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PROOF OF THE YANO-OBATA CONJECTURE
FOR H-PROJECTIVE TRANSFORMATIONS

Vladimir S. Matveev & Stefan Rosemann

Abstract

We prove the classical Yano-Obata conjecture by showing that
the connected component of the group of h-projective transforma-
tions of a closed, connected Riemannian Kähler manifold consists
of isometries unless the manifold is the complex projective space
with the standard Fubini-Study metric (up to a constant).

1. Introduction

1.1. Definitions and main result. Let (M,g, J) be a Riemannian
Kähler manifold of real dimension 2n ≥ 4. We denote by ∇ the Levi-
Civita connection of g. All objects we consider are assumed to be suffi-
ciently smooth.

Definition 1. A regular curve γ : I →M is called h-planar, if there
exist functions α, β : I → R such that the ODE

(1) ∇γ̇(t)γ̇(t) = αγ̇(t) + βJ(γ̇(t))

holds for all t, where γ̇ = d
dt
γ.

In certain papers, h-planar curves are called complex geodesics. The
reason is that if we view the action of J on the tangent space as the
multiplication with the imaginary unit i, the property of a curve γ to
be h-planar means that ∇γ̇(t)γ̇(t) is proportional to γ̇(t) with a complex
coefficient of the proportionality α(t)+ i ·β(t). Recall that geodesics (in
an arbitrary, not necessary arc length parameter t) of a metric can be
defined as curves satisfying the equation ∇γ̇(t)γ̇(t) = α(t)γ̇(t).

Example 1. Consider the complex projective space

CP (n) = {1-dimensional complex subspaces of Cn+1}
with the standard complex structure J = Jstandard and the standard
Fubini-Study metric gFS. Then, a regular curve γ is h-planar, if and
only if it lies in a projective line.

Indeed, it is well known that every projective line L is a totally geo-
desic submanifold of real dimension two such that its tangent space is
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invariant with respect to J . Since L is totally geodesic, for every reg-
ular curve γ : I → L ⊆ CP (n) we have ∇γ̇(t)γ̇(t) ∈ Tγ(t)L. Since L is
two-dimensional, the vectors γ̇(t), J(γ̇(t)) form a basis in Tγ(t)L. Hence,
∇γ̇(t)γ̇(t) = α(t)γ̇(t) + β(t)J(γ̇(t)) for certain α(t), β(t) as we claimed.

Conversely, given a regular curve σ in CP (n) that satisfies (1) for
some functions α and β, we consider the projective line L such that
σ(0) ∈ L and σ̇(0) ∈ Tσ(0)L. Solving the initial value problem γ(0) =
σ(0) and γ̇(0) = σ̇(0) for the ODE (1) with these functions α and β on
(L, gFS|L, J|L), we find a curve γ in L. Since L is totally geodesic, this
curve satisfies (1) on (CP (n), gFS , J). The uniqueness of a solution of
an ODE implies that σ coincides with γ and, hence, is contained in L.

Definition 2. Let g and ḡ be Riemannian metrics on M such that
they are Kähler with respect to the same complex structure J . They
are called h-projectively equivalent, if every h-planar curve of g is an
h-planar curve of ḡ and vice versa.

Remark 1. If two Kähler metrics g and ḡ on (M,J) are affinely
equivalent (i.e., if their Levi-Civita connections ∇ and ∇̄ coincide), then
they are h-projectively equivalent. Indeed, the equation (1) for the first
and for the second metric coincide if ∇ = ∇̄.

Definition 3. Let (M,g, J) be a Kähler manifold. A diffeomorphism
f :M →M is called an h-projective transformation, if f is holomorphic
(that is, if f∗(J) = J), and if f∗g is h-projectively equivalent to g. A
vector field v is called h-projective if its local flow Φv

t consists of (local)
h-projective transformations. Similarly, a diffeomorphism f : M → M
is called an affine transformation, if it preserves the Levi-Civita connec-
tion of g. A vector field v is affine, if its local flow consists of (local) affine
transformations. An h-projective transformation (resp. h-projective vec-
tor field) is called essential, if it is not an affine transformation (resp.
affine vector field).

Clearly, the set of all h-projective transformations of (M,g, J) is a
group. As it was shown in [21] and [65], it is a finite-dimensional Lie
group (provided that dim(M)≥ 4). We denote it by HProj(g, J). By Re-
mark 1, holomorphic affine transformations and holomorphic isometries
are h-projective transformations, Iso(g, J) ⊆ Aff(g, J) ⊆ HProj(g, J).
Obviously, the same is true for the connected components of these
groups containing the identity transformation: Iso0(g, J) ⊆ Aff0(g, J) ⊆
HProj0(g, J).

Example 2 (Generalization of the Beltrami construction from [7,
34]). Consider a non-degenerate complex linear transformation A ∈
Gln+1(C) and the induced bi-holomorphic diffeomorphism fA : CP (n) →
CP (n). Since the mapping fA sends projective lines to projective lines,
it sends h-planar curves (of the Fubiny-Study metric gFS) to h-planar
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curves; see Example 1. Then, the pullback gA := f∗AgFS is h-projectively
equivalent to gFS and fA is an h-projective transformation. Note that
the metric gA coincides with gFS (i.e., fA is an isometry), if and only if
A is proportional to a unitary matrix.

We see that for (CP (n), gFS , Jstandard) we have Iso0 6=HProj0. Our
main result is

Theorem 1 (Yano-Obata conjecture). Let (M,g, J) be a closed, con-
nected Riemannian Kähler manifold of real dimension 2n ≥ 4. Then,
Iso0(g, J) = HProj0(g, J) unless (M,g, J) is (CP (n), c · gFS, Jstandard)
for some positive constant c.

Remark 2. The above theorem is not true locally; one can construct
counterexamples. We conjecture that Theorem 1 is also true if we replace
closedness by completeness, but dealing with this case will require a lot
of work. In particular, one will need to generalize the results of [12] to
the complete metrics.

1.2. History and motivation. H-projective equivalence was intro-
duced by Otsuki and Tashiro in [48, 58]. They have shown that the
classical projective equivalence is not interesting in the Kähler situation
since only simple examples are possible, and have suggested h-projective
equivalence as an interesting object of study instead. This suggestion ap-
peared to be very fruitful and, between the 1960s and the 1970s, the
theory of h-projectively equivalent metrics and h-projective transforma-
tions was one of the main research topics in Japanese and Soviet (mostly
Odessa and Kazan) differential geometry schools. For a collection of re-
sults of these times, see for example the survey [43] with more than one
hundred fifty references. Moreover, two classical books [53, 63] contain
chapters on h-projectivity.

New interest in h-projective equivalence is due to its connection with
the so-called hamiltonian 2-forms defined and investigated in Apostolov
et al [3, 4, 5, 6]. Actually, a hamiltonian 2-form is essentially the same
as an h-projectively equivalent metric ḡ: it is easy to see that the defin-
ing equation [3, equation (12)] of a hamiltonian 2-form is algebraically
equivalent to (3), which is a reformulation of the condition “ḡ is h-
projectively equivalent to g” in the language of PDE, see also Remark
7. The motivation of Apostolov et al. to study hamiltonian 2-forms is
different from that of Otsuki and Tashiro and is explained in [3, 4].
Roughly speaking, they observed that many interesting problems in
Kähler geometry lead to hamiltonian 2-forms and suggested studying
them. The motivation is justified in [5, 6], where they indeed constructed
interesting and useful examples of Kähler manifolds. There is also a di-
rect connection between h-projectively equivalent metrics and conformal
Killing (or twistor) 2-forms studied in [44, 51, 52]; see Appendix A of
[3] for details.
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In private communications with the authors of [3, 4, 5, 6] we were
informed that they did not know that the object they considered was
studied before under another name. Indeed, they re-derived certain facts
that were well known in the theory of h-projectively equivalent metrics.
On the other hand, the papers [3, 4, 5, 6] contain several solutions of the
problems studied in the framework of h-projectively equivalent metrics,
for example the local [3] and global [4] description of h-projectively
equivalent metrics—previously, only special cases of such descriptions
were known (see for example [24]).

Additional interest in h-projectivity is due to the following connection
between h-projectively equivalent metrics and integrable geodesic flows:
it appears that the existence of ḡ that is h-projectively equivalent to g al-
lows one to construct quadratic and linear integrals for the geodesic flow
of g. The existence of quadratic integrals has been proven by Topalov in
[60]. Under certain nondegeneracy assumptions, the quadratic integrals
of Topalov are as considered by Kiyohara in [24]; the existence of such
integrals immediately implies the existence of Killing vector fields. In
the general situation, the existence of the Killing vector fields follows
from [3] and was also known to Topalov according to a private conversa-
tion. Altogether, in the most nondegenerate case studied by Kiyohara,
we obtain n quadratic and n linear integrals on a 2n-dimensional man-
ifold; the integrals are in involution and are functionally independent
so the geodesic flow of the metric is Liouville-integrable. In the present
paper, we will actively use the existence of these integrals.

Note that the attribution of the Yano-Obata conjecture to Yano and
Obata is in folklore—we did not find a paper of them where they state
this conjecture explicitly. It is clear though that both Obata and Yano
(and many other geometers) tried to prove this statement and did this
under certain additional assumptions; see below. The conjectures of sim-
ilar type were standard in the 1960s and the 1970s, in the time when
Yano and Obata were active (and, unfortunately, it was also standard
in that time not to publish conjectures or open questions). For example,
another famous conjecture of that time states that an essential group of
conformal transformations of a Riemannian manifold is possible if and
only if the manifold is conformally equivalent to the standard sphere
or to the Euclidean space; this conjecture is attributed to Lichnerow-
icz and Obata, though it seems that neither Lichnerowicz nor Obata
published it as a conjecture or a question; it was solved in Alekseevskii
[2], Ferrand [13], and Schoen [50]. One more example is the so-called
projective Lichnerowicz-Obata conjecture stating that a complete Rie-
mannian manifold, such that the connected component of the identity
transformation of the projective group contains not only isometries,
has constant positive sectional curvature. This conjecture was proven
in [32, 33, 35, 40]. Though it is also attributed to Lichnerowicz and
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Obata in folklore, neither Lichnerowicz nor Obata published this con-
jecture (however, this particular conjecture was published as “a classical
conjecture” in [18, 45, 61]). In view of these two examples, it would
be natural to call the Yano-Obata conjecture the Lichnerowicz-Obata
conjecture for h-projective transformations.

Special cases of Theorem 1 were known before. For example, under
the additional assumption that the scalar curvature of g is constant, the
conjecture was proven in [20, 64]. The case when the Ricci tensor of g
vanishes or is covariantly constant was proven earlier in [21, 22, 23].
Obata [46] and Tanno [57] proved this conjecture under the assumption
that the h-projective vector field lies in the so-called k-nullity space of
the curvature tensor. Many local results related to essential h-projective
transformations are listed in the survey [43]. For example, in [41, 49] it
was shown that locally symmetric spaces of non-constant holomorphic
sectional curvature do not admit h-projective transformations even lo-
cally.

A very important special case of Theorem 1 has been obtained in
the recent paper [12]. There, the Yano-Obata conjecture was proven
under the additional assumption that the degree of mobility (see Defi-
nition 4) is ≥ 3. In the present paper, we will actively use the results of
[12]. Actually, we consider that both papers, [12] and the present one,
are equally important for the proof of the Yano-Obata conjecture. The
methods of [12] came from the theory of overdetermined PDE-systems
of finite type and are very different from the methods used in this paper.
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2. The main equation of h-projective geometry and the
scheme of the proof of Theorem 1

2.1. Main equation of h-projective geometry. Let g and ḡ be two
Riemannian (or pseudo-Riemannian) metrics onM2n≥4 that are Kähler
with respect to the same complex structure J . We consider the induced
isomorphisms g : TM → T ∗M and ḡ−1 : T ∗M → TM . Let us introduce
the (1, 1)-tensor A(g, ḡ) by the formula

(2) A(g, ḡ) =

(
det ḡ

det g

) 1
2(n+1)

ḡ−1 ◦ g : TM → TM

(in coordinates, the matrix of ḡ−1◦g is the product of the inverse matrix
of ḡ and the matrix of g).
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Obviously, A(g, ḡ) is non-degenerate, complex (in the sense that A ◦
J = J ◦A), and self-adjoint with respect to both metrics. Let ∇ be the
Levi-Civita connection of g.

Theorem 2 ([41]). The metric ḡ is h-projectively equivalent to g, if
and only if there exists a vector field Λ such that A = A(g, ḡ) given by
(2) satisfies

(3) (∇XA)Y = g(Y,X)Λ + g(Y,Λ)X + g(Y, JX)Λ̄ + g(Y, Λ̄)JX,

for all x ∈M and all X,Y ∈ TxM , where Λ̄ = J(Λ).

Remark 3. One may consider the equation (3) as a linear PDE-
system on the unknown (A,Λ); the coefficients in this system depend
on the metric g. Indeed, if the equation is fulfilled for X,Y being basis
vectors, it is fulfilled for all vectors; see also (4) below.

One can also consider (3) as a linear PDE-system on the (1, 1)-tensor
A only, since the components of Λ can be obtained from the components
of ∇A by linear algebraic manipulations. Indeed, fix X and calculate
the trace of the (1, 1)-tensors on the left- and right-hand sides of (3)
acting on Y . The trace of the right-hand side equals 4g(Λ,X). Clearly,
the trace of ∇XA is trace(∇XA) = X(traceA). Then, Λ = gradλ, where
the function λ is equal to 1

4 traceA. In what follows, we prefer the last
point of view and speak about a self-adjoint, complex solution A of (3),
instead of explicitly mentioning the pair (A,Λ).

Remark 4. Let g and ḡ be two h-projectively equivalent Kähler
metrics and let A(g, ḡ) be the corresponding solution of (3). It is easy to
see that g and ḡ are affinely equivalent, if and only if the corresponding
vector field Λ vanishes identically on M .

Remark 5. The original and more standard form of the equation (3)
uses index (tensor) notation and reads

(4) aij,k = λigjk + λjgik − λ̄iJjk − λ̄jJik.

Here aij , λi, and λ̄i are related to A,Λ, and Λ̄ by the formulas aij =
gipA

p
j , λi = gipΛ

p, and λ̄i = −gipΛ̄p.

Remark 6. Note that formula (2) is invertible, if A is non-degenerate:
the metric ḡ can be reconstructed from g and A by

(5) ḡ = (det A)−
1
2 g ◦A−1

(we understand g as the mapping g : TM → T ∗M ; in coordinates, the
matrix of g ◦ A−1 is the product of the matrices of g and A−1).

Evidently, if A is g-self-adjoint and complex, then ḡ given by (5)
is symmetric and invariant with respect to the complex structure. It
can be checked by direct calculations that if g is Kähler and if A is a
non-degenerate g-self-adjoint and complex (1, 1)-tensor satisfying (3),
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then ḡ is also Kähler with respect to the same complex structure and is
h-projectively equivalent to g.

Thus, the set of Kähler metrics that are h-projectively equivalent to
g is essentially the same as the set of self-adjoint, complex (in the sense
J ◦ A = A ◦ J) solutions of (3) (the only difference is the case when
A is degenerate, but since adding const · Id to A does not change the
property of A to be a solution, this difference is not important).

Remark 7. As we have already mentioned in Section 1.2, equation
(3) is equivalent to the defining equation for a hamiltonian 2-form (see
[3, equation (12)]). Indeed, for a complex and self-adjoint solution A of
(3), the 2-form Φ(X,Y ) := g(JAX,Y ) is hamiltonian in the sense of [3].

By Remark 3, equation (3) is a system of linear PDEs on the (1, 1)-
tensor A.

Definition 4. We denote by Sol(g) the linear space of complex, self-
adjoint solutions of (3). The degree of mobility D(g) of a Kähler metric
g is the dimension of the space Sol(g).

Remark 8. We always have 1 ≤ D(g) < ∞. Indeed, since Id is
always a solution of (3), we have D(g) ≥ 1. We will not use the fact
that D(g) < ∞; a proof of this statement can be found in [12] or in
[41].

Let us now show that the degree of mobility is the same for h-
projectively equivalent metrics: we construct an explicit isomorphism
between Sol(g) and Sol(ḡ).

Lemma 1. Let g and ḡ be two h-projectively equivalent Kähler met-
rics on (M,J). Then the solution spaces Sol(g) and Sol(ḡ) are isomor-
phic. The isomorphism is given by

A1 ∈ Sol(g) 7−→ A1 ◦ A(g, ḡ)−1 ∈ Sol(ḡ),

where A(g, ḡ) is constructed by (2). In particular, D(g) is equal to D(ḡ).

Proof. Let A = A(g, ḡ) be the solution of (3) constructed by formula

(2). If A1 ∈ Sol(g) is non-degenerate, then g1 = (det A1)
− 1

2 g ◦ A−1
1

is h-projectively equivalent to g by Remark (6) and, hence, g1 is h-
projectively equivalent to ḡ. It follows that A2 = A(ḡ, g1) ∈ Sol(ḡ).
On the other hand, using formula (2) we can easily verify that A2 =
A1 ◦ A−1. If A1 is degenerate, we can choose a real number t such that
A1+tId is non-degenerate. As we have already shown, (A1+tId)◦A−1 =
A1 ◦A−1 + tA−1 is contained in Sol(ḡ). Since A−1 ∈ Sol(ḡ), the same is
true for A1 ◦ A−1. We obtain that the mapping A1 7−→ A1 ◦ A(g, ḡ)−1

is a linear isomorphism between the spaces Sol(g) and Sol(ḡ). q.e.d.
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Lemma 2 (Folklore). Let (M,g, J) be a Kähler manifold and let v
be an h-projective vector field. Then the (1, 1)-tensor

(6) Av := g−1 ◦ Lvg −
trace(g−1 ◦ Lvg)

2(n+ 1)
Id

(where Lv is the Lie derivative with respect to v) is contained in Sol(g).

Proof. Since v is h-projective, ḡt = (Φv
t )

∗g is h-projectively equivalent
to g for every t. It follows that for every t the tensor At = A(g, ḡt) is
a solution of (3). Since (3) is linear, Av :=

(
d
dt
At

)

|t=0
is also a solution

of (3) and it is clearly self-adjoint. Since the flow of v preserves the
complex structure, Av is complex. Using (2), we obtain that Av is equal
to

d

dt

[

(

det ḡt
det g

) 1
2(n+1)

ḡ
−1
t ◦ g

]

∣

∣

∣

t=0
=

1

2(n+ 1)

(

d

dt

det ḡt
det g

∣

∣

∣

t=0

)

Id +

(

d

dt
ḡ
−1
t ◦ g

)

∣

∣

∣

t=0

=
1

2(n+ 1)

(

d

dt

det ḡt
det g

)

∣

∣

∣

t=0
Id−

(

ḡ
−1
t ◦

(

d

dt
ḡt

)

◦ ḡ
−1
t ◦ g

)

∣

∣

∣

t=0

=
1

2(n+ 1)

(

d

dt

det ḡt
det g

)

∣

∣

∣

t=0
Id + g

−1
◦ Lvg = −

trace(g−1
◦ Lvg)

2(n+ 1)
+ g

−1
◦ Lvg.

Thus, Av ∈ Sol(g) as we claimed. q.e.d.

2.2. Scheme of the proof of Theorem 1. In the case when the de-
gree of mobility D(g) is ≥ 3, Theorem 1 is an immediate consequence of
[12, Theorem 1]. Indeed, by [12, Theorem 1], if D(g) ≥ 3 and the mani-
fold is not (CP (n), c·gFS , Jstandard), every metric ḡ that is h-projectively
equivalent to g is actually affinely equivalent to g. By [27], the connected
component of the identity transformation of the group of affine trans-
formations on a closed manifold consists of isometries. This implies that
HProj0 = Iso0.

If the degree of mobility is equal to one, every metric ḡ that is
h-projectively equivalent to g is proportional to g. Then, the group
HProj0(g, J) acts by homotheties. Since the manifold is closed, it acts
by isometries. Again, we obtain HProj0 = Iso0.

Thus, in the proof of Theorem 1, we may (and will) assume that the
degree of mobility of the metric g is equal to two.

The proof will be organized as follows. In Sections 3 and 4, we collect
and prove basic facts that will be used in the proof of Theorem 1.
Certain results of Sections 3 and 4 were known before; we will give
precise references. The proofs in Sections 3 and 4 are based on different
groups of methods and different ideas. In Section 3, we use the family of
quadratic integrals for the geodesic flow of the metric g found by Topalov
in [60]. With the help of these integrals, we prove that the eigenvalues of
A behave quite regularly, in particular we show that they are globally
ordered and that the multiplicity of every nonconstant eigenvalue is
equal to two. The assumptions of this section are global (we assume
that every two points can be connected by a geodesic).
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In Section 4, we work locally with equation (3). We show that the
vector fields Λ and Λ̄ appearing in this equation are commuting holo-
morphic vector fields that are nonzero at almost every point. We also
deduce from (3) certain equations on the eigenvectors and eigenvalues
of A: in particular we show that the gradient of every eigenvalue is an
eigenvector corresponding to this eigenvalue.

Beginning with Section 5, we require the assumption that the degree
of mobility is equal to two. Moreover, we assume the existence of an
h-projective vector field which is not an affine vector field. The main
goal of Section 5 is to show that for every solution A of (3) with corre-
sponding vector field Λ and for almost every point y ∈ M , there exists
a neighborhood U(y), a function µ : U(y) → R, and a constant B < 0
(µ and B can a priori depend on the neighborhood) such that for all
points x ∈ U(y) and all X,Y ∈ TxM we have

(∇XA)Y = g(Y,X)Λ + g(Y,Λ)X + g(Y, JX)Λ̄ + g(Y, Λ̄)JX

∇XΛ = µX +BA(X)

∇Xµ = 2Bg(X,Λ).

(7)

The equations (7) should be viewed as a PDE-system on (A,Λ, µ).
This is the longest and the most complicated part of the proof. First,

in Section 5.1, we combine Lemma 2 with the assumption that the
degree of mobility is two, to obtain the formulas (15, 20) that describe
the evolution of A along the flow of the h-projective vector field. With
the help of the results of Section 4, we deduce (in the proof of Lemma
8) an ODE for the eigenvalues of A along the trajectories of the h-
projective vector field. This ODE can be solved; combining the solutions
with the global ordering of the eigenvalues from Section 3, we obtain
that A has at most three eigenvalues at every point; moreover, precisely
one eigenvalue of A considered as a function on the manifold is not
constant (unless our h-projective vector field is an affine vector field).
As a consequence, in view of the results of Section 4, the vectors Λ and
Λ̄ are eigenvectors of A.

The equation (20) depends on two parameters. We prove that under
the assumption that the manifold is closed, the parameters satisfy some
algebraic equation (given in Lemma 15) so that in fact the equation
(20) depends on one parameter only. In order to do it, we work with the
distribution span {Λ, Λ̄} and show that its integral manifolds are totally
geodesic. Equations (6, 20) contain enough information to calculate the
restriction of the metric to this distribution; the metric depends on the
same parameters as equation (20). We calculate the sectional curvature
of this metric and see that it is unbounded (which cannot happen on
a closed manifold), unless the parameters satisfy a certain algebraic
equation.
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In Section 5.3, we show that the algebraic equation mentioned above
implies the local existence of B and µ such that (7) is fulfilled. This
proves that the system (7) is satisfied in a neighborhood of almost every
point of M , for certain B,µ that can a priori depend on the neighbor-
hood.

We complete the proof of Theorem 1 in Section 6. First we recall
that [12, Section 2.5] implies that the constant B is the same in all
neighborhoods, implying that the system (7) is fulfilled on the whole
manifold (for a certain globally defined constant B and a certain globally
defined function µ).

Once we have shown that the system (7) holds globally, Theorem 1
is an immediate consequence of [57, Theorem 10.1].

2.3. Relation with projective equivalence. Two metrics g and ḡ
on the same manifold are projectively equivalent, if every geodesic of g,
after an appropriate reparametrization, is a geodesic of ḡ. As we already
mentioned above, the notion “h-projective equivalence” appeared as an
attempt to adapt the notion “projective equivalence” to Kähler met-
rics. It is therefore not a surprise that certain methods from the theory
of projectively equivalent metrics could be adapted to the h-projective
situation. For example, the above mentioned papers [1, 20, 64] are actu-
ally h-projective analogs of the papers [19, 61] (dealing with projective
transformations); see also [16, 55]. Moreover, [58, 65] are h-projective
analogs of [23, 56], and many results listed in the survey [43] are h-
projective analogs of those listed in [42].

The Yano-Obata conjecture is also an h-projective analog of the so-
called projective Lichnerowicz-Obata conjecture mentioned above and
recently proved in [35, 40]; see also [32, 33]. The general scheme of our
proof of the Yano-Obata conjecture is similar to the scheme of the proof
of the projective Lichnerowicz-Obata conjecture in [40]. More precisely,
as in the projective case, the cases D(g) = 2 and D(g) ≥ 3 were done
using completely different groups of methods. As we mentioned above,
the proof of the Yano-Obata conjecture for the metrics with degree of
mobility ≥ 3 was done in [12]. This proof is based on other ideas than
the corresponding part in the proof of the projective Lichnerowicz-Obata
conjecture in [37, 40].

Concerning the proof under the assumption that the degree of mobil-
ity is two, the first part of the proof (Sections 3, 5.1) is based on the same
ideas as in the projective case. More precisely, the way to use integrals
for the geodesic flow to show the regular behavior of the eigenvalues of
A and their global ordering is very close to that of [8, 31, 36, 59]. The
way to obtain the equation (20) that describes the evolution of A along
the orbits of the h-projective vector field is close to that used in [9] and
is motivated by [32, 33, 35, 40, 39].
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3. Quadratic integrals and the global ordering of the
eigenvalues of solutions of (3)

3.1. Quadratic integrals for the geodesic flow of g. Let A be
a self-adjoint, complex solution of (3). By [60] (see also the end of
Appendix A of [3]), for every t ∈ R, the function

Ft : TM → R , Ft(ζ) :=
√

det (A− tId) g((A− tId)−1ζ, ζ)(8)

is an integral for the geodesic flow of g.

Remark 9. It is easy to prove (see formula (10) below) that the
integrals are defined for all t ∈ R (i.e., even if A − tId is degenerate).
Actually, the family Ft is a polynomial of degree n− 1 in t whose coef-
ficients are certain functions on TM ; these functions are automatically
integrals.

Remark 10. The integrals are visually close to the integrals for the
geodesic flows of projectively equivalent metrics constructed in [28].

Later it will be useful to consider the t-derivatives of the integrals
defined above:

Lemma 3. Let {Ft} be the family of integrals given in (8). Then, for
each integer m ≥ 0 and for each number t0 ∈ R,

(9)
(
dm

dtm
Ft

)

|t=t0

is also an integral for the geodesic flow of g.

Proof. As we already mentioned above in Remark 9,

Ft(ζ) = sn−1(ζ)t
n−1 + · · · + s1(ζ)t+ s0(ζ)

for certain integrals s0, . . . , sn−1 : TM → R. Then, the t-derivatives
(9) are also polynomials in t whose coefficients are integrals, i.e., the
t-derivatives (9) are also integrals for every fixed t0. q.e.d.

3.2. Global ordering of the eigenvalues of solutions of (3). Dur-
ing the whole subsection let A be an element of Sol(g); that is, A is
a complex self-adjoint (1, 1)-tensor such that it is a solution of (3).
Since it is self-adjoint with respect to (a positively-definite metric) g,
the eigenvalues of A|x := A|TxM are real.

Definition 5. We denote bym(y) the number of different eigenvalues
of A at the point y. Since A ◦ J = J ◦ A, each eigenvalue has even
multiplicity ≥ 2. Hence, m(y) ≤ n for all y ∈M . We say that x ∈M is
a typical point for A if m(x) = maxy∈M{m(y)}. The set of all typical
points of A will be denoted by M0 ⊆M .

Let us denote by µ1(x) ≤ · · · ≤ µn(x) the eigenvalues of A counted
with half of their multiplicities. The functions µ1, . . . , µn are real since A
is self-adjoint and they are at least continuous. It follows that M0 ⊆M
is an open subset. The next theorem shows that M0 is dense in M .
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Theorem 3. Let (M,g, J) be a Kähler manifold of real dimension
2n ≥ 4. Suppose every two points of M can be connected by a geodesic.
Then, for every A ∈ Sol(g) and every i = 1, . . . , n − 1, the following
statements hold:

1) µi(x) ≤ µi+1(y) for all x, y ∈M .

2) If µi(x) < µi+1(x) at least at one point, then the set of all points
y such that µi(y) < µi+1(y) is everywhere dense in M .

Remark 11. If the Kähler manifold is compact, the global description
of hamiltonian 2-forms [4, Theorem 5] implies the global ordering of the
eigenvalues (the first part of Theorem 3), and this is sufficient for our
further goals. However, we give an alternative proof which works under
less general assumptions, and is based on other ideas.

Proof. (1): Let x ∈ M be an arbitrary point. At TxM , we choose an
orthonormal frame {Ui, JUi}i=1,...,n of eigenvectors (we assume AUi =
µiUi and g(Ui, Ui) = 1 for all i = 1, ..., n). For X ∈ TxM , we denote
its components in the frame {Ui, JUi}i=1,...,n by Xj := g(X,Uj) and
X̄j := g(X,JUj). By direct calculations, we see that Ft(X) given by (8)
reads

(10)

Ft(X) =
n∑

i=1

[

(X2
i + X̄2

i )
n∏

j=1;j 6=i

(µj − µi)
]

= (µ2 − t) · · · · · (µn − t)(X2
1

+X̄2
1 ) + · · ·+ (µ1 − t) · · · · · (µn−1 − t)(X2

n + X̄2
n).

Obviously, Ft(X) is a polynomial in t of degree n − 1 whose leading
coefficient is (−1)n−1g(X,X).

For every point x ∈ M and every X ∈ TxM such that X 6= 0, let us
consider the roots

t1(x,X), . . . , tn−1(x,X) : TxM → R

of the polynomial counted with their multiplicities. From the arguments
below it will be clear that they are real. We assume that at every (x,X)
we have t1(x,X) ≤ · · · ≤ tn−1(x,X). Since for every fixed t the polyno-
mial Ft is an integral, the roots ti are also integrals.

Let us show that for every i = 1, . . . , n− 1 the inequality

(11) µi(x) ≤ ti(x,X) ≤ µi+1(x)

holds.
We consider first the case when all eigenvalues are different from each

other, i.e., µ1(x) < · · · < µn(x), and all components Xi are different
from zero. Substituting t = µi and t = µi+1 into (10), we obtain

Fµi
(X) =(µ1 − µi) · · · · · (µi−1 − µi)

· (µi+1 − µi) · · · · · (µn − µi)(X
2
i + X̄2

i ),
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µi−1

µi

µi+1

Ft(ζ, ζ)

tti−1 ti

Figure 1. If µ1 < µ2 < · · · < µn and all Xi 6= 0, the
values of Ft(X) have different signs at t = µi and t =
µi+1 implying the existence of a root ti such that µi <
ti < µi+1.

Fµi+1(X) =(µ1 − µi+1) · · · · · (µi − µi+1)

· (µi+2 − µi+1) · · · · · (µn − µi+1)(X
2
i+1 + X̄2

i+1).

We see that Fµi
(X) and Fµi+1(X) have different signs; see Figure 1.

Then, every open interval (µi, µi+1) contains a root of the polynomial
Ft(X). Thus, all n−1 roots of the polynomial are real, and the inequality
(11) holds as we claimed.

In the general case, since Ft(X) depends continuously on the vector
X and on the eigenvalues µ1(x) ≤ · · · ≤ µn(x) of A|x, its zeros also
depend continuously on X and µi. It follows that for every x and for all
X ∈ TxM we have that all zeros are real and that (11) holds.

Let us now show that for any two points x, y we have µi(x) ≤ µi+1(y).
We consider a geodesic γ : [0, 1] →M such that γ(0) = x and γ(1) =

y. Since Ft are integrals, we have Ft(γ̇(0)) = Ft(γ̇(1)) implying

(12) ti(γ(0), γ̇(0)) = ti(γ(1), γ̇(1)).

Combining (11) and (12), we obtain

µi(x)
(11)

≤ ti(x, γ̇(0))
(12)
= ti(y, γ̇(1))

(11)

≤ µi+1(y)

which proves the first part of Theorem 3.
(2): Assume µi(y) = µi+1(y) for all points y in some nonempty open

subset U ⊆M . We need to prove that for every x ∈M we have µi(x) =
µi+1(x).

First let us show that µ := µi = µi+1 is a constant on U . Indeed,
suppose that µi(y1) ≤ µi(y2) for some points y1, y2 ∈ U . From the first
part of Theorem 3 and from the assumption µi = µi+1 we obtain

µi(y1) ≤ µi(y2) ≤ µi+1(y1) = µi(y1),

implying µi(y1) = µi(y2) for all y1, y2 ∈ U as we claimed.
Now take an arbitrary point x ∈M and consider the set of all initial

velocities of geodesics connecting x with points of U (we assume γ(0) =
x and γ(1) ∈ U); see figure 2. For every such geodesic γ we have

µ = µi(γ(1)) ≤ ti(γ(1), γ̇(1)) ≤ µi+1(γ(1)) = µ.
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y

U

µi = µi+1

x

µi(x) < µi+1(x)

ζ

γζ(t)

Figure 2. The initial velocity vectors X at x of the
geodesics connecting the point x with points from U form
a subset of nonzero measure and are contained in Uµ.

Thus, ti(γ(1), γ̇(1)) = µ. Since the value ti(γ(t), γ̇(t)) is the same for all
points of the geodesic, we obtain that ti(γ(0), γ̇(0)) = µ. Then, the set

Uµ := {X ∈ TxM : ti(x,X) = µ}
has nonzero measure. Since Uµ is contained in the set

{X ∈ TxM : Fµ(X) = 0}
which is a quadric in TxM , the latter must coincide with the whole TxM .
In view of formula (10), this implies that at least two eigenvalues of A
at x should be equal to µ. Suppose the multiplicity of the eigenvalue µ is
equal to 2k. This implies that µr+1(x) = · · · = µr+k(x) = µ, µr(x) 6= µ,
and µr+k+1(x) 6= µ. If i ∈ {r+1, . . . , r+k−1}, we are done. We assume
that i 6∈ {r + 1, . . . , r + k − 1} and find a contradiction.

In order to do it, we consider the function

F̃ : R× TM → R , F̃t(ζ) := Ft(ζ)/(t− µ)k−1.

At the point x, each term of the sum (10) contains (t−µ)k−1, implying

that F̃t(ζ) is a polynomial in t (and is a quadratic function in ζ). Since

for every fixed t0 the function Ft0 is an integral, the function F̃t0 is also
an integral. Let us show that for every geodesic γ with γ(0) = x and

γ(1) ∈ U we have that
(

F̃t(γ̇(0))
)

|t=µ
= 0. Indeed, we already have

shown that ti(x, γ̇(0)) = µ. By similar arguments, in view of inequality
(11), we obtain tr+1(x, γ̇(0)) = · · · = tr+k−1(x, γ̇(0)) = µ. Then, t = µ is
a root of multiplicity k of Ft(γ̇(0)) and, therefore, a root of multiplicity

k− (k−1) = 1 of F̃t(γ̇(0)) = Ft(γ̇(0))/(t−µ)k−1. Finally, F̃µ(γ̇(0)) = 0.

Now, in view of the formula (10), the set {ζ ∈ TxM : F̃µ(ζ) = 0} is a
nontrivial (since µr 6= µ 6= µr+k+1) quadric in TxM , which contradicts
the assumption that it contains a subset Uµ of nonzero measure. Finally,
we have i, i + 1 ∈ {r + 1, . . . , r + k}, implying µi(x) = µi+1(x) = µ.
q.e.d.

From Theorem 3, we immediately obtain the following two corollaries:

Corollary 1. Let (M,g, J) be a complete, connected Riemannian
Kähler manifold. Then, for every A ∈ Sol(g), the set M0 of typical
points of A is open and dense in M .
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Corollary 2 ([3]). Let (M,g, J) be a complete, connected Riemann-
ian Kähler manifold and assume A ∈ Sol(g). Then at almost every point
the multiplicity of a non-constant eigenvalue ρ of A is equal to two.

4. Basic properties of solutions of (3)

In this section, we collect some basic technical properties of solutions
of (3). Most of the results are known in folklore; we will give precise
references wherever possible.

4.1. The vector fields Λ and Λ̄ are holomorphic.

Lemma 4 (Folklore; see equation (13) and the sentence below in
[41], Proposition 3 of [3], and Corollary 3 of [12]). Let (M,g, J) be a
Kähler manifold of real dimension 2n ≥ 4 and let be A ∈ Sol(g). Let
Λ be the corresponding vector field defined by (3). Then Λ̄ is a Killing
vector field for the Kähler metric g, i.e.,

g(∇X Λ̄, Y ) + g(X,∇Y Λ̄) = 0

for all X,Y ∈ TM .

It is a well-known fact that if a Killing vector field K vanishes on
some open nonempty subset U of the connected manifold M , then K
vanishes on the whole M . From this, we conclude

Corollary 3. Let (M,g, J) be a connected Kähler manifold of real
dimension 2n ≥ 4 and let v be an h-projective vector field.

1) If v restricted to some open nonempty subset U ⊆ M is a Killing
vector field, then v is a Killing vector field on the whole M .

2) If v is not identically zero, the set of points Mv 6=0 := {x ∈ M :
v(x) 6= 0} is open and dense in M .

Proof. (1) Suppose the restriction of v to an open subset U is a Killing
vector field. Then ḡt = (Φv

t )
∗g restricted to U ′ ⊂ U is equal to g|U ′ for

sufficiently small t. Hence, At|U ′ = A(g, ḡt)|U ′ = Id. The corresponding

vector field Λt =
1
4grad traceAt vanishes (on U

′), implying Λ̄t vanishes

(on U ′) as well. Since Λ̄t is a Killing vector field, Λ̄t vanishes on the
whole manifold, implying Λt is equal to zero on the whole M . Then,
by (3), the (1, 1)-tensor At − Id is covariantly constant on the whole
M . Since this tensor vanishes on U ′, it vanishes on the whole manifold.
Finally, At = Id on M , implying that v is a Killing vector field on M .
This proves part (1) of Corollary 3.

(2) Suppose v vanishes on some open subset U ⊆ M . To prove (2),
we have to show that v = 0 everywhere on M . From part (1) we can
conclude that v is a Killing vector field on M . Since v vanishes on the
(open, nonempty) subset U , it vanishes on the whole M . q.e.d.
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The next lemma is a standard result in Kähler geometry (we give a
proof for self-containedness). Combined with Lemma 4, it shows that Λ̄
is a holomorphic vector field.

Lemma 5. Let (M,g, J) be a Kähler manifold. Let K be a vector
field of the form K = Jgrad f for some function f . Then K is a Killing
vector field for g, if and only if K is holomorphic.

Proof. The equation K = Jgrad f just means that, with respect to
the Kähler 2-form ω = g(., J.), K is a hamiltonian vector field cor-
responding to the hamiltonian function f . Then, K is automatically
symplectic, i.e.,

0 = LKω = (LKg)(., J.) + g(.,LKJ.).

Since g and J are non-degenerate, it follows that LKJ = 0 if and only
if LKg = 0. q.e.d.

Corollary 4 ([3]). Let (M,g, J) be a Kähler manifold of real dimen-
sion 2n ≥ 4. Then, for every A ∈ Sol(g), the vector fields Λ and Λ̄ from
(3) are holomorphic and commuting, i.e.,

LΛJ = LΛ̄J = 0 and [Λ, Λ̄] = 0.

Proof. By Remark 3, Λ is the gradient of a function. Since Λ̄ = JΛ
is a Killing vector field, Lemma 5 implies that Λ̄ is holomorphic. Since
the multiplication with the complex structure sends holomorphic vector
fields to holomorphic vector fields, Λ is holomorphic as well. By direct
calculations, [Λ, Λ̄] = (LΛJ)Λ + J [Λ,Λ] = 0. q.e.d.

4.2. Covariant derivatives of the eigenvectors of A. Let A be
a complex, self-adjoint solution of (3). On M0, the eigenspace distri-
butions EA(µi) are well-defined and differentiable. In general, they are
not integrable (except for the trivial case when the metrics are affinely
equivalent). The next proposition explains the behavior of these distri-
butions; it is essentially equivalent to [3, Proposition 14 and equation
(62)].

Proposition 1. Let (M,g, J) be a Riemannian Kähler manifold and
assume A ∈ Sol(g). Let U be a smooth field of eigenvectors of A defined
on some open subset ofM0. Let ρ be the corresponding eigenvalue. Then,
for an arbitrary vector X ∈ TM , we have

(A− ρId)∇XU = X(ρ)U − g(U,X)Λ − g(U,Λ)X − g(U, JX)Λ̄ − g(U, Λ̄)JX.

(13)

Moreover, if V is an eigenvector of A corresponding to an eigenvalue
τ 6= ρ, then V (ρ) = 0 and, consequently, grad ρ ∈ EA(ρ).

Proof. Using (3), we obtain

(∇XA)U = g(U,X)Λ + g(U,Λ)X + g(U, JX)Λ̄ + g(U, Λ̄)JX
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for arbitrary X ∈ TM . On the other hand, since U ∈ EA(ρ), we calcu-
late

∇X(AU) = ∇X(ρU) = X(ρ)U + ρ∇XU.

Inserting the last two equations in ∇X(AU) = (∇XA)U +A(∇XU), we
obtain (13).

Now let τ be another eigenvalue of A, such that ρ 6= τ , and let
V ∈ EA(τ). Replacing V with X in (13) and using that EA(ρ) ⊥ EA(τ),
we obtain

(A− ρId)∇V U = V (ρ)U − g(U,Λ)V − g(U, Λ̄)JV.

Since the left-hand side of the equation above is orthogonal to EA(ρ),
we immediately obtain 0 = V (ρ) = g(V, grad ρ). Thus, grad ρ is orthog-
onal to all eigenvectors corresponding to eigenvalues different from ρ,
implying it lies in EA(ρ) as we claimed. q.e.d.

5. Kähler manifolds of degree of mobility D(g) = 2 admitting
essential h-projective vector fields

For closed manifolds, the condition HProj0 6= Iso0 is equivalent to the
existence of an essential (i.e., not affine) h-projective vector field. The
goal of this section is to prove the following

Theorem 4. Let (M,g, J) be a closed, connected Riemannian Kähler
manifold of real dimension 2n ≥ 4 and of degree of mobility D(g) = 2
admitting an essential h-projective vector field. Let A ∈ Sol(g) with
corresponding vector field Λ.

Then, for almost every point y ∈M , there exists a neighborhood U(y),
a constant B < 0, and a smooth function µ : U(y) → R such that the
system

(∇XA)Y = g(Y,X)Λ + g(Y,Λ)X + g(Y, JX)Λ̄ + g(Y, Λ̄)JX

∇XΛ = µX +BA(X)

∇Xµ = 2Bg(X,Λ)

(14)

is satisfied for all x in U(y) and all X,Y ∈ TxM .

One should understand (14) as a system of PDEs on the components
of (A,Λ, µ). Actually, in the system (14), the first equation is the equa-
tion (3) and is fulfilled by the definition of Sol(g), so our goal is to
prove the local existence of B and µ such that the second and the third
equations of (14) are fulfilled.

Remark 12. If D(g) ≥ 3, the conclusion of this theorem is still true
if we allow all, i.e., not necessary negative, values of B. In this case
we even do not need the “closedness” assumption (i.e., the statement is
local) and the existence of an h-projective vector field see [12]. Theorem
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4 essentially requires the existence of an h-projective vector field and is
not true locally.

5.1. The tensor A has at most two constant and precisely one
non-constant eigenvalue. First let us prove

Lemma 6. Let (M,g, J) be a Kähler manifold of real dimension
2n ≥ 4 and of degree of mobility D(g) = 2. Suppose f : M → M is
an h-projective transformation for g and let A be an element of Sol(g).
Then f maps the set M0 of typical points of A onto M0.

Proof. Let x be a point of M0. Since the characteristic polynomial of
(f∗A)|x is the same as for A|f(x), we have to show that the number of
different eigenvalues of (f∗A)|x and A|x coincide. If A is proportional to
the identity on TM , the assertion follows immediately. Let us therefore
assume that {A, Id} is a basis for Sol(g). We can find neighborhoods
Ux and f(Ux) of x and f(x) respectively, such that A is non-degenerate
in these neighborhoods (otherwise we add t · Id to A with a sufficiently

large t ∈ R+). By (5), ḡ = (det A)−
1
2 g ◦ A−1, g, f∗g, and f∗ḡ are h-

projectively equivalent to each other in Ux. By direct calculation, we
see that f∗A = f∗A(g, ḡ) = A(f∗g, f∗ḡ). Hence, f∗A is contained in
Sol(f∗g). First suppose that A(g, f∗g) is proportional to the identity.
We obtain that

f∗A = αA+ βId

for some constants α, β. Since α 6= 0 (if A is non-proportional to Id,
the same holds for f∗A), the number of different eigenvalues of (f∗A)|x
is the same as for A|x. It follows that f(x) ∈ M0. Now suppose that
A(g, f∗g) is non-proportional to Id. Then the numbers of different eigen-
values for A|x and A(g, f∗g)|x coincide. By Lemma 1, D(f∗g) = 2 and

{A(g, f∗g)−1, Id} is a basis for Sol(f∗g). We obtain that

f∗A = γA(g, f∗g)−1 + δId

for some constants γ 6= 0 and δ. It follows that the numbers of differ-
ent eigenvalues of (f∗A)|x and A(g, f∗g)−1

|x coincide. Thus, the number

of different eigenvalues of (f∗A)|x is equal to the number of different

eigenvalues of A|x. Again we have that f(x) ∈M0 as we claimed. q.e.d.

Convention. In what follows, (M,g, J) is a closed, connected Rie-
mannian Kähler manifold of real dimension 2n ≥ 4 and of degree of
mobility D(g) = 2. We assume that v is an h-projective vector field
which is not affine. We chose a real number t0 such that the pullback
ḡ := (Φv

t0
)∗g is not affinely equivalent to g. Let A = A(g, ḡ) be the

corresponding element in Sol(g) constructed by formula (2).

Lemma 7. The tensor A and the h-projective vector field v satisfy

LvA = c2A
2 + c1A+ c0Id(15)
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for some constants c2 6= 0, c1, c0.

Proof. Note that the vector field v is also h-projective with respect
to the metric ḡ and the degrees of mobility of the metrics g and ḡ are
both equal to two (see Lemma 1). Since A = A(g, ḡ) is not proportional
to the identity and A(ḡ, g) = A(g, ḡ)−1 ∈ Sol(ḡ), we obtain that {A, Id}
and {A−1, Id} form bases for Sol(g) and Sol(ḡ) respectively. It follows
from Lemma 2 that

g−1 ◦ Lvg − trace(g−1◦Lvg)
2(n+1) Id = β1A+ β2Id,

ḡ−1 ◦ Lvḡ − trace(ḡ−1◦Lv ḡ)
2(n+1) Id = β3A

−1 + β4Id
(16)

for some constants β1, β2, β3, and β4. Taking the trace on both sides of
the above equations, we see that they are equivalent to

g−1 ◦ Lvg = β1A+
(
1
2β1 traceA+ (n+ 1)β2

)
Id,

ḡ−1 ◦ Lv ḡ = β3A
−1 +

(
1
2β3 traceA

−1 + (n+ 1)β4
)
Id.

(17)

By (5), ḡ can be written as ḡ = (det A)−
1
2 g ◦A−1. Then,

ḡ−1 ◦ Lv ḡ
(5)
= (det A)

1
2A ◦ g−1 ◦ Lv((det A)

− 1
2 g ◦A−1)

= −1

2
(det A)−1(Lv det A)Id +A ◦ (g−1 ◦ Lvg) ◦ A−1 − (LvA) ◦ A−1.

We insert the second equation of (17) in the left-hand side, the first
equation of (17) in the right-hand side, and multiply with A from the
right to obtain

β3Id+

(
1

2
β3 traceA

−1 + (n+ 1)β4

)

A = −1

2
(det A)−1(Lv det A)A

+β1A
2 +

(
1

2
β1 traceA+ (n+ 1)β2

)

A− LvA.

Rearranging the terms in the last equation, we obtain

LvA = c2A
2 + c1A+ c0Id(18)

for constants c2 = β1, c0 = −β3, and a certain function c1.

Remark 13. Our way to obtain the equation (18) is based on an idea
of Fubini from [14] used in the theory of projective vector fields.

Our next goal is to show that c2 = β1 6= 0. If β1 = 0, the first equation
of (17) reads

Lvg = (n+ 1)βg

and, hence v is an infinitesimal homothety for g. This contradicts the
assumption that v is essential and we obtain that c2 = β1 6= 0.

Now let us show that the function c1 is a constant. Since A is non-
degenerate, c1 is a smooth function, so it is sufficient to show that its
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differential vanishes at every point of M0. We will work in a neighbor-
hood of a point of M0. Let U ∈ EA(ρ) be an eigenvector of A with
corresponding eigenvalue ρ. Using the Leibniz rule for the Lie derivative
and the condition that U ∈ EA(ρ), we obtain the equations

Lv(AU) = Lv(ρU) = v(ρ)U + ρ[v, U ] and Lv(AU) = (LvA)U +A([v, U ]).

Combining both equations and inserting LvA from (18), we obtain

(v(ρ) − c2ρ
2 − c1ρ− c0)U = (A− ρId)[v, U ].

In a basis of eigenvectors {Ui, JUi} of A from the proof of Theorem 3,
we see that the right-hand side does not contain any component from
EA(ρ) (i.e., the right-hand side is a linear combination of eigenvectors
corresponding to other eigenvalues). Then,

c1 = v(ln(ρ)) − c2ρ−
c0
ρ

and (A− ρId)[v, U ] = 0.(19)

These equations are true for all eigenvalues ρ of A and corresponding
eigenvectors U . Note that ρ 6= 0 since A is non-degenerate. By construc-
tion, the metric ḡ (such that A = A(g, ḡ)) is not affinely equivalent to
g; in particular, A has more than one eigenvalue. Let W ∈ EA(µ) and
ρ 6= µ. Applying W to the first equation in (19) and using Proposition
1, we obtain

W (c1) = [W,v](ln(ρ)).

The second equation of (19) shows that [v,W ] = 0 modulo EA(µ).
Hence,

W (c1) = 0.

We obtain that U(c1) = 0 for all eigenvectors U of A. Then, dc1 ≡ 0 on
M0. Since M0 is dense in M , we obtain that dc1 ≡ 0 on the whole M ,
implying c1 is a constant. This completes the proof of Lemma 7. q.e.d.

Convention. Since c2 6= 0, we can replace v by the h-projective vec-
tor field 1

c2
v. For simplicity, we denote the new vector field again by v;

this implies that (15) is now satisfied for c2 = 1: instead of (15) we
have

LvA = A2 + c1A+ c0Id(20)

for some constants c1, c0.

Remark 14. Note that the constant β1 in the proof of Lemma 7 is
equal to c2. With the convention above, the first equation in (16) now
reads

Av = g−1 ◦ Lvg −
trace(g−1 ◦ Lvg)

2(n+ 1)
Id = A+ βId(21)

for some β ∈ R.
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ρ(t)

ρ2 = −
c1
2

+
√

α

ρ1 = −
c1
2
−

√

α

t

Figure 3. The behavior of the restriction of the eigen-
values to the integral curve of v: at most two eigenvalues,
ρ1 and ρ2, are constant; they are roots of the quadratic
polynomial X2 + c1X + c0. Precisely one eigenvalue, ρ,
is not constant along the integral curve and is given by
(23).

Remark 15. In the proof of Lemma 7, we had to do some additional
work to show that c1 is indeed a constant. This problem does not appear
if we use the h-projectively invariant formulation of (3). We introduce
this approach in Appendix A where we also give an alternative proof of
Lemma 7.

Lemma 8. The tensor A has precisely one non-constant eigenvalue ρ
of multiplicity 2 and at least one and at most two constant eigenvalues.
(We denote the constant eigenvalues by ρ1 < ρ2 and their multiplicities
by 2k1 and 2k2 = 2n − 2k1 − 2 respectively; we allow k1 to be equal to
0 and n − 1; if k1 = 0, A has only one constant eigenvalue ρ2 and if
k1 = n− 1, then A has only one constant eigenvalue ρ1.) Moreover, the
eigenvalues satisfy the equations

0 = ρ21 + c1ρ1 + c0 = ρ22 + c1ρ2 + c0

v(ρ) = ρ2 + c1ρ+ c0
(22)

for the constants c1, c0 from (20). For every point x ∈ M0 such that
dρ|x 6= 0 and v(x) 6= 0, the evolution of the non-constant eigenvalue ρ
along the flow line Φv

t (x) is given by

ρ(t) = −c1
2

−
√
α tanh(

√
α(t+ d)),(23)

where α = 1
4c

2
1 − c0 is necessarily a positive real number.

Proof. We proceed as in the proof of Lemma 7. Applying the equation
(20) to an eigenvector U of A, corresponding to the eigenvalue ρ, yields

(ρ2 + c1ρ+ c0 − v(ρ))U = −(A− ρId)[v, U ].
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Since the right-hand side does not contain any components lying in
EA(ρ), we obtain that

(A− ρId)[v, U ] = 0 and v(ρ) = ρ2 + c1ρ+ c0(24)

for all eigenvalues ρ of A and all eigenvectors U ∈ EA(ρ).
In particular, each constant eigenvalue is a solution of the equation

ρ2 + c1ρ + c0 = 0. This implies that there are at most two different
constant eigenvalues ρ1 and ρ2 for A as we claimed.

On the other hand, let ρ be a non-constant eigenvalue of A (there
is always a non-constant eigenvalue since otherwise, the vector field Λ
vanishes identically onM and, therefore, the metrics g and ḡ (such that
A = A(g, ḡ)) are affinely equivalent; see Remark 4), and let x ∈ M0

be a point such that dρ|x 6= 0 and v(x) 6= 0. The second equation in
(24) shows that the restriction of ρ to the flow line Φv

t (x) of v (i.e.,
ρ(t) := ρ(Φv

t (x))) satisfies the ordinary differential equation

ρ̇ = ρ2 + c1ρ+ c0, where ρ̇ stays for d
dt
ρ.(25)

This ODE can be solved explicitly; the solution (depending on the pa-

rameters c1, c0) is given by the following list. We put α =
c21
4 − c0.

• For α < 0, the non-constant solutions of (25) are of the form

−c1
2

−
√
−α tan(

√
−α(−t+ d)).

• For α > 0, the non-constant solutions of (25) take the form

−c1
2

−
√
α tanh(

√
α(t+ d)) or − c1

2
−

√
α coth(

√
α(t+ d)).

• For α = 0, the non-constant solutions of (25) are given by

−c1
2

− 1

t+ d
.

Since the degree of mobility is equal to two, we can apply Lemma 6 to
obtain that the flow Φv

t maps preserves M0. It follows that ρ(t) satisfies
(25) for all t ∈ R. However, the only solution of (25) which does not
reach infinity in finite time is

−c1
2

−
√
α tanh(

√
α(t+ d)),

where α =
c21
4 − c0 is necessarily a positive real number.

We obtain that the non-constant eigenvalues of A satisfy (23); in
particular, their images contain the open interval (− c1

2 −√
α,− c1

2 +
√
α).

Suppose that there are two different non-constant eigenvalues ρ = − c1
2 −√

α tanh(
√
α(t+ d)) and ρ̃ = − c1

2 −√
α tanh(

√
α(t+ d̃)) of A. Then we

can find points x0, x1, x2 ∈ M such that ρ(x0) < ρ̃(x1) < ρ(x2). This
contradicts the global ordering of the eigenvalues of A; see Theorem
3(1). It follows that A has precisely one non-constant eigenvalue ρ. This
eigenvalue restricted to flow lines of v satisfies (23). By Corollary 2, the
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multiplicity of ρ is equal to two. We obtain that there must be at least
one constant eigenvalue of A. Finally, Lemma 8 is proven. q.e.d.

Corollary 5. In the notation above, all eigenvalues ρ1, ρ, ρ2 are smooth
functions on the manifold.

Proof. The eigenvalues ρ1, ρ2 are constant and are therefore smooth.
The non-constant eigenvalue ρ is equal to 1

2traceA−k1ρ1−(n−1−k1)ρ2
and is therefore also smooth. q.e.d.

Lemma 9. Let ρ be the only non-constant eigenvalue of A. OnMdρ6=0 :=
{x ∈M : dρ|x 6= 0}, the vector fields Λ and Λ̄ are eigenvectors of A cor-

responding to the eigenvalue ρ, i.e., EA(ρ) = span{Λ, Λ̄}.
Moreover, Mdρ6=0 is open and dense in M and Λ(ρ) 6= 0 on Mdρ6=0.

Remark 16. Note that the second part of the assertion above is still
true even locally and even if there are more than just one non-constant
eigenvalue. The proof is based on the existence of a family of Killing
vector fields (one for each non-constant eigenvalue) and is given in [3,
Proposition 14].

Proof. First of all, since ρ is the only non-constant eigenvalue of A
and ρ has multiplicity equal to two (see Corollary 2), we obtain Λ =
1
4grad traceA = 1

2grad ρ.
By Proposition 1, Λ is an eigenvector of A corresponding to the eigen-

value ρ. Since the eigenspaces of A are invariant with respect to the com-
plex structure J , we immediately obtain EA(ρ) = span{Λ, Λ̄}. Moreover,
since grad ρ is proportional to Λ, we have Λ̄(ρ) = 0 and Λ(ρ) 6= 0 at
every point of Mdρ6=0.

Obviously, Mdρ6=0 is an open subset of M . As we explained above,
dρ|x = 0, if and only if Λ(x) = Λ̄(x) = 0. Then M \Mdρ6=0 coincides

with the set of zeros of the non-trivial Killing vector field Λ̄. We obtain
that Mdρ6=0 is dense in M . q.e.d.

Let us now consider the critical points of the non-constant eigenvalue ρ:

Lemma 10. At every x such that dρ|x = 0, ρ takes its maximum or

minimum values ρ = − c1
2 ± √

α, where α =
c21
4 − c0 and c1, c0 are the

constants from (20). Moreover, v 6= 0 on Mdρ6=0.

Proof. Since the subsetsMv 6=0 andMdρ6=0 are both open and dense in
M (see Corollary 3 and Lemma 9), we obtain that M1 =Mv 6=0∩Mdρ6=0

is open and dense in M as well. Equation (23) shows that − c1
2 −√

α <

ρ(x) < − c1
2 +

√
α for all x ∈M1. Since M1 is dense, we obtain

−c1
2

−
√
α ≤ ρ(x) ≤ −c1

2
+

√
α

for all x ∈ M . Now suppose that dρ|x = 0 for some x ∈ M . It follows

from (22) that ρ(x) satisfies 0 = dρ|x(v) = ρ(x)2 + c1ρ(x) + c0, hence,
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ρ(x) is equal to the maximum or minimum value of ρ. Now suppose
v(x) = 0. By (22), ρ takes its maximum or minimum value at x. It
follows that dρ|x = 0. q.e.d.

5.2. Metric components on integral manifolds of span{Λ, Λ̄}.
By Lemma 8, A has precisely one non-constant eigenvalue ρ and at
most two constant eigenvalues ρ1 and ρ2. The goal of this section is
to calculate the components of the restriction of the metric g to the
integral manifolds of the eigenspace distribution EA(ρ) = span{Λ, Λ̄}.
In order to do it, we split the tangent bundle on Mdρ6=0 into the direct
product of two distributions:

D1 := span{Λ} and D2 := D⊥
1 = span{Λ̄} ⊕ EA(ρ1)⊕ EA(ρ2).

First let us show

Lemma 11. The distributions D1, D2, and EA(ρ) are integrable on
Mdρ6=0. Moreover, integral manifolds of D1 and EA(ρ) are totally geo-
desic.

Proof. Since Λ is a gradient, the distribution D2 is integrable. On the
other hand, Corollary 4 immediately implies that EA(ρ) is integrable.
The distribution D1 is one-dimensional and is therefore integrable. In
order to show that the integral manifolds of D1 and EA(ρ) are totally
geodesic, we consider the (quadratic in velocities) integrals I0, I1, I2 :
TM → R given by

I0(ζ) = g(Λ̄, ζ)2, I1(ζ) =

(
dk1−1

dtk1−1
Ft(ζ)

)

|t=ρ1 , and

I2(ζ) =

(
dk2−1

dtk2−1
Ft(ζ)

)

|t=ρ2 ,(26)

where 2k1, 2k2 are the multiplicities of the constant eigenvalues ρ1, ρ2 of
A. Recall from Lemma 3 and Lemma 4 that these functions are indeed
integrals.

If s : TM → R is a quadratic polynomial in the velocities, we define
the nullity of s by

null s := {ζ ∈ TM : s(ζ) = 0}.
In the orthonormal frame of eigenvectors of A from the proof of Theorem
3, the integrals Ft are given by (10), and it is easy to see that

null I1 = EA(ρ)⊕ EA(ρ2), null I2 = EA(ρ)⊕ EA(ρ1), and

null I0 = span{Λ} ⊕ EA(ρ1)⊕ EA(ρ2).

It follows that D1 = null I0∩null I1∩null I2 and EA(ρ) = null I1∩null I2.
Since the functions are integrals, if γ̇(0) ∈ null Ii , then γ̇(t) ∈ null Ii for
all t. Then every geodesic γ such that γ̇(0) ∈ D1 (resp. EA(ρ)) remains
tangent to D1 (resp. EA(ρ)). Thus, the integral manifolds of D1 and
EA(ρ) are totally geodesic. q.e.d.
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Let us introduce local coordinates x1, x2, . . . , x2n in a neighborhood of
a point of Mdρ6=0 such that (for all constants C1, . . . , C2n) the equa-
tion x1 = C1 defines an integral manifold of D2 and the system {xi =
Ci}i=2,...,2n defines an integral manifold of D1. In these coordinates, the
metric g has the block-diagonal form

g = g11dx
1 ⊗ dx1 +

2n∑

i,j=2

g̃ijdx
i ⊗ dxj .

In what follows we call such coordinates adapted to the decomposition
TM|Mdρ 6=0

= D1 ⊕D2. Let us show that the h-projective vector field v
splits into two independent components with respect to this decompo-
sition:

Lemma 12. In the coordinates x1, x2, . . . , x2n adapted to the decom-
position TM|Mdρ 6=0

= D1 ⊕ D2, the h-projective vector field v is given
by

(27) v = v1(x1)∂1
︸ ︷︷ ︸

=:v1∈D1

+ v2(x2, . . . , x2n)∂2 + · · ·+ v2n(x2, . . . , x2n)∂2n
︸ ︷︷ ︸

=:v2∈D2

Proof. Since Λ̄ is an eigenvector of A corresponding to the non-
constant eigenvalue ρ, the first equation in (24) implies that

[v, Λ̄] = f Λ̄ + hΛ

for some functions f, h. If we apply dρ to both sides of the equation
above, we obtain Λ̄(v(ρ)) = Λ̄(ρ2 + c1ρ + c0) = 0 on the left-hand
side and hΛ(ρ) on the right-hand side. Since Λ(ρ) 6= 0 on Mdρ6=0, we
necessarily have h = 0. By definition v is holomorphic and since Λ̄ = JΛ,
we see that the equations

[v, Λ̄] = f Λ̄ and [v,Λ] = fΛ(28)

are satisfied.
For an eigenvector U of A, corresponding to some constant eigenvalue

µ, the first equation in (24) shows that

[v, U ] ∈ EA(µ).(29)

For each index i ≥ 2, ∂i is contained in D2. On the other hand, ∂1 is
always proportional to Λ. We obtain

∂i ∼ Λ̄ mod EA(ρ1)⊕ EA(ρ2) and ∂1 ∼ Λ.

Using (28) and (29), we see that

[v, ∂i] ∈ D2 for all i ≥ 2 and [v, ∂1] ∈ D1.

This means that ∂iv
1 = 0 and ∂1v

i = 0 for all i ≥ 2. Hence,

v = (v1(x1), v2(x2, . . . , x2n), . . . , v2n(x2, . . . , x2n))

as we claimed. q.e.d.
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Let us write v = v1+ v2 with respect to the decomposition TM|Mdρ 6=0
=

D1 ⊕ D2 (as in (27)). The vector fields v1 and v2 are well-defined and
smooth on Mdρ6=0. By Lemma 12, we have [v1, v2] = 0.

Lemma 13. The non-constant eigenvalue ρ satisfies the equation
v1(ρ) = ρ2 + c1ρ+ c0 and the evolution of ρ along the flow-lines of v1 is
given by (23). Moreover, v1 is a non-vanishing complete vector field on
Mdρ6=0.

Proof. Since by Proposition 1 and Lemma 9 we have dρ(V ) = 0 for
all V ∈ D2, we have v2(ρ) = 0 and, hence, v1(ρ) = v(ρ) = ρ2 + c1ρ+ c0.
Using Lemma 12, we obtain that the restriction of ρ on the flow line
Φv1
t (x) coincides with the restriction of ρ on Φv

t (x) for all x ∈ Mdρ6=0.
Therefore the evolution of ρ along flow lines of v1 is again given by (23).

Let us assume that v1(x) = 0 for some point x ∈ Mdρ6=0. We obtain
that 0 = ρ(x)2 + c1ρ(x) + c0, which implies that ρ(x) is a maximum or
minimum value of ρ (see Lemma 10). It follows that dρ|x = 0, contra-
dicting our assumptions.

Finally, let us show that v1 is complete. Take a maximal integral curve
σ : (a, b) →Mdρ6=0 of v1 and assume b <∞. SinceM is closed, there ex-
ists a sequence {bn} ⊂ (a, b), converging to b such that lim

n → ∞σ(bn) =
y for some y ∈ M . Then, y ∈ M \Mdρ6=0, since otherwise the maxi-
mal interval (a, b) of σ can be extended beyond b. Then, dρ|y = 0, and

Lemma 10 implies that ρ(y) is equal to the minimum value − c1
2 −√

α.
We obtain that lim

n → ∞ρ(σ(bn)) = − c1
2 −√

α. On the other hand, for-
mula (23) shows that this value cannot be obtained in finite time b <∞.
This gives us a contradiction, implying v1 is a complete vector field on
Mdρ6=0. q.e.d.

Let us now calculate the restriction of the metric g to the integral man-
ifolds of the distribution EA(ρ) = span{v1, Λ̄}.

Lemma 14. In a neighborhood of each point ofMdρ6=0, it is possible to
choose the coordinates t = x1, x2, . . . , x2n adapted to the decomposition
TM|Mdρ 6=0

= D1 ⊕D2 in such a way that v1 = ∂1, Λ̄ = ∂2, and

g =










h 0 0 . . . 0
0 g(Λ,Λ) ∗ . . . ∗
0 ∗ ∗ . . . ∗
...

...
...

...
0 ∗ ∗ . . . ∗










.(30)
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The functions h = g(v1, v1), g(Λ,Λ), and ρ depend on the first coordinate
t only and are given explicitly by the formulas

h(t) = D e(C−c1)t

cosh2(
√
α(t+d))

,

g(Λ,Λ) = ρ̇2

4h (where ρ̇ = dρ
dt
), and

ρ(t) = − c1
2 −√

α tanh(
√
α(t+ d)).

(31)

The constants α > 0 and C in (31) are defined as α =
c21
4 − c0 and C =

−n−1
2 c1− (2k1+1−n)√α+(n+1)β, where D > 0, d, β, c1, c0 ∈ R, and

2k1 is the multiplicity of the constant eigenvalue ρ1. The constants c1, c0
are the same as in (20). Moreover, c1, c0, and β are global constants,
i.e., they are the same for each coordinate system of the above type.

Proof. In a neighborhood of an arbitrary point ofMdρ6=0, let us intro-
duce a chart x1, x2, . . . , x2n, adapted to the decomposition TM|Mdρ 6=0

=
D1⊕D2. By Lemma 12 and Lemma 13, we can choose these coordinates
such that the flow line parameter t of v1 coincides with x1 (i.e., such
that the first component of v in the coordinate system equals ∂

∂x1 ). By

(28), we have [v, Λ̄] ∈ D2. Moreover, [v2, Λ̄] ∈ D2 since D2 is integrable.
It follows that [v1, Λ̄] ∈ D2. On the other hand, since v1 = fΛ for some
function f and [Λ, Λ̄] = 0, we obtain that [v1, Λ̄] = −Λ̄(f)Λ ∈ D1,
implying

[v1, Λ̄] = 0.

It follows that we can choose the second coordinate x2 in such a way
that Λ̄ = ∂2.

Next let us show that h = g11 depends on the first coordinate of
the adapted chart only. For this, let I be an integral of second order
for the geodesic flow of g such that I is block-diagonal with respect to
the adapted coordinates t, x2, . . . , x2n. For the moment we adopt the
convention that Latin indices run from 2 to 2n such that I, considered
as a polynomial on T ∗M , can be written as I = I11p21 + Iijpipj . We
calculate the Poisson bracket 0 = {H, I} to obtain the equations

0 = Iik∂kg
11 − gik∂kI

11 for all i = 2, . . . , 2n.(32)

Inserting integrals I of special type, we can impose restrictions on
the metric. Obviously the integrals I0, I1, I2 defined in (26) are block-
diagonal. On the other hand, in the proof of Lemma 11 it was shown
that they satisfy null I1 = EA(ρ) ⊕ EA(ρ2), null I2 = EA(ρ) ⊕ EA(ρ1),
and null I0 = span{Λ} ⊕ EA(ρ1) ⊕ EA(ρ2). It follows that the integral
F = I0 + I1 + I2 is block-diagonal and that its nullity is equal to D1.
Then F can be written as F ijpipj and the matrix (F ij)i,j≥2 is invertible
at each point where the coordinates are defined. Replacing the integral
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I in (32) with F yields

∂ig
11 = 0

for all 2 ≤ i ≤ 2n; hence, the metric component g11 = (g11)−1 depends
only on t.

Now let us show the explicit dependence of the functions h, ρ, and
g(Λ,Λ) on the parameter t. We already know that h = g11 and ρ depend
only on t (for ρ this follows from Proposition 1 and Lemma 9), and by
Lemma 13, the dependence of ρ on the first coordinate t is given by
(23).

Recall that λ = 1
4 traceA = 1

2ρ + const. It follows that dλ = 1
2 ρ̇ dt

and, hence, Λ = gradλ = ρ̇
2h∂1. We obtain

g(Λ,Λ) =
ρ̇2

4h
.

What is left is to clarify the dependence of the function h on the pa-
rameter t. Note that in the coordinates t, x2, . . . , x2n, the h-projective
vector field v is given by v = ∂1 + v2. Let us denote by ḣ and ρ̇ the
derivatives of h and ρ with respect to the coordinate t and denote the
restriction of g to the distribution D2 by g̃. Then we calculate

Lvg = Lv1g + Lv2g = ḣ dt⊗ dt+ Lv1 g̃ + Lv2 g̃,(33)

where we used that v2(h) = 0 and Lv2dt = 0, which follows from
[v1, v2] = 0 and [v2, ∂i] ∈ D2 for all i ≥ 2. Note that Lv1 g̃ and Lv2 g̃
do not contain any expressions involving dt⊗ dxi, dxi ⊗ dt, or dt ⊗ dt.
On the other hand, we already know that Av given in formula (6) satis-
fies (21). After multiplication with g from the left, (21) can be written
as

Lvg −
trace(g−1 ◦ Lvg)

2(n + 1)
g = a+ βg

for a = g ◦ A and some constant β. Calculating the trace on both sides
yields

Lvg = a+ (β +
1

2
trace(A+ βId))g = a+ ((n+ 1)β + ρ+ k1ρ1 + k2ρ2)g.

Now we can insert (33) into the left-hand side to obtain

ḣ dt⊗ dt+ Lv1 g̃ + Lv2 g̃ = a+ ((n + 1)β + ρ+ k1ρ1 + k2ρ2)g.(34)

Since (34) is in block-diagonal form, it splits up into two separate equa-
tions. The first equation which belongs to the matrix entry on the upper
left reads

ḣ = (2ρ+ C)h, where we defined C = k1ρ1 + k2ρ2 + (n+ 1)β.

Integration of this differential equation yields

h(t) = DeCt+2
∫

ρdt = De(C−c1)t−2 ln(cosh(
√
α(t+d)))
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for α =
c21
4 − c0 > 0 and some constants d and D > 0. If we insert the

formulas ρ1 = − c1
2 −√

α and ρ2 = − c1
2 +

√
α for the constant eigenvalues

into the definition of the constant C, we obtain

C = −n− 1

2
c1 − (2k1 + 1− n)

√
α+ (n+ 1)β.

Finally, Lemma 14 is proven. q.e.d.

The formulas (31) in Lemma 14 show that the restriction

g|EA(ρ) =

(
h 0
0 g(Λ,Λ)

)

(35)

of the metric to the integral manifolds of the distribution EA(ρ) =
span{v1, Λ̄} (the coordinates are as in Lemma 14, i.e., ∂1 = v1 and
∂2 = Λ̄) depends on the global constants c1, c0, k1, and β. The constants
D and d are not interesting; they can depend a priori on the particular
choice of the coordinate neighborhood. Note that c1 and c0 are subject
to the condition α = c21/4− c0 > 0. Now our goal is to show that we can
impose further constraints on the constants such that the only metric
which is left is the metric of positive constant holomorphic sectional cur-
vature. So far, we did not really use that the manifold is closed; indeed,
most of the statements listed above still would be true if this condition
is omitted. However, as the next lemma shows, the condition that M is
closed imposes strong restrictions on the constants from Lemma 14:

Lemma 15. The constants from the formulas (31) of Lemma 14
satisfy C = c1. In particular, the function h = g(v1, v1) has the form

h(t) =
D

cosh2(
√
α(t+ d))

.(36)

Proof. First we will show that certain integral curves of v1 always have
finite length. Let xmax and xmin be points where ρ takes its maximum and
minimum value respectively and let γ : [0, 1] →M be a geodesic joining
the points γ(0) = xmax and γ(1) = xmin. Consider the integrals I0, I1, I2 :
TM → R given by (26). Since the Killing vector field Λ̄ vanishes at xmax,
we obtain that 0 = I0(γ̇(0)) = I0(γ̇(t)) for all t ∈ [0, 1]. By Lemma 13,
ρ(xmax) is equal to the constant eigenvalue ρ2 = − c1

2 +
√
α. It follows that

I2(ζ) = 0 for all ζ ∈ TxmaxM ; in particular, I2(γ̇(0)) = 0. This implies
that I2(γ̇(t)) = 0 for all t ∈ [0, 1]. Similarly, considering the point xmin,
we obtain I1(γ̇(t)) = 0 for all t ∈ [0, 1]. In the proof of Lemma 11, we
already remarked that the distribution D1 is equal to the intersection of
the nullities of I0, I1, and I2. It follows that γ̇(t) is contained in D1 for
all 0 < t < 1. This implies that γ|(0,1) is a reparametrized integral curve
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σ : R →M of the complete vector field v1. In particular, the length

lg(σ) =

∫ +∞

−∞

√

g(σ̇(t), σ̇(t))dt =

∫ +∞

−∞

√

g(v1, v1)(σ(t))dt

=

∫ +∞

−∞

√

h(t)dt(37)

of the curve σ is equal to the length lg(γ|[0,1]) of the geodesic γ. We
obtain that lg(σ) is finite. By (37), a necessary condition for lg(σ) to be

finite is that
√

h(t) → 0 when t → ∞. Note that h(t) is given by the
first equation in (31) (for some constants D, d that can depend on the

particular integral curve σ). From formula (31), we obtain that
√

h(t)
for t→ ∞ is asymptotically equal to

√

h(t) ∼ e

(

C−c1
2
√

α
−1

)

t
.

The finiteness of lg(σ) now implies the condition

−C − c1
2
√
α

+ 1 > 0(38)

on the global constants given in (31). Let us find further conditions on
the constants. Since M is assumed to be closed, the sectional curvature

KEA(ρ) =
g(v1, R(v1, Λ̄)Λ̄)

g(v1, v1)g(Λ,Λ)
=

R1212

h g(Λ,Λ)

of EA(ρ) has to be bounded onM . Since the integral manifolds of EA(ρ)
are totally geodesic (by Lemma 11), the sectional curvature KEA(ρ)

is equal to the curvature of the two-dimensional metric (35). After a
straight-forward calculation using the formulas (31) for h and g(Λ,Λ),
we obtain

KEA(ρ)(t) =
1

4D

[

(−4c0 − C2 + 2Cc1)
︸ ︷︷ ︸

=:γ1

e−(C−c1)t

−(C − c1)
2

︸ ︷︷ ︸

=:γ2

cosh(2
√
α(t+ d))e−(C−c1)t

−2(C − c1)
√
α

︸ ︷︷ ︸

=:γ3

sinh(2
√
α(t+ d))e−(C−c1)t

]

(39)

=:
1

4D
(γ1f1(t) + γ2f2(t) + γ3f3(t)).

Similar to the first part of the proof, we can consider the asymptotic
behavior t→ ∞ of the functions f2(t), f3(t) appearing as coefficients of
the constants γ2, γ3 in formula (39). We substitute s = 2

√
α(t+ d) and
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obtain

f2(s) ∼ cosh(s)e
−C−c1

2
√

α
s ∼
t≫0

e

(

−C−c1
2
√

α
+1

)

t (38)−→
t→∞

∞,

f3(s) ∼ sinh(s)e
−C−c1

2
√

α
s ∼
t≫0

e

(

−C−c1
2
√

α
+1

)

t (38)−→
t→∞

∞.

As we have already mentioned, the sectional curvatures of a closed mani-
fold are bounded and, hence,KEA(ρ)(t) must be finite when t approaches
the limit t→ ∞. Using the formulas for the asymptotic behavior of f2(t)
and f3(t) given above, this condition imposes the restriction γ2 = −γ3
on the constants in (39). Similarly, considering the asymptotic behav-
ior for t → −∞, we obtain γ2 = γ3. Note that the dominating part
in sinh(2

√
α(t + d)) now comes with the minus sign. It follows that

γ2 = γ3 = 0; hence,

C − c1 = 0(40)

as we claimed. Inserting (40) into the first formula of (31), the metric
component g11 = h takes the form (36). Lemma 15 is proven. q.e.d.

Remark 17. If we insert γ2 = γ3 = 0 and C = c1 in the formula
(39) for the sectional curvature of EA(ρ), we obtain that KEA(ρ) =

α
D

is
constant and positive as we claimed.

5.3. Proof of Theorem 4. Our goal is to prove Theorem 4: we need
to show the local existence of a function µ and a constant B such that
the system (14) is satisfied.

Lemma 16. At every point x ∈ M , the tensor A and the covariant
differential ∇Λ are simultaneously diagonalizable in an orthogonal basis.
More precisely, let U ∈ EA(ρ1) and W ∈ EA(ρ2) be eigenvectors of A
corresponding to the constant eigenvalues. Then we obtain

∇ΛΛ = (φ̇+ φψ)Λ,

∇Λ̄Λ = (φ̇+ φψ)Λ̄,

∇UΛ = g(Λ,Λ)
ρ−ρ1

U,

∇WΛ = g(Λ,Λ)
ρ−ρ2

W.

(41)

The functions φ and ψ are given by the formulas

φ =
1

2

ρ̇

h
and ψ =

1

2

ḣ

h
.(42)

Proof. Since the distribution D1 has totally geodesic integral man-
ifolds (see Lemma 11), ∇v1v1 is proportional to v1. Let us define two
functions φ and ψ by setting

Λ =: φv1 and ∇v1v1 =: ψv1.(43)
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It follows immediately that g(Λ,Λ) = φ2h. On the other hand, ḣ =
2g(∇v1v1, v1) = 2ψh. Using the equations (31) in Lemma 14, we obtain

φ =
1

2

ρ̇

h
and ψ =

1

2

ḣ

h
.(44)

Note that the function φ has to be negative since ρ decreases along the
flow-lines of v1 while it increases along the flow-lines of Λ = 1

2grad ρ. By
direct calculation, we obtain

∇ΛΛ = φ∇v1(φv1) = φφ̇v1 + φ2∇v1v1 = (φφ̇+ φ2ψ)v1 = (φ̇+ φψ)Λ.

From the above equation, the relation Λ̄ = JΛ, and the fact that Λ is a
holomorphic vector field, we immediately obtain

∇Λ̄Λ = J∇ΛΛ = (φ̇+ φψ)Λ̄

and, hence, the first two equations in (41) are proven.
Now let U ∈ EA(ρ1) be an eigenvector of A corresponding to the

constant eigenvalue ρ1. Using Proposition 1, we obtain

∇U Λ̄ = −g(Λ,Λ)
ρ1 − ρ

JU + f Λ̄ + f̃Λ and ∇Λ̄U = 0 mod EA(ρ1)(45)

for some functions f and f̃ . The lie bracket of U and Λ̄ is given by

[U, Λ̄] = f Λ̄ + f̃Λ mod EA(ρ1).

Applying dρ to both sides of the above equation yields f̃Λ(ρ) = 0. Since

Λ(ρ) 6= 0 on Mdρ6=0, it follows that f̃ = 0. On the other hand, the first
equation in (45) shows that

1

2
U(g(Λ,Λ)) = g(∇U Λ̄, Λ̄) = fg(Λ,Λ).

Since dg(Λ,Λ) is zero when restricted to the distribution D2 (as can be
seen by using the coordinates given in Lemma 14), the left-hand side of

the above equation vanishes and, hence, f = 0. Inserting f = f̃ = 0 into
the first equation of (45), we obtain the third equation in (41). If we
replace ρ1 and U by ρ2 and W ∈ EA(ρ2), the same arguments can be
applied to obtain the last equation in (41). Lemma 16 is proven. q.e.d.

Let (M,g, J) be a closed, connected Riemannian Kähler manifold of
real dimension 2n ≥ 4 and of degree of mobility D(g) = 2. Let v be
an essential h-projective vector field and t0 a real number, such that
ḡ = (Φv

t0
)∗g is not affinely equivalent to g. Let us denote by A = A(g, ḡ)

the corresponding solution of (3).
We want to show that any point of Mdρ6=0 has a small neighborhood

such that on this neighborhood there exist a function µ and a constant
B < 0 such that the covariant differential ∇Λ satisfies the second equa-
tion

∇Λ = µId +BA(46)



PROOF OF THE YANO-OBATA CONJECTURE 253

in (14). By Lemma 16, at every point of Mdρ6=0, each eigenvector of A is
an eigenvector of ∇Λ. Since A has (at most) three different eigenvalues,
(46) is equivalent to an inhomogeneous linear system of three equations
on the two unknown real numbers µ and B. Using the formulas (41)
from Lemma 16, we see that for x ∈ Mdρ6=0, ∇Λ satisfies (46) for some
numbers µ and B, if and only if the inhomogeneous linear system of
equations

µ+ ρB = φ̇+ φψ,

µ+ ρ1B = g(Λ,Λ)
ρ−ρ1

,

µ+ ρ2B = g(Λ,Λ)
ρ−ρ2

(47)

is satisfied. Now, according to Lemma 14 and Lemma 15, in a neighbor-
hood of a point of Mdρ6=0, the functions ρ, g(Λ,Λ), h, φ, and ψ are given
explicitly by (31), (36), and (42). Let us insert these functions and the
formulas − c1

2 ± √
α for the constant eigenvalues ρ1 < ρ2 (see Lemma

8) in (47). After a straight-forward calculation, we obtain that (47) is
satisfied for

µ = −α(
c1
2 −√

α tanh(
√
α(t+ d)))

4D
= B(c1 + ρ) and B = − α

4D
.(48)

We also see that the constant B is negative (as we claimed in Section
2.2).

Using the equation λ = 1
4traceA = 1

2ρ+const, we obtain that µ given
by (48) satisfies dµ = Bdρ = 2Bdλ. Since Λ is the gradient of λ, this is
easily seen to be equivalent to the third equation in the system (14).

We have shown that in a neighborhood of almost every point of M ,
there exists a smooth function µ and a constant B < 0, such that the
system (14) is satisfied for the triple (A,Λ, µ).

If Ã is another element in Sol(g) with corresponding vector field Λ̃,

then Ã = aA + bId for some a, b ∈ R, implying Λ̃ = aΛ. By direct
calculations we see that for an appropriate local function µ̃ the triple
(Ã, Λ̃, µ̃) satisfies the system (14) for the same constant B̃ = B. Finally,
Theorem 4 is proven.

6. Final step in the proof of Theorem 1

As we explained in Section 2.2, it is sufficient to prove Theorem 1
under the additional assumption that the degree of mobility is equal to
two. By Theorem 4, for every A ∈ Sol(g) with corresponding vector field
Λ = 1

4grad traceA, we find an open neighborhood U(x) for almost every
point x ∈ M , such that there exists a local function µ : U(x) → R and
a negative constant B such that the triple (A,Λ, µ) satisfies the system
(14).
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Now, in [12, §2.5] it was shown that under these assumptions the
constant B is the same for all such neighborhoods, implying that the
system (14) is satisfied on the whole M (for a certain smooth function
µ :M → R). Note that in view of the third equation of (14), µ is not a
constant (if A is chosen to be non-proportional to the identity on TM).

By direct calculation (differentiating µ covariantly and replacing the
derivatives using the system (14)), we obtain

(∇∇µ)(Y,Z) = ∇Y (∇Zµ)−∇∇Y Zµ
eq. 3 of (14)

= 2Bg(Z,∇Y Λ)

eq. 2 of (14)
= 2B(µg(Y,Z) +Bg(AY,Z)).

Then,

(∇∇∇µ)(X,Y,Z) = 2B((∇Xµ)g(Y,Z) +Bg((∇XA)Y,Z))

eq. 1 of (14)
= B(2(∇Xµ)g(Y,Z) + 2Bg(Z,Λ)g(X,Y ) + 2Bg(Y,Λ)g(X,Z)

+2Bg(Z, Λ̄)g(JX, Y ) + 2Bg(Y, Λ̄)g(JX,Z)).

Inserting the third equation of (14), we obtain that µ satisfies the equa-
tion

(∇∇∇µ)(X,Y,Z) = B[2(∇Xµ)g(Y,Z) + (∇Zµ)g(X,Y )

+(∇Y µ)g(X,Z) − (∇JZµ)g(JX, Y )− (∇JY µ)g(JX,Z)]
(49)

for all X,Y,Z ∈ TM .
Now by [57, Theorem 10.1], the existence of a non-constant solu-

tion of (49) with B < 0 on a closed, connected Riemannian Kähler
manifold implies that the manifold has constant holomorphic sectional
curvature equal to −4B. On the other hand, since every isometry of
(CP (n), gFS , Jstandard) is induced by a unitary matrix of C

n+1 and,
hence, always has a fixed point, (CP (n), gFS , Jstandard) has no isomet-
ric quotients. Consequently, (M,−4Bg, J) is (CP (n), gFS , Jstandard) and
Theorem 1 is proven.

Appendix A. H-projectively invariant formulation
of the main equation (3)

A.1. H-projective structure. Let (M,J) be a complex manifold of
real dimension 2n ≥ 4. Note that the defining equation (1) for h-planar
curves only involves the connection—it does not depend on the metric.

Definition 6. Two symmetric complex (i.e., DJ = D̄J = 0) affine
connections D and D̄ are called h-projectively equivalent if each h-planar
curve with respect to D is h-planar with respect to D̄ and vice versa.

It is a classical result (see for example [48, 58]) that two symmetric
complex affine connections D and D̄ are h-projectively equivalent if and
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only if for a certain 1-form Φ we have

D̄XY −DXY = Φ(Y )X +Φ(X)Y − Φ(JY )JX − Φ(JX)JY(50)

satisfied for all vector fields X,Y .

Remark 18. If the symmetric affine connections D and D̄ are related
by (50) and DJ = 0, then D̄J = 0 as well.

Definition 7. An h-projective structure on (M,J) is an equivalence
class [D] of h-projectively equivalent symmetric complex affine connec-
tions.

A.2. H-projectively invariant version of (3). Let (M,J) be a com-
plex manifold of real dimension 2n ≥ 4. Denote by ∧2n := ∧2nT ∗M the
bundle of 2n-forms on M . Note that it is a trivial line bundle since the
complex manifold (M,J) is always orientable. The bundle (∧2n)

w
2(n+1) of

2n-forms of “h-projective weight” w can be constructed by the require-
ment that it has the transition functions of ∧2n (which can be chosen
to have positive values) to the power w

2(n+1) . Let us consider the bundle

S2
JTM of symmetric Hermitian (with respect to J) (2, 0)-tensors and

define its “weighted” version

S2
JTM(w) := S2

JTM ⊗ (∧2n)
w

2(n+1) .

For each choice of local coordinates x1, . . . , x2n, the local section dx1 ∧
· · · ∧ dx2n of ∧2n gives us a trivialization for (∧2n)

w
2(n+1) . Then, we

can think of a section σ in S2
JTM(w) as a symmetric Hermitian 2n ×

2n−matrix with components σij = σij(x1, . . . , x2n). If we make an
orientation-preserving change of coordinates x1, . . . , x2n 7−→ x̃1, . . . , x̃2n,
the components σij transform according to the rule

σ̃ij =

(

det

(
∂ x̃k

∂ xl

))− w
2(n+1) ∂ x̃i

∂ xα
∂ x̃j

∂ xβ
σαβ .(51)

The covariant derivative of elements σ ∈ Γ(S2
JTM(w)) with respect to

an affine connection D is given by

Dkσ
ij = ∂kσ

ij + Γi
klσ

lj + Γj
klσ

il

︸ ︷︷ ︸

usual covariant derivative for 2-tensors

− w

2(n+ 1)
Γl
klσ

ij

︸ ︷︷ ︸

addition corresponding to

2n-forms of weight w

,(52)

where Γi
jk are the Christoffel symbols of D.

Theorem 5. Let σ be an element of Γ(S2
JTM(2)). Consider the equa-

tion

Dkσ
ij − 1

2n
(δikDlσ

lj + δjkDlσ
li + J i

kJ
j
mDlσ

lm + J j
kJ

i
mDlσ

lm) = 0.(53)

Then, the following holds:
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1) Equation (53) is h-projectively invariant, i.e., independent of the
connection D ∈ [D].

2) Equation (53) has a non-degenerate solution σ (where non-degeneracy
means that the matrix of components (σij) is invertible every-
where), if and only if there is a connection ∇ ∈ [D], such that
∇ is the Levi-Civita connection of some Kähler metric.

Remark 19. We do not pretend that Theorem 5 is new; it was known
to D. Calderbank (private communication). The statement is analogous
to the projective case treated in [11].

Proof. (1) The condition (50) for the h-projective equivalence of the
connections D and D̄ can be rewritten locally as

Γ̄i
jk − Γi

jk = δijΦk + δikΦj − J i
jJ

l
kΦl − J i

kJ
l
jΦl,(54)

where Γi
jk and Γ̄i

jk are the Christoffel symbols of D and D̄ respectively.

Combining (54) and (52), we can calculate the difference between the
connections D and D̄ when they are acting on σ ∈ Γ(S2

JTM(2)). We
obtain

D̄kσ
ij = Dkσ

ij + δikΦlσ
lj + δjkΦlσ

il + J i
kJ

j
mΦlσ

lm + J j
kJ

i
mΦlσ

lm,(55)

and in particular,

D̄lσ
lj = Dlσ

lj + 2nΦlσ
lj .(56)

Replacing D with D̄ in (53) and inserting the transformation laws (55)
and (56), we obtain that (53) remains unchanged if D is replaced by
D̄ ∈ [D].

(2) In one direction, (2) is trivial. Suppose that g is a Kähler metric
that is h-projectively equivalent to D. Let us denote by g−1 ∈ Γ(S2

JTM)
the dual of g (i.e., g◦g−1 = Id). We consider the non-degenerate element

σ = g−1 ⊗ (volg)
1

n+1 ∈ Γ(S2
JTM(2)).

Evidently, ∇σ = 0, where ∇ is the Levi-Civita connection of g. By the
first part of Theorem 5, D can be replaced with ∇ in (53) and we obtain
that σ is a solution of (53).

Let us prove (2) in the opposite direction. Let σ ∈ Γ(S2
JTM(2)) be a

non-degenerate solution of (53). Using the transformation law (51), it
is easy to see that

gij = σij |det (σij)| 12
defines the components of a symmetric Hermitian (with respect to J)
(2, 0)-tensor. Thus the corresponding dual (0, 2)-tensor g is a Hermitian
metric. Note that σ and g are related by

σ = g−1 ⊗ (volg)
1

n+1 .
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It remains to show that the Levi-Civita connection of g is contained in
[D]. We consider a connection D̄ ∈ [D] related to D by (54) such that

Φi = − 1
2nσimDlσ

lm,(57)

where the components σij are defined by σiασαj = δij . Substituting (57)

into (56) shows that

D̄lσ
lj = 0.(58)

Replacing D with D̄ in (53) and substituting (58), we obtain D̄kσ
ij = 0.

Thus, D̄ is the Levi-Civita connection of g. By Remark 18, D̄ satisfies
D̄J = 0, which implies that g is indeed a Kähler metric. q.e.d.

Definition 8. Let [D] be an h-projective structure on the complex
manifold (M,J). We denote by Sol([D]) ⊆ Γ(S2

JTM(2)) the linear space
of solutions of (53).

A.3. An alternative proof of Lemma 7. Let (M,g, J) be a Kähler
manifold and let ∇ be the Levi-Civita connection of g. We assume that
the degree of mobility (see Definition 4) is equal to two. Clearly, we
have that Sol([∇]) is 2-dimensional. Suppose that the Kähler metric ḡ
is non-proportional and h-projectively equivalent to g and consider the
corresponding elements

σ = g−1 ⊗ (volg)
1

n+1 and σ̄ = ḡ−1 ⊗ (volḡ)
1

n+1(59)

of Sol([∇]). Since g and ḡ are non-proportional, σ and σ̄ form a basis
for Sol([∇]).

Now let v be an h-projective vector field for (M,g, J) (see Defini-
tion 3). Thus, the Lie derivative Lv maps solutions of (53) to solutions
of (53) and, hence, restricts to an endomorphism of the 2-dimensional
vector space Sol([∇]). With respect to the basis σ, σ̄ of Sol([∇]), the
endomorphism Lv is given by

Lvσ = κ11σ + κ12σ̄,
Lvσ̄ = κ21σ + κ22σ̄

(60)

for some real numbers κ11, κ12, κ21, κ22.
Consider the (1, 1)-tensor A := σ̄σ−1. Combining (59) with (2), we

see that A coincides with A(g, ḡ). We calculate

LvA = (Lvσ̄)σ
−1 + σ̄(Lvσ

−1) = (Lvσ̄)σ
−1 − σ̄σ−1(Lvσ)σ

−1.

Substituting (60), we obtain

LvA = (κ21σ + κ22σ̄)σ
−1 − σ̄σ−1(κ11σ + κ12σ̄)σ

−1

= κ21Id+ (κ22 − κ11)A− κ12A
2,

hence,
LvA = c2A

2 + c1A+ c0Id

for some constants c2, c1, c0. This is the assertion of Lemma 7.
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