The least time of vehicle travelling

[Abstract JThis paper uses Dynamic Programming to solve
the problem of the least time needed for automobile driving, in
order to provide the optimal route for it. First of all, this paper
introduces the fundamental principles and ideas of Dynamic
Programming and constructs the model of it. Then according to
the roads conditions of Beijing, the roads are characterized into
the time needed from one node to another. Thus the Adjacency
Matrix is produced and then modified due to the Floyd
algorithm. Finally the least time between any two nodes is
determined. Hence it is convenient for people to choose the
least time-consuming route by automobile. Considered the
deficiency of this model, the paper offers relevant algorithms to
refine it, and concludes the applicability of the model.

Key words: Dynamic Programming; The least-Time; Floyd

1.Introduction

There have been a large amount of researches on the problem of
transportation route choosing previously, most of which, however,
concentrate on the problem of “bus transferring”. The stochastic

equilibrium assignment of bus network system with multi-users are

discussed in literature [1]; in literature [2], a “Aggregate—combustion”
algorithm is put forward to quickly finding the optimal route to meet
passengers’ different demands. In this paper, we study the choosing of
the optimal route based on least time spending for cars(private cars),that
is to say, find the optimal route and least time spending on the travel by
method of dynamic program, and thus make it convenient for people to
travel by private cars. In literature [3], dynamic programming is applied
to find the shortest transportation route and the transportation process
is divided into several decision-making stages. In literature [4], a dynamic
algorithm based on temporal constraint network is put forward to
solving the planning and scheduling problem. By combining and applying
the basic idea and strategy of dynamic programming in literature [5], we
utilize dynamic programming combined with Floyd algorithm to get the
least time needed, meanwhile set up relevant model and advance the
improvement to avoid deficiency.
1.1 shortest route
The shortest route problem is how to find the shortest route when
the starting point, the end point and many probable routes between
them are given. The algorithm to solve this problem is called “the
shortest route algorithm”, sometimes abbreviated for “route
algorithm”. The most common algorithms are Dijkstra algorithm,

dynamic programming, A* algorithm, Floyd algorithm, Johnson

algorithm, etc.
This paper adopts the dynamic programming to solve the problem.

1.2 dynamic programming

Dynamic programming is a branch of operations research, and it’s a
mathematical method to solve the optimization problem of multi-stage
decision-making process. This method is proposed by American
mathematician R.Bellman in 1950s first. It is proved that dynamic
programming is much more valid than linear programming, and usually
used to solve problems about optimization.
1.2.1 The basic idea of dynamic programming

In some cases, there may be many possible solutions, with each
corresponding to a value, and we hope to find the solution with the
optimal value. Dynamic programming is very similar to the
“divide-and-conquer “method, the basic idea of both of which is to
divide the problem into several sub-problems, first solve the
sub-problems, and then get the solution of the original problem from
these sub-problems. What is different from the divide-and-conquer
method is that, the decomposed sub-problems divided by the dynamic
programming are often not mutually independent. When divide and
conquer method is used to solve such problems, there will be too many
decomposed sub-problems, and some are repeated calculated. If we can

save the answer of solved sub-problems, and find out them when

necessary, a lot of repeated counting can be avoided and much time can
be saved. We can use a table to record all the answers of solved
sub-problems, regardless of whether they will be used later or not, as
long as it is calculated. This is the basic idea of dynamic programming.
2. Modeling with dynamic programming

2.1 modeling assumption

1) Assuming that cars travel at a constant speed.
2) Assuming there are no traffic jams, traffic accidents and cars run
smoothly.
3) Assuming no traffic lights is encountered, no waiting time.
4) Assuming car turning will not affect speed.
5) Given the heavy traffic jams downtown, this model avoids the choice
of city center. In general, the center of the city is always out of
congestion. Therefore, this model suggests that people do not choose the
driving route downtown. The city center is not marked in the map of our
model.
2.2Data Processing
2.2.1 Data sources

This paper uses the urban road network of Beijing and the figure is in
proportion to zoom.

Figure 1

E[mﬁ:ﬂ._ - FHE .";._E = A]
@., 3 s e o Eﬁ#‘k T = —;""-r’ rEAE -‘.
wE /AT | =z |] % | AMEE/ N

AT IL F AN /Emmﬁn _
| | L I - __.|= |: '... g L% B : r'l"t fr—_E

L ne & nre,‘-mg
= T -EF
S 5 =z & e
e | ssi
el b
s

i 73 i

E LRI

f
1
|
E:}
It
er

oo . _ﬁt\m: =i

CRmremE COE | mme |

“lazal | Y amz) 5
e = GEEmE unmm%q |8

3 e %}L‘ﬁ,ﬁﬁm e R R TN S s

| i r/ Er HEE s mEaAl
= mne A
N ([= ﬁII'FEF g E@i-r e /7

rFar a=rm 7 A %

Figure 1 is the map within the Fourth Ring Road in Beijing, we will

i
b L

use the weighted graph to mark out some of the main roads and the
cross-road in Beijing, and then abstract the path distance between
nodes in order to determine the time needed.
2.2.2 Background Knowledge
(1) Weighted graph

To abstract figure 1 into figure 2, weighted graph method will be used.
The following are weighted graph for details.

Each side of a weighted graph is bestowed with a corresponding

non-negative real number, which is called the weight of this side. Below

is a weighted graph:

Let G= (V, E) be a graph, it can be seen from the above, V=
{vi,v2,..,v7},E refers to the distance between nodes, which is called
weight value. In the above figure the route (weight) between V1 and V2
is 2.

(2) Adjacency matrix

This paper uses the adjacency matrix to deal with datas. Adjacency
matrix is a matrix used to express the relationship between the
neighboring vertex. Let G = (V, E) be a graph, V={vl,v2,..,vn}, the
adjacency matrix of G is a n-order matrix with the following properties:
[1]. Adjacency matrix of undirected graph must be symmetric, while the
adjacency matrix of directed graph is not necessarily symmetric. Thus, n?
units are needed to store the adjacency matrix which is used to

represent the n vertices of a directed graph.

[2].For an undirected graph with n vertices, only right upper or left down
elements are needed to deposit with exclusion of the 0 element in the
diagonal elements. Therefore, it only needs 1 +2 +...+(n-1) = n (n-1) / 2
units.
(3)Floyd algorithm

Floyd algorithm is a dynamic programming algorithm (interception
method) used to find the shortest route between vertices of a given
weighted graph. The advantage is that it is easy to understand, can
calculate the shortest distance between any two nodes, and its code is
simple. The disadvantage is that it’s of relatively high time complexity,
not suitable for large data calculations.

The core idea of Floyd algorithm: find the shortest route matrix of any
two vertices of a weighted graph through the weight matrix of it. Begin
from the weighted graph adjacency matrix A=[a(i,j)] (nxn) , update
recursively for n times, that is to say, from the matrix D (0) = A, Construct
matrix D (1) by a given formula, similarly, construct D (2) from D(1) by
the same formula.«:-+-- Finally, construct matrix D (n) from D(n-1) with
the same formula. The (i , j) element of matrix D (n) is the shortest
route length from vertex i to vertex j, and D (n) is called distance matrix
of the graph.
2.2.3Data collection

The distance data are obtained from measurement by the network,

the impact on travel time of different routes is considered only when
faced with multiple branch ports or no straight lines can be obtained.
This paper selected 55 nodes within the Fourth Ring Road in Beijing, and

abstract a network map(figure 2) from figure 1. As follows:

Nodes denote note (counterclockwise)
Outer ring: the upper left label 1 to label 18 forms the outer ring; the
third ring: from label 19-34; second Ring: From the label 35-46; the most
in the loop: from the label 47-55

Considered the size of figure 2, specific weight as well as route
distance is not specifically marked up. Further details as below:

The weight value of the line segment between two nodes of a

weighted graph denotes the distance between them, specifically; the

weight values of 81 direct routes in Figure 2 are given as follow. (Unit:
km)

Outer ring (18 line segments ,18 nodes) from 1 -> 2to18 -> 1 are: 2.747.
5.093. 3.083. 1.492., 2.403. 2.262. 1.567. 4.752. 4.938. 4.075.
2.983. 3.483. 3.849. 5.287. 2.735. 2.926. 3.253. 4.887

the junction of the outer ring and the third ring: 2.945 (1-->19). 2.797
(3-->21). 3.066 (4-->22). 2.398 (6-->23). 3.310 (7-->24). 2.459
(9-->25). 2.744 (10-->26)- 3.134 (11-->27). 3.142 (12-->28). 2.590
(14-->29). 2.363 (15-->30). 1.695 (16-->31). 2.254 (17-->32),
2.065 (18-->34)

The third ring (16 line segments , 16 nodes) from 19 -> 20to34 -> 19 are:
2,202, 2.024. 3.077. 3.471. 2.237. 2.205. 4.804. 4.320. 1.469.
4.185. 5.191. 1.031. 2.443. 4.402. 2.393. 3.951

The junction of the second and third ring: 2.276 (20-->35). 3.317
(22-->37). 3.271 (23-->38). 2.171 (25-->38). 1.684 (26-->39),
2.164 (29-->42). 2.408 (31-->43). 2.020 (23-->45). 2.845 (34-->46)
The second ring (12 line segments ,12 nodes) from 35 - >36 to 46 -> 35
are: 3.414. 1.740. 3.097. 4.315. 3.739. 2.279. 1.723. 4.042. 2.486.
2441, 2.214., 1.877

The junction of the second ring and the innermost ring: 1.820 (36-->48).
1.580 (42-->52). 1.973 (46-->47)

Innermost ring(9 line segments ,9 nodes) from 47 -> 48to55 -> 47 are:

1.635. 2.834, 1.871. 3.076. 2.212. 2.020. 1.410. 2.685. 1.622
2.2.4Data processing

The connection line of the nodes in figure 2 means that there is
direct access between them. Two-way arrows means that cars can travel
between .We can regard figure 2 as an undirected graph, because of its
adjacency matrix is symmetric.

The model selected a total of 55 nodes, the data of distance between
nodes can be saved in the adjacency matrix which has 55 rows and 55
column. Since the adjacency matrix is too large, and the space is limited,
this paper just list the adjacency matrix of the first three and the last
three nodes, 0 means no directly access.(The unit is km in figure
2,however in the program it’s convenient to express with data’s

fixed-point, the unit of the adjacency matrix of nodes is meters.)

The following matrix is the initial expression of distance between
nodes, details can be found in the "in.in" file of the appendix, (program
input data file). The initial adjacency matrix denotes that there are 81

direct access driving routes, and the matrix is symmetric.

(RMIBEE AR (hRied JERGREE 00 CbieTbEd
AR 0000 H0US - DBGG 0000 (ke

(bRipcr 5O (RO PIREECE OO0 regr
(beiecr OO0 (e . R s R
[HPREE - 000 [Hur - LELD 000D Ahdis
(HBECE OOO00) CRedh LU L I L

2.3 Model construction

2.3.1 algorithm process

1) Adjacency matrix initialization. The information of the graph is
represented in the adjacency matrix map, dist, and the map to store the
initial information. At first, dist stored the same information as map, if
there is a road from Vi to Vj, then mapli,j]=d, d expresses the distance
between nodes. Else mapli,j]= 0, then assign map to dist.

2) Define a matrix path to record the information of insertion nodes,
pathli,j] refers to the nodes needed to go through from Vi to Vj .initialize
pathll,j]=0.

3)Insert all the nodes into the graph, compare with the original distance,

dist[i,j] = min(dist[i,j], dist[i,k]+dist[k,j]) If the value of dist [i, j] gets
smaller, then pathll,j]=k.

4) Dist contains the information of the shortest route between two nodes,
while path contains the information of the shortest route.

2.3.2 control variables illustration used in the model

a) mapli,j] denotes the initial distance from i to j, 0 means no directly

access.

b) dist[i,j] refers to the shortest distance from i to j
c) pathl[l,j] refers to the information of the intermediate junction nodes
needed to go through from i to j, O indicates that there is no
intermediate junction point and they are connected directly.
d) k exhausts all the intermediate junction nodes between i and j
2.3.3 Floyd algorithm for establishing the formula

The state transition equation of the distance between nodes bases on
the core idea of Floyd algorithm:
dist[i,j]:=min{dist[i,k]+dist[k,j],dist[i,j]}

The corresponding time formula under the constant speed:
time[i,j]:=dist[i,j]/30000*60(min)

(speed is 30km/h)

2.3.4 Program flow chart of the algorithm

Running program

A 4

Read the data file to
establish the initial adjacency
matrix

A 4

adjacency matrix, using Floyd

Loop to adjust the

idea

A 4

Print out the adjacency
matrix which contains the
information of the shortest
distances among all the two
nodes, and save it in the
out.out file

A

\ 4

Enter the start and the
end points needed to be
gueried

h 4

Determine the legality of
the node

h 4

Print out the shortest distance
and display the nodes which it
go through

A 4

Operation is complete, exit
the program

suinbaluo 09

2.4 Model improvement

As the actual road conditions in different sections can not be the same,
and it is impossible to not encounter jams, especially in traffic peak time,
etc. The following series of figures shows the road conditions on a

certain date within the Fourth Ring, Beijing at16:00,19:00,22:00

Road condition at 16:00

Road condition at 19:00

Road condition at 22:00

L e . % F

K HE CERE iR JEElE

red denote jam, orange denote slow and green denote smooth
It can be easily seen from the above figure that the following are

congestion-prone roads:
Xizhimen Bridge, Deshengmen Bridge, Andingmen, Xibianmen
Bridge, Dongbianmen Bridge, Zuoanmen Bridge, East Chang’an
avenue, Huayuan Bridge, Hangtian Bridge, Suzhou Bridge,
Liuli Bridge, Yuquanying Bridge, Wanfang Bridge, Muxidi
Bridge, Guomao, lJingguang Bridge, Taiyanggong Bridge,
Madian Bridge , lJianxiang Bridge , Wanquanhe Bridge,

Yuegezhuang Bridge, Beishatan Bridge, Qinghe Bridge,

Xiaojiahe Bridge.

This paper decided to add the weight factor to different routes of
different rings, which is divided into three levels, smooth, slow, jam. this
model assumes that cars are traveling at constant speed, so we add the
weight factor to identify different road conditions as distance of the path
varies due to traffic. Following are the assumptions:

a) smooth corresponds 1.2
b) slow corresponds 1.4
c) jam corresponds 1.6
According to these three conditions, different colors denote different

road conditions, as figure 3 shows.

1 ///’713 17 16

34 33
19 O O 32
3 O 31
d
20 Q 35 ¢ 44
O
: 30

21 36 ¢
42

37

23 : 13
40 28

—
6 e 39 \
O e e
7 > 26 27
12
8 9 104 1)

The figure above use three colors to denote three different conditions,

that is green for smooth, orange for slow, red for jam. Among these 81
roads, 5 are jam, 13 are slow ,the other 63 are smooth. Details are as
follows:
Jam(5): 29-->42; 36-->37; 48-->49; 49-->50; 51-->52
Slow(13): 3-->21; 4-->22; 10-->26; 14-->29; 22-->37; 23-->38; 26-->39;
33-->45; 35-->36; 36-->48; 38-->39; 39-->40; 50-->51
Others are smooth.

After adding the weight factor, the distances change correspondingly,
in our algorithm realization it needs to change the corresponding control

variables, i.e. the two two-dimensional arrays map and dist (control

variable description is in 2.3.2). Thus our best route choice (saved in the
array path) will also change accordingly. Details are in the “out_weight.
Out" file in the appendix. (output data file after adding weights factor

and programming improvement).

The state transition equation of the distance between nodes base on
the core idea of Floyd algorithm:
dist[i,j]:=min{a*dist[i,k]+b*dist[k,j],dist[i,j]}

Note: a and b is the weights of dist [i, k],dist[k,j] respectively, which
is determined by what road condition they are.

Add other external factors to travel time effects, such as a traffic jam,
traffic accidents, encountering traffic lights in the process of driving etc.
Unify these external factors into a constant factor c,

The corresponding time formula under the constant speed:

timel[i,j]:=dist[i,j]/30000*60(min)+c

3. Model results

(1)The least time and the shortest route of all nodes

In 2.2.4 section, we can get the initial adjacency matrix. By the Floyd
algorithm we get the final adjacency matrix as following (this paper just
list adjacency matrix of the first and the last three nodes, 0 means no
directly access. The details are in the “out. out" file (program output data

files) and the "out-weight. out" file for the improved model (output data

file after adding weights factor and programming improvement).There

are a total of 2970 results about the shortest routes among all the two

nodes of all 55 nodes. Details are in the appendix.

0000 2747 7840 16990 15580 12895

2747 0000 5093 - 19737 18327 15642

7840 5093 0000 16664 15624 12569
16990 19737 16664 0000 1410 4095
15580 18327 15254 -- 1410 0000 2685
12895 15642 12569 4095 2685 0000

Adjacency Matrix without weights

0 3296.4 0408 20388 18696 15474
3296.4 0 6111.6 | 23684.4 219924 187704
9408 6111.6 0 20556.2 18864.2 156422
20388 2368.4 20556.2 0 1692 4914
18696 219924 18864.2 1692 0 3222
15474 187704 15642.2 ;: 4914 3222 0

Adjacency Matrix with weights

(2) The least time and the shortest route of specific

nodes

Among the three kinds of road conditions in figure 3, we select 3

groups to analyze the results, respectively corresponding to the smooth

road , the slow and the jam.

1. smooth road (1-<35)

Beginning: 1

End: 35

Least time: 14.846min
Shortest distance: 7423 m
Route: 1-->19-->20-->35

passed nodes: 2

Beginning: 1

End: 35

Least time: 17.8125min
Shortest distance: 8907.6m
Route: 1-->19-->20-->35

passed nodes: 2

Conclusion: from the two results we can see that if the road
condition is smooth, there will be no effect on the route-choosing

strategy regardless of whether add weight factors or not.

2. Slow road (23-<26)

Beginning: 23
End: 26
Least time: 18.492min

Shortest distance: 9246m

Route: 23-->24-->25-->26

Passed nodes: 2

Beginning: 23

End: 26

Least time: 22.1904min
Shortest distance: 11095.2m
Route: 23-->24-->25-->26

Passed nodes: 2

Conclusion: from the two results we can see that if the road
condition is slow, there will be little effect on the route-choosing

strategy regardless of whether add weight factors or not.

3. jam road(47-<51)

Beginning: 47

End: 51

Least time: 18.832min
Shortest distance: 9416m
Route: 47-->48->49-->50-->51

Passed nodes: 3

Beginning: 47

End: 51

Least time: 25.6472min

Shortest distance: 12823.6m

Route: 47-->55-->54-->53-->52-->51

Passed nodes: 4

Conclusion: from the two results we can see that if the road condition
is jam, there will be obvious effect on the route-choosing strategy
regard whether add weight factors or not. Although the passed node
after adding weight may be increased, a distant route which takes less
time may be a better alternative to avoid traffic congestion which will

bring more waiting time.

(3) Results checking

This paper uses network to test the model’s correctness and
feasibility.

1. smooth road(1->35)

2

(&

[

| }

/1

LR =
- : >
poNEER)\ A i

4%-«"*: | RELE

L '|'I'. 1|l

2 A Fo] W] e
—rigine—

il e

Rt %),
|11 e L
- R

According to the little-time principle, network shows the result:
The distance is 7.3km, 13min

If we didn’t add the weight factors to the model, the result
shows the shortest road is 7423m, and it takes 14min to reach.
That is to say, there exists certain error in our model for data
measurement, but its feasibility is good, and the provided route is
exact.

2. Slow road(23->26)

According to the short-time principle, network shows the result:
The distance is 9.2km, 20min

If we didn’t add the weight to the model, the result shows the
shortest road is 9246m, and it takes 18.5min to reach, after added
the weight, it will take 22min to reach. So, adding weight can
improve the result.

3. Jam road(47->51)

E: qm;u&a"“ "“ :

EaRE /
/

). g s :lt‘.@ﬂ“ﬁﬂ
Y v /r"“.: mr -. Q,‘/,‘:EHI'E]E
I| .I 1;': Hﬁ&ﬁ
oW R N
LET R
S . ‘|
e ;_a_gizfm A
= jj SEESR] e . R .
e 2 3~ =i | =
EE—-I—-&Eﬁ:—_ —~11 BAET | wme i |
o H i ||
= AAE L | 20) 1l
= = :—ﬁﬂtlﬂﬁﬂ =2

ﬁW#EHH
Ete
Hiig)
ﬁlﬁ*ﬂaﬂﬂp -

According to the short-time principle, network shows the result:
The distance is 10.3km, 23min

If we didn’t add the weight to the model, the result shows the
shortest road is 9416m, and it takes 18.8min to reach, after added
the weight, it will take 25.6min to reach. So, adding weight can

change the selection of the route.

4. Conclusion:

This paper adopts Floyd algorithm to solve the least time
problem of car driving dynamically. It selects 55 nodes and it
solved out the optimal solution between any two nodes. The
solving process is efficient, the results are reliable and practical,

and is worthy to be popularized. Original model doesn’t consider

the road condition, after improvement, the new model does not
only applicable to solving the least time problem, it can also be
applied to vehicles transporting problems, economic management
of resource allocation, task equilibrating problem to get the
optimal solution. The application prospect is wide.

. References

[1]. Zhou lJing. Stochastic equilibrium assignment model of
transportation network with multi-user. The journal of Southeast
University, 2001.2 (in Chinese)

[2]. Yu Li na. “Aggregate—combustion” arithmetic and its
application in the query system of transit network. The journal of
Liaoning Technical University 2008.7 (in Chinese)

[3]. Sun Xiao yan. Solve the transport problems of shortest route
by dynamic programming. The journal of Kunming University
2010.2 (2) :223-224 (in Chinese)

[4]. XU Rui, Xu Xiao fei, Cui Ping-Yuan Dynamic Planning and
Scheduling Algorithm Based on Temporal Constraint Network. The
journal of Harbin Institute of Technology 2004.2 (10) :188-194

[5]. Pingxiao Hu. Application of Dynamic Programming in
algorithm Design. The journal of Anhui Institute of Electronics and
Information Technology 2004 (2) (in Chinese)

[6]. Qian Song Di. Operations research [M] Beijing: Tsinghua

University Press, 2002 (in Chinese)
[7]. Jiang qi Yuan. Mathematical models (third edition) Higher

Education Press, 2003 (in Chinese)

