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On Supersingular Elliptic Curves and Hypergeometric Functions

Abstract. The Legendre Family of elliptic curves has the remarkable property that both

its periods and its supersingular locus have descriptions in terms of the 2F1

(
1
2

1
2

1

∣∣∣∣ z)
hypergeometric function. Here we study elliptic curves and elliptic integrals with respect

to the 2F1

(
1
3

2
3

1

∣∣∣∣ z) and 2F1

(
1
12

5
12

1

∣∣∣∣ z) hypergeometric functions, and prove that

the supersingular λ-invariant locus of certain families of elliptic curves are given by these

functions.
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1 Introduction and statement of results

Let p be a prime and F a field of characteristic p. An elliptic curve E/F is a curve of the

form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where ai ∈ F and the points in E are elements of F × F. This curve must be nonsingular

in that it has no multiple roots. A point at infinity must also be included on the curve to

make it projective.

There is an important invariant defined for any isomorphism class of elliptic curves

(two curves are isomorphic if they have the same defining equation up to some change of

coordinate system). Using the notation of an elliptic curve as before, the j-invariant j(E)

and discriminant ∆(E) are defined to be

j(E) =
c34
∆

and

∆(E) =
c34 − c26
1728

where c4 = b22− 24b4, c6 = −b32 + 36b2b4− 216a23− 864a6, b2 = a21 + 4a2, and b4 = a1a3 + 2a4.

It is well-known that the points on the curve E with coordinates in F form the group

E(F) (see [7] for an explanation of the group structure). The curve E is called supersingular

if and only if the group E(F) has no p-torsion. In this paper, we will determine when certain

infinite families of elliptic curves are supersingular for any prime.

Elliptic curves are prominent in several disciplines of mathematics, including algebraic

geometry, number theory, complex analysis, topology, and combinatorics. Several famous

problems rely on the theory of elliptic curves and their group structure, such as Fermat’s
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Last Theorem, the Congruent Number Problem, and Poncelet’s Porism. These curves also

have applications in cryptography, classical physics, and even string theory.

In cryptography, it is particularly important to know when a curve is supersingular.

The encryption system using the Discrete Log Problem on the group of points on an elliptic

curve is easily decipherable under the Weil-Tate Pairing Attacks when the curve used is

supersingular (see [7]). It is thus desirable to find infinite families of curves where the

primes for which the curve is supersingular are known.

One well-known and widely studied family of elliptic curves is the Legendre Family,

which we denote by

E 1
2
(λ) : y2 = x(x− 1)(x− λ)

for λ 6= 0, 1. We define its supersingular locus by

Sp, 1
2
(λ) :=

∏
λ0∈Fp

supersingular E 1
2
(λ0)

(λ− λ0).

The locus Sp, 1
2
(λ) and the periods of E 1

2
(λ) have beautiful and simple descriptions in

terms of the hypergeometric function

2F1

(
a b

c

∣∣∣∣ z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
.

Here a, b, z ∈ C, c ∈ C\Z≤0, (x)0 = 1, and (x)n = (x)(x+1) · · · (x+n−1) is the Pochhammer

symbol. For any prime p, define

2F1

(
a b

c

∣∣∣∣ z)
p

≡
p−1∑
n=0

(a)n(b)n
(c)n

zn

n!
(mod p).

It is natural to study hypergeometric functions related to elliptic integrals. An elliptic

integral of the first kind is written as

K(k) =

∫ π
2

0

dθ√
1− k2 sin2(θ)

.
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From [5] we have the following identities for appropriate ranges of k:

K(k) =
π

2
2F1

(
1
2

1
2

1

∣∣∣∣ k2) ,
K2(k) =

π2

4

√
1− 8

9
h2

1− (kk′)2

(
2F1

(
1
3

2
3

1

∣∣∣∣h2))2

,

K(k) =
π

2
(1− (2kk′)2)−

1
4 2F1

(
1
4

3
4

1

∣∣∣∣ (2kk′)2

(2kk′)2 − 1

)
,

K(k) =
π

2
(1− (kk′)2)−

1
4 2F1

(
1
12

5
12

1

∣∣∣∣ J−1) .
(1.1)

Here k′ =
√

1− k2, J = (4(2kk′)−2−1)3
27(2kk′)−2 and h is the smaller of the two solutions of (9−8h2)3

64h6h′2
= J .

For the locus Sp, 1
2
, it is a classical result (see [1] and [6]) that

Sp, 1
2
(λ) ≡ 2F1

(
1
2

1
2

1

∣∣∣∣λ)
p

(mod p).

In [4], El-Guindy and Ono studied the family of curves defined by

E 1
4
(λ) : y2 = (x− 1)(x2 + λ).

They proved a result analogous to the classical case, namely∏
λ0∈Fp

supersingular E 1
4
(λ0)

(λ− λ0) ≡ 2F1

(
1
4

3
4

1

∣∣∣∣− λ)
p

(mod p).

Here we prove two other cases of this phenomenon that cover the other hypergeometric

functions related to elliptic integrals listed in (1.1). We define the following families of

elliptic curves:

E 1
3
(λ) : y2 + λyx+ λ2y = x3, (1.2)

E 1
12

(λ) : y2 = 4x3 − 27λx− 27λ. (1.3)

We note that if λ ∈ {0, 27} (resp. λ ∈ {0, 1}), then E 1
3
(λ) (resp. E 1

12
(λ)) is singular.

We also define, for each i ∈
{

1
3
, 1
4
, 1
12

}
and all primes p ≥ 5,

Sp,i(λ) :=
∏
λ0∈Fp

supersingular Ei(λ0)

(λ− λ0).
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Generalizing the results above, we prove the following for E 1
3
(λ) and E 1

12
(λ).

Theorem 1.1. For any prime p ≥ 5, we have

Sp, 1
3
(λ) ≡ λb

p
3c 2F1

(
1
3

2
3

1

∣∣∣∣ 27

λ

)
p

(mod p).

Theorem 1.2. For any prime p ≥ 5, we have the following:

1. If p ≡ 1, 5 (mod 12), then

Sp, 1
12

(λ) ≡ cp
−1λb

p
12c 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1

λ

)
p

(mod p),

2. if p ≡ 7, 11 (mod 12), then

Sp, 1
12

(λ) ≡ cp
−1λb

p
12c 2F1

(
7
12

11
12

1

∣∣∣∣ 1− 1

λ

)
p

(mod p),

where cp =

(
6
⌊
p
12

⌋
+ dp⌊

p
12

⌋ )
, and dp = 0, 2, 2, 4 for p ≡ 1, 5, 7, 11 (mod 12) respectively.

Remark. The j-invariant of E 1
3
(λ) is λ(λ−24)3

λ−27 and the j-invariant of E 1
12

(λ) is 1728λ
λ−1 . Notice

that E 1
3
(λ) is singular when λ = 0 and j = 0. Also, E 1

12
(λ) is singular when its j-invariant

is 0 and undefined when j = 1728.

In addition to the stated result, the proof of Theorem 1.2 yields some fascinating com-

binatorial identities as well. The following is one such identity obtained for a specific class

of p modulo 12. Similar results also hold for primes in the other congruence classes, but are

omitted for brevity.

Corollary 1.3. Let p ≥ 5 be a prime congruent to 1 modulo 12, and let m = p−1
12

. Then for

all 0 ≤ n ≤ m,

4n
(

3m− n
3m− 3n

)(
6m

3m− n

)(
6m

m

)
≡ 27n

m∑
t=n

(
m

t

)(
5m

t

)(
6m

3m

)
(mod p).

In particular, when n = m,

4m
(

6m

2m

)(
6m

m

)
≡ 27m

(
5m

m

)(
6m

3m

)
(mod p).
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2 Preliminaries

Throughout, let p ≥ 5 be prime.

Definition 2.1. The Hasse invariant of an elliptic curve defined by f(w, x, y) = 0 is the

coefficient of (wxy)p−1 in f(w, x, y)p−1. Likewise, the Hasse invariant of a curve defined by

y2 = f(x) is the coefficient of xp−1 in f(x)
p−1
2 .

Remark. The projective completions of E 1
3
(λ) and E 1

12
(λ) are

wy2 + λwxy + λ2y − x3 = 0

and

wy2 − 4x3 + 27λw2x+ 27λw3 = 0.

We have the following well-known characterization of supersingular elliptic curves (see

[1], [6], [7]).

Lemma 2.2. An elliptic curve E is supersingular if and only if its Hasse invariant is 0.

It is well-known that two elliptic curves defined over Fp are isomorphic if and only if

they have the same j-invariant. Recall the following formula for the number of isomorphism

classes of supersingular elliptic curves over Fp (see [7]). We write p− 1 = 12mp + 6εp + 4δp,

where εp, δp ∈ {0, 1}.

Lemma 2.3. Up to isomorphism, there are exactly

mp + εp + δp

supersingular elliptic curves in characteristic p.

Remark. It is known that δp = 1 only when p ≡ 2 (mod 3) (i.e. when 0 is a supersingular

j-invariant) and εp = 1 only when p ≡ 3 (mod 4) (when 1728 is a supersingular j-invariant).

Also, in all cases mp =
⌊
p
12

⌋
.
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3 Proof of Main Results

We first prove several preliminary lemmas.

Lemma 3.1. There are exactly
⌊
p
3

⌋
distinct values of λ for which E 1

3
(λ) is supersingular

over Fp.

Proof. To calculate the degree of Sp, 1
3
(λ), we must consider how many different values for

λ yield a curve E 1
3
(λ) with a given supersingular j-invariant. From [2] we have that

j(E 1
3
(λ)) =

λ(λ− 24)3

λ− 27
(3.1)

and that the discriminant ∆(E 1
3
(λ)) = λ8(λ−27). Hence there are usually four λ-invariants

for a given j-invariant, but there are certain exceptions. Since the only roots of ∆ in this

case are 0 and 27, we know that these and 1728 are the only possible j-invariants for which

there are less than four corresponding λ-invariants. However, there are four distinct values

of λ for which j(E 1
3
(λ)) = 27. Also, only λ = 18 ± 6

√
3 gives a value of 1728 for j, so

the correspondence is 2-to-1 in this case. As mentioned previously, the curve is singular for

λ = 0, so the only value of λ that will give a j-invariant of 0 is λ = 24. The correspondence

is thus one-to-one for j = 0.

Using the ideas of Lemma 2.3, we have that each of the mp supersingular j-invariants

is obtained from four supersingular λ-invariants, δp can come from at most one λ-invariant,

and εp comes from two, if any, λ-invariants. Thus the total number of λ-invariants, and the

degree of Sp, 1
3
(λ), is 4mp + δp + 2εp = 4

⌊
p
12

⌋
+ δp + 2εp. It is easily verified that this equals⌊

p
3

⌋
for every prime p, and so we are done.

Lemma 3.2. There are exactly
⌊
p
12

⌋
distinct values of λ for which E 1

12
(λ) is supersingular

over Fp.
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Proof. The j-invariant of E 1
12

(λ) is

j(E 1
12

(λ)) =
1728λ

λ− 1
. (3.2)

This is a one-to-one correspondence from λ-invariants to j-invariants for j 6= 1728. Also,

the special cases j = 0 and j = 1728 do not apply here, for the curve is singular for these

respective j-invariants. Thus by Lemma 2.3 there are exactly
⌊
p
12

⌋
values of λ for which

E 1
12

(λ) is supersingular.

Proof of Theorem 1.1.

The curve E 1
3
(λ) can be defined as

f(w, x, y) = wy2 + λwxy + λ2w2y − x3 = 0.

We first compute its Hasse invariant. A general term in the expansion of (wy2 +λwxy+

λ2w2y − x3)p−1 is of the form

(wy2)a(λwxy)b(λ2w2y)c(−x3)d,

where a+ b+ c+ d = p− 1. In order for this to be a constant multiple of a power of wxy,

we must have a = c = d.

Thus the terms that we are concerned with are of the form

(wy2)n(λ2w2y)n(−x3)n(λwxy)p−3n−1 = (−λ)p−n−1(wxy)p−1.

For a given n, there are
(
p−1
n

)(
p−n−1
n

)(
p−2n−1

n

)
ways to choose which of the f(w, x, y) factors

we obtain each of the wy2, λ2w2y, and −x3 terms from. Summing over all possible values

9
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of n, we determine the Hasse invariant to be

b p3c∑
n=0

(
p− 1

n

)(
p− n− 1

n

)(
p− 2n− 1

n

)
(−λ)p−n−1

≡
b p3c∑
n=0

(−λ)p−n−1(p− 1)(p− 2) · · · (p− n)

n!

· (p− n− 1) · · · (p− 2n)

n!

· (p− 2n− 1) · · · (p− 3n)

n!
(mod p)

≡
b p3c∑
n=0

(3n)!

n!3
λp−n−1 (mod p).

By definition, we have

2F1

(
1
3

2
3

1

∣∣∣∣ 27

λ

)
p

≡
p−1∑
n=0

(
1
3

)
n

(
2
3

)
n

n!2
27n

xn
(mod p).

However, if n >
⌊
p
3

⌋
, then p will appear in the numerator of either

(
1
3

)
n

or
(
2
3

)
n
, making

those terms congruent to 0 modulo p, so

λp−1 2F1

(
1
3

2
3

1

∣∣∣∣ 27

λ

)
p

≡
b p3c∑
n=0

(
1
3

)
n

(
2
3

)
n

n!2
27nλp−n−1 (mod p)

≡
b p3c∑
n=0

27n 1
3
2
3
4
3
5
3
· · · 3n−2

3
3n−1

3

n!2
λp−n−1 (mod p)

≡
b p3c∑
n=0

(3n)!

n!3
λp−n−1 (mod p).

Thus λp−1 2F1

(
1
3

2
3

1

∣∣∣∣ 27λ )
p

is congruent modulo p to the Hasse invariant of E 1
3
(λ). So

by Lemma 2.2, λ is a root of λp−1 2F1

(
1
3

2
3

1

∣∣∣∣ 27λ )
p

≡ 0 (mod p) if and only if E 1
3
(λ) is

supersingular, i.e., if and only if λ is a root of Sp, 1
3
(x).

Since the least power of λ in 2F1

(
1
3

2
3

1

∣∣∣∣ 27λ )
p

is −
⌊
p
3

⌋
, λbp/3c 2F1

(
1
3

2
3

1

∣∣∣∣ 27λ )
p

has

the same roots as λp−1 2F1

(
1
3

2
3

1

∣∣∣∣ 27λ )
p

, with the exception of 0, which is not a λ-invariant

as shown in Lemma 3.1, and thus is not a root of Sp, 1
3
.
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The degree of λb
p
3c 2F1

(
1
3

2
3

1

∣∣∣∣ 27λ )
p

is exactly
⌊
p
3

⌋
. Since the degree of Sp, 1

3
(λ) is also⌊

p
3

⌋
by Lemma 3.1, it follows that λb

p
3c 2F1

(
1
3

2
3

1

∣∣∣∣ 27λ )
p

≡ c · Sp, 1
3
(λ) (mod p). However,

c is 1 since λb
p
3c 2F1

(
1
3

2
3

1

∣∣∣∣ 27λ )
p

is monic, so we are done.

Proof of Theorem 1.2.

Assume p ≡ 1, 5 (mod 12). The function f(z) = 2F1

(
1
12

5
12

1

∣∣∣∣ z) satisfies the second

order differential equation

z(1− z)
d2f

dz2
+

(
1− 3

2
z

)
df

dz
− 5

144
f = 0.

Substituting z = 1− 1
x
, we see that g(x) = 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1
x

)
satisfies

x2(x− 1)
d2g

dx2
+ x

(
3

2
x− 1

2

)
dg

dx
− 5

144
g = 0.

Hence, h(λ) = λ
p−1
4 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1
λ

)
satisfies

(λ3 − λ2)d
2h

dλ2
+
((

2− p

2

)
λ2 +

(p
2
− 1
)
λ
) dh
dλ

+

((
p2 − 4p+ 3

16

)
λ+−p

2

16
+

1

36

)
h = 0.

(3.3)

The function h(λ) is a Laurent series in 1
λ

with p-integral rational cofficients. However,

its reduction modulo p yields a polynomial in λ. This polynomial must satisfy the reduction

of (3.3) modulo p, so F (λ) = λ
p−1
4 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1
λ

)
p

satisfies

(λ3 − λ2)d
2F

dλ2
+ (2λ2 − λ)

dF

dλ
+

(
3

16
λ+

1

36

)
F ≡ 0 (mod p).

A similar calculation shows that F (λ) = λ
p−3
4 2F1

(
7
12

11
12

1

∣∣∣∣ 1− 1
λ

)
p

also satisfies the same

differential equation when p ≡ 7, 11 (mod 12).

Now, to compute the Hasse invariant, we consider a general xp−1 term in the expansion

of (4x3 − 27λx − 27λ)
p−1
2 . This is of the form (4x3)n(−27λx)p−3n−1(−27λ)2n−

p−1
2 , where

11
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p−1
4
≤ n ≤

⌊
p
3

⌋
. For a given n in this range, there are exactly

( p−1
2
n

)( p−1
2
−n

p−3n−1

)
ways to choose

which of the (4x3−27λx−27λ) factors the 4x3 terms and −27λx terms came from. Summing

over all n yields the Hasse invariant to be

b p3c∑
n= p−1

4

4n(−27λ)
p−1
2
−n
(p−1

2

n

)( p−1
2
− n

p− 3n− 1

)
,

into which we can substitute n = p−1
2
− k, and using the fact that 4

p−1
2 ≡ 1 (mod p), we

obtain
p−1
4∑

k= p−1
2
−b p3c

(
−27

4
λ

)k (p−1
2

k

)(
k

3k − p−1
2

)
.

We show the Hasse invariant satisfies the differential equation by showing that for any

t, the λt term in the resulting expansion is congruent to 0 mod p. Let

c(k) =

(
−27

4
λ

)k (p−1
2

k

)(
k

3k − p−1
2

)
.

Then the λt term has coefficient

d2

dt2
c(t− 1)− d2

dt2
c(t) + 2

d

dt
c(t− 1)− d

dt
c(t) +

3

16
c(t− 1) +

1

36
c(t),

which we expand to obtain(
−27

4

)t(p−1
2

t

)(
t

3t− p−1
2

)(
−t(t− 1)− t+

1

36

)
+

(
−27

4

)t−1( p−1
2

t− 1

)(
t− 1

3t− 3− p−1
2

)(
(t− 1)(t− 2) + 2(t− 1) +

3

16

)
.

This is congruent to 0 modulo p if and only if(p−1
2

t

)(
t

3t− p−1
2

)(
27

4
t2 − 3

16

)
+

( p−1
2

t− 1

)(
t− 1

3t− 3− p−1
2

)(
t2 − t+

3

16

)
is also congruent to 0. We now expand the first binomials to obtain

(p−1
2

) · · · (p−1
2
− t+ 1)

(
t

3t− p−1
2

) (
27
4
t2 − 3

16

)
t!

+
(p−1

2
) · · · (p−1

2
− t+ 2)

(
t−1

3t−3− p−1
2

) (
t2 − t+ 3

16

)
(t− 1!)

,
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which is congruent to 0 modulo p if and only if

1
2
− t
t

(
t

3t− p−1
2

)(
27

4
t2 − 3

16

)
+

(
t− 1

3t− 3− p−1
2

)(
t2 − t+

3

16

)
≡ 0 (mod p)

as well. Using a similar cancellation method on the remaining binomials shows that it is

sufficient to prove(
1

2
− t
)(

p− 1

2
− 2t+ 2

)(
p− 1

2
− 2t+ 1

)(
27

4
t2 − 3

16

)
+

(
3t− p− 1

2

)(
3t− p− 1

2
− 1

)(
3t− p− 1

2
− 2

)(
t2 − t+

3

16

)
≡ 0 (mod p),

which is easily verified.

Thus the Hasse invariant satisfies the same second order differential equation as both

λ
p−1
4 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1
λ

)
p

and λ
p−3
4 2F1

(
7
12

11
12

1

∣∣∣∣ 1− 1
λ

)
p

. For p > 5, notice that both

the Hasse invariant and the truncated hypergeometric functions have no term with a degree

less than 2. For each case, this implies that the truncated polynomials are congruent modulo

p to the Hasse invariant up to multiplication by a constant. For the case p = 5, it is easy to

compute that λ 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1
λ

)
5

= λ, and the Hasse invariant is 4λ, so this property

still holds.

Therefore, we know that the two truncated hypergeometric functions have the same

roots modulo p as the Hasse invariant, so by Lemma 2.2, λ is a root of the hypergeometric

functions if and only if E 1
12

(λ) is supersingular. Notice that λb
p
12c 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1
λ

)
p

,(
resp. λb

p
12c 2F1

(
7
12

11
12

1

∣∣∣∣ 1− 1
λ

)
p

)
has the same roots as λ

p−1
4 multiplied by the respec-

tive truncated functions with the exception of 0, which is as desired since E 1
12

(0) is singular.

Also, when p ≡ 1, 5 (mod 12) the degree of λb
p
12c 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1
λ

)
p

is
⌊
p
12

⌋
, so by

Lemma 3.2, there exists a constant cp such that

Sp, 1
12
≡ cp

−1λb
p
12c 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1

λ

)
p

(mod p).
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Similarly for primes p ≡ 7, 11 (mod 12),

Sp, 1
12
≡ cp

−1λb
p
12c 2F1

(
7
12

11
12

1

∣∣∣∣ 1− 1

λ

)
p

(mod p).

Finally, we explicitly compute the constant cp. Notice that Sp, 1
12

is monic, so cp is the

coefficient of the leading term in λb
p
12c 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1
λ

)
p

, which is the same as the

constant term in 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1
λ

)
p

. For n >
⌊
p
12

⌋
, one of

(
1
12

)
n

or
(

5
12

)
n

will be

congruent to 0 modulo p. Hence, the constant term of

2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1

λ

)
p

=

b p12c∑
n=0

(
1
12

)
n

(
5
12

)
n

n!2

(
1− 1

λ

)n
is

b p12c∑
n=0

(
1
12

)
n

(
5
12

)
n

n!2
.

For p ≡ 1 (mod 12), we have(
1
12

)
n

n!
≡(−1)n

p−1
12

p−13
12
· · ·
(
p−1
12
− n+ 1

)
n!

(mod p)

≡(−1)n
(p−1

12

n

)
(mod p).

Also,
( 5
12)

n

n!
≡ (−1)n

( 5p−5
12
n

)
(mod p). Therefore,

cp =

b p12c∑
n=0

(
1
12

)
n

(
5
12

)
n

n!2

≡
(

6
⌊
p
12

⌋⌊
p
12

⌋ ) (mod p).

For p ≡ 5 (mod 12),

cp =

b p12c∑
n=0

(
1
12

)
n

(
5
12

)
n

n!2

≡
(

6
⌊
p
12

⌋
+ 2⌊

p
12

⌋ )
(mod p).
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A similar method can be used to compute cp ≡
(

6
⌊
p
12

⌋
+ 2⌊

p
12

⌋ )
(mod p) when p ≡ 7 (mod 12)

and

(
6
⌊
p
12

⌋
+ 4⌊

p
12

⌋ )
when p ≡ 11 (mod 12), which completes the proof.

Proof of Corollary 1.3.

Recall from the proof of Theorem 1.2 that since both the Hasse invariant of E 1
12

(λ)

and the polynomial λ
p−1
4 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1
λ

)
p

(resp. λ
p−3
4 2F1

(
7
12

11
12

1

∣∣∣∣ 1− 1
λ

)
p

when

p ≡ 7, 11 mod 12) both satisfied the same second order differential equation, the two poly-

nomials are congruent up to multiplication by a constant, which we will denote bp.

Assume that p ≡ 1 mod 12, and define m =
⌊
p
12

⌋
. Also, define n = 3m − k. We

computed the Hasse invariant of E 1
12

(λ) to be

3m∑
k=2m

(
−27

4
λ

)k (
6m

k

)(
k

3m− 6m

)
=

m∑
n=0

(
−27λ

4

)3m−n(
6m

3m− n

)(
3m− n
3m− 3n

)
.

By definition,

λ
p−1
4 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1

λ

)
p

≡ λ
p−1
4

m∑
k=0

(
1
12

)
k

(
5
12

)
k

k!2

(
1− 1

λ

)k
(mod p).

As before, (
1
12

)
k

(
5
12

)
k

k!2
≡
(
m

k

)(
5m

k

)
(mod p).

We expand each of the
(
1− 1

λ

)k
terms and rearrange to obtain

λ
p−1
4 2F1

(
1
12

5
12

1

∣∣∣∣ 1− 1

λ

)
p

≡
3m∑

k=2m

(−λ)k
m∑

t=3m−k

(
m

t

)(
5m

t

)(
t

3m− k

)
(mod p)

≡
m∑
n=0

(−λ)3m−n
m∑
t=n

(
m

t

)(
5m

t

)(
t

n

)
(mod p).

Since this polynomial is congruent to the Hasse invariant via multiplication by bp, we

have, for all 0 ≤ n ≤ m,(
27

4

)3m−n(
3m− n
3m− 3n

)(
6m

3m− n

)
≡ bp

m∑
t=n

(
m

t

)(
5m

t

)(
t

n

)
(mod p).
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When n = 0, this becomes(
27

4

)3m(
6m

3m

)
≡ bp

m∑
t=0

(
m

t

)(
5m

t

)
≡ bp

(
6m

m

)
(mod p)

and thus

bp ≡
(
6m
3m

) (
27
4

)3m(
6m
m

) (mod p).

Substituting this back into our identity, we have that for all 0 ≤ n ≤ m,(
4

27

)n(
3m− n
3m− 3n

)(
6m

3m− n

)(
6m

m

)
≡
(

6m

3m

) m∑
t=n

(
m

t

)(
5m

t

)(
t

n

)
(mod p).

In the case n = m, we obtain the simpler identity:(
27

4

)3m(
5m

m

)(
6m

3m

)
≡
(

6m

2m

)(
6m

m

)
(mod p).

4 Examples

In this section we provide two examples to illustrate our main theorems.

Example of Theorem 1.1

Consider p = 19. The supersingular j-invariants mod 19 are known to be 18 (corre-

sponding to 1728) and 7. From formula (3.1) we find that the values of λ where j ≡ 18

(mod 19) are −1± i
√

6 only. The values of λ for which j ≡ 7 (mod 19) are −6± 3
√

2 and

4± 11
√

13. Thus

S19, 1
3
(λ) =(λ− (−1 + i

√
6))(λ− (−1− i

√
6))(λ− (−6 + 3

√
2))

(λ− (−6− 3
√

2))(λ− (4 + 11
√

13))(λ− (4− 11
√

13))

≡λ6 + 6λ5 + 14λ4 + 8λ3 + 13λ2 + 5λ+ 12 (mod 19)

≡(λ2 + 2λ+ 7)(λ2 + 11λ+ 1)(λ2 + 12λ+ 18) (mod 19).
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The Hasse invariant is the coefficient of (wxy)18 in (wy2 + λwxy + λ2w2y − x3)18. This

is

H(λ) ≡ λ18 + 6λ17 + 14λ16 + 8λ15 + 13λ14 + 5λ13 + 12λ12 ≡ λ12 S19, 1
3
(λ) (mod 19).

In addition,

2F1

(
1
3

2
3

1

∣∣∣∣ 27

λ

)
19

≡ 1 +
6

λ
+

14

λ2
+

8

λ3
+

13

λ4
+

5

λ5
+

12

λ6
≡ 1

λ6
S19, 1

3
(λ) (mod 19).

Example of Theorem 1.2

Consider p = 59, which is 11 modulo 12. The supersingular j-invariants mod 59 are

known to be 0, 17 (corresponding to 1728), 48, 47, 28, and 15. From formula (3.2), we find

the λ-invariants corresponding to 48, 47, 28, and 15 are 32, 35, 24, and 22, respectively.

Note that we do not include the cases j = 0 or j = 1728 since in these cases E 1
12

(λ) is

singular. Thus

S59, 1
12

(λ) =(λ+ 27)(λ+ 24)(λ+ 35)(λ+ 37)

≡λ4 + 5λ3 + 10λ2 + 11λ+ 3 (mod 59).

The Hasse invariant is the coefficient of x58 in (4x3 − 27λx− 27λ)29. This is

H(λ) ≡ 2λ14 + 10λ13 + 20λ12 + 22λ11 + 6λ10 ≡ 2λ10S59, 1
12

(λ) (mod 59).

In addition,

2F1

(
7
12

11
12

1

∣∣∣∣ 1− 1

λ

)
59

≡ 2 +
10

λ
+

20

λ2
+

22

λ3
+

6

λ4
≡ 2

λ4
S59, 1

12
(λ) (mod 59) (mod 59).

Also, c59 ≡
(
28
4

)
≡ 2 (mod 59).
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5 Conclusion

As promised in the introduction, we have described the supersingular loci of two infinite

families of elliptic curves in terms of truncated hypergeometric functions. For the family

E 1
3
(λ), the supersingular locus was a power of λ times the 2F1

(
1
3

2
3

1

∣∣∣∣ 27λ )
p

function. We

found a similar result for the family E 1
12

(λ). This gives a very simple method for determining

exactly which values of λ yield supersingular curves for these infinite families. Over any

given field Fp, these λ-invariants are simply the roots of these hypergeometric functions

truncated modulo p.

Our work has direct applications to cryptography. If certain methods of encryption are

to be used, it is imperative to ensure that the curve being used is not supersingular. For

our infinite families E 1
3
(λ) and E 1

12
(λ), our results determine exactly which values of λ yield

a supersingular curve for a given prime p. Not only does this tell us which curves to avoid

for these encryption systems, but it also provides us with inifinitely many non-supersingular

curves that are viable candidates.

Our results also yield interesting insights into combinatorics. We have the very nice

identity given in Corollary 1.3, and analogous results can be obtained by similar methods.

For example, assume that p is any prime that is congruent to 1 modulo 12 and that 12m+1 =

p. If one could prove that the constant bp from the proof of Corollary 1.3 is congruent to 1

modulo p for all such p, then the following identity is implied from Corollary 1.3:(
6m

3m

)
≡
(

27

4

)m(
2m

m

)
(mod p).

The truth of this statement has been verified for all m up to 10000. This is a fascinat-

ing identity regarding the “central” binomial coefficients modulo p, and it illustrates the

types of insights one can gain into combinatorics through the study of elliptic curves and

hypergeometric functions.
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It is our hope that these results will be used to further understand the deep connections

between elliptic curves and hypergeometric functions, as well as the applications of elliptic

curves to other areas of mathematics and science.
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