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Abstract

In this paper, we study the point set consisting of the centers of all in-
scribed central-symmetric convex polygons of a convex. We prove that for
any convex, the area of the point set consisting of the centers of its inscribed
central-symmetric convex polygons is not greater than 1

4
of the area of the

convex (the equality holds if and only if the convex is a triangle). This con-
clusion can provide us a method to measure the extent of central symmetry
of a planar figure.

Key words：：：plane convex set, central-symmetric figure
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1 Introduction

For a convex, every point inside the convex is the midpoint of a certain chord.
What about the points that are the common midpoint of at least two chords?
Such points are the centers of inscribed central-symmetric convex polygons
of the convex. In this paper, we will study the properties of the point set of
all these centers.

Definition 1.1 For two arbitrary points A, B of point set M , we call M a
convex set if all points on segment AB belong to M .

Definition 1.2 We call M a convex if convex set M is a bounded closed set.

Let Ω be a convex in the plane. Let T be the set consisting of the centers
of all inscribed central-symmetric convex polygons of Ω. Denote the area of
T by S(T ).

We have the following theorem:

Theorem 1.3 Let Ω be a convex in the plane, then

0 ≤ S(T ) ≤ S(Ω),

the left equality holds if and only if Ω is a central-symmetric figure. The right
equality holds if and only if Ω is a triangle.

In the following of the paper, if there is no special illustration, a convex
or a central-symmetric figure only refers to a figure in the plane. A convex
or a central-symmetric figure cannot be a line or part of a line.

2 Preliminary discussion

2.1 Definitions and Notations

Definition 2.1 Let M be a convex. We shall call l a support line of convex
M if:

(i) the line l has at least one point in common with convex M .
(ii) all points of convex M lie either on one side of line l or on the line l.

Thus, when given a certain direction, convex M has two support lines
both parallel to the direction; when given a certain point, there must exist
at least one support line of convex M passing through the point.
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Definition 2.2 For convex M ,define the mid-parallel line of M as following:
For triangle ABC, let D,E,F be the midpoint of BC,CA,AB. Define seg-

ment DE, EF, DF as the mid-parallel line of triangle ABC.
For parallelogram ABDC (AB//CD,AD//BC), let E,F,G,H be the mid-

point of AB,BC,CD,DA. Define segment EG,FH as the mid-parallel line of
triangle ABCD.

For trapezoid ABCD (AD//BC), let E,F be the midpoints of AB,CD.
Define segment EF as the mid-parallel line of triangle ABC.

Here are some notations which will appear later in this paper:

For point set M , we use ∂M to denote the boundary of M .

For line l and point A (or point (x, y), we use d(l, A) (or d(l, (x, y))) to
denote the distance from point A to line l (or point (x, y)).

For convex M in the plane, since M is a closed set, M is measurable.
When the Lebesgue measure of M is not zero, we call the area of M as

the Lebesgue measure of M . When M is a Lebesgue zero measure set, we
may say that the area of M is zero, namely, S(M) = 0.

For two points A,B on the boundary of convex M , we call AB a chord of
M .

For two points A,B on the boundary of convex M , we call AB a pseudo-
diameter of M if there exist two support lines l,m of M passing through A,B
respectively such that l parallel to m.

2.2 Properties of convex

Here are some properties of convex which will be used in the paper.

Lemma 2.3 For convex Ω, the length of ∂Ω or any arc on ∂Ω is measurable.

Proof. Place the convex Ω in the plane rectangular coordinate system. Con-
struct support lines l1, l2 of convex Ω parallel to x-axis and support lines l3, l4
parallel to y-axis. Denote the rectangular enclosed by l1, l2; l3, l4by ABCD.
For n arbitrary division points x1, x2 . . . xn on ∂Ω, we have

nX
k=1

xixi+1 ≤ AB +BC + CD +DA, (xn+1 = x1)
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Thus,

sup
nX

k=1

xixi+1

exists, that is, the length of ∂Ω is measurable. Similarly, the length of any
arc of ∂Ω is measurable.

Lemma 2.4 If there are three collinear points A, B, C on ∂Ω, then line
ABC must be a support line of convex Ω.

Figure 1
Proof. For simplicity we may assume that A, B, C are arranged successively
on line ABC.(See Figure 1) If there exist two points D, E that are on the
opposite side of line ABC, then point B is inside the quadrilateral ADCE,
namely, point B is inside the convex Ω. This is contradictory to that B is on
the boundary ∂Ω of convex Ω. Consequently, line ABC is a support line of
convex Ω.

Lemma 2.5 Any convex Ω has inscribed parallelogram.
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Figure 2

Proof. See Figure 2.Take a point P inside a inscribed triangle of convex Ω.
(Since the points of Ω do not lie on a single line, such inscribed triangle
must exist.) Thus, P is inside the convex Ω. Take an arbitrary point Q on

the boundary of convex Ω. Translate the boundary ∂Ω along vector
−→
QP to

get a closed curve noted as C. Extend PQ to intersect with ∂Ω, C at R, S
respectively.

Thus, S is outside convex Ω. (Otherwise, as P is inside the convex Ω
and R is inside PS, we can infer that R is inside the convex Ω, which is in
contradiction with that R is on the boundary of convex Ω.) Now P, S divide
C into two arcs which do not intersect inward. According to the Jordan
Curve Theorem, either arc has an intersection point with ∂Ω inward, and
the two intersection points do not coincide. Denote these two intersection
points by A,B.

Translate A，B respectively along vector
−→
PQ to get point A′, B′. Since

A，B∈ C，A′, B′ are both on ∂Ω. Since AB intersects with QS，AA′//QS，
AA′, B are not on the same line consequently. Thus, quadrilateral ABB′A′

is a parallelogram.

Lemma 2.6 For any point P inside convex Ω, there must exist a chord l of
Ω passing through P such that P is the midpoint of l.
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Proof. Place convex Ω into the plane rectangular coordinate system. For

inclination angle θ, 0 ≤ θ < π, let
−−→
MN be the chord whose inclination angle is

θ passing through P. Define function f(θ) = |MP |−|NP | and f(π) = −f(0).
Since the boundary ∂Ω of convex Ω is continuous, f is a continuous function
on (0, π). Besides,

lim
θ→π−

f(θ) = −f(0)

thus, f is a continuous function on [0, π]. According to f(π) = −f(0) and
the intermediate value theorem of continuous function, there exists certain
θ0 such that f(θ0) = 0. Let l be a chord of convex Ω whose inclination angle
is θ0. Thus, P is the midpoint of l.

3 Special Cases

Here are two special cases of the theorem.

Proposition 3.1 For convex Ω，S(T ) = 0 if and only if Ω is a central-
symmetric figure.

Proof. We will prove the proposition from the following aspects.
a：：：When convex Ω is centrally symmetric，S(T ) = 0.

Let O be the center of Ω
When convex Ω is a central-symmetric figure, if there exist two different

points A,B on ∂Ω such that segment AB is included in ∂Ω, construct a
segment A′B′ passing through O such that

1:A′B′ is both parallel and equal to AB
2: O is the midpoint of A′B′.
Let T ′ be the union of center O and all segments like A′B′. For an

arbitrary point P on ∂Ω, there are at most two segments passing through
P such that either segment is the boundary of ∂Ω. Thus, the sum of the
lengths of all segments in T ′ is not greater than twice of the circumference
of ∂Ω. Besides, as all segments included in T ′ pass through point O, for any
ε > 0, there must exist a figure with an area not larger than 2εCΩ covering
T ′. This illustrates that the area of point set T ′ is zero.
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For an arbitrary point P in convex Ω, if P does not belong to T ′, and
there exist two chords AB, CD of Ω such that P is the midpoint of AC,BD,
then ABCD must be a parallelogram. Construct two mid-parallel lines l1, l2
of parallelogram ABCD.(As Figure 3 shows.)

Figure 3

Thus, l1, l2 divide the plane (in which ABCD exists) into four parts
IA, IB, IC ,
ID, among which A, B, C, D are inside IA, IB, IC , ID respectively. If O is not
on l1 or l2, just suppose O ∈ IB. Let D′ be the reflected point of D about
O. Thus, D′ is on the boundary of Ω. Since B is inside triangle ACD′, B is
inside convex Ω. However, this is contradictory to that B is on the boundary
of Ω.

Thus, either O ∈ l1 or O ∈ l2 is true. Without lost of generality, suppose
O ∈ l1. Let C ′ be the reflected point of C about O. Then A, D,C ′ are
collinear. Since A，D，C ′ are all on the boundary of Ω, segment AD is
included in ∂Ω. Similarly, segment BC is included in ∂Ω. As P is the center
of parallelogram ABCD, thus P ∈ T ′, which contradicts P ̸∈ T ′.

This illustrates that for an arbitrary point P, if P ∈ T , then P ∈ T ′,
namely, T ⊆ T ′. That is,

S(T ) = 0
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b：：：When S(T ) = 0, Ω must be a central-symmetric figure.

When S(T ) = 0, we construct an inscribed parallelogram ABCD of Ω(See
Figure 4), and there exist two support lines of Ω passing through point C,D
that are not parallel to each other. (Otherwise, we could extend segment CD

in the direction of
−−→
AD to satisfy the condition.)

Figure 4

Let O be the center of parallelogram ABCD. For every point P on arcøCD, extend PO to intersect with ∂Ω at P ′. If PO ̸= P ′O, just suppose that
PO > P ′O.

Construct T (AB,CP ) (as shown in Figure 4, it’s the figure enclosed

by arc øEO,øOG, øGH,øHE) and T (AB,CP ) (it’s the figure enclosed by arcøOH,øHG,øGF ,øFO).
Construct two support lines lC , lD of Ω passing through C, D which are not

parallel to each other. Construct two lines l′C , l
′
D passing through O that are

parallel to lC , lD respectively. Thus, arcøOH and l′D are on the opposite side of

l′C , arc
øOG and l′C are on the opposite side of l′D. As PO > P ′O, according to

the construction of arcøGH, O and P are on the opposite side of arcøGH. Thus
l′C，l′D ，segment OH，OG, and arc øGH encircle a domain with a certain
area. Denote the domain by Λ. Thus, Λ ⊆ T (AB,CP ),Λ ⊆ T (AB,PD).
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This illustrates that Λ ⊆ T ,S(T ) > S(Λ) > 0, which is contradictory to
S(T ) = 0

This illustrates that for every point P on arcøCD, extend PO to intersect
∂Ω at P ′, we have PO = P ′O. Similarly, for every point P on ∂Ω, extend PO
to intersect ∂Ω at P ′, we have PO = P ′O. Namely, Ω is a central-symmetric
figure.

Corollary 3.2 For convex Ω，if the curvature of the boundary ∂Ω of Ω is
permanently not zero，then point O is the center of any inscribed central-
symmetric convex polygon of convex Ω.

Proof. When the curvature of the boundary ∂Ω of Ω is not zero permanently,
T ′ = {O}, the center of any inscribed convex polygon of Ω is O.

Proposition 3.3 For convex Ω，if Ω is a triangle，then

S(T ) = S(DEF ) =
1

4
S(Ω)

Figure 5

Proof. As shown in figure 5, when Ω is a triangle, denote the vertices of Ω
by A, B, C, and DEF as the midpoint triangle of triangle ABC.

In the following part, we will prove that T refers to triangle DEF except
for its vertices D, E, F.

When point G is inside triangle DEF, let A′, B′, C ′ be the reflected point
of A,B,C about G respectively. Since G is inside triangle DEF, segment B′C ′

intersects segment AB，AC at I，H respectively. Segment A′C ′intersects
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segment AB，BC at J，K respectively. Segment A′B′ intersects segment
BC，AC at L，M respectively. Thus, G is the midpoint of KH，IL，JM,
also the center of parallelogram KLHI.

When G is on the boundary of triangle DEF (with the exception of point
D, E, F), similarly, there exists a parallelogram whose center is G.

When G is on the boundary of triangle ABC, it is obvious that G cannot
be the center of a certain inscribed convex polygon of triangle ABC. Thus,
G does not belong to T .

When G is not inside DEF or on the boundary of DEF, we may assume
that G is inside AEF. Let A′, B′, C ′ be the reflected point of A, B, C about G
respectively. Thus, triangle A′B′C ′ is center-symmetric with triangle ABC
about point G. Since any chord l of triangle ABC with midpoint G is also a
chord of triangle A′B′C ′, the end points of l must be the intersection points
of triangle A′B′C ′ and triangle ABC. As triangle A′B′C ′ and triangle ABC
have only two intersection points J, M, thus, inside the triangle ABC there
is only one chord JM whose midpoint is G. Thus, there does not exist an
inscribed parallelogram of Ω with its center at G, namely, G does not belong
to T .

To sum up, T refers to triangle DEF except for points D, E, F.
Thus, when Ω is a triangle, we have

S(T ) = S(DEF ) =
1

4
S(Ω)

4 Proof of the right inequality

4.1 Preparations

Here are some preparations for the proof.
For convex Ω and an arbitrary ε, there exist n division points A1, A2 . . . An

arranged successively on ∂Ω and support lines li, i = 1, 2...n, ln+1 = l1 passing

through Ai such thatüAiAi+1 ≤ ε,and the angle between li and li+1 is not
larger than 2πε(Ai, Ai+1 may be the same point). Besides, except for arcúAnA1, ifüAiAi+1 ≤ ε then the angle between li and li+1 is equals to 2πε.
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Then, we could have an estimation for the range of n:

n ≤
X
ÖAiAi+1=ε

1 +
X

∠lili+1=2πε

1 + 1

≤ 2c+ 1

ε

Among which ∠lili+1 refers to the angle between li and li+1, c refers to
the perimeter of the convex Ω. For a given convex Ω，there exists ε0. When
0 ≤ ε ≤ ε0, for any division of ∂Ω that satisfies the conditions above, we haveüAiAi+1 (inferior arc) does not include any pseudo-diameter of Ω. Besides, for
an arbitrary pseudo-diameter MN of Ω, we have MN ≥ ε. （Otherwise, Ω
has no area，which is in contradiction.）

For any given ε that satisfies 0 ≤ ε ≤ ε0, note an arbitrary group of
division points A1, A2 . . . An on ∂Ω that satisfies the conditions above and
the corresponding support line li, i = 1, 2...n passing through Ai as a ε−
division of ∂Ω.

We take a ε−division of Ω. For arc üAiAi+1 and arc üAjAj+1（i, j ∈
1, 2...n, An+1 = A1. Here we consider that every arc include its endpoint,
and some arcs might degenerate to a single point.）Consider the locus of the

midpoints of the segments joining two points respectively from arcüAiAi+1

and arcüAjAj+1, and denote it by T (AiAi+1, AjAj+1).

If there do not exist M ∈ üAiAi+1, N ∈ üAjAj+1 that make MN be a
pseudo-diameter of Ω, then we call T (AiAi+1, AjAj+1) as RegionI.

If there exist M ∈ üAiAi+1, N ∈ üAjAj+1 that make MN be a pseudo-
diameter of Ω，then we call T (AiAi+1, AjAj+1) as RegionII.

4.2 RegionI

RegionI takes the majority of T (AiAi+1, AjAj+1). In addition, its shape is
quite regular, and its area is easy to be figured out.

In the following part, we will discuss about the shape of RegionI.
For RegionI T (AB,CD)（among which exist Ai = A,Ai+1 = B,Aj =

C,Aj+1 = D)), we have

Lemma 4.1 For any arbitrary point P inside RegionI T (AB,CD)，there is

the only pair of M ∈øAB,N ∈øCD such that P is the midpoint of MN .
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Figure 6
Proof. Proof by contradiction. See Figure 6.If there existM,R ∈øAB,N, S ∈øCD that make P the midpoint of MN,RS, then MR//NS. Therefore, there

exist a point K onùMR and a point L onøNS such that there exist support
lines of Ω parallel to MR passing through K,L respectively. This is contra-
dictory to that T (AB,CD) is RegionI.

Lemma 4.2 For RegionI T (AB,CD), denote the midpoint of AC，AD，BC，
BD by E，F，G，H respectively.

Let A，B be the homethetic centers，1
2
be the homothetic ratio，construct

the image of arc øCD, namely, arc øEG,øFH；
Let C，D be the homethetic centers，1

2
be the homothetic ratio，construct

the image of arc øAB, namely, arc øEF ,øGH.
Thus, arc øEG,øGH,øHF ,øFE together form a closed curve C that does not

intersect inward. Then C and the interior of C refers to T (AB,CD).
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Figure 7
Proof. According to Lemma 4.1, C does not intersect inward.

As T (AB,CD) is a closed set, we only have to prove that the boundary
of T (AB,CD) is C. Let P be a point inside T (AB,CD), then there exist
M ∈ AB,N ∈ CD that make P the midpoint of MN(See Figure 7).

Since T (AB,CD) is RegionI, as shown in Figure7, two arbitrary support
lines of Ω passing through M,N are not parallel.

If M,N are not the end points A,B,C,D of øAB，øCD，according to
Lemma 4.2，P does not belong to C. Besides, when M ′，N ′ are in a certain
neighborhood of M,N , the locus of P ′ is the neighborhood of P , and every
point inside the neighborhood belongs to T (AB,CD).

If there is at least one point between M,N that refers to the end points
A,B,C,D oføAB，øCD, supposeM = A，then P ∈ C

For every neighborhood of P on Ω, there must be points inside the neigh-
borhood that do not belong to T (AB,CD).

To sum up，the boundary of T (AB,CD) is C，namely, C and the inte-
rior of C together form T (AB,CD).

For the area of RegionI, we have

Lemma 4.3 For regionI T (AB,CD), its area is S(AB,CD)，then,

S(AB,CD) =
1

4
|AB| × |CD| sin∠(−→AB,

−−→
CD)
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Proof. When T (AB,CD) forms the RegionI, the area of the figure enclosed

by arc øEG and segment EG is equal to that of the figure enclosed by arcøFH and segment FH, and the area of the figure enclosed by arc øEF and
segment EF is equal to that of the figure enclosed by arc øGH and segment
GH. Thus, the area of T (AB,CD) is equal to that of parallelogram EFHG.

As the area of parallelogram EFHG is

|EF | × |EG| × sin∠(−→EF,
−−→
EG)

and EF，EG are the mid-parallel lines of triangleADC，ADB, thus, EF//AB,
EG//CD,EF = 1

2
AB,EG = 1

2
CD.

Namely,

SEFGH =
1

4
|AB| × |CD| × sin∠(−→AB,

−−→
CD)

Namely,

S(AB,CD) =
1

4
|AB| × |CD| × sin∠(−→AB,

−−→
CD)

For a ε− division of Ω, let I1 be the set consisting of all number pairs
(i, j)(i, j = 1, 2, 3...n) such that T (AiAi+1, AjAj+1) is RegionI, SI1 is the sum
of the area of RegionI. Denote by di the distance between two support lines
of convex Ω parallel to AiAi+1. Thus, we have,

Lemma 4.4

1

4

nX
i=1

AiAi+1 × di −
1

2
cε ≤ SI1 ≤

1

4

nX
i=1

AiAi+1 × di

Proof. Let the length of arcüAiAi+1 be xi. Thus, xi ≤ ε

For everyüAiAi+1，there exists a certain ki such that

d(AiAi+1, Ai+2) ≤ d(AiAi+1, Ai+2) ≤ . . . d(AiAi+1, Aki)

d(AiAi+1, Aki) ≥ d(AiAi+1, Aki+1) ≤ . . . d(AiAi+1, Ai−1)

（the suffix is figured as the remainder of module n）and

d(AiAi+1, Aki) ≤ di ≤ (.AiAi+1, Aki) + 2ε
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According to Lemma 4.3, we have

SI1

=
1

8

nX
i=1

AiAi+1

nX
j=1

AjAj+1 sin∠(AiAi+1, AjAj+1)

=
1

8

nX
i=1

AiAi+1

nX
j=1

d(AiAi+1, Aj)

≥ 1

8

nX
i=1

AiAi+1 × (2di − 4ε)

=
1

4

nX
i=1

AiAi+1 × di −
1

2
cε

and SI1 ≤ 1
4

Pn
i=1 AiAi+1 × di

By combining the two equations above，we have

1

4

nX
i=1

AiAi+1 × di −
1

2
cε ≤ SI1 ≤

1

4

nX
i=1

AiAi+1 × di

4.3 RegionII

RegionII takes the minority of T (AiAi+1, AjAj+1). In addition, its shape is
quite irregular, and its area is hard to figure out. Thus, we have the following
estimation for its area：

Lemma 4.5 For RegionII T (AB,CD)（among which there are Ai = A,Ai+1

= B,Aj = C,Aj+1 = D），then there exist a figure with its area not larger
than 2π × ε3 covering T (AB,CD).
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Figure 8
Proof. As shown in Figure 8, note RegionII as T (AB,CD) and suppose
lA = li, lB = li+1, lC = lj, lD = lj+1. According to the definition, there

exist M ∈øAB，N ∈ øCD such that there are two support lines l, l′ passing
through M，N that satisfy l//l′.

If A,M,B are the same point or C,N,D are the same point，according
to the definition of T (AB,CD), T (AB,CD) is an arc. Thus, there exists a
figure with its area not larger than2π × ε3 covering T (AB,CD).

If neither A,M,B nor C,N,D are not the same point, then since the
angle between lA and lB is not larger than 2πε，we have the angle between
lA and l, the angle between l and lB are neither larger than 2πε. Similarly,
the angle between lC and l′ and the angle between l′ and lD are neither larger
than 2πε.

Thus, there exist two rectangles E1, E2. Either of their lengths is ε,
and either of their widths is ε sin 2πε. Besides, one length of E1, E2 lies
respectively on l, l′. Consequently, E1, E2 respectively covers the arcøAB,øCD.
We respectively take one point inside E1, E2, and the midpoint of the segment
joining the two points are in a rectangular with the same size as E1, E2.

Denote this rectangle by E3. Thus, we haveT (AB,CD) ⊆ E3.Then

S(E3) = ε2 sin 2πε ≤ 2πε3

Thus, this rectangle with its area not larger than 2π × ε3 can cover
T (AB,CD)。

For a ε− division of convex Ω, note I2 as the sets that make SI2 as the
sum of the areas of all RegionII.
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Lemma 4.6 There exists a constant W such that for any arbitrary ε division
of Ω, there exists a figure with its area not larger than Wε covering I2.

Proof. According to the estimation of n in the preparation, n ≤ 2c+1
ε

，

SI2 =
X

(i.j)∈I2

S(AiAi+1, AjAj+1)

≤
X

(i.j)∈I2

2π × ε3

≤ n2 × 2π × ε3

≤ (2c+ 1)2 × 2πε

Let W = 2π(2c + 1)2 and there exists a figure with its area not larger than
Wε covering I2.

4.4 Two Propositions

Here are two further conclusions about convex Ω that are necessary for the
proof:

Proposition 4.7 For convex Ω with its barycenter at G and an arbitrary
θ ∈ [0, 2π], let dG(θ) be the distance from G to a support line of Ω with the
inclination angle of θ , and h(θ) be the distance between two support lines
of Ω whose inclination angles are both θ. Then, 3dG(θ) ≥ h(θ)，the equality
holds only if Ω is a triangle.
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Figure 9

Proof. As shown in Figure 9, let l be a support line of Ω passing through
C (point A，B are not shown in Figure 9), l1 be another support line of Ω
parallel to l. l1 intersects Ω at D. Construct l2 parallel to l passing through
G. l2 divides Ω into two parts noted as Ω1 and Ω2, among which C ∈ Ω1

D ∈ Ω2. According to the definition, h(θ) represents the distance from l to
l1, and dG(θ) represents the distance from l to l2.

As Ω is a convex, G is inside Ω. Let l2 and Ω intersect at points E and
F. Take point M,N respectively on ray DE, DF such that

DM =
3

2
DF,DN =

3

2
DE

Thus, MN//l2.
Let d1 be the distance from l to l1, d2 be the distance from l to l2, and

d3 be the distance from MN to l2. Thus,

2d3 = d2 − d1
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According to the definition of M,N, l2 passes through the barycenter of
triangle DMN.

Proof by contradiction. Suppose 3dG(θ) < h(θ), namely, 3d2 < d1, thus,
d3 > d2. Since Ω is a convex, thus Ω1 ⊆ trapezoid EFMN, triangle DEF
⊆ Ω2. Place Ω into the plane rectangular coordinate system. Let (0,0) be
the central coordinate. According to the properties of barycenter, we haveZZ

EFMN
d(l2, (x, y))dxdy =

ZZ
DEF

d(l2, (x, y))dxdy

ZZ
Ω1

d(l2, (x, y))dxdy =
ZZ

Ω2

d(l2, (x, y))dxdy

Let the two side dot multiply the unit normal vector of l2, we haveZZ
EFMN

d(l2, (x, y))dxdy =
ZZ

DEF
d(l2, (x, y))dxdy

ZZ
Ω1

d(l2, (x, y))dxdy =
ZZ

Ω2

d(l2, (x, y))dxdy

Since d(l2, (x, y)) is non-negative, thus,ZZ
EFMN

d(l2, (x, y))dxdy

=
ZZ

DEF
d(l2, (x, y))dxdy

≤
ZZ

Ω2

d(l2, (x, y))dxdy

=
ZZ

Ω1

d(l2, (x, y))dxdy

≤
ZZ

EFMN
d(l2, (x, y))dxdy

This illustrates that the equalities should hold for all the inequalities
above. This requires that d(l2, (x, y)) = 0 should be true for all (x, y) ∈
EFMN/Ω1. That is, the point set EFMN/Ω1 is on l2. This requires
Ω1=trapezoid EFMN, which is in contradiction with d3 > d2.

Thus, 3dG(θ) ≥ h(θ) is true for every angle θ of ∂Ω. When there ex-
ists a certain angle θ such that 3dG(θ) = h(θ), similarly, we can infer that
Ω1=trapezoid EFMN. In like manner, we can infer that Ω2=triangle DEF.
That is, Ω is a triangle.
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Proposition 4.8 For a point A inside convex Ω, if A can be exactly repre-
sented as the midpoint of two chords of Ω, then there exist two support lines
of Ω that are symmetrical about A.

Proof. Let Λ be the point set consisting of the points that can be exactly
represented as the midpoint of two chords of Ω, Λ′ be the point set consisting
of the midpoints of pseudo-diameters of Ω

Place convex Ω into the plane rectangular coordinate system. For an

arbitrary point O inside Λ and angle θ, when angle θ ∈ [0, π), let
−−→
MN be the

chord passing through O with the inclination angle θ. Define function f(θ) =
|MO|−|NO|, θ ∈ [0, π) and f(θ+π) = −f(θ), (θ ∈ (−∞, 0)∪[π,+∞)). Thus,
f is a continuous function.

Since O ∈ Λ, there exists angle θ0 such that f(θ0) ̸= 0. We assume that
f(θ0) > 0, thus, there exactly exist two θ ∈ (θ0, θ0 + π) such that f(θ) = 0.
Denote them by θ1, θ2。

According to the continuity of f , we have f(θ) > 0(θ ∈ (θ0, θ1)), f(θ) <
0(θ ∈ (θ2, θ0+π)), and the signs of f remain constant in the interval (θ1, θ2).
Suppose f(θ) > 0(θ ∈ (θ1, θ2))，according to the continuity of f , there exists
a certain deleted neighborhood of θ1 noted as Ů(θ1, η) ( namely, the interval
(θ1 − η, θ1) ∪ (θ1, θ1 + η)) such that

f(θ) > 0, ∀θ ∈ Ů(θ1, η)

Figure 10
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As Figure 10 shows, let AB be the directed chord passing through O with
the inclination angle θ1.∠POA = ∠AOQ = η

Construct support line l of Ω passing through A. Construct support line
l′ of Ω passing through B. l′ and l are Symmetric about point O.

Construct arc ùP ′Q′ such that ùP ′Q′ and øPQ are symmetric about point
O. Thus, l′ is a support line ofùP ′Q′.

For point C on arcøPQ, extend CO so as to intersect the boundary of Ω at
F. Then the inclination angle of the directed chord CF belongs to Ů(θ1, η).
Thus, CO > OF . Take point E on the extended line of CO such that
CO=OE. Thus, OE > OF ; while E is onùP ′Q′.

Extend CO to intersect l′ at D. Thus, OD > OE > OF . Since the
selection of C on arcøPQ is arbitrary, according to the definition, l′ is also a
support line of Ω. Also, as l′ passes through B, O is the midpoint of the two
support lines of Ω parallel to l. Thus, O ∈ Λ′.

Corollary 4.9 In convex Ω, under the former symbols, m∗(Λ) = 0, among
which m∗(E) is the exterior measure of E.

Proof. According to Proposition 4.8，Λ ⊆ Λ′，we only have to prove that
S(Λ′) = 0。

For a ε− division of convex Ω，according to the definition of RegionII，Λ′

is included in the union of all RegionII. Thus, according to Lemma 4.11，we
have

S(Λ′) ≤ SI2 ≤ Wε

W is a constant that has nothing to do with ε. Let ε → 0，then m∗(Λ′) = 0

4.5 Proof of the theorem

For convex Ω，let Ti be the set consisting of points that can be represented
as the midpoint of i chords of Ω.i = 1, 2, 3 . . .. Thus, we haveT1 = Ω\∂Ω,T2 \
T3 = Λ

Firstly, we shall prove the existence of the area of T2，T3. Hence, we
come up with the following proposition:

Proposition 4.10 For convex Ω and point set T2，T3，T2 and T3 are mea-
surable.
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Proof. For every ε = 1
N
，take a ε− division of Ω. For every 1

k
(k = N0, N0+

1 . . . , N0ε0 > 1) division，(The definition of ε0 is in 4.1)let Dki be all Re-
gionI，D′

ki
be all RegionII. Note

Ek =
[
i<j

(Dki ∩Dkj)

E ′
l =

l[
k=N0

Ek(l = N0, N0 + 1 . . .)

Fk =
[
i

D′
ki

Thus, we have

Ek ⊆ E ′
k ⊆ T2 ⊆ Ek ∪ Fk ⊆ E ′

k ∪ Fk (1)

And E ′
N0

⊆ E ′
N0+1 ⊆ E ′

N0+2 . . .
Since Ek, E

′
k is the union of a finite amount of curved quadrilaterals, and

every curved quadrilateral can be measured, thus, Ek, E
′
k are all measurable.

And then, since
lim

k→+∞
E ′

k

is a Borel set, according to the properties of Borel set,

lim
k→+∞

E ′
k

is measurable. Let m∗(E) be the exterior measure of E，then we have
limk→∞m∗(Fk) = 0. This illustrates that T2 \ limk→+∞E ′

k is a zero mea-
sure set. Therefore T2 is measurable.

According to the corollary 4.9，we can draw the conclusion that T3 is
measurable.

Lemma 4.11 For a ε− division of convex Ω,

lim
ε→0

nX
i=1

AiAi+1 × di ≥ 4(S(T1) + S(T2) + S(T3))
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Proof. Take a ε− division of Ω. For every point P inside any RegionI,according
to Lemma 4.1，there exists only one chord of convex Ω whose midpoint is
P. If P appears in k RegionI，then, P ∈ Tk。

Therefore, for every point P in Tk(k = 1, 2, 3)，P appears either in a
certain RegionII，or in k RegionI. According to Lemma 4.6，let TII be the
figure with an area not larger than Wε that can cover all RegionII, Di, i =
1, 2 . . . be all the RegionI，T ′(2) =

S
i<j(Di∩Dj), T

′
3 =
S

i<j<k(Di∩Dj ∪Dk)
Thus, T1 ⊆ (

T
Di) ∪ (TII), T2 ⊆ (T ′

2 ∪ TII), T3 ⊆ (T ′
3 ∪ TII)

According to including-excluding principle,

SI1 ≥ S(T ′
1) + S(T ′

2) + S(T ′
3)

As all sets above are measurable，thus, we have,

SI1 + 3S(II) ≥ S(T1) + S(T2) + S(T3)

According to Lemma 4.4，let ε → 0，we have proved that

lim
ε→0

nX
i=1

AiAi+1 × di ≥ 4(S(T1) + S(T2) + S(T3))

If point O inside convex Ω is the center of an inscribed central-symmetric
convex polygon of convex Ω, then O must be the center of a certain inscribed
parallelogram of convex Ω. And the converse proposition is also true. Thus,
we only need to study the centers of the inscribed parallelograms of convex
Ω.

According to the corollary of Proposition 4.8, we have S(T2) = S(T3)

Let θi be the inclination angle of the support line of Ω parallel toüAiAi+1.
According to Lemma 4.11，Proposition 4.7 and the corollary 4.9，as

shown in Figure 11, we have
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Figure 11

lim
ε→0

nX
i=1

|AiAi+1| × di

≤ lim
ε→0

nX
i=1

|AiAi+1| × 3dG(θi)

≤ 6S(Ω)

Namely,

4(S(T1) + S(T2) + S(T3)) ≤ 4S(Ω) + 8S(T ) ≤ 6S(Ω)

Namely,

S(T ) ≤ 1

4
S(Ω)

When the equality holds，there exists at least one angle θ such that
3dG(θ) = h(θ) This illustrates that Ω is a triangle.

5 Supplementary

Mostly, point set Λ (which can be exactly represented as the midpoint of two
chords) is a curve whose length is measurable, also the boundary ∂T of point
set T . But this conclusion still needs to be proved.

In addition, if we regard triangle as the least central-symmetric figure,
the ratio of the area of point set T to that of point set Ω of can precisely
describe the extent of central symmetry of convex Ω.
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