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Abstract 

 In this paper, we have determined that the normal definition of distance for graphs is 
inadequate.  Thus, we have defined a new definition of distance for graphs, motivated from quantum 
mechanics, and we explore this new definition of distance using Mathematica and compare it to the 
standard one in various examples of graphs.  The different types of graphs studied are linear graphs, grid 
graphs, and Erdős–Rényi graphs. 

 

 

 

 

 

 

 

 

August, 2010  

O.02 ------  2

http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model


3 
 

B

C

A

D

1. Introduction and Motivation 

A graph G = (V(G), E(G)) is defined by the vertex-set V(G) and the edge-set E(G).  For a general 
introduction to graphs, see [1].  Each edge is an undirected pair of two vertices.  We will assume that 
there are no multiple edges between two vertices, no loops (a vertex that is connected to itself), and 
that the graph is connected.  Such a graph is simple.  For example, for the graph G = (V(G), E(G)) in 
Figure 1: 

                     

 

 

 

 

Fig. 1 

V(G) = {A, B, C, D} 

E(G) = { {A,B}, {B,C}, {B,D}, {C,D} } 

 Examples range from the collaboration graph to a Hollywood actor collaboration graph [1].   

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 
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Fig. 3 

 
Even space itself can be considered a graph of sorts, if one takes an infinite number of points 

and edges, with the points becoming closer to each other: 

 

 

 

 

 

 

 

 

 

 

Fig. 4 
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A question that we can ask is what is the distance in a graph?  Based on our intuition of the real 
world, the distance is merely the shortest path between the two points.  But how does that apply to a 
graph?  Traditionally, the distance between two vertices x and y of a graph is defined to be the shortest 
length of all of the paths from x to y [1].  A path p from x to y of length l defined as an ordered sequence 
of vertices from v = y0, y1, y2,…,yl that satisfy 

{yi, yi + 1} � E(G) for i = 0, 1,…,l-1 

and 

x = y0,   y = yl. 

We say that the length of p, |p| = l.  Let P(x,y) be the set of all paths from x to y. The distance 
between x and y, d(x,y), is formally defined as follows: 

d(x, y) = inf |p|,  �p � P(x,y).   (1) 

For example, in the graph below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 

using this definition of distance, we have d(1,6) = 1 and d(1,5) = 2. 
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A linear graph is a connected sequence of vertices.  A linear graph of 8 vertices is depicted 
below: 

 

 
Fig. 6 

 
With this definition of distance, the distance between two vertices is the number of edges from 

one vertex to another. For example, for the distance between vi and vj, where vi is the i-th vertex and vj 
is the j-th vertex, the distance is simply |j – i|.  For this case, this definition of distance agrees with the 
intuitive Euclidean notion of distance.  But in the example of an (m x n) grid graph, where m is the 
number of rows and n is the number of columns, this definition of distance does not agree with the 
Euclidean one.  For example, consider the 10 x 10 grid graph below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. 
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  The distance of the diagonally opposite vertices according to this distance is 9 + 9 = 18 (it is 
easy to prove that there are many minimal paths, all of which share this length).  But the Euclidean 

definition gives us 10�� ~ 14.14.  Which definition is better?  The first definition, the one that I have 
defined, is clearly the natural definition of a graph.  One might believe that the Euclidean definition of 
distance is even more natural.  However, this definition of distance is not intrinsic because it depends on 
how the graph is drawn.  Can one find an intrinsic definition of distance for a graph, which in this case is 
closer to the Euclidean definition rather than to the traditional definition?  Viewing flat space as a graph 
with infinitely many vertices and edges, the Euclidean definition of distance is more natural.  Thus, one 
would like to find a new, intrinsic definition of distance which is closer to the Euclidean one, at least for 
this case.  

 

2. Motivated Definition of Distance from Quantum Mechanics 

 Consider a particle in one dimension (as in, in a line) with a double well potential.  For example, 
consider the potential below: 

���� 	
V
� �
���� � ���, 

and the graph below:  
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Fig. 8 
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 In classical mechanics, the ground state is when the particle is at the bottom of one of the wells, 
at x = ± d/2.  In particular, if it is at x = -d/2, it would permanently reside there.  However, in quantum 
mechanics, the particle will always end up tunneling to the other potential, given enough time, and will 
oscillate back and forth between the two wells.  For an introduction to quantum mechanics, see [2].  The 
tunneling time, the time it takes to make one oscillation, for � � � is given by:  � 	 ���������� ����,     (2) 

 

where d is the distance, V the potential, and c a universal constant.  This equation implies that  

� ! �" #�� .       (3) 

Let us consider a simple model of quantum mechanics.  The time evolution of a particle is given 
by the Hamiltonian matrix H.  Each quantum state can be thought of as a vector in a vector space.  The 
state of a particle is given by a vector v which depends on time according to  $�%� 	 
 �&'()$�*�,     (4) 

where t is the time and v(0) the initial state.  For the double well, we can model the vector space 
as a two dimensional vector space, with the bottoms of the well forming a basis for the vector space.  
For our studies, we will only be looking at the two lowest states. 

We represent the left ground state by the vector +,-., the right ground state by the vector +-,., 

and the matrix 

/ 	 0�� 11 ��2 , 

where 1 3 �.   

The eigenvectors and eigenvalues for H are 

4 0��2 5 6��� 	 �� 7 1
0 ���2 5 6��� 	 �� � 18 

Let the particle begin at +,-., at the bottom of the left well.  Its state as a function of time is 

expressed as: $�%� 	 �&'()+,-.. 

Using the eigenbasis,
$�%� can be written as  
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$�%� 	 �&'() 9,� +,,. 7
,� +


,&,.:. 
 

$�%� can be simplified using its decompositions to the eigenvectors of H to 
 $�%� 	 �'�)+ ;�< =)&' <>" =)., 

which implies that the particle oscillates between the two wells, with an oscillation time of  � 	 ?= .  I will 

thus use this value of the time in my definition of distance.  Therefore, using equation (3), 

@ ! �"�AB��� .         (5) 

Notice that 1 is equal to half the difference of the eigenvalues of H: 

1 	
(E(2) – E(1))/2. 

This relation implies that   

   @ ! �"� �AC���DC�E���� .
 
 
 
 
 �6� 
Here, we have assumed that there are only two states.  In general, there will be many more 

states, and these states correspond to the two lowest eigenvectors and eigenvalues of H. 

This relation suggests a new way of defining distance for a graph.  Namely, we place wells at two 
vertices of the graph, compute the time to tunnel, and then use eq (6) to define the distance between 
them.  We thus need to first set up the analog of quantum mechanics for a graph. 

 

3. Quantum Mechanics on a Graph 

 Let us consider a simple graph G.  We shall define d(v) to be the degree of vertex v (the number 
of vertices that v is connected to in G).  Let the matrix L be defined as follows: 



G�H5 $� 	 4 �5 IJ
H 	 $
� ,K��L���M� 5 IJ
H
NO�
$
NP�
QROO�Q%��*5 
R%S�PTIU�V 8
 
 
 �7� 

The matrix L is the analog of the negative Laplacian, �X [3]. 
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 Our potential, V, is a diagonal matrix where the k-th diagonal element is the potential at the k-th 
vertex: 

Y 	

Z
[\
���� * * * ** ] * * ** * ��^� * ** * * ] ** * * * ��O�_

à
. 

 The Hamiltonian matrix H is defined as in the usual quantum mechanics by adding H = –X + V.  
 For our definition of distance between vertices vi and vj, we will construct a double well with the 
property that the potential is zero everywhere but at vi and vj , the i-th and j-th vertex, which we set to 
be V(i) = V(j)  = -V.  In other words,  ��^� 	 b��5 ^ 	 I
RP
c*5 R%S�PTIU�8     (8) 

 Thus, the matrix v V looks like as follows: 



Y 	 


Z
[[[
\* * * * * * ** ] * * * * ** * ��I� 	 �� * * * ** * * ] * * ** * * * ��c� 	 
�� * ** * * * * ] ** * * * * * ��O�_

`̀̀
aV 

 The Hamiltonian matrix H is defined as follows: 

d 	
�e 7 Y.      (9) 

 The time T is defined as follows:  

 � 	 ?f���&f�,�,     (10) 

 where E(1) and E(2) are the two smallest eigenvalues of H.  This relation can be shown explicitly 
and will be done in the future. 

And finally, the distance dV is defined as follows: 



dV	
 �"� �AC���DC�E���� .     (11) 
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Note that the definition of dV depends on a positive real parameter �
�
g+.  It would be 
interesting to study the limit of this definition as � h i. 

Our goal now is to explore using Mathematica the special properties that this definition of 
distance provides us.   

  

4. Examples 

 In this section, we present several examples.  

4.1 Linear Graph 

 Consider a ten vertex line graph, as in Figure 9 below: 

 
Fig. 9 

 
 Potentials of V = 5 are placed at the two ends, and the particle begins at the left end.  When we 
plot the probability I.e. j$�%��j, we obtain the graph of: 

    1   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    0 

/108 

       0         2             4                 6                 8                  10 

Fig. 10 
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 We observe two curves corresponding to j$j� at the two ends of the graph that oscillate back 
and forth between the values of close to 0 and 1, and a bunch of tiny curves that oscillate between 0 
and .1.  We can deduce that the particle for the most part oscillates between the two wells, and always 
at any moment in time has a small chance of being elsewhere on the graph.  The oscillation frequency, 
as shown in the graph, is around 3.5*108, which is the same as the value from our definition of time in 
terms of the difference of the two eigenvalues given by eq. (10).  This result supports our definition of 
time, and all of the line graphs that we have tested thus far support this definition of time.  From 
quantum mechanics, we know this definition of time to be the true for the examples of a line and a grid 
graph. 

For our next example, consider a 40 vertex line graph.  We defined our double well potential to 
be not the entire line, but the 10 vertex line from the 16th vertex to the 25th vertex.  We chose to embed 
our 10 vertex line graph in a 40 vertex line graph instead of creating a normal 10 vertex line graph 
because of the boundary effect.  For the vertices that are close to the edge, unwanted boundary effects, 
just like in physics, appear to set in. 

 Figure 11 below represents our value of distance from the 16th vertex to every single other 
vertex up to the 25th vertex, with respect to the traditional distance: 

 
Fig. 11 

 
 Notice that our data conform to a linear trend with an R2 value of 1.  It is perfectly linear!  It 
makes sense though that the slope is not exactly 1 and the graph is offset, because our definition of 
distance is approximate discrete lines, but the fact that the slope is constant affirms our suspicions that 
our definition resembles the Euclidean notion of distance. 

 If we look at the same graph, except with a potential of 4 instead of 8, we observe the same 
pattern: a slope of approximate 1, and an offset.  The graph for the data is on the following page: 
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Fig. 12 

 

 Again the R2 value is 1: a perfect linear trend. 

4.2: Grid Graphs 

For our next example, let us examine two grid graphs with potentials of 4 embedded in a 20 by 
20 grid graph.  One of them is a 6 by 6 in the exact center, and the other is a 4 by 4 not quite in the 
center.  A sketch of it is given below: 

                             

 

 

 

 

 

 

 

 

 

Fig. 13 
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We respectively placed the potentials at the diagonals of the two graphs and computed the 
distance.  Our results are in Figure 14 below:  

 
Diagonal                        Side 

6 by 6 Grid Graph 10.986 6.772 
4 by 4 Grid Graph 6.707 4.029 

Fig 14 

 Since our grid graphs are squares, then according to Euclidean geometry, the ratio of a diagonal 

to its respective side is ��.  Since each of our distances have a little shift, we decided to find the 
difference between the diagonals and the sides respectively, and then find the ratio of the diagonal 

difference to the side difference.  The ratio, or slope in effect, should be �� if it were the Euclidean 
definition.  We obtained a slope of 1.56, which is quite close to 1.41.  The normal graph definition of 
distance gives us the ratio of 2 instead, so our definition is a significant improvement over the traditional 
definition.  Moreover, one expects that as the potential increases and the grid graph becomes bigger, 

the ratio approaches ��. 

4.3: Erdős–Rényi Graphs 

  Erdős–Rényi graphs are defined by the number of vertices, and the probability of an edge 
existing between any two vertices [1].  An Erdős–Rényi graph G consisting of n vertices and a probability 
p is denoted as G(n, p).  For example, the graph of a G(40, .2) is depicted below: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 
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 Previously, we have explored examples of graphs where a good definition of distance is familiar 
to us.  But for Erdős–Rényi graphs, or random graphs in general, there is no intuitive definition of 
distance other than the normal graph definition.  Through our previous examples, we have gained 
confidence that our definition is more in line with the intuitive notion of distance.  We will now thus 
explore the properties that this definition of distance provides us with random graphs and compare 
them with those of the conventional distance definition in graphs. 

 For our first example, we consider a specific G(250, .03), which is depicted below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 

 For our computation of distance, we consider d100.  In other words, V = 100.  The graph of the 
averages of some of the data is presented on the following page: 
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Fig. 17 

 
 (The data points for the graph above were computed by evaluating the distance many times for 
a given graph distance and then finding the average).  We notice that from the graph distance of 2 
onwards, there does not appear to be any trend, given the error bars.  It seems that for the new 
definition the distance between any two vertices is for the most part equal, except for the adjacent 
vertices. 

 As another example, consider a specific graph G(250, .02) with the potential of V = 100 as 
before, which is depicted below: 

 

 

 

 

 

 

 

 

 

 

Fig. 18 
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The graph of the averages of some of the data is presented below: 

 
Fig. 19 

 
 As again, from the graph distance of 2 onwards, there does not appear to be any trend; all the 
distances are the same, given the error bars.  It is quite amazing that for an Erdős–Rényi graph, the 
distances for points that do not share an edge does not depend on the graph distance!  One would 
naively expect that the definition of our distance would vary monotonically with the graph distance.  
However, here observe that as the graph distance increases, ours does not. 

 

5. Conclusion 

While exploring different graphs, we noticed that there was a problem with the standard definition 
of distance for graphs.  While the standard definition worked for linear graphs, it disagrees with the 

intuitive Euclidean distance for diagonals of grid graphs.  It was always off by a factor of ����.  And also, 
we know that in the real world, where space can be represented by an infinite cubic graph, the 
traditional definition of graph distance differs drastically from the Euclidean one.  Thus, we decided to 
define our own distance in an intrinsic way that was closer to the Euclidean notion.  We chose our 
definition using quantum mechanics because in quantum mechanics space is often discretized.  And if it 
works in quantum mechanics, then that gives us a good intuition that it should work for graphs too.  
Through our examples, we have observed that our definition of distance works for linear graphs; that is, 
the property of linearity is conserved.  It works much better for grid graphs than the standard definition.   

However, there are limitations.  In order to improve our values of distance, we have to consider 
much larger graphs and potentials.  Our distance did not work too well for small graphs (but well for 
larger graphs), and the potential should in fact tend toward infinity in order for us to claim a truly valid 
distance (from quantum mechanics). It is hard to explore this numerically because Mathematica, the 
software that we used, simply lacks the necessary computational power and precision.  Another 
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problem that we encountered was the boundary effect.  Evaluations of distance near the edge were 
inaccurate due to boundary effects.  We tried to avoid this problem by evaluation the distance as far 
away as from the boundary of the graph as possible.  Also, our definition depends on the potential. 

Further studies can be done to attempt to better explore the properties of our definition of 
distance.  For example, we can consider large graphs and the limit
� h i.  We have observed that for 
Erdős–Rényi graphs our definition of distance seems to be essentially the same for the vertices that are 
not adjacent to each other.  It would be interesting to see if this can be proven in this limit.  Another 
study that is needed is to determine whether our definition of distance upholds the convexity property 
of distance.  Another interesting idea can be to explore the relation of our distance with the curvature of 
the graph, as defined in [4].  Clearly, there are many directions one can pursue exploring this definition 
of distance.  We hope to have conveyed the naturalness and usefulness of this new definition of graph 
distance.  
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