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Entries of Random Matrices

Abstract

Let U, be the group of n x n unitary matrices. To select a random unitary matrix, we
use the Haar measure. Much study has been devoted to the eigenvalues of random unitary
matrices, but little is known about the entries of random unitary matrices and their powers.
In this work, we use eigenvalues to understand the entries of random unitary matrices and
their powers. We characterize the exact distribution of the top-left entry in the case where the
matrix is raised to a power at least n, and give some relationships for smaller powers. These
results may have applications in quantum mechanics, telephone encryption, and statistical

analysis, in addition to helping illuminate the field of random matrix theory.



1 Introduction

An orthogonal matrix A is a matrix with real-valued entries such that AA™ = I. Similarly,
unitary matrices are those with complex-valued entries such that AA* = I, where A* denotes
the conjugate transpose of A, that is, if A is nxn, then Aj; = Aj;forall 1 <i,j <n.Ineach
case, the rows and columns of the matrix are orthonormal vectors, or vectors whose lengths
are 1 and whose pairwise dot products are 0. Let O,, be the set of n x n orthogonal matrices,
and U, be the set of n x n unitary matrices. Both are compact topological groups. To define
a random orthogonal or unitary matrix, we use the concept of the Haar measure: in any
compact group (G, it is the unique probability measure P which is translation invariant, that
is, for any measurable set A C G and any element M € G, P(A) = P(MA).

To construct a random Haar distributed orthogonal matrix, it suffices to independently
choose each entry of the matrix from a normal distribution centered at zero, then orthonor-
malize the matrix by the Gram-Schmidt algorithm; see Diaconis [3]. An analogous method
also works in the unitary case, using normally distributed complex entries.

For any given matrix A, if A7 = AZ for some nonzero vector ¥ and scalar A\, then \ is
called an eigenvalue of A, and 7 is called an eigenvector. The eigenvalues of unitary and
orthogonal matrices lie on the unit circle in the complex plane, with those of orthogonal
matrices in conjugate pairs. Much study has been devoted to the eigenvalues of random
unitary and orthogonal matrices. Diaconis [3] notes several somewhat surprising facts about
eigenvalues. First, the eigenvalues tend to repel each other; the probability density for unitary
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is smaller when two eigenvalues are close together on the unit circle. A derivation is given by
Goodman and Wallach [6]. This means the eigenvalues are approximately evenly distributed

but otherwise random, as shown in Figure 1. As the matrix is raised to higher powers, the



effect decreases and the eigenvalues become more independent, so that the values tend to
clump more, as they have an equal probability of landing near another eigenvalue as far from
the other eigenvalues. When a random n x n unitary matrix A is raised to a power p > n,
the eigenvalues of the resulting matrix are independently and uniformly distributed on the

unit circle.
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Figure 1: For comparison we show (a) eigenvalues of A € Uy, (b) eigenvalues of A and (c)
50 independent and uniform e . Note that the independent values tend to clump to some
extent, while the eigenvalues are approximately evenly spaced. The eigenvalues of A are in
between the two — they clump more than in (a) but less than in (c). The eigenvalues of A
are completely independent and thus look like (c).

Little study has been devoted to the entries of random matrices. One of the few known
results is due to Borel [1]: if ' is a random orthogonal matrix in O,, then as n gets large,
the density of v/nl'1; approaches e~**/2. However, not much is known about the exact distri-
butions of the powers of random unitary matrices. We study these entries.

The field of random matrices has many applications in mathematics, along with its own
intrinsic value. It is clear that random matrices have a very deep and rich structure which
is not well understood. While many specific results are known about random matrices, little
is known about the underlying reasons that they behave as they do. This suggests that
studying random matrices may be interesting for its own sake. Within mathematics, the
zeroes of the Riemann Zeta Function repel each other similarly to the eigenvalues of random

unitary matrices. An empirical study by Coram and Diaconis [2] showed that the distribution



of the roots of the Zeta Function was just like that of the eigenvalues.

In addition to connections within mathematics, random matrices have applications to
real-world problems. Telephone encryption uses random matrices to encrypt data, and a
better understanding of random matrices makes it possible to easily generate pseudorandom
matrices which behave like truly random ones. Efficient algorithms using random matrix
theory were discovered by Diaconis and Shahshahani [4], Rosenthal [13], and Porod [10].
In statistics, the analysis of large data sets relies on understanding the eigenvalues of large
orthogonal matrices; see Mardia, Kent, and Bibby [7]. Finally, random matrices have appli-
cations in quantum mechanics, where raising a matrix to a power corresponds to applying
the same action repeatedly to a particular quantum state. A sample of such applications is
given in Timberlake [16].

In Section 2 we summarize our main results and provide histograms of realizations of
these theorems. In Section 3 we establish tools which will be useful in Sections 4 and 5. In
Section 4 we consider the case where the matrix is raised to a power at least equal to its

dimension, and in Section 5 we consider lower powers.

2 Summary of main results

To facilitate the visualization of the results, we include in Figure 2 histograms generated from
simulations of the first entries of 20,000 random matrices from U, raised to the p™* power
forn=3,4, and 5 and p =1, 2, ..., 5. For the p = 3 and n = 3 case a three-dimensional
histogram of 1,000,000 random matrices is shown in Figure 3.

Our first theorem deals with the distribution of entries of high powers of random unitary
matrices. Let (AP)q; be the top left element of AP. Then when p > n, if we select A randomly
from U, the distribution of (AP);; becomes the same for all p > n. We give a density function

for that distribution.
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Figure 2: Histograms of a cross-section of the distribution of (U?);; on the unit circle, gener-
ated by considering the magnitudes of (U?)q;, then normalizing for the increased density of
points towards the edge of the unit disk. The horizontal axis goes from 0 to 1, that is, from
the center of the disk to the edge, and the vertical axis is the density. Note, for example, that
when p > n, the probability density stabilizes, and that for n = 3 and p > 3, the density is
uniform (since by Theorem 1 the density function is constant).

Figure 3: A three-dimensional histogram of a simulation with 1,000,000 matrices with n = 3
and p = 3. The x and y axes are the real and imaginary parts of the first entry, and the z
axis is the probability density. Notice that the distribution is uniform and isotropic, just as
shown in the cross-section histograms and just as predicted by Theorem 1. For comparison,
the corresponding cross-section histogram is included.



Theorem 1. Let n > 2, and let A be a random n X n unitary matrix selected according to
Haar measure. Then Z, = (AP)1; has probability density function fz, (¢) = c(1—|¢|?)"Z" on
n—1

the unit disk for all integers p > n, where ¢ = %=

Our second theorem deals with the distribution of lower powers of random unitary ma-
trices. When 1 < p < n, the exact distribution of the first entry does not appear to have a
n

simple density function. However, when {ﬂ < p < n, some information can be gained about

the moments of the squared magnitudes of the distributions.

Theorem 2. Let n > 2, and let (%w < p1 < ps < n. Let A be a random n X n unitary
matriz selected according to Haar measure. If the e™ moment of X = |(APY)11]? is pe, and

the e moment of Y = |(AP2)11|? is v., then when e is a positive integer, pio < V..

In effect, this means that as p increases, Z = (AP);; is more likely to fall towards the
edge of the unit disk than it is for p small. For example, when n = 3, (A?);; is distributed
mostly towards the center of the disk, while (A%);; is uniform over the disk by Theorem 1.
This can also be observed in Figure 2, where the probability densities bulge more towards
the right as p gets larger.

We conjecture that Theorem 2 holds for all 1 < p; < ps < n; statistical samples appear

to support this conjecture.

3 Tools for understanding random matrices

One important tool in the study of random matrices is that of moments. Given any continuous
probability distribution X over R with density function f, the e moment of X is defined

as

ne= B = [ atp(e) de
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Remark 3 (Feller [5]). The moments of a bounded distribution uniquely define that distri-

bution.

Proof. In brief, the moments determine the distribution since they determine the Fourier
Transform of the density function, which in turn determines the distribution. A full proof

appears on page 233 in Feller [5]. ]

While finding the density function from the moments may be difficult, understanding the
moments can be key to understanding the probability distribution.
Let R(z) be the real part of the complex number z. We note a consequence of a classical

theorem of probability theory.

Remark 4. If Z is a distribution over C which is independent of phase, then R(Z) uniquely

determines Z.

Proof. Tt is a classical theorem of probability theory that a probability measure on R" is
completely determined by its 1-dimensional marginals (a proof is given as Remark 2.3.5 in

Stroock [15]). The result is merely a special case of this fact. O

Next, we derive Lemma 5, a well-known integral identity which is useful in the proof of

Theorem 1.

Lemma 5. For all even nonnegative integers k,
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/ " cos(0)t do = 2

Proof. We induct on k. If £ =0, then

/0% cos(¢)’ do = /027r do =2 = 2\/7?1;((% :

Now suppose that
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Then integrating by parts with u = cos(¢)*~! and dv = cos(¢) d¢ gives

2

| eosto)f o = cos(o) Tsin(@)| " = [ (k= 1) costo)t (= sin(0)sin(0) do

0

/ 7 cos(@)* do = (k — 1) / 7 cos(@)2do— (k— 1) / 7 cos(6)* do
k/jﬂ cos(¢)*dp = (k — 1) /027r cos(¢)" 2 do

??‘

7) _, ()
) - 2\/_1“ (k+2)'

2

/ 7 cos()F dé = kglzﬁrr((?)) Y E

Finally, Lemma 6, another well-known lemma about trigonometric integrals, is useful in

wl?r
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the proof of Theorem 2.

Lemma 6. If a and b are nonnegative integers, then fo%(sin 0)*(cos 0)* df is zero if at least

one of a or b is odd, and positive otherwise.

Proof. We merely use the symmetry of the sine and cosine functions.

2 w/2 T
/ (sin )% (cos 0)" df = / (sin 0)*(cos )" df +/ (sin 6)*(cos 0)" do
0 0 /2

3m/2 T
+ / (sin 0)*(cos )" df + / (sin 0)*(cos 6)" df
™ 3

/2

2w /2 /2
/ (sin 0)*(cos §)" df = / (sin @)% (cos 0)" df + (—1)b/ (sin 6)*(cos 0)" do
’ " w/2 ’ w/2 (1)
+ (—1)a+b/ (sin 0)*(cos )" df + (—1)b/ (sin @)% (cos 6)" dh.

When at least one of a or b is odd, exactly two of the powers of —1 in (1) are odd powers,

so the whole integral is zero. When both are even, (1) simplifies to

w/2
4/ (sin 0)*(cos 6)° d6,
0

which is always greater than zero. O



4 Higher Powers

We now proceed to the proofs of our main theorems. In the ensuing discussion of powers of
random unitary matrices, it is important to understand random (real) unit vectors on the n-
dimensional sphere. One way to generate such a random vector is to generate n random and
normally distributed real numbers, then divide each by the sum of their squares. However,
it is often much simpler to use the distribution of a single entry. Therefore, we begin with a
lemma about this distribution. Throughout the paper, we let ¢ be a normalization constant

independent of the moment number.

Lemma 7. If X = (X1, Xs, ..., X,) is a random unit vector in n dimensions, then the

density function for Xi is fx,(z) = c(1 —22)"z on [—1,1].
The proof is a common exercise in multivariable calculus and is given in Appendix A.

Lemma 8. Let X be the first coordinate of a random real unit vector in 2n dimensions, and
let' Y be the first coordinate of an independent random real unit vector in 2n — 1 dimensions.

Then W = (1 — X?)(1 — Y?) has density function fy(w) = cw™? on [0,1].

Proof. By Lemma 7, X has density function fx(z) = c(1—2?) “” and Y has density function

fr(y) =c(1— y2)2n7274. Then if B(z,y) is the beta function, the e™® moment of W is

[(1—X%)"(1 = Y?)]

/_1/_1 (1—2)(1 — y»)°(1 — 22) T
/




1
C—7
e+n—1
where the F(%)2 is absorbed into ¢. But pg = E[Z°] = E[1] = 1 s0o ¢ = n — 1. Then

He =

_ n—1
He = e+n—1"

Now consider the moments v, of the random variable V' with density function fy (v) =

cv™ % on [0, 1]:
1

1
ve = E[V¢] = c/ v dr = c—n.
0 e+n—1

n—1

otn—7- The moments of V' are identical to those

Again, vy = 1 so ¢ = n — 1. Then v, =

of W, so since both distributions are bounded (in [0, 1]), they must be the same, that is,

fw(w) = cw™ 2. O

Remark 4 suggests that understanding the relationships between the density function of
a distribution and the density function of its real part is important. The next lemma gives

a specific relation.

Lemma 9. If Z is a random variable with density function fz(¢) = c(1 —|([2)* on the unit

disk, then the density of its real part is fyz)(x) = c(1 — x2)k+% on [—1,1].
Proof. We consider the moments of R(Z). Let Z = X +iY and consider the e moment of
R(Z).

1 —V1—22
EREy) =c [ [ Rari)-los i) dyds
—1J—v1-22

1 V1—z2
:c/ / 2°(1 — 2? — y*)* dy dx
)y
1

V1—z? 3 2 k
1 v1-—
= c/ 2°(1 — )"z (2/ v (1 Y > 0 Y 5 dy> dx
~1 0 X

Yy 12

1 1 2
= C/ 2¢(1 — 2?)Ft2 </ w2 (1 —u)” du) dx (Where u= 1 Y 2)
_ 0 — X

10



where the beta function is independent of the moment number and thus becomes part of c.
But these are just the moments of the distribution with density function f(z) = ¢(1—22)k 2,

so the lemma is complete. ]

We now proceed to the proof of Theorem 1. Let U be a random n X n unitary matrix
selected according to Haar measure, and let \j, Ao, ..., A, be its eigenvalues corresponding
to eigenvectors vy, v3,...,v,. Then since unitary matrices are diagonalizable, if @) is the
matrix whose columns are the v;, and D is the diagonal matrix with the \; along the diag-
onal, we know that U = Q~'DQ, from which we can see that U? = Q~1DP(Q. In addition,
Marzetta et al. [8] proved that the eigenvectors of U are isotropic and independent of the
eigenvalues, so () is a random unitary matrix independent of D. Note that the eigenvalues
of U? are exactly the A! which appear along the diagonal of DP. Rains [11] proved that
whenever p > n, the eigenvalues of U? are distributed as n points chosen independently and

uniformly on the unit circle. This allows us to find the entries of the corresponding powers

of U.

Theorem 1. Let n > 2, and let A be a random n X n unitary matrix selected according to

n—3

Haar measure. Then Z, = (AP)11 has probability density function fz, (¢) = c(1—1[([*)= on

n—1

the unit disk for all integers p > n, where ¢ = "=,

Proof. Let U = Q7 'DQ = Q*D(Q where Q* represents the conjugate transpose of @, and

let A1, Ao, ..., A\, be the eigenvalues of U corresponding to eigenvectors v;. Then
XYoo 0 Qn
- 0 )\p cee 0 le
Zn=U")11 = (Qll Qn in) : :2 . : :
o 0 - X Qn1
Zn =) NQuQn
i=1
Zn = _ N|Qul* (2)
i=1
11



However, the A are independent and uniform on the unit circle, so we may replace them
with random variables ¢/®* which are independent and uniform on the unit circle, eliminating
the eigenvalues from the equation. In addition, () is a random unitary matrix independent of
the \; and thus the ®;, so its first column is a random complex unit vector in n dimensions.

We now prove that the real part of Z, has density function fyz,(¢) = (1 — ¢%)"z" by
induction on n. As a base case, let n = 1. Since Z; is just a uniform distribution over the unit
circle, Lemma 7 shows that fr(z,)({) = (1— ¢%)~2 is the distribution of the first component,
that is, the real part of Z;.

(n-1)-2

Now suppose that the density function for R(Z,_1) is frz, () = ¢(1 —¢*)" = .

Pulling the first term out of (2) gives

Zn = |Qul?e™® + (1 — |Qul*) Zns
R(Zy) = [Qu*R(e®) + (1 = [QuI*)R(Z, 1),
where ()17 is selected as the first coordinate of a random complex n-dimensional unit vector
and @ is uniform over the interval [0, 27]; we scale Z,,_; by 1 — |Q11]? to account for the fact
that the remaining @Q;; are chosen as a random vector with squared magnitude 1 — |Q1;]?.
Switching over to real-valued variables, we select X as the first coordinate of a 2n-dimensional
unit vector, then select Y as the first coordinate of a (2n — 1)-dimensional unit vector. Then,

using a scaling factor since the imaginary part of ()7 is in effect selected from a vector of

length v/1 — X2,
Qu=X+Yivl - X?

QU =X+ (1-X)Y?*=1—-(1-X?)(1-Y?).
Therefore, X and Y can be replaced by the single random variable W, where W = (1 —
X?)(1 — Y?) has distribution fi(w) = cw™ 2 by Lemma 8.

We proceed by calculating the moments of £(Z,,):

pe = B[((R((1 = W)e'® + WZ,1))°]

12



‘C/_l// (1~ w) cos(6) + Q) w2 (1 — ) dw d ¢
—c / | 27 (k () (11— w)* cos(cb)’“wekc”) (1= ) duwdgd
SO om0 ) ([ eore) ([ o)

If e is odd, either k is odd, in which case the integral involving ¢ is zero, or k is even so e — k

is odd, in which case that involving ( is zero, thus the entire expression is 0. When e is even,
we set u = (2 and get

e () ([ernmrac) ([Tomots) (Lo -veessu
2O > ([Fomora) ([ -rersac
—e () m (A ) (R me kv

&

Me:cg(z) (r(e?;@l—);n()%—l)> ( > (F(e—k%—n—l)lﬁ(k—i-l)).

I'(e+n)

N—

It can be verified (see Appendix B) that, up to constant factors dependent only on n,

this is equal to

T ()

Now we compute the moments v, of desired distribution whose real part has density

2

function f(z) = c(1 —2%)"5 .

1
:c/uZ(l—u) "2 du (with u = %)
0

13



Ve = e,
where the constants must be the same since 1y = 1 = po. Then the real parts of the
distributions must be the same, so by induction, fyx(z,)(¢) = c¢(1 - 2)"2% for all n. Thus, by

Remark 4 and Lemma, 9,

n—3

f2,(¢) = c(1—[¢*)

for all n; the value ¢ = 2; is easy to verify. m

5 Lower powers

When considering powers less than n of uniformly random matrices, a result of Rains [12]
gives an important way of studying the eigenvalues, and through them, the entries of the
powers of a uniformly random matrix. Rains showed that the distribution of eigenvalues
of the p™ power of a random unitary matrix is equivalent to the direct sum of p indepen-
dent distributions, each of which is the distribution of a smaller random unitary matrix.
Specifically, if A,, is a uniformly random n X n unitary matrix, then

A~ D Ap).

0<i<p
Therefore, understanding the effect of the correlation between eigenvalues, even if only
between two, is critical in understanding powers of larger A,. Recall that the probability

density for the two eigenvalues of a matrix selected from U, is
F(01,05) = cle®® — ei%2?
= c((cos 0y — cosBy)? + (sin B — sin 6)?)
= ¢(2 — 2cos b cos by — 2sin 6, sin 6,)
= ¢(1 — cos(60; — 63)), (3)

where the factor of 2 is pulled into the constant. We continue with a lemma involving this

14



density.

Lemma 10. Let x; and x5 be fixed positive real numbers, and let Y1 and Yy be random
variables such that Y, = x1€"" 4+ 292 where the 0; are independent and uniform over
[0,27] and such that Yo = 11 + 29€"%2 where the 0; are selected with probability density
c(1—cos(0,—02)), with each 6; in [0, 27|. Then the positive integral moments of the magnitude

of Y1 are greater than the corresponding moments of the magnitude of Y.
Proof. Let . be the e moment of Y7, and let v, be the e moment of Y5. Then
2w 2w ) )
Ve = C/ / |[E16201 + [E26102|e(1 — COS(91 — 92)) d91 dQQ
o Jo

2w p2w+02 )
= C/ / |[L’162(91_02) + 1’2|e(1 — COS(Ql — 92)) d91 d@g
0 02

2 p2w
= c/ / |21 + 5| (1 — cos 8) dd dby (letting 0 = 61 — 0)
o Jo
—c~27r-2/ e + z|(1 — cos §) db (Withl’:ﬁ>0)
0 1
/2 L
=c / \e“s—i-a:|(1—cosé)d5+/ e + 2|(1 — cos §) dé
0 w/2

/2 /2
= e +C (/ e + z|(— cos d) d(5+/ \el(”5)+x|cos§d6>
0 0
w/2 ‘ ‘
Ve = fle + c/ (cos0)(|e™ %) + x| — |€® + z|) do
0

But the real part of €% is greater than that of /™% whenever 0 < § < 5 and the imaginary
parts of the two are equal, so the integrand is always negative on [0, 7]. Then v, < p. as

desired. ]

Theorem 2. Let n > 2, and let [%w < p1 < p2 <n. Let A be a random n X n unitary matriz

selected according to Haar measure. Then if the e moment of X = |(AP')11]? is e, and the

e™ moment of Y = |(AP2)11|? is v., then when e is a positive integer, o < V..

We can now proceed to the proof of Theorem 2.

15



Proof. Let B, be a random variable representing the top left entry of the p™ power of a
random n X n unitary matrix, and let {%W < p < n. Then we want to show that moments of
the squared magnitude of B, are greater than those of the squared magnitude of B,. The
result follows.

Since (%1 < p < n, the eigenvalues of the p'" power of a random n x n unitary matrix
are the union of sets of eigenvalues chosen as those of some number of random 2 x 2 matrices
along with some number of independent eigenvalues. The eigenvalues of the (p+ 1) power of
the same matrix consist of one fewer pair of correlated eigenvalues and two more independent
ones, that is, one of the sets of eigenvalues from U; becomes two independent eigenvalues.
Let B be the weighted sum of the unchanged eigenvalues (those selected in the same way
in both cases), and let x; and x5 be the remaining entries in the first eigenvector, such that
B, = 1€ 4 129¢"2 4+ B, with the 6; having density function f(6y,60s) = c(1 — cos(6y — ),
and B, = 21" + 25¢% 4+ B with independent and uniform 6, and 6,. Note that #; and 6,
are independent of the x; and B. Fix B and the z;, then let xe® = %(xlewl + 29€%), where
x depends on the ¢; and « is independent and uniform on [0, 27]. Note that Lemma 10 means

that after B and x; are fixed, the moments of x are larger when the 6; are uncorrelated, in

B,11. But then we can calculate the moments of the squared magnitude of B, :

E||Bpa|*] = B[B*|ve™ + 1|*]

— B°E Z (Z) (zcosa + 1)*(sin a)2€—2k]

LEk=0

— B°E Z (Z) i (2;“) 27 (cos @) (sin Q)M'f]

L k=0 =0

5 () (%) onaren

k=0 §=0 J

By Lemma 6, the second expected value is nonnegative; if e > 0, then at least one term must

be positive. Then when E[z7] increases, so does |B,.1]*, so the moments of the squared

16



magnitude of B,y are greater than the corresponding moments of the squared magnitude

of B,. O

6 Conclusion

In the preceding sections, we have explored the distributions of entries of powers of random
unitary matrices. We have exactly characterized the distributions of the top left entries of
matrices raised to powers at least equal to the dimension. Specifically, if U is an n xn random

unitary matrix, then (UP);; has density function

Q) = (1= [¢hT

over the unit disk. Furthermore, while the distributions of lower powers appear to be
difficult to exactly describe, we have given results in specific cases — the moments of the
magnitudes of the distributions increase as p increases, whenever p is at least (%] and at
most n. We conjecture that this relationship extends to all 1 < p < n.

This work has direct relation to the applications of random matrix theory discussed in
the introduction. The quantum mechanical applications in particular are directly related to
the first entry of the powers of U. However, in a deeper sense, the field of random matrices is
not well understood. Any new method of approach gives another possible means to figure out

why random matrices really behave the way they do. We hope our work will help illuminate

the field as a whole.

17
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A Proof of Lemma 7

Lemma 7. If X = (X1, Xo,...,X,) is a random unit vector in n dimensions, then the

density function for Xy is fx,(x) = c¢(1 — 5132)%3 on [—1,1].

Proof. Let the surface area of a unit sphere in n dimensions be .S,,. We determine the area

of a band of sphere from z; = = to x + dx. If r = /1 — 22, the circumference of the band

is S,_1r"2, and its width is \/da:2 + (g—; dx)Q. But r = v1 — 22 so j—; = —\/1%7. Then the

width simplifies to
x2 dx

1—22"  1—22

so the total area is

dr = c(1 — xQ)angdx.

Then the probability of picking a point with a < X; < b is ff (1 — 22)"2" dz so the density

function is ¢(1 — 22)"z" on [—1,1] as desired. O

B Derivations of gamma function identity

Lemma 11. Up to the constant

which depends only on n,

50 () () ()-SR

k=0 2
even

Proof. The Mathematica command

Assuming[Element [m,f, Integers],
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FullSimplify[Gammal[(n-1)/2]Gamma[(2f+1)/2]/Gamma [ (n+2f+1)/2]/(2Sqrt [Pi])==
Sum[1/Pi Binomial[2f,2j]Gamma[(n)/2]Gamma[(2f-2j+1)/2]
Gamma [(2j+1) /2] Gamma [2m+n-2j-1] Gamma [2j+1]

/(Gamma [ (2f+n-23) /2] Gamma [ (2j+2) /2] Gamma [2f+n]) ,{j,0,£}1]1]

(where e is replaced by 2f and k by 2j since each is even) returns True, so the identity
is verified.

Alternately, for a more human-verifiable proof, we can use the Mathematica package
FastZeil, created by Paule and Schorn [9], the accuracy of which was proven in Schorn [14].
We split into two cases, one where n is even, and one where it is odd. If n is even, we replace

it with 2m and the command

Zb[Binomial [2f,2j]Gamma [(2m) /2] Gamma [ (2f-2j+1) /2]
Gamma [(2j+1) /2] Gamma [2f+2m-2j-1] Gamma [2j+1]

/ (Gamma [ (2£+2m-2j) /2] Gamma [ (2j+2) /2] Gamma [2f+2m] ), {j,0,f}, m, 1]

returns the recursion
(1-2m)SUM[m] + (1+2m+2f)SUM[1+m] ==

where SUM[m] is the desired sum, which can be checked by hand using the forward

difference (Ay) also generated by the package:
(2m +2f + F(G, 1 +m) + (1 = 2m)F(j,m) = A;(F(j,m)R(j, m))

where F'(j,m) is the desired summand and

J(=2j+2m+2f —1)
m+ f '

R(j,m) =
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The left side of the equation can be verified to satisfy the recursion. Since the two can
be verified to be equal for m = 1, they are equal in general.
If m is odd, the analogous approach works, with m replaced by 2m + 1. The original

command becomes

Zb[Binomial [2f,2j]Gamma [ (2m+1) /2] Gamma [ (2f-21+1) /2] Gamma [ (21+1) /2]
Gamma [2f+2m+1-2j-1]Gamma [2j+1] /Gamma [ (2f+2m+1-23) /2] /

Gamma [ (2j+2) /2] /Gamma [2f+2m+1], {j,0,f}, m, 1],

and the recursion becomes
-m SUM[m] + (1+m+f)SUM[1+m] == O,
with

. 2§(=j+m+f)
R(3,m) = 2m + 2e + 1

giving

(m+f+1DF(G, 1+m) —mF(j,m) = A;(F(j,m)R(j,m)). O
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