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ON LARGE VOLUME PRESERVING STABLE

CMC SURFACES IN INITIAL DATA SETS

Michael Eichmair & Jan Metzger

Abstract

Let (M, g) be a complete 3-dimensional asymptotically flat man-
ifold with everywhere positive scalar curvature. We prove that,
given a compact subset K ⊂ M , all volume preserving stable con-
stant mean curvature surfaces of sufficiently large area will avoid
K. This complements the results of G. Huisken and S.-T. Yau [17]
and of J. Qing and G. Tian [26] on the uniqueness of large vol-
ume preserving stable constant mean curvature spheres in initial
data sets that are asymptotically close to Schwarzschild with mass
m > 0. The analysis in [17] and [26] takes place in the asymptotic
regime of M . Here we adapt ideas from the minimal surface proof
of the positive mass theorem [32] by R. Schoen and S.-T. Yau and
develop geometric properties of volume preserving stable constant
mean curvature surfaces to handle surfaces that run through the
part of M that is far from Euclidean.

1. Introduction

A classical result in the calculus of variations is that the isoperimetric
regions of Rn are precisely the round balls. A surface which is critical
for the associated variational problem has constant mean curvature.
In 1951, H. Hopf proved that immersed two-spheres of constant mean
curvature in R

3 are necessarily round, and then, in 1958, A. D. Alexan-
drov showed that so are compact embedded constant mean curvature
hypersurfaces in Rn. Note that translations preserve such surfaces and
fully account for their non-uniqueness, once we fix their area. We rec-
ommend the wonderful article [24] by R. Osserman for a survey on the
isoperimetric problem.

In 1988, G. Huisken and S.-T. Yau made the crucial observation that
in a large and physically important class of asymptotically flat mani-
folds, this ambiguity disappears: they proved that certain large, volume
preserving stable constant mean curvature spheres exist and are unique
(given their area) within a large class of surfaces, including all nearby
ones. Their insight has started a long line of remarkable research link-
ing the geometric properties of such surfaces to the physical properties

Received 2/14/2011.

81



82 M. EICHMAIR & J. METZGER

of the asymptotically flat manifold when viewed as (time-symmetric)
initial data for the Einstein equations.

The present paper complements the existing results, which we discuss
in more detail below, on the uniqueness of large, volume preserving
stable constant mean curvature surfaces in initial data sets. We set the
stage with the relevant definitions.

Definition 1.1. An initial data set (M,g) is a connected complete
Riemannian 3-manifold, possibly with compact boundary, such that
there exists a bounded open set U ⊂ M so that M \ U ∼=x R

3 \B(0, 12 )
and such that in the coordinates induced by x = (x1, x2, x3) we have
that

r|gij − δij |+ r2|∂kgij|+ r3|∂2
klgij | ≤ C

where r :=
√

x21 + x22 + x23. The boundary ∂M of M—if non-empty—
is a minimal surface, and we assume that there are no other compact
minimal surfaces in M . The boundary of M is called the horizon of
(M,g). Given m ∈ [0,∞) and an integer k ≥ 0 we say that an initial
data set is Ck-asymptotic to Schwarzschild of mass m if

k
∑

l=0

r2+l|∂l(g − gm)ij | ≤ C(1)

where (gm)ij = (1 + m
2|x|)

4δij .

We do not assume here that an initial data set has non-negative scalar
curvature. For convenience, we extend r as a smooth regular function
to the entire initial data set (M,g) such that r(U) ⊂ [0, 1). Note that if
(M,g) is an initial data set that is C1-asymptotic to Schwarzschild with
mass m, then m equals the ADM-mass of (M,g).

Definition 1.2 (cf. [2]). Let (M,g) be a Riemannian 3-manifold and
let Σ ⊂ M be a complete embedded two-sided boundaryless surface. Let
ν be a smooth unit normal vector field of Σ. The mean curvature H of
Σ (with respect to ν) is defined as the tangential divergence of ν. We
say that Σ has constant mean curvature if H is constant along Σ. We
say that a constant mean curvature surface Σ ⊂ M is volume preserving
stable if
∫

Σ
(|h|2 +Rc(ν, ν))u2dH2

g ≤
∫

Σ
|∇̄u|2dH2

g

for every u ∈ C1
c(Σ) with

∫

Σ
udH2

g = 0.

Here, Rc is the ambient Ricci tensor, ∇̄ is the tangential gradient along
Σ, and h denotes the second fundamental form tensor of Σ. We say that
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a constant mean curvature surface Σ ⊂ M is strongly stable if
∫

Σ
(|h|2 +Rc(ν, ν))u2dH2

g ≤
∫

Σ
|∇̄u|2dH2

g for every u ∈ C1
c(Σ).

We caution the reader that in [17, 26], volume preserving stable
constant mean curvature surfaces are referred to as (weakly) stable.
The distinction between volume preserving stable and strongly stable
constant mean curvature surfaces is important in this paper.

The notions of constant mean curvature and volume preserving sta-
bility extend to isometrically immersed surfaces in (M,g) that are two-
sided in the sense that the surface has a global “unit normal” in the
pull-back of the tangent bundle of M to the surface. Note that non-zero
constant mean curvature is a local notion for a connected surface, and
two-sidedness is a consequence.

Volume preserving stable constant mean curvature surfaces are pre-
cisely the stable critical points for volume-constrained area minimiza-
tion in (M,g), i.e., the isoperimetric problem [2]. Arguably, they are
the surfaces that generalize the variational properties of the outermost
minimal surface in (M,g)—the (apparent) horizon—most naturally. In
[8] it was shown that in initial data sets with non-negative scalar cur-
vature, a connected volume preserving stable constant mean curvature
sphere has non-negative Hawking mass. In their seminal paper [17] (see
also the announcement in [8, p. 14]) G. Huisken and S.-T. Yau showed
that the exterior of a large compact subset of an initial data set (M,g)
that is C4-asymptotic to Schwarzschild with mass m > 0 is foliated
by volume preserving stable constant mean curvature spheres. These
spheres become rounder as they diverge to infinity, and their centers of
mass with respect to the Euclidean coordinate system at infinity con-
verge to a unique point in the limit: the Huisken-Yau “geometric center
of mass” of the initial data set. The existence of a constant mean cur-
vature foliation has also been shown by R. Ye [36] using a different
approach. Importantly, G. Huisken and S.-T. Yau were able to show
that the volume preserving stable constant mean curvature spheres are
unique within a large class of surfaces:

Theorem 1.3 ([17]). Let (M,g) be C4-asymptotic to Schwarzschild
with mass m > 0 and let q ∈ (12 , 1] be given. There exists H0 > 0 depend-
ing only on m and C as in (1) and q such that for every H ∈ (0,H0)
there is a unique volume preserving stable constant mean curvature
sphere of mean curvature H that contains the ball BH−q . These con-
stant mean curvature spheres foliate the exterior of a compact subset
of M .

J. Qing and G. Tian strengthened the uniqueness result of G. Huisken
and S.-T. Yau as follows:
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Theorem 1.4 ([26]). Let (M,g) be C4-asymptotic to Schwarzschild
with mass m > 0. There exist r0 ≥ 1 and H0 > 0 depending only
on m and C as in (1) such that for every H ∈ (0,H0) there exists a
unique volume preserving stable constant mean curvature sphere of mean
curvature H in (M,g) that contains the ball Br0.

These theorems have been partially extended to more general asymp-
totic expansions of the metric at infinity in [16, Theorem 3] and [20,
Theorem 1.5].

In this paper, we set out to complete the description of large, volume
preserving stable constant mean curvature surfaces in initial data sets
with positive scalar curvature, complementing the remarkable works of
[17] and [26]. Our main results here are as follows:

Theorem 1.5. Let (M,g) be an initial data set with non-negative
scalar curvature. Assume that the scalar curvature is positive in a neigh-
borhood of a non-empty compact subset K ⊂ M . For every Θ > 0 there
exists a constant A = A(M,g,Θ,K) > 0 such that there are no con-
nected closed volume preserving stable constant mean curvature surfaces
Σ ⊂ M with H2

g(Σ∩Bσ) ≤ Θσ2 for all σ ≥ 1 and with H2
g(Σ) ≥ A such

that Σ ∩K 6= ∅.
We show in Corollary 2.6 that the assumption of quadratic area

growth is not nearly as stringent as it might appear. We can drop this
assumption altogether if we assume that the scalar curvature of (M,g)
is everywhere positive:

Theorem 1.6. Let (M,g) be an initial data set with everywhere pos-
itive scalar curvature. Given r ≥ 1 there exists a constant Ar > 0 so
that every connected closed volume preserving stable constant mean cur-
vature surface Σ ⊂ M with area H2

g(Σ) ≥ Ar is disjoint from the ball
Br.

The existence of a foliation of the asymptotic regime through constant
mean curvature surfaces in initial data sets that are only C2-asymptotic
to Schwarzschild with mass m > 0 has been established in [21]. The
assertions about the uniqueness of volume preserving stable constant
mean curvature surfaces also extend to such initial data sets; see [12]:

Theorem 1.7. Theorems 1.3 and 1.4 hold for initial data sets that
are C2-asymptotic to Schwarzschild with mass m > 0. The uniqueness
statements apply to volume preserving stable constant mean curvature
surfaces of arbitrary genus (not only spheres).

In conjunction with Theorem 1.6 this leads to the following complete
description of large, volume preserving stable constant mean curvature
surfaces in initial data sets, which complements the existing results on
the “global uniqueness problem for stable constant mean curvature sur-
faces” (cf. [17, bottom of p. 301] and [26, footnote on p. 1092]):
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Theorem 1.8. Let (M,g) be an initial data set that is C2-asymptotic
to Schwarzschild with mass m > 0 and whose scalar curvature is every-
where positive. For a fixed point p ∈ M there exists a constant A > 0
such that every connected closed volume preserving stable constant mean
curvature surface in M that is (together with the horizon, if it is non-
empty) the boundary of a compact set containing p and whose area is at
least A is uniquely determined by its area. In fact, these surfaces foliate
the exterior of some bounded region in M .

The analysis of [17] and [26] takes place in the asymptotic regime
of the initial data set. That m > 0 is crucial at many points in their
arguments. While the particular expansion of the metric at infinity is
immaterial in our analysis, we depend on our assumption that the scalar
curvature is non-negative. At the heart of the proofs of our main the-
orems is a fundamental mechanism discovered by R. Schoen and S.-T.
Yau in their celebrated proof of the positive mass theorem [32]: pos-
itive ambient scalar curvature is not compatible with the existence of
(certain) strongly stable minimal surfaces. In order to exploit this mech-
anism, we need several additional insights on the behavior of large, vol-
ume preserving stable constant mean curvature surfaces in initial data
sets, including refined curvature estimates, bounds on their area growth,
and the observation that they limit to strongly stable minimal surfaces.

The following example in Schwarzschild shows that we can only ex-
pect to prove a uniqueness result for large volume preserving stable
constant mean curvature surfaces.
Example (Round spheres in Schwarzschild): Let (gm)ij = (1+ m

2r )
4δij =

φ4
mδij be the Schwarzschild metric of mass m > 0 on R

3 \ {0} and let
Sr := {x ∈ R

3 : |x| = r} denote the centered spheres for r > 0. Recall

that gm is a complete scalar flat metric, and that x →
(

m
2

)2 x
|x|2 is a re-

flection isometry about the horizon Sm
2
. The spheres Sr are umbilic and

have constant mean curvature 1−m/(2r)
φ3
m

2
r . Note that the mean curvature

is increasing for m
2 ≤ r ≤ m(2+

√
3)

2 and decreasing for r ≥ m(2+
√
3)

2 .
The sphere Sm(2+

√
3)

2

of largest mean curvature is called the photon-

sphere. The stability operator LSr = −∆̄− (|h|2 +Rc(ν, ν)), where ∆̄ is
the (negative definite) Laplacian for the induced metric on Sr, is easily

computed to be −φ−4r−2∆S2 +
−4r2+8rm−m2

2r4φ6 , where ∆S2 is the Lapla-

cian on the round unit sphere. The eigenfunctions of this operator are

those of ∆S2 . It follows that λ0 = −4r2+8rm−m2

2r4φ6 (with the constants

spanning the eigenspace), and that λ1 = λ2 = λ3 = 6m
r3φ6 . Hence Sr is

strongly stable for m
2 ≤ r <

m(2+
√
3)

2 and volume preserving stable for

r ≥ m(2+
√
3)

2 .
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The preceding example does not have positive scalar curvature and
hence does not quite satisfy the conditions of Theorem 1.6. We can
choose ǫ,m > 0 such that the metrics (1 + m

2r − ǫ
r2
)4δij on {x ∈ R

3 :
|x| > r} have positive scalar curvature, where r is the largest zero of
1+ m

2r − ǫ
r2
, and such that for some rh > r the coordinate sphere Srh is a

minimal surface. The properties of the coordinate spheres Sr for r ≥ rh
with respect to this metric are similar to those in the Schwarzschild
example above.

S. Brendle has shown recently [4] that the only closed constant mean
curvature surfaces in Schwarzschild that do not intersect the horizon
Sm

2
are the umbilic spheres Sr. The first author and S. Brendle [5] have

classified the “null-homologous” isoperimetric surfaces in Schwarzschild
and showed that there exist small, null-homologous, volume preserving
stable constant mean curvature surfaces in Schwarzschild that intersect
the horizon.

H. Bray observed in his thesis [3] that the Hawking mass is mono-
tone along any area-increasing foliation through connected volume pre-
serving stable constant mean curvature spheres in initial data sets with
non-negative scalar curvature. He used this to prove a special case of the
Riemannian Penrose inequality using isoperimetric surface techniques.
He conjectured that the volume preserving stable constant mean curva-
ture spheres found by G. Huisken and S.-T. Yau are isoperimetric and
proved this for the exact Schwarzschild metric. In [11] we confirmed H.
Bray’s conjecture and in fact proved something stronger:

Theorem 1.9 ([11]). Let (M,g) be an initial data set that is C0-
asymptotic to Schwarzschild with mass m > 0 in the sense of Definition
1.1. There exists V0 > 0 such that for every V ≥ V0 the infimum in

Ag(V ) := inf{H2
g(∂

∗Ω) : Ω ⊂ M is Borel,(2)

contains the horizon, has finite perimeter, and L3
g(Ω) = V }

is achieved by a smooth isoperimetric region Ω ⊂ M containing the
horizon and of volume V . The boundary ∂Ω of every minimizer Ω is
close to a centered coordinate sphere.

Structure of this paper. In Section 2 we derive useful curvature es-
timates with decay for large, volume preserving stable constant mean
curvature surfaces by refining an argument of R. Ye. These curvature
estimates lead to a useful monotonicity formula “at infinity” for non-
compact minimal surfaces of quadratic area growth that implies that
their blow down is conical, as in W. Fleming’s proof of the Bernstein
theorem in R

3. This will be important in Section 3 where we refine and
extend the scope of an argument of R. Schoen and S.-T. Yau in their
minimal surface proof of the positive mass theorem to apply to certain
limits of volume preserving stable constant mean curvature surfaces.
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We collect some insights on the structure of large, volume preserving
stable constant mean curvature surfaces—in particular bounds on the
number of their components—in Section 5. In Appendix A we collect
(and slightly extend) some well-known estimates on integrals of polyno-
mially decaying quantities over surfaces with bounded bending energy.
In Appendix B we explain why the area growth of a surface of bounded
bending energy is bounded, essentially by its area in a fixed compact set.
To obtain such an initial area bound for the volume preserving stable
constant mean curvature surfaces considered in this paper, we analyze
the proof of an estimate on the Hawking mass of such surfaces due to D.
Christodoulou and S.-T. Yau (cited here as Lemma 2.5). This is where
the assumption that the scalar curvature is positive enters crucially.

In this paper we will distinguish conscientiously between immersed
and properly immersed surfaces. A surface Σ ⊂ M , unless otherwise
specified, is complete with no boundary, properly embedded, orientable,
and two-sided.
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2. Curvature estimates through blow up

In this section we discuss curvature estimates for volume preserv-
ing stable constant mean curvature surfaces in homogeneously regular
3-manifolds. The arguments described here are by blow up and use a
characterization of volume preserving stable constant mean curvature
immersions in Euclidean space from [1], [25], [10], [19]: they are either
spheres or planes. The earliest reference containing this general line of
reasoning that we have been able to find is [36, Theorem 7]. Variations
of this argument (“local curvature estimates via blow up and a Bernstein
type theorem”) in other related contexts appear in [23, Theorem 2.2]
and [28, Theorem 18] for isoperimetric surfaces, and in [29] for strongly
stable constant mean curvature surfaces. In [33], curvature estimates
for minimizing boundaries in ambient dimensions n ≤ 7 (and for graphs
when n ≤ 8) have been obtained by similar reasoning. In [29] much care
is applied to derive curvature estimates that are essentially independent
of ambient geometric quantities. Their argument to show independence
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of the injectivity radius—by passing to the universal cover of the ambi-
ent manifold—does not carry over to our context: strong stability lifts to
the cover (cf. [13, Corollary 4] and [9, Theorem 3.1]), volume preserving
stability does not. (For example, there exist non-flat volume preserving
stable minimal surfaces in 3-dimensional tori, cf. [30].) The iteration
method of [31] has been adapted by [17] to derive curvature estimates
for spherical volume preserving stable constant mean curvature surfaces
that lie far out in the Euclidean end of an initial data set.

First we recall the beautiful characterization of volume preserving
stable constant mean curvature immersions that lies at the heart of
these curvature estimates, and is proven as [1, Theorem 1.3] (when the
immersion is compact), as [25, Theorem 3.1] (when the immersion has
non-zero mean curvature), and as [10, Theorem 1.3] and [19, Theorem
5] (in the full generality as stated below):

Lemma 2.1 ([1, 25, 10, 19]). Let (X, g) be a complete oriented Rie-
mann surface and let F : (X, g) → (R3, δ) be an isometric immersion. If
this immersion has constant mean curvature and is volume preserving
stable, then F (X) is either a plane or a round sphere.

We emphasize that the immersion in this lemma is not required to
be proper.

Proposition 2.2 (essentially [36, Theorem 7]). Let (M,g) be a ho-
mogeneously regular Riemannian 3-manifold. There exists a constant
c > 0 depending only on an absolute bound for the Ricci curvature and
a lower bound on the injectivity radius of (M,g) such that every oriented,
two-sided, immersed volume preserving stable constant mean curvature
surface Σ ⊂ M with |HΣ| ≤ 1 satisfies supx∈Σ |hΣ(x)| ≤ c.

We added the assumption that the mean curvature be bounded to
the statement of [36, Theorem 7] because we have had some difficulty
understanding the details of the sketch of the argument provided in [36,
Theorem 7] otherwise, specifically when the diameter of the surface is
large. We have corresponded with R. Ye about the original statement of
Theorem 7 in [34] and he has kindly shared with us a counterexample to
this original statement. It is not difficult to see that R. Ye’s argument,
cf. the proof of Proposition 2.3 below, implies the preceding proposition.

We note that R. Ye’s argument also shows that the extrinsic curvature
of a volume preserving stable constant mean curvature surface Σ ⊂
M as in the statement of Proposition 2.2 is large only when Σ is a
perturbation of a small geodesic sphere, cf. the proof of [28, Theorem
18]. This complements the estimate in Proposition 2.3 below.

Note that typically there exist volume preserving stable constant
mean curvature surfaces with arbitrarily large mean curvature in (M,g):
They can be constructed as perturbations of small geodesic balls around
non-degenerate critical points for the scalar curvature [36, Theorem 5].
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If (M,g) is compact, then small isoperimetric regions will also have this
property, cf. [23, Theorem 2.2] (in general dimension) and [28, Theorem
18] (in dimension 3, by a different argument).

In the following proposition we adapt and slightly refine the argument
of R. Ye in [36] to derive curvature decay estimates for connected volume
preserving stable constant mean curvature surfaces in initial data sets.
The result and proof are also similar to the work [29] on strongly stable
constant mean curvature surfaces.

Proposition 2.3. Let (M,g) be an initial data set and let K ⊂ M

be a non-empty compact subset. There exists a constant c > 0 depend-
ing only on (M,g) and K such that supx∈Σ (max{1, r(x)}|hΣ(x)|) ≤ c

for every connected volume preserving stable constant mean curvature
surface Σ ⊂ M with |HΣ| ≤ 1 and Σ ∩K 6= ∅.

Proof. From Proposition 2.2 we see that we may focus on points in
Σ \B2. Suppose the proposition is wrong. Then there exists a sequence
of volume preserving stable constant mean curvature surfaces Σk ⊂ M

with |HΣk
| ≤ 1 such that Σk ∩ K 6= ∅ and points xk ∈ Σk such that

max
y∈Σk∩B(xk,

|xk|
2

)
( |xk|

2 − |y − xk|)|hΣk
(y)| =: ck → ∞. By Proposition

2.2 we must have that |xk| → ∞. Let yk ∈ Σk ∩ B(xk,
|xk|
2 ) be a point

where the maximum is achieved and put rk := |xk|
2 − |yk − xk|. (This

particular ‘weighted’ point picking argument for obtaining local curva-
ture estimates on possibly non-compact surfaces is as in [7, p. 389].)
Rescale the asymptotically flat metric gij on B(yk, rk) to the metric g̃kij
on the ball B(0, ck) ⊂ R

3 using the transformation x = yk + rk
ck
x̃, i.e.

g̃k =
(

ck
rk

)2
x∗g. These rescaled metrics g̃kij on B(0, ck) converge to the

Euclidean metric δij on R
3 locally uniformly in C2 by asymptotic flat-

ness, since |xk| → ∞. The rescaled surfaces Σ̃k are volume preserving
stable and have constant mean curvature with respect to the rescaled
metrics, they pass through the origin, and 1 = |hΣ̃k

(0)| ≥ 1
2 |hΣk

(x̃)|
for x̃ ∈ B(0, ck2 ). In particular, Σ̃k can be written as a Euclidean graph

with uniform C2,α norms above a ball of uniform size in the tangent
plane of every point x̃ ∈ B(0, ck4 ) ∩ Σ̃k. A standard diagonalization
argument shows that there is a subsequence (which we neglect to de-
note separately), a complete oriented abstract C2,β Riemannian mani-
fold (Σ∞, g∞) with a marked point p ∈ Σ∞, and an isometric immersion
F : Σ∞ → R

3 with F (p) = 0 and unit normal ν ∈ Γ(F ∗(TR3)) with
the following properties: There exist compactly supported C2,β functions
uk : Σ∞ → R whose C2,β norms tend to zero uniformly and such that
for every R ≥ 1, {F (q) + uk(q)ν(q) : q ∈ BΣ∞(p,R)} ⊂ Σ̃k for every
sufficiently large k (depending on R). It follows that F : Σ∞ → R

3 is a
complete immersed volume preserving stable constant mean curvature
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immersion. From Lemma 2.1 we know that F (Σ∞) is either a plane or
a sphere. The first alternative is impossible since by construction the
length of the second fundamental form of F (Σ∞) at 0 = F (p) is 1. The
latter alternative would imply that every Σk contains a ‘far out’ spher-

ical component in B(xk,
|xk|
2 ), contradicting the assumption that Σk is

connected and Σk ∩K 6= ∅. q.e.d.

We recall the following well-known fact:

Lemma 2.4. Consider on R
3 \ B(0, 1) a metric of the form gij =

δij + bij where |x||bij |+ |x|2|∂kbij | ≤ C ′ for all x such that |x| ≥ 1. Let
Σ ⊂ R

3 \B(0, 1) be an oriented surface and let hg, hδ and Hg,Hδ denote
the (1, 1)-second fundamental forms and the mean curvature scalars of

Σ computed with respect to g and δ. Then |hg − hδ|δ ≤ C
|x||hg|g+1

|x|2 and

|Hg − Hδ| ≤ C
|x||hg|g+1

|x|2 for all |x| ≥ r0 where r0 and C only depend

on C ′.

We will use the following important result of D. Christodoulou and
S.-T. Yau to obtain geometric bounds for volume preserving stable con-
stant mean curvature surfaces.

Lemma 2.5 ([8], cf. [28, Theorem 12]). Let (M,g) be a Riemannian
3-manifold and let Σ ⊂ M be a connected closed volume preserving stable
constant mean curvature surface. Then

∫

Σ(
2
3 Rg +

2
3 |̊h|2+H2)dH2

g ≤ 64π
3 .

If Σ is a topological sphere, then the bound on the right-hand side can
be improved to 16π.

In Euclidean space, compact volume preserving stable constant mean
curvature surfaces are spheres by Lemma 2.1, and the following corol-
lary is obvious. In our more general situation we depend on geometric
estimates coming from a bound on the bending energy

∫

ΣH2dH2
g of a

surface from [35] and our curvature decay estimates in Proposition 2.3.

Corollary 2.6. Let (M,g) be an initial data set with non-negative
scalar curvature. Given a non-empty compact subset K ⊂ M there exist
constants C, r0 ≥ 1 depending only on (M,g) and K with the following
property: Let Σ ⊂ M be a connected closed volume preserving stable
constant mean curvature surface with Σ ∩K 6= ∅. Let r0 ≤ r ≤ σ and
assume that Σ intersects ∂Br transversely. Then

H2
g(Σ ∩ (Bσ \Br))

σ2
≤ C

(

1 +
H1

g(Σ ∩ ∂Br)

r

)

.(3)

If (M,g) has everywhere positive scalar curvature, then there exists a
constant Θ > 0 depending only on (M,g) and K such that

H2
g(Σ ∩Bσ)

σ2
≤ Θ for all σ ≥ 1.(4)
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Proof. By Lemma 2.5,
∫

Σ(
2
3 Rg +H2)dH2

g ≤ 64π
3 . Hence

∫

Σ H2dH2
g is

bounded and we can apply Lemma B.1, Proposition 2.3 (the comment
below Proposition 2.2 shows that H must stay bounded if Σ has diam-
eter, say, greater than one), and Lemma B.3 (with ρ = maxx∈Σ r(x)) to
establish (3). If in addition the scalar curvature Rg is bounded below
by a positive constant near B̄r0 , say on Br0+δ, then H2

g(Σ ∩ Br0+δ) is
bounded above. This implies that there exists r ∈ (r0, r0 + δ) such that
Σ intersects ∂Br transversely and such that H1

g(Σ∩∂Br) is also a priori
bounded, so that (4) follows from (3). q.e.d.

The following corollary is standard for minimal surfaces in Euclidean
space. In order to obtain the result here, we use the curvature esti-
mates with decay for volume preserving stable minimal surfaces from
Proposition 2.3.

Corollary 2.7. Let (M,g) be an initial data set. Given a non-empty
compact subset K ⊂ M there is a constant C > 0 depending only on
(M,g) and K with the following property: For every connected volume
preserving stable minimal surface Σ ⊂ M with Σ ∩ K 6= ∅ such that
H2

g(Σ ∩ Bσ) ≤ Θσ2 for all σ ≥ 1, one has that σ → σ−2H2
δ(Σ ∩ Bσ) +

CΘσ−1 is monotone increasing for σ ≥ 1. In particular, the limit of
σ−2H2

g(Σ ∩Bσ) as σ → ∞ exists.

Proof. We choose r0 ≥ 1 so large that the curved and Euclidean
Hausdorff measures are equivalent on M \ Br0 . It follows from Propo-
sition 2.3 and Lemma 2.4 that |Hδ| ≤ C

|x|2 if r ≥ r0, choosing r0 even

larger if necessary. There exists r ∈ (r0, r0 + 1) so that ∂Br intersects
Σ transversely and such that H1

g(Σ ∩ ∂Br) ≤ Θ(r0 + 1)2. An obvious
modification of the proof of [34, (17.3)] to surfaces with boundary shows
that for a.e. σ ≥ r one has that

d

dσ

(

H2
δ(Σ ∩ (Bσ \Br))

σ2
−
∫

Σ∩(Bσ\Br)

∣

∣D⊥|x|
∣

∣

2

|x|2 dH2
δ

)

=

−σ−3

(

∫

Σ∩(Bσ\Br)
Hδ(X, ν)dH2

δ +

∫

Σ∩∂Br

(X, η)dH1
δ

)

≥

−Cσ−3

∫

Σ∩(Bσ\Br)

1

|x|dH
2
δ −

rH1
δ(Σ ∩ ∂Br)

σ3
≥

−C ′Θ
σ2

− rH1
δ(Σ ∩ ∂Br)

σ3

where η is the inward pointing unit normal of Σ∩∂Br in Σ. Here we have
used the quadratic area growth for a bound

∫

Σ∩(Bσ\Br)
|x|−1dH2

δ . Θσ.

q.e.d.
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3. Volume preserving stable CMC surfaces vs.

positive scalar curvature

The purpose of this section is to carefully establish the following
proposition, which extends the scope of a famous argument of R. Schoen
and S.-T. Yau in [32] to include our application in the next section:

Proposition 3.1. Let (M,g) be an initial data set and let Σ ⊂ M

be a connected non-compact volume preserving stable minimal surface
such that supσ≥1 σ

−2H2
g(Σ ∩Bσ) < ∞. Then

∫

Σ(Rg +|h|2)dH2
g ≤ 0.

In [32] two different arguments were given to prove this proposition
for the case of area minimizing surfaces Σ (no volume constraint) that
lie in a slab of an initial data set. These hypotheses imply strong stabil-
ity and quadratic area growth, but they are used in other ways as well
in [32]. In Proposition 3.3 we note that non-compact volume preserving
stable minimal surfaces with quadratic area growth are strongly stable.
A related observation is that non-compact minimal “locally isoperimet-
ric” boundaries are area minimizing, cf. [11, Appendix C]. Another dif-
ference from the original argument in [32] here is how we obtain that
∫

Σ κdH2
g ≤ 0, cf. Proposition 3.6. The reader should also compare our

results here with Theorem 3 in [13] and its proof.
Proposition 3.1 will follow by combining Proposition 3.3, Corollary

3.4, and Proposition 3.6 below.

Lemma 3.2. Let Σ ⊂ M be a non-compact surface with bounded
mean curvature and such that H2

g(Σ ∩ Bσ) ≤ Θσ2 for all σ ≥ 1. For
every ǫ > 0 there exists a Lipschitz function χǫ defined on Σ such that (i)
χǫ has compact support and spt(χǫ) ∩Bǫ−1 = ∅, (ii)

∫

Σ |∇̄χǫ|2dH2
g ≤ ǫ,

and such that (iii) 0 ≤ χǫ ≤ 1 and
∫

Σ χǫdH2
g = 1.

Proof. One can use that Σ has at most quadratic area growth and that
the area of Σ is infinite (which follows from the monotonicity formula
and the assumption that Σ is non-compact) to construct a non-negative
‘hat’ function on Σ that first increases logarithmically from 0 to 1, then
stays equal to 1 to pick up integral, and then decays logarithmically
to 0. A computation—“the logarithmic cut-off trick” applied precisely
as in [32, bottom of p. 52, p. 54]—shows that one can construct such
functions arbitrarily far out and with arbitrarily small Dirichlet energy
by taking enough space to increase and decrease. One can then scale the
function down to take values between 0 and 1 and so that its integral
becomes equal to 1. q.e.d.

Recall that complete non-compact volume preserving stable constant
mean curvature surfaces are strongly stable outside a compact set (cf.
[18, Section 2] and [6, Lemma 4]). The proof of Proposition 3.1 depends
on the following, stronger conclusion:
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Proposition 3.3. Let Σ ⊂ M be a non-compact volume preserving
stable constant mean curvature surface such that H2

g(Σ∩Bσ) ≤ Θσ2 for

all σ ≥ 1. Then Σ is strongly stable and
∫

Σ(|h|2 +Rc(ν, ν))dH2
g ≤ 0.

Proof. We will use here that
∫

Σ |Rc |dH2
g < ∞, which follows from the

quadratic area growth and the decay |Rc | = O(|x|−3), and is proven in
[32, p. 52–53]. Fix u ∈ C1

c(Σ) and let ǫ > 0 be such that spt(u) ⊂ Bǫ−1 .
Let α :=

∫

Σ udH2
g. Then uǫ := u−αχǫ is Lipschitz with compact support

and has mean zero. Hence
∫

Σ |∇̄uǫ|2dH2
g ≥

∫

Σ(|h|2 + Rc(ν, ν))u2ǫdH2
g.

Note that
∫

Σ
|∇̄uǫ|2dH2

g =

∫

Σ
|∇̄u|2 + α2|∇̄χǫ|2dH2

g =

∫

Σ
|∇̄u|2dH2

g +O(ǫ),

and that
∫

Σ
(|h|2 +Rc(ν, ν))u2ǫdH2

g

=

∫

Σ
(|h|2 +Rc(ν, ν))u2dH2

g + α2

∫

Σ
(|h|2 +Rc(ν, ν))χ2

ǫdH2
g

≥
∫

Σ
(|h|2 +Rc(ν, ν))u2dH2

g − α2

∫

Σ\B
ǫ−1

|Rc |dH2
g

≥
∫

Σ
(|h|2 +Rc(ν, ν))u2dH2

g −O(ǫ).

Putting these inequalities together and letting ǫ ց 0 we see that
∫

Σ
|∇̄u|2dH2

g ≥
∫

Σ
(|h|2 +Rc(ν, ν))u2dH2

g.

So Σ is indeed strongly stable. That
∫

Σ
(|h|2 +Rc(ν, ν))dH2

g ≤ 0

now follows from the logarithmic cut-off trick exactly as in [32, top of
p. 55]. q.e.d.

Corollary 3.4 ([32]). Let (M,g) be an initial data set, and let Σ ⊂
M be a non-compact volume preserving stable constant mean curvature
surface such that H2

g(Σ ∩Bσ) ≤ Θσ2 for all σ ≥ 1. Then
∫

Σ |h|2dH2
g <

∞, Σ is minimal, and
∫

Σ |κ|dH2
g < ∞. If, in addition, Σ is connected

and
∫

Σ(Rg +|h|2)dH2
g > 0, then Σ is conformally diffeomorphic to C.

Proof. This follows exactly as in [32, pp. 54–55] and uses the fact that
∫

Σ |Rc |dH2
g < ∞, that

∫

Σ(|h|2+Rc(ν, ν))dH2
g ≤ 0 from Proposition 3.3

(implying that
∫

Σ |h|2H2
g < ∞ and hence that the mean curvature of

Σ vanishes, since Σ has infinite area), the Gauss equation on minimal
surfaces in the form 2(|h|2 + Rc(ν, ν)) = Rg −2κ + |h|2, and the Cohn-
Vossen inequality. q.e.d.
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In a fixed coordinate system for the asymptotically flat end of an
initial data set (M,g) we can consider planes Π := {(x1, x2, x3) : a1x1+
a2x2 + a3x3 = 0} where (a1, a2, a3) 6= 0.

Lemma 3.5. Let Σ ⊂ M be a connected non-compact strongly stable
minimal surface such that H2

g(Σ ∩ Bσ) ≤ Θσ2 for all σ ≥ 1. For every
sequence of radii σi → ∞ there exists a subsequence σi′ → ∞ and a
plane Π such that the intersection of Σ with the normal cylinder above
each annulus Π∩(B3σi′ \Bσi′ ) is a union of finitely many disjoint graphs
above this annulus. The scale invariant norms of the defining functions
of these graphs tend to zero as σi′ → ∞.

Proof. The gist of our argument here is similar to W. Fleming’s proof
[14] of the Bernstein theorem in R

3. Consider the rescaled surfaces
Σi := σ−1

i Σ in R
3 \B(0, σ−1

i ). Using the curvature estimates in Propo-
sition 2.3, the quadratic area growth of Σi that is inherited from Σ, and
a diagonal subsequence argument, we conclude that there exists a sub-
sequence σi′ so that Σi′ converges locally smoothly to a strongly stable
minimal surface Σ∞ in R

3 \ {0}, possibly with multiplicity. It follows
from Corollary 2.7 that σ−2H2

δ(Σ∞∩Bσ) is constant in σ > 0 (it equals
limσ→∞ σ−2H2

g(Σ ∩Bσ)). The monotonicity formula applied exactly as

in [34, Theorem 19.3] shows that Σ∞ is a cone. In R
3 this means that

the support of Σ∞ is a union of planes. Since Σ is embedded, there is
exactly one plane, possibly assumed with multiplicity ≥ 1. q.e.d.

Proposition 3.6. Let (M,g) be an initial data set. Let Σ ⊂ M

be a connected non-compact strongly stable minimal surface such that
H2

g(Σ ∩Bσ) ≤ Θσ2 for all σ ≥ 1. Then
∫

Σ(Rg +|h|2)dH2
g ≤ 0.

Proof. The fundamental idea here is that of the “Second Proof ” in
[32, pp. 57–63]. Our argument for showing that the total geodesic curva-
ture of certain circles in Σ approaches 2π is different and more general.

Assume that
∫

Σ(Rg +|h|2)dH2
g > 0. Then we know from Corollary 3.4

that Σ ∼= C. Consider a sequence σ′
i → ∞ as in Lemma 3.5. For ease of

notation, assume that Π is the x1x2-plane in the asymptotic coordinate
system. For σ ≥ 1 we denote Cσ = {(x1, x2, x3) : x21 + x22 ≤ σ2}. We
know that Σ ∩ ∂C2σ′

i
consists of a union of disjoint circles that are all

graphical above Π. The number of these circles equals the multiplicity m

of Π in the blow down limit. The argument of [32, bottom of p. 57] shows
that each of these circles bounds a disk in Σ ∩C2σ′

i
. (One uses that the

boundaries of Cσ are mean convex for σ large to see that the bounded
components of Σ \ ∂C2σi′ lie in C2σi′ , and that Σ ∼= C.) By Lemma
3.5, these circles converge to round congruent circles in mΠ upon blow
down. Hence, by scale invariance, the total geodesic curvature of each of
the circles in Σ ∩ C2σ′

i
approaches 2π as i′ → ∞. By the Gauss-Bonnet

theorem, this implies that
∫

Σ∩C2σ
i′
κdH2

g = o(1). Since
∫

Σ |κ|dH2
g < ∞
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we obtain that
∫

Σ κdH2
g = 0. Together with Proposition 3.3 this leads

to the contradiction

0 <

∫

Σ
(Rg −2κ+ |h|2)dH2

g = 2

∫

Σ
(|h|2 +Rc(ν, ν))dH2

g ≤ 0.

q.e.d.

4. Proof of Theorems 1.5 and 1.6

Proof of Theorem 1.5. We proceed by contradiction: Assume that there
exists a sequence {Σi} of connected closed volume preserving stable
constant mean curvature surfaces such that H2

g(Σi ∩ Bσ) ≤ Θσ2 for
all σ ≥ 1 and all i = 1, 2, . . . , such that Σi ∩ K 6= ∅, and such that
H2

g(Σi) ≥ i. These assumptions imply that maxx∈Σ |x| tends to infinity.

From Lemma 2.5 we know that H2
g(Σi)H

2
Σi

≤
∫

Σi
(23 Rg +H2

Σi
)dH2

g ≤
64π
3 so that HΣi

→ 0 as i → ∞. Using the curvature estimates from
Theorem 2.3 we can pass Σi to a subsequential limit Σ∞ ⊂ M (where
the convergence is as in the proof of Theorem 2.3). The components of

Σ∞ are unbounded. Let Σ̂∞ be a component of Σ∞ such that Σ∞ ∩
K 6= ∅. Note that Σ̂∞ might be assumed with multiplicity > 1. It is
easy to see that Σ̂∞ is a complete non-compact embedded orientable
two-sided volume preserving stable minimal surface with quadratic area
growth. By Proposition 3.1,

∫

Σ̂∞
(Rg +|h|2)dH2

g = 0. This contradicts
our assumption that the scalar curvature Rg is strictly positive in a
neighborhood of K. q.e.d.

Proof of Theorem 1.6. Use Corollary 2.6 to show that Theorem 1.5 ap-
plies. q.e.d.

5. On the number of components of volume preserving stable

CMC surfaces

In this section we collect results on the number of components of
isoperimetric surfaces and “large” volume preserving stable constant
mean curvature surfaces in initial data sets.

Proposition 5.1. Let (M,g) be a Riemannian 3-manifold with non-
negative scalar curvature and let Σ ⊂ M be a closed volume preserv-
ing stable constant mean curvature surface—not necessarily connected—
with constant mean curvature HΣ. Then

H2
Σ ≤ max

(

−2 inf
x∈Σ

Rc(ν, ν),
64π

3
H2

g(Σ)
−1

)

.

Proof. By a standard stability argument (cf. [27, p. 294], [3, p. 73]),
if 0 < |h|2 + Rc(ν, ν) along Σ, then Σ is connected. By Lemma 2.5 we
then have that H2

g(Σ)H
2
Σ ≤ 64π

3 . Note that H2
Σ ≤ 2(|h|2 + Rc(ν, ν)) −

2Rc(ν, ν). q.e.d.
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It is interesting to compare the estimate in Proposition 5.1 with the
main result in [22], where an effective bound on HΣ is derived for con-
stant mean curvature surfaces Σ ⊂ M that enclose a component of the
horizon.

Proposition 5.2. Let Σ be a closed surface in an initial data set
(M,g). Then

∫

Σ |h|2dH2
g ≥ 8π−o(1) as rmin := inf{r(x) : x ∈ Σ} → ∞.

Proof. We may assume that
∫

ΣH2dH2
g ≤ 16π (otherwise we are

done). We will compare geometric quantities of Σ in (M,g) with those
computed with respect to the Euclidean metric in the asymptotically
flat coordinate chart. We will denote the former with a subscript g

and the latter with a subscript δ, for emphasis. First,
∫

Σ |hδ|2δdH2
δ ≥

1
2

∫

Σ H2
δ dH2

δ ≥ 8π (see [15, (16.32)] for a derivation of the second in-

equality). By Lemma 2.4, |hg −hδ|δ ≤ C ′
(

|hδ|δ
r + 1

r2

)

for large r. Using

the estimates in Appendix A, we compute that

(1 + o(1))

∫

Σ
|hg|2gdH2

g

≥
∫

Σ
|hg|2δdH2

δ

=

∫

Σ
|hδ|2δdH2

δ +

∫

Σ
(|hg|δ − |hδ |δ)(|hg|δ + |hδ|δ)dH2

δ

≥
∫

Σ
|hδ|2δdH2

δ − 2C ′2
∫

Σ

( |hδ|δ
r

+
1

r2

)(

|hδ |δ +
1

r2

)

dH2
δ

≥ (1− o(1))

∫

Σ
|hδ |2δdH2

δ − o(1) as rmin → ∞.

q.e.d.

Proposition 5.3. Let (M,g) be an initial data set. There is a con-
stant r0 ≥ 1 so that every closed volume preserving stable constant
mean curvature surface Σ ⊂ M contains at most one component Σ′

with Σ′ ∩Br0 = ∅.

Proof. Assume that there are two components Σ′ and Σ′′ of Σ that
are both disjoint from Br0 . Assume that H2

g(Σ
′′) ≥ H2

g(Σ
′). As in the

proof of [17, Proposition 5.3] one can combine Lemma 2.5 and Lemma
A.1 (using that |Rc |(x) = O(r−3)) to conclude that

∫

Σ′∪Σ′′ H
2
ΣdH2

g is

bounded. The function that equals H2
g(Σ

′′) on Σ′ and −H2
g(Σ

′) on Σ′′
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generates a volume preserving normal deformation of Σ. Hence

0 ≥
∫

Σ′

(

|h|2 +Rc(ν, ν)
)

dH2
g +

H2
g(Σ

′)2

H2
g(Σ

′′)2

∫

Σ′′

(

|h|2 +Rc(ν, ν)
)

dH2
g

≥
∫

Σ′
|h|2dH2

g −
∫

Σ′∪Σ′′
|Rc |dH2

g

≥
∫

Σ′
|h|2dH2

g −O(r−1
0 )

as rmin(Σ
′ ∪ Σ′′) ≥ r0 → ∞, where we applied Lemma A.1 again. For

r0 large enough, this is in contradiction with the result in Proposition
5.2. q.e.d.

Proposition 5.4. Let Σ be a closed volume preserving stable constant
mean curvature surface in an initial data set (M,g). Then the number
of components nΣ of Σ is bounded in terms of H2

g(Σ∩B2r0) where r0 is
as in Proposition 5.3.

Proof. From the proof of Proposition 5.1 we know that if the mean
curvature of Σ is larger than a constant depending only on (M,g), then
Σ is connected. On the other hand, given an upper bound on the mean
curvature of Σ, the monotonicity formula shows that every component of
Σ ∩ B2r0 which intersects Br0 makes a definite contribution to H2

g(Σ ∩
B2r0). Hence the number of such components is bounded in terms of
H2

g(Σ ∩ B2r0). By Proposition 5.3, Σ has at most one component that
is disjoint from Br0 . q.e.d.

We record the following well-known isoperimetric inequality which
follows in a standard way from the Sobolev inequality, cf. [11, Lemma
2.4].

Lemma 5.5. Let (M̂, ĝ) be a complete Riemannian manifold diffeo-
morphic to R

3 that contains the initial data set (M,g) isometrically.

There exists a constant γ > 0 depending only on (M̂, ĝ) such that

L3
ĝ(U)

2
3 ≤ γH2

ĝ(∂
∗U) holds for every bounded Borel set U ⊂ M̂ with

finite perimeter.

Corollary 5.6. Let Ω be an isoperimetric region (i.e. a minimizer
in (2)) in an initial data set (M,g). Then the number of components
nΣ of Σ := ∂Ω is bounded by a constant depending only on (M,g). If
(M,g) has non-negative scalar curvature, then H2

ΣH2
g(Σ) ≤ 64π

3 nΣ. In
particular, the mean curvature of the boundaries of isoperimetric regions
tends to zero with their volume.

Proof. If r0 is large, depending only on (M,g), and if L3
g(Ω ∩ B2r0)

is small compared to L3
g(B2r0), then consider the region obtained from

replacing the part of Ω that lies in B2r0 by a coordinate ball of g-
volume L3

g(Ω ∩B2r0) near the boundary of B2r0 , and use this region as
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a competitor for least area under the volume constraint to obtain an
explicit estimate for H2

g(∂Ω ∩ B2r0). If L3
g(Ω ∩ B2r0) is not small when

compared to L3
g(B2r0), we replace Ω∩B2r0 by a centered coordinate ball

Br′ of volume L3
g(Ω ∩ B2r0). It follows that H2

g(∂Ω ∩ B2r0) is bounded
explicitly in terms of r0. Taking r0 even larger if necessary we may apply
Proposition 5.4 to obtain a bound nΣ on the number of components of
Σ = ∂Ω. That H2

ΣH2
g(Σ) ≤ 64π

3 nΣ then follows from Lemma 2.5. The

isoperimetric inequality in Lemma 5.5 shows that H2
g(∂Ω) → ∞ as

L3
g(Ω) → ∞, proving the last claim. q.e.d.

Appendix A. Integral decay estimates

In this appendix we collect estimates for surface integrals of decaying
quantities. Our computations take place on the part of an initial data
set (M,g) that is diffeomorphic to {|x| ≥ 1} ⊂ R

3 where

r|gij − δij |+ r2|∂kgij | ≤ C for all r := |x| ≥ 1.(5)

Lemma A.1 ([17, Lemma 5.2]). Let (M,g) be an initial data set for
which the decay assumptions (5) hold. For every exponent p > 2 there
exist constants C1 and r0 ≥ 1 such that for every closed surface Σ ⊂ M

with Σ ∩Bρ = ∅ for some ρ ≥ r0 one has the estimate
∫

Σ
r−pdH2

g ≤ C1ρ
2−p

∫

Σ
H2dH2

g.

We need the following extension of the previous lemma. The proof is
a slight modification of the proof in [17]:

Lemma A.2. Let (M,g) be an initial data set for which the decay
assumptions (5) hold. For every exponent p > 2 there exist constants
C2 and r0 ≥ 1 such that for every ρ ≥ r0 and every surface Σ ⊂ M \Bρ

with ∂Σ ⊂ ∂Bρ one has the estimate

∫

Σ\Bρ

r−pdH2
g ≤ C2ρ

2−p

(

∫

Σ\Bρ

H2dH2
g +

H1
g(Σ ∩ ∂Bρ)

ρ

)

.

Proof. Let ∂r be the radial vector field
∑3

i=1
xi√

x2
1+x2

2+x2
3

∂i in the

asymptotically flat end. Note that for every p ∈ R one has that divΣ
(

r1−p∂r
)

=

(2−p)r−p+pr−pg(ν, ∂r)
2+O(r−p−1). Integration by parts on the surface

gives that
∫

Σ\Bρ

divΣ(r
1−p∂r)dH2

g

=

∫

Σ\Bρ

Hr1−pg(∂r, ν)dH2
g +

∫

Σ∩∂Bρ

r1−pg(∂r, η)dH1
g
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where η is the co-normal of the boundary of Σ\Bρ. Specializing to p = 2
this implies that
∫

Σ\Bρ

g(ν, ∂r)
2

r2
dH2

g

≤ C2

(

∫

Σ\Bρ

H2dH2
g +

H1
g(Σ ∩ ∂Bρ)

ρ

)

+O

(

∫

Σ\Bρ

r−3dH2
g

)

.

Combining this with the estimate obtained for p = 3 one obtains that
∫

Σ\Bρ

g(ν, ∂r)
2

r2
dH2

g ≤ C2

(

∫

Σ\Bρ

H2dH2
g +

H1
g(Σ ∩ ∂Bρ)

ρ

)

.

The estimate for general exponents now follows easily from this. q.e.d.

Appendix B. Bending energy and area growth

Here we modify the proofs of some results in [35] so we can apply
them in a manifold setting:

Lemma B.1. Let (M,g) be an initial data set. There exists r0 ≥
1 depending only on (M,g) such that for all ρ ≥ r ≥ r0 and every
bounded surface Σ ⊂ Bρ \ Br with ∂Σ ⊂ ∂Br one has that H2

g(Σ) ≤
4ρ2

∫

ΣH2dH2
g + 4rH1

g(∂Σ).

Proof. We adapt the argument in [35, bottom of p. 285]. Let X :=
∑3

i=1 xi∂i be the position vector field, and choose r0 so large that
g(X,X)|x ≤ 4|x|2 and that the g-trace of ∇gX over any 2-dimensional
subspace of TxM is at least 1 provided that |x| ≥ r0. Then for r ≥ r0
one has that

H2
g(Σ) ≤

∫

Σ
divΣ(X)dH2

g =

∫

Σ
H(X, ν)dH2

g +

∫

∂Σ
(X, η)dH1

g

where η is the outward pointing normal of ∂Σ. Hence

H2
g(Σ) ≤ 2ρH2

g(Σ)
1
2

(
∫

Σ
H2dH2

g

)
1
2

+ 2rH1
g(∂Σ)

and the claim follows.
q.e.d.

Lemma B.2. Let r > 0 and let Σ ⊂ R
3 \Br be a surface with ∂Σ ⊂

∂Br. There exists a universal constant C3 such that for r ≤ σ < ρ < ∞
one has that

H2
δ(Σ ∩Bσ)

σ2
≤ C3

(

H2
δ(Σ ∩Bρ)

ρ2
+

∫

Σ∩Bρ

H2
δ dH2

δ +
H1

δ(∂Σ)

σ

)

Proof. This is a simple extension of the proof of inequality (1.3) in
[35] to the case where the surface has an inner boundary. q.e.d.



100 M. EICHMAIR & J. METZGER

Lemma B.3. Let (M,g) be an initial data set. There exists a con-
stant r0 ≥ 1 such that the following holds: For r0 ≤ σ < ρ and every
bounded surface Σ ⊂ M\Bσ with ∂Σ ⊂ ∂Bσ and such that supx∈Σ |hΣ(x)||x| ≤
c one has that

H2
g(Σ ∩Bσ)

σ2
≤ C4

(

H2
g(Σ ∩Bρ)

ρ2
+

∫

Σ
H2

gdH2
g +

H1
g(∂Σ)

σ

)

where C4 depends only on (M,g) and c.

Proof. For sufficiently large r0 the curved Hausdorff measures are
equivalent to the Euclidean ones on M \Br0 . We know that |Hδ−Hg| .
|x||hΣ|+1

|x|2 so that

∫

Σ∩Bρ

H2
δ dH2

δ ∼
∫

Σ∩Bρ

H2
δ dH2

g .

∫

Σ
H2

gdH2
g +

∫

Σ
|x|−4dH2

g.

Moreover,
∫

Σ |x|−4dH2
g . σ−2

(

∫

ΣH2
gdH2

g +
H1

g(∂Σ)

σ

)

by Lemma A.2.

q.e.d.

References

[1] J.L. Barbosa & M. do Carmo, Stability of hypersurfaces with constant mean
curvature, Math. Z. 185 (1984), no. 3, 339–353, MR 731682 (85k:58021c)

[2] J.L. Barbosa, M. do Carmo & J. Eschenburg, Stability of hypersurfaces of con-
stant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), no. 1,
123–138, MR 917854 (88m:53109)

[3] H.L. Bray, The Penrose inequality in general relativity and volume compari-
son theorems involving scalar curvature (thesis), arXiv:0902.3241v1 [math.DG]
(1998).

[4] S. Brendle, Hypersurfaces of constant mean curvature in deSitter-Schwarzschild
space, arXiv:1105.4273v1 [math.DG] (2011).

[5] S. Brendle & M. Eichmair, Isoperimetric and Weingarten surfaces in the
Schwarzschild manifold, preprint (2011).

[6] L.-F. Cheung, A nonexistence theorem for stable constant mean curvature hyper-
surfaces, Manuscripta Math. 70 (1991), no. 2, 219–226, MR 1085634 (91k:53070)

[7] H.I. Choi & R. Schoen, The space of minimal embeddings of a surface into a
three-dimensional manifold of positive Ricci curvature, Invent. Math. 81 (1985),
no. 3, 387–394, MR 807063 (87a:58040)

[8] D. Christodoulou & Shing Tung Yau, Some remarks on the quasi-local mass,
Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math.,
vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 9–14, MR 954405
(89k:83050)

[9] T.H. Colding & W.P. Minicozzi, II, Estimates for parametric elliptic integrands,
Int. Math. Res. Not. (2002), no. 6, 291–297, MR 1877004 (2002k:53060)

[10] A.M. Da Silveira, Stability of complete noncompact surfaces with constant mean
curvature, Math. Ann. 277 (1987), no. 4, 629–638, MR 901709 (88h:53053)



STABLE CMC SURFACES 101

[11] M. Eichmair & J. Metzger, Large isoperimetric surfaces in asymptotically flat
manifolds, arXiv:1102.2999 [math.DG] (2011)

[12] ———, Unique isoperimetric foliations of initial data sets in all dimensions,
arXiv: 1204.6065 [math.DG] (2012).

[13] D. Fischer-Colbrie & R. Schoen, The structure of complete stable minimal sur-
faces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math.
33 (1980), no. 2, 199–211, MR 562550 (81i:53044)

[14] W.H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo (2)
11 (1962), 69–90, MR 0157263 (28 #499)

[15] D. Gilbarg & N.S. Trudinger, Elliptic partial differential equations of second
order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the
1998 edition, MR 1814364 (2001k:35004)

[16] L.-H. Huang, Foliations by stable spheres with constant mean curvature for iso-
lated systems with general asymptotics, Comm. Math. Phys. 300 (2010), no. 2,
331–373.

[17] G. Huisken & S.-T. Yau,Definition of center of mass for isolated physical systems
and unique foliations by stable spheres with constant mean curvature, Invent.
Math. 124 (1996), no. 1–3, 281–311, MR 1369419 (96m:53037)

[18] S.E. Koh, Stability of a constant mean curvature surface in R
3, Bull. Austral.

Math. Soc. 36 (1987), no. 1, 19–24, MR 897418 (88e:53008)
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