomials whose first coefficients are
positive, the similar conclusions hold, i.e.,

for P = {p(x) =
n
∑

k=0

akx
k : n ∈ N

∗

,∀k, ak ∈ Z, an > 0} and u < v, then

λu,n,l(p) > λv,n,l(p)

holds.

Conjecture 2. For multivariate Polynomial P [X1, X2, . . . , Xn]§∃N1, N2, . . . , Nn ∈
N

∗ and when x1 > N1, x2 > N2, . . . , xn > Nn, the similar conclusions
hold.
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