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Abstract

In this paper, the authors deal with the properties of inscribed ellipse of triangle,
using tools of projective transformation, analytical geometry and complex plane, and
lead to several conclusions on the center, foci and major/minor axes, including the
locus of the center of inscribed ellipse, the maximum sum of major axis and minor
axis, and several other geometric inequalities. To some extent, this paper enriches the
knowledge about the inscribed ellipse of triangle. And by using algebraic methods the
authors reveal some beautiful geometric characteristics.
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I Introduction

There have been sufficient studies on the incircle of triangle. From Euler’s Formula
(R2=d2+2Rr) to Feuerbach’s Theorem (the nine-point circle of any triangle is tangent
internally to the incircle and externally to the three excircles), there have been various
conclusions. However, far less has been done with ellipses inscribed in a triangle and
little is known about it. In this paper the authors tried to make up this lack of knowledge
by exploring triangle’s inscribed ellipse.

To be convenient, a circle shall be treated as a special case of an ellipse, but a line
segment shall not. Also, when complex numbers and the complex plane are mentioned in
this paper, it is always assumed that the origin lies at the circumcenter of AABC.

Let’s inspect the meaning of an ellipse inscribed in a triangle as the first step.

Given two points P and Q inside AABC, and an ellipse with foci P and Q is tangent to
the sides BC, CA and AB of AABC at points D, E and F respectively. (Refer to Fig. 1) For a
random point X on the plane, with an ellipse’s essential nature we know the following
facts, PX + QX > 2a, if X lies outside the ellipse, PX + QX = 2a, if X lies on the ellipse, or PX
+ QX < 2a, if X lies inside the ellipse, where and thereinafter “a” stands for the
semi-major axis length of the ellipse.

Thus we know that out of all points on side BC, D is the one with the shortest sum
distance to P and Q. It is also true for point E with respect to side CA, and F with respect

to side AB. Furthermore, we have

PD + QD =PE + QE = PF + QF

On the other hand, for two points P
and Q inside AABC, if their minimum
sum distances to the points on side BC,
CA and AB equal to each other, then

there exists an ellipse inscribed in

AABC with P, Q as its focal points.
The above statements lead to the Fig. 1

following lemma.
[Lemma 1] For any given point P inside AABC, there exists an ellipse tangent to AABC’s
three sides with P as one of its foci; moreover, the other focal point of the ellipse is the
isogonal conjugate point of P inside the triangle. (For more about isogonal conjugate point
please refer to Reference [1])

To prove it we just need to demonstrate that there is another point Q inside AABC
suffices that the minimum sum distances of P and Q to the points on the three sides of

AABC equal to each other.



Denote by P, Ps and P the symmetry points of point P with respect to BC, CA, and
AB respectively; denote by Q the circumcenter of APsPgPc. (Refer to Fig. 2)

/B

Fig. 2 Py Fig. 3

Firstly, point Q must be inside AABC. As a matter of fact, if Q is outside AABC,
(Refer to Fig. 3) we may assume that Q lies at the other side of line AC as to P (and
also point B, Pg and P¢). Since P and Py are symmetrical with respect to AC, we know
QPg<QP. Also, point Q must be either at the other side of BC as to Pa or at the other side
of AB as to P, or both; assuming for instance that Q is at the other side of BC as to P, we
know that Q locates at the same side of BC as to P, and thus QP<QP4. With the above two
inequalities we attain QPg<PQ<QP,, which contradicts the fact that Q is the circumcenter
of APsPgPc. The assumption of Q lies on one of the three sides of AABC shall also lead to
contradiction. Thus it is proven that Q must be inside AABC.

Denote by points D, E, F the intersections of line QP and BC, QPg and CA, QP¢ and
AB, respectively. (Refer to Fig. 4) Then D, E, F are the points on line BC, CA and AB
respectively with the minimum sum distance to P and Q, and

PD + QD = PaD + QD = PAQ = PsQ = PE + QE = PF + QF

Thus it has been proven that there exists an ellipse internally tangent to AABC’s three
sides at point D, E, F with P, Q being its focal points.

B Denote by O the midpoint of line
segment PQ, and then O is the center point of
the ellipse mentioned above. Draw
perpendiculars from P and Q to line BC, CA
and AB respectively with feet at P4, P2, P3 and
Q1, Q2 Qz. Noticing that points P4, P2, P; and O
are midpoints of line segments PP, PPg, PP¢
and PQ, we know that under a homothetic
transformation with center at P and ratio of
1/2, P4, Pg, Pc and Q shall be converted to Pj,
P2, Pz and O respectively. We also know that O




is the circumcenter of AP1P,P3 from the fact that Q is the circumcenter of APAPgPc. Since
PP1Q1Q is actually a trapezoid (or a rectangle), and O is the midpoint of its oblique side,
we know OP1=0Q1, or in other words Q; is also on the circumcircle of AP;P,P3. Similarly
Qz and Q3 are on the same circle. Hence all the six points Py, P2, P3, Q1, Q2 and Q3 are on a
circle centered at O.

Since QQ;.LCQ1, QQ2LCQz2 we know2QCQ2=90°-2CQQ2; and the four points C, Qs, Q,
and Q are concyclic, then 2CQQ2=2CQ1Q>, and thus 2QCQ2=90°-2CQ1Q.. (Refer to Fig. 5)
Likewise, ZPCP1=90°-2CP; P1. On the other hand, since points P31, Q1, Qz, P2 are concyclic,
we have £CQ1Q2=2CP; P1. Hence

2£QCQ2=90°-2£CQ1Q2=90°-2CP,P1 =£PCP;

which means 2PCB=2£QCA. For the same reason we get ZPBC=2QBA and 2PAB=2QAC.
This is equivalent to that P and Q are
isogonal conjugate points. So if an
ellipse is inscribed in AABC, its two
focal points are isogonal conjugate
points; on the other hand, for any
given point inside AABC there exists an
ellipse internally tangent to the

triangle with its foci at this given point

and its isogonal conjugate point.

So far, Lemma 1 has been proven.

Il Center Point of Ellipse Inscribed in Triangle

With the proof of Lemma 1 we have already discovered some characteristics of the
center point O of a triangle’s inscribed ellipse. In this chapter we will investigate the
locus of point 0. We discovered that the set of all possible points O equals to the area

inside the medial triangle of AABC. In other words we have the following theorem.

[Theorem 1] There exists an ellipse inscribed in AABC centered at point O iff point
O is inside the medial triangle of AABC.

In the proof of this Theorem parallel projection is used as a tool, which is common
when dealing with problems regarding an ellipse [2]. Parallel projection has some useful
properties, such as the tangency of a curve and a line remains, and so do the ratio of line
segments and the relative positions of points.

The proof consists of two parts, necessity and sufficiency.

1. Necessity



Firstly, we will prove that for each ellipse inscribed in AABC, its center shall be
inside AABC’s medial triangle A¢BoCo (Refer to Fig. 6 where Ao, Bo, Co are the midpoints of
BC, CA, AB respectively.)

It is well known that for an ellipse there is exactly one parallel projection
transforming this ellipse into a circle. Denote AAB’C’ as the image of AABC under this
transformation, and I the image of point O. Since the tangency between a curve and a line
remains under the transformation, the ellipse inscribed in AABC is transformed to the
incircle of AA'B’C’ centered at point I.

Denote by A” the intersection of Al and
B’C’. We will prove AT>A"I. (Refer to Fig. 7)

Since B’l bisects ZABA’, we know
%=%; furthermore, AA” bisects £

A'B'"  A"B'

B’A'C’ hence =——,0r
AVCV A"Cl

A"B'=A'B'-L<A'B' , hence
A'B'+A4'C'
A"I<A'T. Fig. 6
Now come back to the original drawing.

Suppose AO intersects BC at A”, then from A

AO A'l . \
—=— we know AO>A"0, which [\ O\
A”0 A"l [\ O\

indicates that the distance from point O to 5“ /\ \\\\
line BC is less than half the distance from ( ) \ N
point A to line BC, or in other words that “ e T\\\ / \\\
point O and point A¢ are at the same side of é\< S N
median BoCo. Similarly, points O and By are at A”

the same side of line CoAo, and points O and Fig. 7

Co are at the same side of line A¢Bo. Hence point O is inside AAoBoCo. Thus we’ve proven
that for any ellipse inscribed in AABC, its center lies inside AABC’s medial triangle.

2. Sufficiency

Next we will prove that, for any given point O inside AoBoCo, the medial triangle of
AABC, there exists an ellipse inscribed in AABC and centered at O.

Our approach is to find out a projection and a triangle; with this projection the
triangle we find transforms to the given AABC, and the triangle’s incenter becomes the
given point O which is inside AAoBoCo. Here we need another lemma.

[Lemma 2] For any given AABC and AXYZ, there exists one triangle similar to AXYZ and one

parallel projection transformation under which the image of this triangle is exactly AABC.

The following is the proof of Lemma 2.



.

Denote by o the plane on which AABC exists. Consider perpendiculars ¢1 and ¢ of a

through point A and B respectively. We will find points Yo and Zo on #; and ¥

X

XY and £YoAZo=2YXZ. This is done with analytic geometry.

: AY,
respectively, so that Az, - xz

Symbolize A = %, and 6 = 2YXZ. Set a space rectangular coordinate system with

point A as its origin, a as plane X-Y, and AC as the positive direction of X axis. Thus

we know A(0,0,0). Assume B(ai,b1,0), C(az, 0, 0), Yo(as, b1, x), Zo(az, 0, y), where

b; # 0,a, # 0. Variables x,y satisfy the following equation

2 2 2
Jal +b} +
NG TH X 1)
Na; +’
and
a,a, +xy

=cosd (2)
\/af +b12 +x° \/a§ +y°

From equation (1) we know \/af +b) +x7 = l\/af +° . Substituting it into Equation

(2) leads to
% =cos@,
i.e. (2) is equivalent to
xy=Aa; +y*)cosb—aa, 3)
At the same time (1) is equivalent to
al +b} +x* =1 (a; +17%) (4)

Next we will verify that there exist real numbers x, y satisfying both (3) and (4).

There are two different cases.

a

If A+
a, cos6

Squaring and reorganizing (3) we get
X'y’ =A% cos’ @-y* +21cos 8- (1a; cosO—aa,)y’ +(Aa; cos@—aa,)’  (5)
Multiply equation (4) with y*> and substitute (5) into it,

(a] +b7)y* + A7 cos’ @ y* +24cos 0+ (Aa; cosO—aa,)y” +(Aa; cosO—aa,)’

= ﬂuzazzy2 + /12y4



ii.

Reorganize it to be a quadratic equation of 3,

A*sin® 0-(y*) —[a’ +b} — A’a; +2Acos0-(Aa; cosO—a,a,)]y” —(Aa; cosO—a,a,)’ =0

From the above assumption we know that the coefficient of the quadratic term of
this quadratic equation is positive, while its constant term is negative, so this
equation must have both positive and negative roots. Take the positive one and

extract its square roots, the positive square root is a possible non-zero value for

L . Acos(a; +y*)-aa,
y . By substituting it back into (5) we get x = ,» and then
y

we get X, ) satisfying both equations (3) and(4).

f =4
a,cos@
a
Then with ‘COSQ| <1 weget|A|> |-,
2
Equation (3) can be simplified to
a
xy =y’ (6)
a,
while equation (4) represented as
a +b} +x° = a; + 1%y’ (7)

If al+b> <A’al, then x=\/A’a; —a’ —b},y=0 satisfy both equations (6)

and (7), and they are also a pair of real numbers satisfying equations (3) and (4).

a
On the other hand, if a +b > A°a;, we dictate x=-Ly, then substitute it
a,

into (7) and represent (7) as

2
2,72 A 2422 2.2
a, +bf +—=y =A"a; + A%y
2

or
2 2 2 2
a, +b' —A"a : a
2:%22>0 (notice that |/1|> =D
2 _ 49 &
A=y
a,



a
That means that there exists fitting y, substituting which back into x=—-y
a,

we get real numbers X,y that satisfy both (3) and (4).
The combination of the two cases i and ii leads to the conclusion that there exist
X,y satisfying (3) and (4) simultaneously, and it also shows that there exist fitting
points Yo and Zo we need. Denote by [ the plane on which AAY(Z locates, then under the

parallel projective transformation from  to o, AAY¢Z, transforms to AABC. Moreover,

AY, XY
with AZO :ﬁ and 2YoAZo=2YXZ we know AXYZ~AAY,Zo. Hence AAY¢Zo and the

0

projective transformation from {3 to o are what are supposed to be found for the proof.

Thus Lemma 2 is proven.

Now we continue the proof of Theorem 1on its sufficiency.

Suppose the lines AO, BO and CO
intersect with the opposite sides at
points A4, B1 and C; respectively. (Refer
to Fig. 8) Since point O lies inside A¢BoCo
which is the medial triangle of AABC, we
get

A

SAOBC S AABC

A

SAOCA SAA BC

A\

SAOAB S AABC

meaning that there exists AXYZ so that
YZ:7ZX : XY =S,05c :Shoca *Saous

Denote by I the incenter of AXYZ, Xi, Y1

and Z; the intersections of XI, YI and ZI

and their opposite sides respectively Y X /
(Refer to Fig. 9). Hence Fig. 9

YX, VX _Sipu _BA

ZX, ZX  S,oci  C4

Similarly



ZY, CB, XZ, AC
XY 4B’ YZ, BC,

According to Lemma 2, there exists one parallel projective transformation and one

triangle similar to AXYZ, so that the image of this triangle under this transformation is

YX, BA
AABC. Since Z—‘ =—21 thus the image point of X; is A;. Similarly, the image of Y1 is By,

1 1

and the image of Z; is Ci. Accordingly, the image of point I which is the intersection of
XXj, YY1 and ZZ;, is point O, the intersection point of AA;, BB; and CCs. Also, the image of
the incircle of AXYZ is the inscribed ellipse of AABC, so the center of this inscribed ellipse
is point O, the image of the original incenter I. Thus we can conclude that there exists an
ellipse centered at O and inscribed in AABC.

So far, Theorem 1has been proven.

As a matter of fact, with the tool of parallel projective transformation we may also
prove that the largest inscribed ellipse of AABC is tangent to the three sides at their
midpoints, and the center of this ellipse happens to be the centroid of AABC [4l. Please

refer to Appendix 1 for details.

I1I Foci of the Ellipse Inscribed in a Triangle

In this chapter we will use the tool of complex number to study the properties of the
foci of the ellipse inscribed in a triangle, and based on the results we will also introduce

an estimation of the total length of its major and minor axes.
Denote by z, z,, z; the corresponding complex numbers of points A, B and C on
complex plane. It makes no difference if we assume that AABC is inscribed in the unit

circle, which means |Zl‘ = |Zz| = ‘Z3| =1.Then
)=y Zy =7, Z3=— (8)

Furthermore, we assume that a given point P inside AABC corresponds to a complex
number X, , and its isogonal conjugate point Q corresponds to another complex number

X, . Then with Lemma 1 we know there exists an ellipse inscribed in AABC with its foci

at points P and Q. Regarding the condition to be met by x, and x, we have Lemma 3



as follows.

[Lemma 3] If there exists an ellipse inscribed in a triangle with its foci at points P and Q,

then

X, +X, +2,2,25,%X, =5, +2,+Z;

Here is the proof for Lemma 3.
By Lemma 1, P and Q are isogonal conjugate points, meaning that the bisectors of

2BAC and £PAQ coincide. This is equivalent to

(x—z)(x, —z) cR

(z,—2,)(z;—z)
i.e.

(=25 —7) _ (n—2)(x—2)

(z,-2)(z,-2) (z,-2)(z,~2)

Substitute (8) into the above equation and simplify it we get
(X, = 2))(x, —2) = 2,23(z,%, = 1)(z,x, = 1)
i.e.
(v + 2_ 2 I N
X%, —(X00,)z, + 2 =2,2,2,X, = 2,2,2, (X, + X,) + 2,23 (9)
In the same way we may also get
2 2 Y N
XX, —(x,1x,)z, + 2, =2,2,2, XX, — 2,2,Z,(X, + X, ) + 2,2, (10)
and
2 2 . N
XX, —(x,*x,)z, + 23 = 2,2,2, XX, —2,2,Z,(X, + X,) + 2,2, (12)
Subtracting (10) from (9) leads to
2 2
(z, —z)(x,tx,) + 2, =z, =(2,—2,)z,2,2, %X, +(2, — 2)z,

Since z, # z,, thus

xtx, +zz,z, 6%, =2, +2,+2z, (12)

When equation (12) is substituted back into (9), (10) and (11), it turns out that (12)
is equivalent to the other three. This means that equation (12) is the necessary and

sufficient condition for P and Q to be isogonal conjugate points.

~10 ~



Thus Lemma 3 has been proven.

Generally with equation (12) we can express X, in terms of X,. Performing

conjugation on the both sides of equation (12) we get X, tx, +z,z,z, XX, =z, + 2z, + z;,
which can also be expressed as

XX, +2,2,2,(X,tx,) = 2,2, + 2,2, + 2,2, (13)
Take (12) and (13) as a linear system of binary equations about x, and X,. When

|xl| #1 we have

— _
_ 555X —(z,2, + 2,2, + 232))X, = X, + 2, + 2, + 2,

2
1—|x1|

2 (14)

Notice that the focus P of the inscribed ellipse lies inside AABC, that is, x1| <1.with

equation (14) we can prove the following Lemma 4.

[Lemma 4] For any ellipse inscribed in AABC with points P and Q as its foci, the length of its

|(x1 —2)(x, —5,)(x, — 2, )|

1—|xl‘2

major axis 2a =

The proof of Lemma 4 is shown as follows.

From the discussion in Introduction we 0
know that the length of the ellipse’s major axis 0
equals to the distance between the two points P

Pa and Q, where P, stands for the symmetric B W

point of P with respect to line BC. Suppose Py Fig. 10
point P4 corresponds to a complex number x,,. Next we will find x,,. (Refer to Fig. 10)
Since points P and Pa are symmetric to each other with respect to line BC, thus
PB=P4B, PC=P4C. S0 |x, —z,|=|x —z,|
That is
(%= 2,)(% —2,) = (x5, —2,)(x; —2,)
By expanding both sides we get
xox_o_zz;o_z_zxo ZXI;I_ZZ;I_Z_le (15)

Similarly we have

~11 ~



Xo Xy — 23Xy — Z3X, = X, X; — Z3 X, — Z3X, (16)
Subtracting (16) from (15) leads to
(2= 2,)(% = %) +(2,—2,)(%, = %) =0
By substituting (8) into it and reorganize it, we get Zz,z, ()70 —;1) =(x,—x,)
(notice that z; —z, # 0) thatis

— X, — X
—_ 70 1
Xo =

+x, (17)
2,2,

Substitute (17) into (15) and eliminate X, , then reorganize the resulting equation in the

form of quadric equation about X, such that

, — —
Xy (2,23 =2, =23 = X)X +(2, + 2, — 2,23%,)x, =0
which can be converted to
() =X )Xy + 2,234, —2, —23) =0

Cast out the root that makes point P coincide with point Ps, we get

Xy =2, +2,— 2,2, X, (18)
With (14) and (18) we can deduce that the length of the ellipse’s major axis

2a= ‘xo —x2|

= _
2,2,2,%, — (2,2, + 2,2, + 2,2))X, = X, + 2, + 2, + Z,

1—|x1|2

=1z, -‘t-Z3 —Z,Z3 X —

_ = = _
—(2, +Z)X, X, + 2,2, X, X, —2,2,Z,X; +(2,2, + 232,)X, + X, — 2,

2
1—|xl|

Noticing that the numerator in the last fractional expression is factorable,

- 2 2 o . +
(2, +2,)%, X% + 220X — 22,2, X +(22, + 232) X + X — 2, = (4 —2)(2,% —D(z,%, =D

Then we have the following expression (notice that |xl| <1, Zz| = ‘Z3| =1 and

— 1 — 1
22:—923:—)
z, Zy

~12 ~



. | =2)Ex =D =D |6 =2)Ex =DGEx D] -2 —2,)00 - 2,)|

2 2 2
1—|xl| 1—|x1| 1—‘x1|

Hereto Lemma 4 has been proven.
With the help of Lemma 4 we discovered the following theorem concerning the sum

of major and minor axes of inscribed ellipse of triangle.

[Theorem 2] For AABC, the sum of major and minor axes of its inscribed ellipse is
no more than the diameter of its circumcircle, or
2a+2b<2R (19)
and, if AABC is an acute triangle there exists an inscribed ellipse that makes the
equality hold.
Below is the proof of Theorem 2, during which the previous symbols and

assumptions remain the same.
o . . I o . 1
If the semi major axis of the ellipsea < E , since its semi minor axis b <a < E' thus

the sum of its major and minor axes 2a+2b <2 =2R, which means that under such

conditions the equation (19) is true.

1
Now we consider the case ofa > 5 that is2a—1>0. With Lemma 4 we know, if

1
x, =0 then 2(12‘212223‘21, which meansa:E and causes contradiction. Hence it

could only bex, # 0.
Consider the focal length 2¢ = ‘xl —x2| . By substituting (14) in and with awareness of
|xl|2 = xl)c_1 , we know

2T 2 -
=X, X, — 2,2,Z23X, +(2,2, + 2,2, + 232))X, +2X, — 2, — 2, — Z4

1—|x1|2

2¢c=

2 2 3 = - -
=X, X; —2,2,2y%, +(2,2, + 2,2, + 2,2))x; +2x,%, — (2, + 2, + 2;)X,

(=[x [

~ 13 ~



—(xl2 xl2 —-2x, x_l +D)+1-(z, +z, + 23);1 +(2,2, + 2,2, + 2,2, )xl2 — 22,2, xf

(A=)
PP + Az x)( -2, x)0 - 2,%)
(1_|x1‘2)x1
Thus
1_|x |2 _ |(Zl _x1)(z2 _xl)(Z3 _xl)H
i _ _ _
o]0l Y -|a-zma-zxa-zw)| | 1-|x,[ |
(1_‘x1|2)x1 ‘xl‘

With the application of Lemma 4, we get (AM-GM inequality is used at the last step)

‘1—|xl|2 —264 Qa—1)+|x[ N
R ] ‘

Thatis

c>+2a-1 (20)
Square on the two sides of the inequality and substitute it into ¢* =a” —b°,we get

a’—b*>2a-1
or
(I—a)* >b’ (21)

Since the ellipse is inscribed in AABC, thus the ellipse lies within AABC or on its
sides, and also lies within AABC’s circumcircle or on the circumcircle. Furthermore, the
major axis of the ellipse is no longer than the circumradius, thatis, a <1.Thus with (21)
weget 1—a>b,ora+b<1.

Thus 2a+2b<2=2R, which means that equation (19) is true.

All these facts lead to the conclusion that the sum of major and minor axes of AABC’s
inscribed ellipse is no more than the diameter of AABC'’s circumcircle.

From now on we will discuss the condition of holding equality in (19).

1 1
Obviously, ifaSE, the equality holds only ona:b=§, and in this case the

1
inscribed ellipse degenerates into the incircle of AABC with its circumradius I"=5;

~14 ~



with the Euler’s Formula for triangles [, R*> =d”+2Rr (where d is the distance

between the incenter and circumcenter of AABC), we know 1=R* >2Rr=2r or

E >r, where equality holds iff d =0 meaning that the incenter and circumcenter of

1
AABC coincide, or that AABC is equilateral. In other words, ifa < 5, equality holds for

Inequality (19) iff AABC is equilateral, and the inscribed ellipse coincides with the
incircle.

Next we will discuss the condition of holding equality in Inequality (19) in the case
ofa > 5 , which is equivalent to Inequality (20). In the proof above we use magnification

method twice; the first is

(=) + 0=z 3)0 =200 -z A=) = |- 231 = 2,5)(1 - 2,x)|
=[x ) a-|x[Hx

(2a-1)+ ‘xl ‘2

| ‘ >2+/2a—1. For the first one,
X

and the second is the mean-value inequality

equality holds if the corresponding vectors of complex numbers —(1—‘x1|2)2 and
(1—21;1)(1—22;1)(1—23;1) are opposite directions (or one of them equals to zero).
Since —(l—|x1|2)2 happens to be a negative real number (noticing that |x1| <1), thus this

is equivalent to that (1—z,x,)(1-2z,x,)(1-z,x,) is a non-negative real number, or

(1-z,x) (1 z,x,)(1 - 2,x) = (1= )1 - L)1 - )
zZ, Z, z

3

is a non-negative real number.

As for the second one the equality holds iff |x1‘2 =2a-1 or

| |2 _ |(x1 —2)(x; —2,)(x, _ZS)‘

> —1, which can be reorganized as
1- |xl|

=[x =0 —2)(x —2,)(x% —2,)|

~ 15~



Aware that the inscribed ellipse with a focal point at P and the one with a focal point

at Q are actually the same, we obtain the other necessary-sufficient condition for

inequality (20) to hold equality by substituting x, in the above equation with Xx,; in
particular, when (20) holds equality, |x2|2 =2a—1must also be true. So we get

? or |x1|=|x2|=\[2a—1. Moreover, (20) holding equality means

|xl|2 =2a-1= |x2
¢=+2a—1, and thus

|xl —x2| =2¢=2J2a- =|x1|+|x2|
Which means that the vectors corresponding to x; and —x, are in the same direction;
noticing that‘xl‘ = ‘x2|, we know the origin is the midpoint of the points corresponding to
x, and x,,orinother words x, +x,=0.

Notice that x;, and x, are the corresponding complex numbers of the foci of the
inscribed ellipse of AABC, which should satisfy (12), or
XX, + ZIZZZ3E =z,+z,+z

Substituting x, =—x, into it we get

- 1 1 1
—x; =—+ +

Thus

) 1 1 1
X = + + =—(z,z, + 2,2, + ;7))
212y  ZyZy  Z3Zy

On the other hand, it can be proven that if AABC is not equilateral, then

2,2, + 2,2, + z,z, # 0. Actually, since |zl| = ‘Zz‘ = |z3| =1, we know that at least one of the

— — — 2
three values <z,z, >,<z,,z; >,<Zz,,z, > is not equal to?. We may suppose

<z,Z,> yAv4 Z,Z
il Lk iy | oru;ﬁl. Thus ——=2— =z

<z ;>¢2—” then |z, +z,|=2cos
e 37 v ' ‘ZI+ZZ| z,+2z, >

and that is to say z,z, + z,z, + z;z, # 0.
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Hence x, #0.
Next we will verify if this x;, meets the two conditions for (20) to hold equality.

. . 2
Firstly, since x; =—(z,z, +z,z, +z;z,), we know

(1=2H)(1-H1-2
Z 2 23

Zl+zz+z3xz_zlzz+zzz3+z3zlx_ I

=1+ X

1 !
212,25 212,24 212,24

zZ,+z,+Z z.zZ,+2z,Z2,+ 2,2 1
1 2 3 172 273 371
_—(Z] X +

=1

Z,+ 2,2, + 2,2,) — X, (2,2, + 2,2, + 2,2,)

1
212525 212524 212,24
1 1 1
=l-(z;+z, +z,)(—+—+—)
21 Z, I
:1—‘21 +z, +z3‘2 eR

Thus the first condition for equation (20) to hold equality is met iff |Z1 +z,+2z;|<1.

Secondly, since

Z -|-Zz+Z3

1= = .— —
‘xl | =|zz, + 2,2, + 2,2 | = |lez T Zy2 +Z3zl| = =|z,+z, +z

212y2Z,
we know

G =2 = 2,)(x —2,)] =[(1= ) (A=) (A= 20)| = 1|z, +2, + 2, =1-|x
Z Z
1

Zy 3

Thus the second condition holds true for inequality (20) to hold equality.

To sum up, the inequality (20) holds equality iff |Z1 +z, +Z3| <1 and AABC is not

equilateral, and the condition for equality is x;, = i\/—(zlz2 +2,z;+2,2)) ,and x, =—X,.
It is well known that, since AABC inscribed in a unit circle, the complex number

Z, + z, + z; corresponds to the orthocenter of AABC [1. Thus if AABC is an acute-angled

triangle, then its orthocenter lies within it, which leads to |Z1 +2z, +ZS| <1.Soif AABC is

acute-angled but not equilateral, inequality (20) holds equality iff

X = i\/—(zlz2 +2,z;+2,z;) and x, =—x,. Furthermore, since x,+x,=0, we know

the center of the ellipse, or the midpoint of PQ that makes (20) hold equality is the

circumcenter of AABC. It is also well known that the circumcenter of AABC is also the
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orthocenter of its medial triangle which is similar to AABC and thus is also acute angled.
(11 That is to say that this midpoint lies inside the medial triangle of AABC, so, with
Theorem 1 we know there exists one inscribed ellipse with foci at P and Q. This ellipse is

the only ellipse inscribed in AABC making inequality (20), and also (19) hold equality.
_ 1 1 . .
Summing up the two cases a < —anda > E' we conclude that inequality (19) does

hold equality if AABC is acute angled.

So far we finished the proof of Theorem 2.

Furthermore, we can also explore the cases of AABC being right angled and obtuse
angled. (Refer to Fig. 11 and Fig. 12)

If AABC is right angled, the situation is similar to that of an acute triangle, but the
inscribed ellipse that makes inequality (19) holds equality degenerates to a line segment,
the hypotenuse of AABC. So, all the non-degenerated ellipses inscribed in AABC cannot
make inequality (19) holds equality; the sum
of their major and minor axes is strictly less
than, yet could infinitely approach, the
diameter of circumcircle.

If AABC is obtuse angled, for convenience

C we suppose ZA is the obtuse angle. Draw
Fig. 11 CTLAB intersecting at T. Assume () is one of

the inscribed ellipse of AABC, then Q is enclosed within ATBC. Apply homothetic

transformation to  with homothetic center at B, so that (1, the image of (, is tangent to

TC. Thus () is an inscribed ellipse of the right angled ATBC, and the homothetic ratio

k >1, that is, the sum of major and minor axes of ' is no less than that of Q. By previous

discussion we know, that the sum of major T

and minor axes of )’ is strictly less than the

diameter of ATBC’s circumcircle or BC, thus A

the sum of major and minor axes of (1 is

also strictly less than the length of BC. It is

also true that as  approaches BC infinitely, )

the sum of its major and minor axes also p

approaches the length of BC infinitely. Fig. 12

With the two parts of discussion we get the conclusion that, for a non-acute angled
triangle given, the sum of major and minor axes of its inscribed ellipse is less than its

~ 18 ~



longest side, and could approach the longest side infinitely.

IV Some Other Conclusions

During the study we found some other conclusions about inscribed ellipse of

triangle, they are all geometric inequalities.

1 Distances from the focal point of inscribed ellipse to the triangle’s
sides
We discovered that, with respect to the distances from the points P and Q to any one
side of AABC, at least one of the two is no more than r, the inradius of AABC. (Refer to
Fig. 13)

We will keep the previous symbols, and denote by I the incenter of AABC; through
point O draw perpendiculars of BC, CA and AB, and denote by 0;, O; and O3 the feet

respectively. By symmetry we only need to prove the case of min{PF,QQ, } < r. This can

be done by proving another conclusion PP, - QQ, < r*, which is slightly stronger.

It is well known that, regarding
isogonal conjugate points P and Q there
are the following relations:

PP1-QQ1= PP;QQ2= PP3-QQs!!]
Since O is the midpoint of PQ, so

PP, +QQ, =200, .By AM-GM inequality

we know that PP, -QQ, < OO ; similarly

PP, -QQ, <003, PP,-QQ, <00:.
Thus if we manage to prove min{OO,,00,,00,} <r, then

PP, -QQ, =PP,-QQ, = PP, -QQ, <min{00;,002,003} < r?,

which leads to the conclusion we need.

Below we use proof by contradiction to show min{OO,,00,,00,}<r.

Suppose min{O0O,,00,,00,} > r. ConsidersS, ;..
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On the one hand,
1
Saisc = Sase T Saica t Sams = 5 r(AB+BC+CA)

On the other hand,

&MC:QWB+&%C+&MM:%OOfBC+%OOfCA+%OOfAB>%Q%H{M+AB)

Contradiction happens! It indicates that the supposition is not true, or in other words,

min{00,,00,,00,} < r.

Thus we have proven PP, -QQ, <r°, which leads to min{PR,0Q,}<r. In a

similar way, we can prove min{PP,QQ,} <rand min{PP,Q0,}<r.

As a matter of fact, r is the ultimate value for this inequality, because all the
distances from P and Q to the three sides equal to 7 if P and Q coincide with incenter L.

This means that 7 isthe smallest upper bound for the inequality.

2 The Distance between Foci of the Largest Inscribed Ellipse and
Triangle’s Vertices

Next we will discuss the property of W1 and W, the foci of AABC’s largest inscribed
ellipse. (Refer to Fig. 14)

We may suppose as well that AABC is
inscribed in the unit circle for convenience.
We discovered that, for any one vertex of
AABC, among its distances to the two foci W

1

W1 and W5, at least one of them is no more

than 1.

We have mentioned previously that,

the largest inscribed ellipse of AABC centered at the centroid G of AABC [4l. Denote by

w, and w, the complex numbers corresponding to points W1 and W; then they satisfy

W+ w, =w 22)

By Lemma3 we have
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W W, +2,2,ZWW, =2, + 2, + 2, (23)

By substituting (22) into (23) and reorganizing it we get

Zl-i-Z2 +Z3

3

Z\ZyZyWW, =

Applying conjugation to both sides of the above equation and substituting

-1 - 1 — 1
z,=—,z, =—,zy =— intoit, we have
Z Zy Z3

z.z,‘+z,z,+2z,Z
W1W2: 172 273 371 (24)
3

So w, and w, are the two roots of the following quadric equation for w

2z, +z,+z 2,2, + 2,2, + 2,2
W2_(l 2 3)W+12 243 T 234

=0
3 3
They are also the two roots of the following equation
w=z)W—-2z,)+(W—z,))(W—z;)+(W—2z;)(Ww—2z,) =0 (25)

Now let’s consider the conclusion we want. By symmetry we only need to prove that

one of AW; and AW is no more than 1, or min{|wl -z

w, —Zl|}S1.

Since w;, and w, are the two roots of equation (25), so for any complex number
w we have
W=z )W=2z,)+(W—z,)(W—z;) +(W—z;)(W—2z,) =3(Ww—w))(W—w,)
Dictate w=1z we get
(2~ 2)(z ~2) =3(5, — W)z, —w,) (26)

2(z,+2z,+2z;)

Furthermore, w, +w, = , thus

2z, +z,+zy) 22z —z,—zy)

z,—wW)+(z,—w,)=2z, —
(2= )+ (5= wy) =22 == ;

Suppose /1, is the height of AABC with respect to side BC, and m, is the length of
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the median line of AABC with respect to side BC. Obviously m, >/, ; and with the

well-known fact AB-AC=2R-h,=2h,<2m_, or |Z1 _ZZHZI —Z3|S|221 z, Z3| we

get

2
(2, = W)+ (2, —w2)|:§|22l —2z,—z,| 25‘21 —2,|-|z; — 23| = 2|z, = wi|-|z, — |

Then we know

1
> 2, and thus

+
LW 4w,
1 1 1 1 1
max { — + )= — + >1
z | 2 zZ,=wy| 2|z—w oz —w,
That is equivalent to mln{| w, -z, ‘} <1.

So far we have proven this conclusion.

3 The Minimum Value of an Algebraic Expression

In exploring the minimum length of the major axis of inscribed ellipse in AABC we
revealed that, this minimum is closely related to the maximum value of one function
with respect to a moving point inside the triangle.

Suppose that AABC is inscribed in a unit circle, and point P is one point inside the

triangle, and denote by z,z,,z; and Xx, the

complex numbers corresponding to points A, B, C / '

and P. From Lemma 4 we derive that

X —z)(x, —z,))(x, —z )
2a = ‘( ! 1)( ! 2)( ! 3)| , Where 2a stands for “7 e
—_ Bn ] v

x| ;

\ | /

the length of major axis of the inscribed ellipse. \ /

Connect AP, BP and CP, and suppose line AP S
Fig. 15

intersects with AABC’s circumcircle at point S. (Refer

to Fig. 15) Thus we have‘(x1 —z)(x,—z,)(x, —Z3)|:AP-BP~CP. Furthermore, we
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BP-CP

know 1—|xl|2 =AP-PS, so2a= . That is to say, in order to determine the

minimum length of major axis of inscribed ellipse, we only need to find the minimum

value of f(P) = BP-CP

while point P moves inside AABC.

But it is not so easy to find the minimum of function f(P), by contrast it is easier to

prove with geometric method that, the length of major axis of the inscribed ellipse is no

less than 2r,where r stands for the inradius of the triangle.

Denote by Q the other focal point
of the ellipse, and O the midpoint of PQ;
suppose the inscribed ellipse contacts
with side BC at point D. (Refer to Fig. 16)
And suppose the projections of points P
and Q on BC are P; and Q; respectively,
and those of point O on BC, CA and AB

are 01, Oz and O3 respectively. Thus

2a=PD+QD> PP +00, =200,

then OO, < a; similarly we know 0O, <a,00, <a.

Let’s consider the area of AABC, S, ;5. On the one hand, S, .= %(BC+ CA+ A4B);

on the other hand,

Sy ise = Saoms + Suose + Suocs = % 00, -BC+%002 .CA %003 .AB< %(BC+ CA+ AB) .

Combine the above two equations we get 7 <a, so the length of major axis of the

inscribed ellipse 2a >2r.

Furthermore, 27 could actually be obtained when the inscribed ellipse coincides

with the incircle of AABC.

To sum up, the minimum length of major axis of AABC’s inscribed ellipse is 27, and

this indirectly shows that the minimum value of f(P) is also2r.

Later on we managed to find a way to find the minimum value of f(P) without
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the help of inscribed ellipse of triangle, but it is much more awkward. Please refer to

Appendix 2 for detailed proof.

V Postscript

During the study, we have found quite a few interesting characteristics regarding

inscribed ellipse in triangle, but we have also left some questions that we cannot answer.

The first one is about the relationship between the center and the foci of an
inscribed ellipse. In Chapter II we proved that for any given point O within the medial
triangle of AABC, there exists an ellipse centered at O inscribed in AABC. Yet up till now
we cannot determine the two foci directly by O, nor do we know much about the

relationship of P, Q and O.

The second one is about the fact that the largest inscribed ellipse of AABC is tangent
to each side of AABC at the midpoint. Reference [1] provides an ingenious proof based
on projective transformation, but we haven’t found a direct proof based on merely

Euclidean geometry.

The last one involves complex function. We know that the complex numbers

corresponding to the two foci of the largest inscribed ellipse of AABC are the two roots of

the equation (W—z,)(w—2z,)+(W—2z,)(w—2z;)+(W—2z,)(w—2z,) =0, or the two zeroes

of the derivative of the complex function f(w)=(w—z)(w—z,)(w—2z,). So quite

naturally we will ask whether there is any connection between these facts, or whether
we can extend it to more points. Unfortunately, limited by our knowledge, we cannot

delve further into this question now.

There is another thing that we need to mention. Though the whole study is original,
a small part of the results has already been published and we were not aware of it. One
of the judges, Professor Pan Jianzhong from Chinese Academy of Sciences, told us that he
had found a paper On Inscribed and Escribed Ellipses of a Triangle (Keisuke
MATSUMOTO, Kazunori FUJITA and Hiroo FUKAISHI, Mem. Fac. Educ., Kagawa Univ. II,
59(2008), 1-10), part of which coincides with our Lemma 1. So wes hereby explain the

case.
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Supplement for the Study on Inscribed Ellipse of

Triangle

November 2010

After the submission of the research paper we continued to work on another problem,
the lower bound for the sum of major and minor axes of inscribed ellipse of triangle.

Fortunately we have done it recently, which leads to Theorem 3 as follows.

[Theorem 3] For AABC, the sum of major and minor axes of its inscribed ellipse is greater

than the least altitude of the triangle, or

2a+2b>h;,

and, while the inscribed ellipse approaches the least altitude of the triangle, the sum of

its major and minor axes approximate the least height infinitely.
Here is the proof of Theorem 3.

Denote by Ay, By and C, the tangent points of the inscribed ellipse with the three sides
of AABC, and A;, B; and C; the midpoints of the three sides (refer to the drawing below).

According to the proof of C
necessity of Theorem 1, with the
help of parallel projective
transformation, it is easy to prove
that AA,, BBy and CC, are (e =
concurrent. Thus by Ceva’s Theorem \ :

we know that

AC, ‘ BA, .CBO 1 \
COB AOC B,A A C,C,

AC, B4, . CB,
C,B’ 4,C B,A

which means that the three ratios cannot be greater than 1 at

the same time, neither can they be smaller than 1 simultaneously. Thus one of the three

CB, AC,

cases B—AéZIWhile%Sl, >1 while AC, <1, and

> 1 while B4, <1must
0 0 0 0 C
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BA, CB,

be true. So we may assume that —— > 1 while

<1 ,which means By lies on CB;, and
OC BO

Ao lies on CA; (including end points). It will make no difference by further assuming that

LALSZB.

Denote by S and T the two end points

of the inscribed ellipse’s minor axis.

(1) If one of points S and T lies above or on
the line segment A;B; (supposing S is the
one will make no difference), then the

length of the minor axis b= S0, and

a>O0C,.Thus SC, < SO+0C, <a+b

1
Since S is not below A;Bj, thus SC;, > Ehc

(where £ is the altitude on side AB), hence 2a +2b > 2SC, > h, . Furthermore, if all the

inequalities hold equality, it will lead to the fact that OC, is the semi-major axis of the ellipse

and S, O and C, are collinear points. But the major and minor axes of the ellipse are

perpendicular to each other! Contradiction happens. Thus 2a+2b>h, >h_, hasbeen
proven.

(2) Next we will assume that
both S and T lie below A;B;, and
denote by C, the symmetric
point of Cy with respect to point
O. Draw line [ through G,
parallel to AB, and [is tangent

to the ellipse at C,. Then draw

line [, through S and line /,

through T, both tangent to the
ellipse. Denote by Xq and Y, the

intersection points of /, and [, with/, X and Y the intersection points of AC and BC with

[, respectively. Denote by 6 the separation angle between AB and the two parallel lines /,
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and /, (counterclockwise).

As the first step we will prove LA <O <z —4B.

As a matter of fact, --.__ /

the inscribed ellipse is

surrounded by two pairs of

parallel lines: /, andl,, [

and AB, that is, the ellipse
is within a parallelogram
enclosed by the above
mentioned two pairs of
parallel lines. With the fact

that the ellipse is tangent

to line segments CA; and

CB; respectively we know ; /

that the two line segments have their parts within the parallelogram; in other words, the line
segment XY is part of line segment X,Yo. Aware of that both points S and T are below A;B;,
and point C is above A;B,, so if Xq is on the left of point X then & > £A4 must be true, and if
Yois on the right of point Y it must be @ < 7— £B.

Summing up we get LA<O<m— LB, and thus sinf >min{sin 4,sin B} =sin 4

(please notice that both Z4 and ZB are AABC’s interior angles and ZA< /B).
Draw line [; through Y perpendicular to lines /, and [,, denote by X’ the projective

shadow of point X on line 13 , Y1 the shadow of point Y on AB, Y, its shadow on AC.

Since both points X and Y lie between the parallel lines /, and /,, and ST is the distance
between /, and [,, weknow X'Y <ST'.Furthermore

X'Y =XY-sin@> XY -sin 4= XY -sin LYXY, =YY,

To sum up

2b=ST >YY,
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On the other hand, the length of the ellipse’s major axis 2a =YY, which, together with the

above conclusions, leads to

2a+2b>YY +YY,

To finish the proof we need only

toshow YY +YY,>h_ . C
Y,

Draw a line through point

parallel to AB and AC respectively,

intersecting with AC and AB at
points D and E respectively. F
Suppose BF | EY atpointF,

CG L. DY atpoint G. Next we

will do it in two situations,

ZB>/C andZB< ZC
A E Y,

If Z/B>./C, from LA<L /B we know ZB is the greatest interior angle of AABC,

which means that the attitude /1, from B is the least attitude. By AEBY ~ A4BC we know
that BF is the least attitude of AEBF, and thus YY, > BF'. Hence
YY, +YY,2BF+YY,=h,=h_,
If ZB</ZC, and since ZA< /B, we know ZC is the greatest interior angle of

AABC, and £, is its least attitude. By ADYC ~A4ABC we know that CG is the least

attitude of ADYC, thus YY, > CG .Hence YY +YY,>2CG+YY, =h.=h_, .

That is to say that YY, +YY, > A _, is always true. Thus 2a+2b>YY, +YY, >2h_, is

also true.

With the reasoning in the two situations we have proven Theorem 3.
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Appendix I: Extract from 100 Great Problems of Elementary Mathematics - Their

History and Solution

m Steiner’s Ellipse Problem

Of all the ellipses that can be circumscribed about (inscribed in) a given
triangle, which one has the smallest (largest) area?

“Dans le plan, la question des polygones d’aire maximum ou
minimum inscrits ou circonscrits a une ellipse ne présente aucune
difficulté. Il suffit de projeter l'ellipse de telle maniére qu’elle
devienne un cercle, et I’on est ramené a une question bien connue de
géométrie élémentaire”* (Darboux, Principes de Geometrie analytique,
p. 287).

* Translation: “In a plane the question of polygons of maximum or minimum
area inscribed in or circumscribed about an ellipse offers no difficulty. All that
is neccssary is to project the ellipse in such manner that it is transformed into
a circle, and the problem is reduced to a well-known question of elementary
geometry”’,

The solution of the problem is based on the two auxiliary theorems:

1. Of all the triangles inscribed in a circle the one possessing the maximum
area is the equilateral.

IL. Of all the iriangles that can be circumscribed about a circle the one
possessing the minimum area s the equilateral,

Proor oF I. We call the circle diameter 4, the sides and angles of
an inscribed triangle p, ¢, r and «, B, y, respectively, the area of the
triangle J. Then

J = 1pgsiny
and
p =dsin a, g = dsin B,
and consequently,
J = 3d?.sin a sin B sin y.

According to No. 92, the product of the sines sin « sin 8 sin y of the
three angles «, B, y of constant sum (180°) is at a maximum when

« = p = y(= 60°,
i.e., when the triangle is equilateral. The area of this maximal

triangle is 1%V/3d?, thus V'27/4x of the area of the circle.

Proor or II. If we designate the sides of an arbitrary circum-
scribed triangle PQR as p, g, 7, then the tangents to the circle from the
vertexes P, Q, R are x =5 — p, y =5 — ¢, z=135 — r, where s
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represents half the perimeter of the triangle

(s_ﬁ+q+r
- 2

The area J of the triangle and the radius p of the inscribed circle are
given by the well-known formulas

=x+y+z).

J=ps and J = Vxyzs (Hero of Alexandria).

These give us
spd = xyz.

Making use of the formula J = ps, we write this equation in the
following two ways:

(1) 1

y

1

+ =+ >

1 _
z o p
1 1
. 2 2

L
yz zxxy  J%

1
zZX

We now introduce the new unknowns

1 1 1
U= — = —s W = —
yz zx Xy
and obtain
I 1
u+v+w=?, uvw=J2p2.

Since J is supposed to be a minimum and p is constant, uvw must
attain a maximum.

A product uww of numbers u, v, w of constant sum (¥ + v + w =
const.) reaches a maximum, however (No. 10), when the numbers are
equal to each other: ¥ = » = w. The circumscribed triangle there-
fore becomes smallest when yz = zx = xy, i.e., whenx =y = z, i.e.,
when p = ¢ = r, which proves II.

We find that the area of the smallest circumscribed triangle is four
times that of the maximum inscribed triangle, i.e., ¥/27 p3, and for
the ratio of this area to the area of the circle we obtain the improper

fraction V/27/m.

Now for the solution of the ellipse problem! Let € be any ellipse
circumscribed about (inscribed in) the given triangle abc, f its surface
area, & the area of the triangle abc. We consider € as the normal
projection of a circle ®, whose surface area we will call F. 1In the
projection the inscribed (circumscribed) triangle ABC of the circle,



possessing an area we will call A, corresponds to the inscribed (cir-
cumscribed) triangle abc of the ellipse. If u represents the cosine of
the angle between the plane of the circle and the plane of the ellipse,
then the normal projection of every surface lying in the plane of the
circle is the p-multiple of the surface. This gives us the formulas

J = uF, & = pA.

Since & is constant, f attains a minimum (maximum) when the
quotient f/8 or the equal quotient F/A reaches a minimum
(maximum). The latter quotient, however, according to auxiliary

theorem I. (IL) reaches its minimal (maximal) value 4m/v/27

(w/v/27) when the triangle ABC is equilateral.

To establish more exactly the ellipse determined by this condition,
we make use of the properties of a normal projection: 1. Parallelism is
not annutled by projection. 2. The ratio between parallel segments is main-
tained in projection : in particular, the ratio of two segments of the same
line is not altered.

Now, the center M of the circle is the point of intersection of the
medians of the equilateral triangle ABC and the diameter through C
bisects the chords of the circle parallel to AB. Consequently, the
point of intersection of the medians of the triangle abc is the center
point m of the sought-for ellipse, and the ellipse diameter through ¢
bisects the ellipse chords parallel to the side ab, so that ab and mc are
conjugate directions of the ellipse. Now, since the circle radius MK

parallel to the circle chord (tangent) 4B is equal to 1/4/3(V/3/6) of
AB, the ellipse half diameter mk parallel to the ellipse chord (tangent)

ab is also equal to 1/V3(V/3/6) of ab.

Resurt. Of all the ellipses that can be circumscribed about
(inscribed in) a given triangle abc, the one with the smallest (greatest)
area is the ellipse whose midpoint m is the point of intersection of
the medians of the triangle abc and from which the ellipse half
diameter to ¢ (to the center of ab) and the ellipse half diameter
parallel to ab, mk = ab/V/3(ab/2V'3), are conjugate half diameters.

The area of the ellipse thus characterized—the so-called Steiner
ellipse—is

4 ( T ) .
—— |——] of the area of the triangle.
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Appendix 2: The problem about the minimum of f(P) =

mentioned in Part 3,
Chapter 4.

Assume that AABC is inscribed in ©0O, and the inradius and circumradius of AABC are
r and R, respectively. P is a randomly given point with AABC. Connect and extend AP, BP
and CP, and assume they intersect with ©QO at points S, T and R. From Part 3, Chapter 4

BP-CP
we can see that f(P) = c

is actually symmetrical with respect to A, B and C,

so we may assume that ZC is an acute angle.

C
v

BP-CP

Now we're going to find the minimum of f(P) = <P

BP AB
Since A, B, S and T are concyclic, we know AAPB ~ ATPS, and thus—=—.
SP TS
Accordingly,
f(P):CP-ﬁzCP- ‘AB =CP- - AB =CP- - AB
ST 2Rsin LSAT 2Rsin(£LAPB— ZATB) 2Rsin(£LAPB—-ZC)

So if we draw the circumcircle I' of AAPB, and denote by M its center, then OM is the

perpendicular bisector of AB, and M lies below O.
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It's easy to know that C lies outside of I. Denote by N the intersection of CM and T,

and then we know CP > CN =CM — NM = CM — BM . Thus

(CM -BM)-AB ~_ (CM —BM)sinC

f(P)z— , .
2Rsin(£LAPB—-ZC) sin(£LAPB—-ZC)
Connect OB, OM and BM. From ZBOM = <A0B =/C,and
ZOMB = £AMB = —/APB, we know

ZLOBM =7 —£C—(r— £LAPB) = LAPB—- ZC.
Accordingly, we know

sinC _BM
sin(ZAPB—2ZC) OM’

thus

_ (CM —BM)sinC _ (CM —BM)-BM

J(P)= sin(ZAPB— /C) oM

(CM - BM)-BM
oM

Now let’s prove that reaches its minimum iff M lies on ©O

Set up a rectangular coordinate system with O as its origin and OM as the negative

direction of Y axis. Assume OA=0B=0B=1.

Since OM is the perpendicular bisector of AB, we can assume that

A(-cosf,sinf3),B(cos,sinf3), C(cosa,sine) ; also, M (0,—x) , where x > 0.

Thus we know CM=\;‘x2+2xsina+1,BM=\/x2+2xsin,8+1,OM=x,and

(CM —BM)-BM _ \/(xz +2xsina +1)(x” +2xsin S +1) — (x* +2xsin S +1)
oM - X

Accordingly we only need to figure out the minimum of

_ \/(xz +2xsina +1)(x* +2xsin f+1) —(x* +2xsin S +1)

f(x)=

X

Denote L = \/(x2 +2xsina +1)(x* +2xsin S +1), and then the derivative of f(x) is
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S')=

1x [(x* +2xsina +1)(2x +2sin B) + (x> + 2xsin S+ 1)(2x + 2sina)] B
2 J( +2xsina +1)(x* + 2xsin S +1)

JO& +2xsina +1)(x* +2xsin f+1) —x* +1

2
X

_ x[2x’ +3(sin & +sin B)x* + (4sinasin f+2)x+2]- L’ —(x* =)L
Lx’

_ (x> =D[x* +(sina +sin f)x+1—L]
Lx’

Furthermore, from AM-GM inequality, we know that

(x* +2xsina +1)+(x* +2xsin S +1)
2

L<

= x* +(sin e +sin B)x +1, and since

sina #sin B, the equality cannot hold, meaning x° +(sina +sin B)x+1—L >0 is
always true.

Thus f'(x) is negative when 0 < x <1, is equal to 0 when x =1, and is positive when
x>1.
So we know on (0,+0) f(x) reaches its minimum whenx =1.

(CM - BM)-BM
oM

It means that when reaches its minimum, OM = OA, or in other

words M lies on ©O . Since OM is the perpendicular bisector of AB, we know that M is

the midpoint of the minor arc AB, which means that CM bisects £BAC. Thus

. C ) C
BM =2Rsin > CM =2Rsin(B+ E)’ OM = R ; substitute it into the expression we get

(CM - BM)-BM =4Rsin ¢ [sin(B + £) —sin £] =8Rsin < sin 4 sin 5 =2r
OM 2 2 2
So we have f(P)> (CM - BM)- BM >2r.

OM
On the other hand, when P coincides with the incenter of AABC, with a few steps of

BP-CP

calculation we know f(P)= =2r.In sum, the minimum of f(P)is 2r.
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