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Abstract The prolongation g(k) of a linear Lie algebra g ⊂ gl(V ) plays
an important role in the study of symmetries of G-structures. Cartan and
Kobayashi-Nagano have given a complete classification of irreducible linear
Lie algebras g ⊂ gl(V ) with non-zero prolongations.

If g is the Lie algebra aut(Ŝ) of infinitesimal linear automorphisms of a
projective variety S ⊂ PV , its prolongation g(k) is related to the symmetries
of cone structures, an important example of which is the variety of minimal
rational tangents in the study of uniruled projective manifolds. From this per-
spective, understanding the prolongation aut(Ŝ)(k) is useful in questions re-
lated to the automorphism groups of uniruled projective manifolds. Our main
result is a complete classification of irreducible non-degenerate nonsingular
variety S ⊂ PV with aut(Ŝ)(k) �= 0, which can be viewed as a generalization
of the result of Cartan and Kobayashi-Nagano. As an application, we show
that when S is linearly normal and Sec(S) �= PV , the blow-up BlS(PV ) has
the target rigidity property, i.e., any deformation of a surjective morphism
f : Y → BlS(PV ) comes from the automorphisms of BlS(PV ).
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1 Introduction

For a linear algebraic group G ⊂ GL(V ), a G-structure on a complex man-
ifold M with dimM = dimV is a G-subbundle of the frame bundle on M .
Many classical geometric structures in differential geometry are G-structures
for various choices of G. For this reason, the (self)-equivalence problem for
G-structures has been studied extensively. It turns out that the graded pieces
(under a natural filtration) of the Lie algebra of infinitesimal symmetries of
G-structure are contained in the prolongations g(i), i ≥ 1, of the Lie algebra
g ⊂ gl(V ) (cf. Definition 2.1 for a precise definition) and in fact, equal to
the prolongations when the G-structure is flat (cf. Proposition 5.9). In other
words, an essential information of the symmetries of G-structures is encoded
in g(i). A fundamental result in the study of prolongations is the following
result of E. Cartan, S. Kobayashi and T. Nagano.

Theorem 1.1 Let g ⊂ gl(V ) be an irreducible representation of a Lie alge-
bra g.

(1) If g(2) �= 0, then g = gl(V ), sl(V ), sp(V ) or csp(V ) where dimV is even
for the last two cases.

(2) If g(2) = 0, but g(1) �= 0, then g ⊂ gl(V ) is isomorphic to the isotropy rep-
resentation on the tangent space at a base point of an irreducible Hermi-
tian symmetric space of compact type, different from the projective space.

The proof of Theorem 1.1 as given in [17] is purely algebraic, and depends
heavily on the theory of semi-simple Lie algebras and their representations.
For that reason, there is little hope of generalizing it to non-reductive Lie
algebras.
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In [14], motivated by algebro-geometric questions, the prolongation of
g ⊂ gl(V ) associated to a projective variety S ⊂ PV was studied. More
precisely, for a projective subvariety S � P(V ), consider the Lie algebra
aut(Ŝ) ⊂ gl(V ) of infinitesimal linear automorphisms of the affine cone Ŝ.
Hwang and Mok [14] show that one can study prolongations aut(Ŝ)(k) using
projective geometry of S ⊂ PV and the deformation theory of rational curves
on S. Combining these two geometric tools, the following generalization of
Theorem 1.1 (1) is proved in Theorem 1.1.2 of [14].

Theorem 1.2 Let S ⊂ PV be an irreducible nonsingular non-degenerate pro-
jective variety. If aut(Ŝ)(2) �= 0, then S = PV .

It is easy to derive Theorem 1.1 (1) from Theorem 1.2. On the other hand,
the latter is stronger than the former, because there is no a priori reason that
aut(Ŝ) is reductive in Theorem 1.2. For example, for the deformation rigidity
studied in [14], it is essential to have this stronger result.

It is natural to ask the generalization of Theorem 1.1 (2) in the form of
Theorem 1.2. Some partial results in this direction was obtained in [14] (e.g.
Theorem 2.6 below). The goal of this paper is to give a complete answer to
this question in the following form.

Main Theorem Let S � PV be an irreducible nonsingular non-degenerate
variety such that aut(Ŝ)(1) �= 0. Then S ⊂ PV is projectively equivalent to one
of the following:

(A1) the second Veronese embedding v2(P
n) ⊂ P

1
2 (n2+3n) for n ≥ 2;

(A2) Segre embedding P
a × P

b ⊂ P
ab+a+b for a, b ≥ 2;

(A3) a natural embedding

P(OPk (−1)m ⊕ OPk (−2)) ⊂ P
m(k+1)+ 1

2 (k+2)(k+1)−1

for k ≥ 2,m ≥ 1;
(B1) odd-dimensional hyperquadrics Q

1,Q
3, . . . ,Q

2�−1, . . . ;
(B2) even-dimensional hyperquadrics Q

2,Q
4, . . . ,Q

2�, . . . ;
(B3) Segre embedding P

1 × P
m ⊂ P

2m+1 and Plücker embedding

Gr(2,C
m+3) ⊂ P

1
2 (m2+5m+4)

for m ≥ 3;
(B4) Segre embedding P

1 × P
2 ⊂ P

5, Plücker embedding Gr(2,C
5) ⊂ P

9,
spinor embedding S5 ⊂ P

15 and the E6-Severi embedding OP
2 ⊂ P

26;
(B5) general hyperplane sections of the first three in (B4), i.e., (P1 × P

2) ∩
H0 ⊂ P

4,Gr(2,C
5) ∩ H1 ⊂ P

8,S5 ∩ H2 ⊂ P
14;
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(B6) general hyperplane section of the first in (B3), i.e. (P1 × P
m) ∩ H ⊂

P
2m, for m ≥ 3;

(C) some biregular projections of (A1), (A2), (A3) and Gr(2,C
m+3)

in (B3).

The varieties in (A1)–(A3) and (C) satisfy Sec(S) �= PV while the first en-
tries of (B1)–(B6) verify Sec(S) = PV . Note that the varieties in (B1)–(B5)
are listed as sequences S0, S1, S2, . . . . The reason behind this way of listing
the varieties will become clear in the course of the proof of Main Theorem. In
fact, the variety Si is the VMRT (cf. Definition 3.1) of the variety Si+1, a cru-
cial fact in the proof of Main Theorem. More detailed description of the va-
rieties (A1)–(B6) and the explicit computation of the prolongation aut(Ŝ)(1)

for each of them are given in Sect. 3. The set of biregular projections in (C)
which have non-zero prolongations will be described completely in Sect. 4.
One may have the impression that compared with the linearly normal cases of
(A1)–(B6), the projections in (C) are mere technicalities. This is not the case.
In fact, in the induction process of the proof of Main Theorem, it is crucial to
understand the cases in (C). In other words, imposing the additional condition
of linear normality on S ⊂ PV in Main Theorem would not make the proof
any simpler, and it is essential to include varieties which are not necessarily
linearly normal to carry out the proof of Main Theorem.

As we will explain in Sect. 5, aut(Ŝ)(1) is an essential part of the sym-
metries of cone structures, in particular, the structure coming from the va-
rieties of minimal rational tangents, which is an important tool in the study
of uniruled projective varieties. In this respect, Main Theorem will be use-
ful in algebraic geometric questions involving automorphism groups of unir-
uled varieties. As an example, we will give a direct application of Main The-
orem in Sect. 9, in the proof of the target rigidity for the blow-up of PV

along S. More precisely, we shall show (cf. Theorem 9.6) that if S ⊂ PV is
an irreducible nonsingular non-degenerate linearly normal variety such that
Sec(S) �= PV , then any deformation ft : Y → BlS(PV ) of a surjective mor-
phism f0 : Y → BlS(PV ) comes from automorphisms of BlS(PV ).

Turning to the proof of Main Theorem, the main strategy is to carry out
an induction on VMRT. In fact, by the partial result in [14] and the work of
Ionescu-Russo [16], the question is quickly reduced to the case when S ⊂
PV has Picard number 1 and covered by lines. In this setting, we show in
Proposition 6.7 and Theorem 6.15 that the VMRT of S at a general point,
say, S′ ⊂ PV ′, is again an irreducible nonsingular non-degenerate projective
variety with aut(Ŝ′)(1) �= 0. By induction, we have a classification of S′ ⊂
PV ′. From the information on S′ ⊂ PV ′, we can recover S ⊂ PV by Cartan-
Fubini type extension theorem as explained in Corollary 6.9. An essential
ingredient in this induction process is the local flatness of the associated cone
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structure, or equivalently, G-structure. For that purpose, we develop some
general theory for the latter differential-geometric machinery in Sect. 5.

The induction process enables us to prove Main Theorem, modulo the ter-
mination of the sequence of varieties in (B3)–(B6). Among these, the termi-
nation of (B3) and (B4) is an easy consequence of the condition on the secant
varieties, via a result from [10]. The termination of (B5) and (B6) is more
complicated and technically demanding. It will be proved in Sects. 7 and 8.
Many of the geometric ideas in these two sections are borrowed from Sects. 6
and 8 of [14]. However, the main line of arguments and details of the proof
are rather different from [14], except Propositions 7.6 and 8.6 whose proofs
are essentially contained in those of Propositions 6.3.4 and 8.3.4 of [14], re-
spectively.

2 Prolongation of a projective variety: basic properties

Definition 2.1 Let V be a complex vector space and g ⊂ End(V ) a Lie sub-
algebra. The kth prolongation (denoted by g(k)) of g is the space of symmet-
ric multi-linear homomorphisms A : Symk+1 V → V such that for any fixed
v1, . . . , vk ∈ V , the endomorphism Av1,...,vk

: V → V defined by

v ∈ V 
→ Av1,...,vk,v := A(v, v1, . . . , vk) ∈ V

is in g. In other words, g(k) = Hom(Symk+1 V,V ) ∩ Hom(Symk V ,g).

It is immediate from the definition that g(0) = g and if g(k) = 0, then
g(k+1) = 0.

In this paper, we are interested in the case where g arises from geometric
situations. Let us first recall some basic definitions.

Definition 2.2 Let S ⊂ PV be an irreducible projective subvariety.

(i) S is said to be non-degenerate (resp. linearly normal) if the restriction
map H 0(PV, OPV (1)) → H 0(S, OS(1)) is injective (resp. surjective).

(ii) S is said to be covered by lines if through each general point of S, there
passes a line lying on S. S is conic-connected if through two general
points of S, there passes an irreducible conic contained in S.

(iii) The secant variety Sec(S) ⊂ PV of S is the closure of the union of lines
through two points of S.

(iv) The projective automorphism group of S ⊂ PV is

Aut(S) := {g ∈ PGL(V )|gS = S}.
Its identity component will be denoted by Aut0(S) and its Lie algebra
will be denoted by aut(S).
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(v) Denote by Ŝ ⊂ V the affine cone of S and by Tα(Ŝ) ⊂ V the tangent
space at a smooth point α ∈ Ŝ. The Lie algebra of infinitesimal linear
automorphisms of Ŝ is

aut(Ŝ) := {g ∈ End(V )|g(α) ∈ Tα(Ŝ) for any smooth point α ∈ Ŝ}.
Its prolongation aut(Ŝ)(k) will be called the kth prolongation of S ⊂ PV .
We will often call aut(Ŝ)(1) the prolongation of S.

We have the following vanishing result.

Theorem 2.3 ([14], Theorem 1.1.2) Let S � PV be an irreducible nonsingu-
lar non-degenerate subvariety. Then aut(Ŝ)(k) = 0 for all k ≥ 2.

However, there are several examples of S with non-zero first prolongation
aut(Ŝ)(1). In [14], some partial results on the structure of such varieties were
obtained. Here we collect them with some immediate improvements.

Before stating the next theorem, it is convenient to introduce the notion
of Euler vector field. The following is a well-known fact in Poincaré normal
form theory of ordinary differential equations (e.g. [2], Sects. 3.3.2 and 4.1.2).

Lemma 2.4 A germ of holomorphic vector fields at (Cn,0) of the form

n∑

i=1

(zi + hi(z))
∂

∂zi

with hi ∈ m2 where m ⊂ OCn,0 is the maximal ideal, can be expressed as∑n
i=1 wi

∂
∂wi

in a suitable holomorphic coordinate system wi .

Definition 2.5 A germ of vector fields of the form in Lemma 2.4 is called an
Euler vector field.

The following theorem is essentially proved in Theorem 1.1.3 of [14].

Theorem 2.6 Let S � PV be a nonsingular, non-degenerate and linearly
normal projective subvariety. Then the following holds.

(i) If aut(Ŝ)(1) �= 0, then S is conic-connected.
(ii) For each non-zero A ∈ aut(Ŝ)(1), there exists a non-zero λA ∈ V ∗

such that for each α ∈ Ŝ, Aα,α = λA(α)α. This defines an inclusion
aut(Ŝ)(1) ⊂ V ∗.

(iii) In the notation of (ii), for any α ∈ Ŝ and α′ ∈ Tα(Ŝ),

λA(α)α′ + λA(α′)α = 2Aα,α′ .
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In particular, the endomorphism Aα acts on the tangent space of S

T[α](S) = Hom(Cα,Tα(Ŝ)/Cα)

as the scalar multiplication by 1
2λA(α).

(iv) Suppose aut(Ŝ)(1) �= 0. Then for a general point s ∈ S, there exists an
element E ∈ aut(Ŝ) which generates a C

×-action on S with an isolated
fixed point at s such that the isotropy action on Ts(S) is the scalar mul-
tiplication. In particular, the germ of E at s is an Euler vector field.

Proof By Theorem 1.1.3 (ii) [14], there exists a point so ∈ S such that S is
covered by conics passing through so. By Lemma 1 in [3], this implies that S

is conic-connected, proving (i). Claim (ii) follows from Proposition 2.3.1 [14]
while (iii) and (iv) follow from the proof of Theorem 1.1.3 (iii) in [14]. �

Let us recall the following from Lemma 2.3.3 in [14].

Lemma 2.7 Let S � PV be a nonsingular non-degenerate linearly normal
projective subvariety which is not biregular to a projective space. Let A ∈
aut(Ŝ)(1). Suppose for some α ∈ V and a subspace H ⊂ V of codimension 1,
the endomorphism Aα satisfies Aα,β = 0 for all β ∈ H ∩ Ŝ. Then Aα = 0.

Theorem 2.6 has the following consequences.

Proposition 2.8 In the setting of Theorem 2.6 (ii), assume S is not biregular
to a projective space. Choose a general point of the hyperplane section

α ∈ Ŝ ∩ (λA = 0).

Let ᾱ be the image of α under the natural projection Ŝ \ {0} → S. Then the
vector field on S induced by Aα is not identically zero and vanishes at ᾱ ∈ S

to second order.

Proof Suppose that for any general point α ∈ Ŝ ∩ (λA = 0), the vector field
on S induced by Aα is identically zero on S, i.e., for each β ∈ Ŝ, Aα,β is
proportional to β . Then it is proportional to α by symmetry. We conclude
that Aα is identically zero on Ŝ, thus on V . By symmetry, for each γ ∈ V ,
Aγ vanishes on Ŝ ∩ (λA = 0). Then by Lemma 2.7, Aγ is identically zero,
a contradiction to A �= 0. This shows that the vector field on S induced by Aα

is not identically zero.
Now Theorem 2.6 (iii) says that this vector field on S vanishes to second

order at α ∈ Ŝ with λA(α) = 0. �
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Proposition 2.9 Let S ⊂ PV be a nonsingular non-degenerate linearly nor-
mal subvariety. Then

dimaut(Ŝ)(1) �= 1.

Proof Let us write g = aut(Ŝ) ⊂ gl(V ). Assuming that dimg(1) = 1, we
will derive a contradiction. Let G ⊂ GL(V ) be the connected component of
the linear automorphism group of the cone Ŝ ⊂ V whose Lie algebra is g.
Note that G contains the central subgroup C

× · Id. The natural G-action on
Hom(Sym2 V,V ) induces a G-action

χ : G → GL(g(1)) ∼= C
×,

which is a character of G. Let G′ ⊂ G be the kernel of χ and g′ ⊂ g be its
Lie algebra. Since g(1) ⊂ Hom(Sym2 V,V ), the central subgroup C

× · Id acts
non-trivially on g(1) and the normal subgroup G′ ⊂ G is complementary to
C

× · Id. Thus we have a direct sum decomposition of the Lie algebra g = C ·
Id⊕g′. Let Ḡ ⊂ PGL(V ) be the image of G, under the projection GL(V ) →
PGL(V ). Then Ḡ is the identity component of the projective automorphism
group of S. The homomorphism G′ → Ḡ has finite kernel and the Lie algebra
g′ is isomorphic to the Lie algebra of Ḡ.

From g(1) �= 0 and Theorem 2.6 (iv), for each general point x ∈ S, we
have a C

×-subgroup Gx ⊂ G′ which acts as the multiplication by C
× on the

tangent space Tx(S). Let Tx(Ŝ) be the affine tangent space at x. Since Gx

has weight 1 on Tx(S), it has exactly two distinct weights on Tx(Ŝ). In fact,
from Tx(S) = Hom(x̂, Tx(Ŝ)/x̂), if it has weight k on x̂, the other weight on
Tx(Ŝ)/x̂ must be k + 1.

Pick a vector α ∈ x̂ and α′ ∈ Tx(Ŝ)/x̂. For A ∈ g(1) and g ∈ G′, g · A = A

implies that

Agα,gα′ = g · Aα,α′ .

On the other hand, by Theorem 2.6 (iii) we have

2Aα,α′ = λ(α)α′ + λ(α′)α,

for some non-zero λ ∈ V ∗. Thus for any t ∈ Gx
∼= C

×,

2t · Aα,α′ = tk+1λ(α)α′ + tkλ(α′)α,

while

2At ·α,t ·α′ = 2Atkα,tk+1α′ = 2t2k+1Aα,α′ = t2k+1λ(α)α′ + t2k+1λ(α′)α.

Thus either λ(α) = 0 or λ(α′) = 0. Since the set of such α or α′ spans the
vector space V , we get λ = 0, a contradiction. �
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3 Examples of linearly normal varieties with non-zero first prolongation

In this section, we will list examples of linearly normal S ⊂ PV with non-zero
first prolongation. Before giving these examples, it is convenient to recall the
notion of VMRT, because our examples arise as VMRT of some uniruled
manifolds.

Definition 3.1 Let X be a uniruled projective manifold. An irreducible com-
ponent K of the space RatCurvesn(X) of rational curves on X is called a mini-
mal rational component if the subvariety Kx of K parameterizing curves pass-
ing through a general point x ∈ X is non-empty and proper. Curves param-
eterized by K will be called minimal rational curves. Let ρ : U → K be the
universal family and let μ : U → X be the evaluation map. The tangent map
τ : U ��� PT (X) is defined by τ(u) = [Tμ(u)(μ(ρ−1ρ(u)))] ∈ PTμ(u)(X).
The closure C ⊂ PT (X) of its image is the total space of variety of mini-
mal rational tangents. The natural projection C → X is a proper surjective
morphism and a general fiber Cx ⊂ PTx(X) is called the variety of minimal
rational tangents at the point x ∈ X. To simplify the terminology, we will use
‘VMRT’ for ‘variety (or varieties) of minimal rational tangents’.

The following is well-known (cf. Proposition 1.5 in [6]).

Proposition 3.2 Let X ⊂ P
N be a nonsingular projective variety covered by

lines. A component of family of lines covering X is a minimal rational com-
ponent and the VMRT Cx ⊂ PTx(X) at a general point x ∈ X is nonsingular.

The following is immediate.

Lemma 3.3 In the setting of Proposition 3.2, let X ∩ H be a general hyper-
plane section. If Cx ⊂ PTx(X) is the VMRT of X at a general point x ∈ X∩H

and dim Cx ≥ 1, then the VMRT associated to a family of lines covering X∩H

is

Cx ∩ PTx(H) ⊂ PTx(X ∩ H).

3.1 VMRT of an irreducible Hermitian symmetric space of compact type

An irreducible Hermitian symmetric space of compact type is a homoge-
neous space M = G/P with a simple Lie group G and a maximal parabolic
subgroup P such that the isotropy representation of P on Tx(M) at a base
point x ∈ M is irreducible. The highest weight orbit of the isotropy action on
PTx(M) is exactly the VMRT at x.

The following table collects some well-known facts on irreducible Hermi-
tian symmetric spaces of compact type (see e.g. [10], Sect. 6.2).
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Type I.H.S.S. M VMRT S S ⊂ PTx(M) dim PTx(M) dim Sec(S)

I Gr(a, a + b) P
a−1 × P

b−1 Segre ab − 1 2a + 2b − 5

II Sn Gr(2, n) Plücker 1
2 (n2 − n − 2) 4n − 11

III Lag(2n) P
n−1 Veronese 1

2 (n2 + n − 2) 2n − 2

IV Q
n

Q
n−2 Hyperquadric n − 1 n − 1

V OP
2

S5 Spinor 15 15

VI E7/(E6 × U(1)) OP
2 Severi 26 25

Here Gr(a, a + b) is the Grassmannian of a-dimensional subspaces in an
(a + b)-dimensional vector space. Sn is the spinor variety, i.e. the variety pa-
rameterizing n-dimensional isotropic linear subspaces in an orthogonal vec-
tor space of dimension 2n. Lag(2n) is the Lagrangian Grassmannian, which
parameterizes Lagrangian subspaces in a 2n-dimensional symplectic vector
space. Q

n denotes the n-dimensional hyperquadric. OP
2 is the Cayley plane,

which is of dimension 16 and homogeneous under the action of E6.
In the following, we always assume that M is not a projective space. Let

o ∈ M = G/P be the point with the isotropy subgroup P and set V = To(M).
Let S ⊂ PV be the VMRT of M . There exists a depth 1 decomposition of the
Lie algebra g of G (cf. [14], Sect. (4.1)): if we denote by αk the simple root
corresponding to the maximal parabolic subgroup P , and �i the set of roots
whose coefficient in αk equals to i, then �i is not empty exactly for i =
0,±1. Let gi = ⊕

α∈�i
gα , then we get the decomposition g = g−1 ⊕ g0 ⊕ g1

satisfying [gi ,gj ] ⊂ gi+j for all i, j . There exist natural isomorphisms g−1 ∼=
To(G/P ) = V , g1 ∼= T ∗

o (G/P ) = V ∗ and g0 ∼= aut(Ŝ). When G is of classical
type, an explicit description of the gradation of g can be found in Sect. 4.4
of [21].

We have a natural injective map:

φ : g1 → Hom(g−1,g0), given by φX(Y ) = [X,Y ], ∀X ∈ g1, Y ∈ g−1.

By Theorem 5.2 of [21], the image Im(φ) is exactly the prolongation g
(1)
0 =

aut(Ŝ)(1). This gives

Proposition 3.4 Let S � PV be the VMRT of an irreducible Hermitian sym-
metric space M of compact type. Then aut(Ŝ)(1) ∼= g1 ∼= V ∗.

As explained in Corollary 1.1.5 of [14], Theorem 2.6 implies the following
result of [17].

Theorem 3.5 Let S ⊆ PV be the highest weight variety of an irreducible rep-
resentation. Then aut(Ŝ)(1) �= 0 if and only if S is the VMRT of an irreducible
Hermitian symmetric space of compact type.
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3.2 VMRT of symplectic Grassmannians

Let 
 be an n-dimensional vector space endowed with a skew-symmetric
2-form ω of maximal rank. We denote by Grω(k,
) the variety of all k-
dimensional isotropic subspaces of 
. When n is even, this is the usual
symplectic Grassmannian, which is homogeneous under the action of Sp(
).
When n is odd, Grω(k,
) is the odd symplectic Grassmannian, which is not
homogeneous and has two orbits under the action of its automorphism group
(cf. [19], Proposition 1.12).

Let W and Q be vector spaces of dimensions k ≥ 2 and m respectively. Let
v2 : P(W ⊕Q) ↪→ P(Sym2(W ⊕Q)) be the second Veronese embedding. Let

U := (W ⊗ Q) ⊕ Sym2 W ⊂ Sym2(W ⊕ Q).

Let pSym2 Q : P(Sym2(W ⊕ Q)) ��� PU be the projection from P(Sym2 Q).
We denote by Z the proper image of v2(P(W ⊕ Q)) under the projection
pSym2 Q. Then Z is isomorphic to the projective bundle P((Q ⊗ t) ⊕ t⊗2)

over PW , where t is the tautological line bundle over PW . The embedding
Z ⊂ PU is given by the complete linear system

H 0(PW,(Q ⊗ t∗) ⊕ (t∗)⊗2) = (W ⊗ Q)∗ ⊕ Sym2 W ∗ = U∗.

The following lemma was proved in Proposition 3.2.1 [14] for the case of
(even) symplectic Grassmannians. The proof there works also for odd sym-
plectic Grassmannians.

Lemma 3.6 The linearly normal embedding Z ↪→ PU is isomorphic to the
VMRT at a general point of the symplectic Grassmannian Grω(k,
) (with
dim
 = m + 2k).

We also have

Lemma 3.7 If k = 2, then Z ↪→ PU is the VMRT at a general point of a
general hyperplane section of the Plücker embedding of Gr(2,m+ 4). Equiv-
alently, Z is a general hyperplane section of P

1 × P
m+1.

Proof Let 
 be a vector space of dimension m + 4, then we have the Plücker
embedding Gr(2,
) ↪→ P(

∧2

). Let ω be a general element of

∧2

∗,

i.e., a skew-symmetric 2-form on 
 with maximal rank. Let H ⊂ ∧2

 be

the kernel of ω ∈ ∧2

∗. Then we get Gr(2,
) ∩ H = Grω(2,
), the latter

being the symplectic Grassmannian. The last statement is by Lemma 3.3. �

The following will be proved after Proposition 4.15.
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Proposition 3.8 aut(Ẑ) = (W ∗ ⊗ Q)>� (gl(W) ⊕ gl(Q)) and aut(Ẑ)(1) ∼=
Sym2 W ∗.

3.3 Hyperplane section of S5

Let Q be a 7-dimensional orthogonal vector space and let W be the 8-di-
mensional spin representation of so(Q) = so(7). There exists a Spin(7)-
stable 9-dimensional Fano manifold Z of Picard number 1 with an embed-
ding Z ⊂ P(W ⊕ Q) which is isomorphic to a general hyperplane section
of the 10-dimensional spinor variety (cf. Sect. 7 in [14] where it is denoted
by Co). In fact, as explained in Sect. 7 of [14], Z ⊂ P(W ⊕ Q) is isomorphic
to the VMRT of a 15-dimensional F4-homogeneous space. The variety Z is
biregular to the horospherical Fano manifold of Picard number 1, the case 4
in Theorem 1.7 of [19]. The next proposition follows from Theorem 1.11
of [19].

Proposition 3.9 aut(Ẑ) = C ⊕ W >� (so(Q) ⊕ C).

Here the central C corresponds to the scalar multiplication on W ⊕ Q,
while the second C acts with weight 1 on W and 0 on Q. The action of W

on W ⊕ Q is annihilating W and given by W ⊂ Hom(Q,W) induced from
the natural inclusion of W as an irreducible so(7)-factor of Hom(Q,W). The
inclusion aut(Ẑ) ⊂ End(W ⊕ Q) can be represented as follows:

(
C ⊂ End(W) 0

W ⊂ Hom(Q,W) co(Q) ⊂ End(Q)

)
.

The following is from Proposition 7.2.3 of [14]. We give a more direct
proof.

Proposition 3.10 aut(Ẑ)(1) = Q∗.

Proof By Theorem 2.6 (ii) and (iii), every A ∈ aut(Ẑ)(1) is determined by an
element λ ∈ W ∗ ⊕ Q∗ such that

2Ax,y = λ(x)y + λ(y)x

for x ∈ Ẑ and y ∈ Tx(Ẑ). As Ax ∈ aut(Ẑ), we can write

Ax =
(

μx 0
φx gx

)
, μx ∈ C, φx ∈ W ⊂ Hom(Q,W), gx ∈ co(Q).

If we write x = (x1, x2) and y = (y1, y2) with x1, y1 ∈ W and x2, y2 ∈ Q,
then we have
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2(μxy1 + φx(y2), gx(y2))

= 2Ax(y) = 2Ax,y = (λ(x)y1, λ(x)y2) + (λ(y)x1, λ(y)x2).

As this holds for all y ∈ Tx(Ẑ), we have

μx = λ(x)/2, φx(y2) = (λ(y)/2)x1,
(3.1)

gx(y2) = (λ(x)/2)y2 + (λ(y)/2)x2.

If we take y2 = 0 in the previous equations, then λ((y1,0)) = 0 for all y1 ∈ W ,
which implies λ ∈ Q∗. Conversely, for any λ ∈ Q∗, we can use formulae in
(3.1) to construct Ax and one checks that A ∈ aut(Ẑ)(1). �

3.4 Hyperplane section of Gr(2,5)

Let Q be a 5-dimensional orthogonal vector space and let W be the 4-di-
mensional spin representation of so(Q) = so(5). There exists a Spin(5)-
stable 5-dimensional Fano manifold Z of Picard number 1 with an embedding
Z ⊂ P(W ⊕ Q). In fact, Z is a general hyperplane section of Gr(2,5), which
is isomorphic to a symplectic Grassmannian Grω(2,5) by Lemma 3.7. This
can be seen as follows. As sp(4) ∼= so(5), we can regard W as a 4-dimensional
symplectic vector space. We have a decomposition of sp(4)-modules

∧2
W ∼= C ⊕ Q.

Equip W ⊕ C with the skew symmetric form ω obtained from W with C

as its null-space. A natural embedding Z ⊂ P(W ⊕ Q) of the symplectic
Grassmannian Z can be obtained by viewing Z as the hyperplane section of

Gr(2,W ⊕ C) ⊂ P

∧2
(W ⊕ C) ∼= P

(∧2
W ⊕ W

)

where the hyperplane is given by the kernel of ω in
∧2

W = C ⊕ Q. From
the table in Sect. 3.1, we see that Z is the VMRT at a general point of a
hyperplane section of S5. As Proposition 3.9, the next proposition follows
from Theorem 1.11 Case 5 of [19].

Proposition 3.11 aut(Ẑ) = C ⊕ W >� (so(Q) ⊕ C).

The next proposition can be proved in the same way as Proposition 3.10.

Proposition 3.12 aut(Ẑ)(1) = Q∗.
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4 Prolongation and projection

Notation 4.1 Given a linear space L ⊂ V , denote by pL : PV ��� P(V/L)

the projection. When L = x̂ for a point x ∈ PV , we write px̂ as px .

Let us recall the following two elementary facts.

Lemma 4.2 Given an irreducible variety S ⊂ PV and a linear subspace
L ⊂ V with S �⊂ PL, the proper image pL(S) ⊂ P(V/L) is well-defined.
When S is nonsingular, the restriction pL|S is a morphism sending S biregu-
larly to pL(S) if and only if PL ∩ Sec(S) = ∅.

Lemma 4.3 Let S ⊂ PV be an irreducible closed subvariety and L ⊂ V a
linear subspace with S �⊂ PL. Then Sec(pL(S)) = pL(Sec(S)).

In this section, we study the prolongation of pL(S) ⊂ P(V/L) for the ex-
amples S ⊂ PV listed in the previous section for suitable linear spaces L. It
is convenient to introduce the following.

Definition 4.4 Let S ⊂ PV be an irreducible projective variety and let L ⊂ V

be a linear subspace. We define two Lie subalgebras of aut(Ŝ) as follows.

aut(Ŝ,L) := {g ∈ aut(Ŝ)|g(L) ⊂ L} ⊂ gl(V ),

aut(Ŝ,L,0) := {g ∈ aut(Ŝ)|g(L) = 0} ⊂ gl(V ).

Proposition 4.5 Let S ⊂ PV be a non-degenerate irreducible subvariety. Let
L � V be a linear subspace. Assume that

(i) the natural Lie algebra homomorphism aut(Ŝ,L) → aut(p̂L(S)) is an
isomorphism; and

(ii) for a general α ∈ Ŝ, Tα(Ŝ) ∩ L = 0.

Then we have an isomorphism of vector spaces

aut(p̂L(S))(1) ∼= aut(Ŝ,L,0)(1) = {A ∈ aut(Ŝ)(1)|Aα(L) = 0,∀α ∈ Ŝ}.

Proof For any element A ∈ aut(p̂L(S))(1) ⊂ Hom(V/L,aut(p̂L(S))), we
define an element Ã ∈ Hom(V ,aut(Ŝ,L)) by composing A with the natu-
ral projection V → V/L and the isomorphism aut(p̂L(S)) ∼= aut(Ŝ,L) given
by the condition (i).

For a general element α ∈ Ŝ, denote by ᾱ ∈ p̂L(S) its image in V/L.
By the condition (ii), we have a natural identification Tα(Ŝ) ∼= Tᾱ(p̂L(S))

for a general α ∈ Ŝ. Let β ∈ Ŝ be a general point. As Aᾱ(β̄) = Aβ̄(ᾱ) ∈
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Tᾱ(p̂L(S)) ∩ Tβ̄(p̂L(S)), we have Ãα(β) ∈ (Tα(Ŝ) ∩ Tβ(Ŝ)) ⊕ L. On the

other hand, as Ãα ∈ aut(Ŝ), we have Ãα(β) ∈ Tβ(Ŝ) by Definition 2.2 (v).
As Tβ(Ŝ) ∩L = 0, this implies that Ãα(β) ∈ Tα(Ŝ) ∩ Tβ(Ŝ). In particular, we
have Im(Ãα) ⊂ Tα(Ŝ) and Ãα(β) = Ãβ(α) for all general α,β ∈ Ŝ because
Aᾱ(β̄) = Aβ̄(ᾱ). As S is non-degenerate, the equality Ãα(β) = Ãβ(α) holds

for all α,β ∈ V . Thus Ã ∈ Hom(Sym2 V,V ).
As Ãα ∈ aut(Ŝ,L), we have Ãα(L) ⊂ L. This implies that Ãα(L) ⊂ L ∩

Tα(Ŝ) = 0 for general α ∈ Ŝ by the condition (ii). Consequently, Ãα(L) = 0
for a general α ∈ Ŝ, hence for any α ∈ V by the non-degeneracy of S. It
follows that

Ã ∈ Hom(V ,aut(Ŝ,L,0)) ∩ Hom(Sym2 V,V ) = aut(Ŝ,L,0)(1).

Conversely, for any Ã ∈ aut(Ŝ,L,0)(1), it is easy to see that it induces an
element A ∈ aut(p̂L(S))(1), proving the proposition. �

Proposition 4.6 Let S ⊂ PV be a linearly normal nonsingular non-degene-
rate projective variety. If L ⊂ V is a subspace with PL ∩ Sec(S) = ∅, then it
satisfies the two conditions in Proposition 4.5. In particular,

aut(p̂L(S))(1) ∼= aut(Ŝ,L,0)(1) = {A ∈ aut(Ŝ)(1)|Aα(L) = 0,∀α ∈ Ŝ}.

Proof Let us identify S ⊂ PV with S ⊂ PH 0(S, O(1))∗ for the hyperplane
line bundle O(1) on S. The condition (ii) is immediate from PTα(Ŝ) ⊂ Sec(S)

for any α ∈ Ŝ. The condition (i) will follow from the next lemma. �

Lemma 4.7 Let S ⊂ PV be a linearly normal nonsingular non-degenerate
projective variety. Let PL1,PL2 ⊂ PV \ Sec(S) be two linear subspaces and
pLi

: S → pLi
(S) ⊂ P(V/Li) the projection from PLi . Suppose that there

exists an isomorphism σ : P(V/L1) → P(V/L2) with σ(pL1(S)) = pL2(S).
Then there exists a unique isomorphism σ̃ : PV → PV with σ̃ (S) = S and
σ̃ (PL1) = PL2.

Proof The restriction σ |pL1 (S) : pL1(S) → pL2(S) is an automorphism
σ̄ of S with σ̄ ∗O(1) ∼= O(1) such that sections of O(1) annihilated by
PL2 ⊂ PH 0(S, O(1))∗ correspond to sections of O(1) annihilated by PL1 ⊂
PH 0(S, O(1))∗. Thus it induces a homomorphism σ̃ : PH 0(S, O(1))∗ →
PH 0(S, O(1))∗ with σ̃ (PL1) = PL2. �

As an immediate consequence of Proposition 4.6, we have the following
Corollary.
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Corollary 4.8 Let S ⊂ PV be a nonsingular non-degenerate subvariety such
that aut(Ŝ)(1) �= 0 and Pic(S) = ZOS(1). Then for the linearly normal em-
bedding S ⊂ PH 0(S, OS(1))∗, we still have aut(Ŝ)(1) �= 0.

By Propositions 4.5 and 4.6, studying the prolongation of pL(S) under
a biregular projection of a linearly normal S is reduced to the study of
aut(Ŝ,L,0)(1). Let us carry this out for the examples listed in Sect. 3.

For the VMRT of an irreducible Hermitian symmetric space of compact
type, we have the following uniform description.

Proposition 4.9 Let S � PV be the VMRT of an irreducible Hermitian sym-
metric space M of compact type. Recall that from Sect. 3.1, we have a
graded Lie algebra structure of g := aut(M), g = g−1 ⊕ g0 ⊕ g1 such that
g−1 ∼= To(M) = V and aut(Ŝ)(1) ∼= g1. For a subspace L ⊂ g−1, we have

aut(Ŝ,L,0)(1) = {X ∈ g1|[X,Z] = 0,∀Z ∈ L}.
Proof From the definition

aut(Ŝ,L,0)(1) = {A ∈ aut(Ŝ)(1)|Aα(L) = 0,∀α ∈ Ŝ}
and the isomorphism aut(Ŝ)(1) ∼= g1 given in Sect. 3.1, we get

aut(Ŝ,L,0)(1) = {X ∈ g1|[[X,Y ],Z] = 0,∀Y ∈ g−1,∀Z ∈ L}
= {X ∈ g1|[[X,Z], Y ] = 0,∀Y ∈ g−1,∀Z ∈ L}
= {X ∈ g1|[X,Z] = 0,∀Z ∈ L}.

The last equality follows from the fact that if an element u ∈ g1 = g
(1)
0 satisfies

[u,Y ] = 0 for all Y ∈ g−1, then u = 0 (cf. [21], Lemma 3.2). �

The following four propositions give more explicit description of Proposi-
tion 4.9 when Sec(S) �= PV . Here we will use the data in the table of Sect. 3.1
freely. Our main interest is when PL∩Sec(S) = ∅. But for the classical types,
we will treat also general L, because it will be needed later and requires little
extra work.

Proposition 4.10 Let A and B be vector spaces with a := dimA ≥ b :=
dimB ≥ 3. Let V = Hom(A,B) and let Ŝ ⊂ V be the set of elements of
rank ≤ 1. For a subspace L ⊂ Hom(A,B), we define Im(L) ⊂ B as the linear
span of {Im(φ) ⊂ B,φ ∈ L} and Ker(L) := ⋂

φ∈L Ker(φ). Then

(i) there is a canonical isomorphism of vector spaces

aut(Ŝ,L,0)(1) ∼= Hom(B/ Im(L),Ker(L));
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(ii) for any ψ ∈ Hom(B,A) with Im(L) ⊂ Ker(ψ) and Im(ψ) ⊂ Ker(L),
L is contained in

L(ψ) := {φ ∈ Hom(A,B)|φ ◦ ψ = 0,ψ ◦ φ = 0}
∼= Hom(A/ Im(ψ),Ker(ψ));

(iii) if PL ∩ Sec(S) = ∅ and aut(Ŝ,L,0)(1) contains an element of rank r in
Hom(B/ Im(L),Ker(L)), then

dimL ≤ ab − 2(a + b) + 4 − r(a + b − r − 4).

Proof From [21], p. 457, the grading on g in Proposition 4.9 for M =
Gr(a, a + b) can be identified with

g−1 = Hom(A,B), g0 = End(A) ⊕ End(B), g1 = Hom(B,A).

The bracket [g−1,g1] ⊂ g0 is given by [φ,ψ] = φ ◦ ψ − ψ ◦ φ ∈ g0 for φ ∈
g−1 and ψ ∈ g1. By Proposition 4.9, this gives

aut(Ŝ,L,0)(1) = {ψ ∈ Hom(B,A)|ψ ◦ φ = 0, φ ◦ ψ = 0,∀φ ∈ L}
= {ψ ∈ Hom(B,A)| Im(ψ) ⊂ Ker(φ),

Im(φ) ⊂ Ker(ψ),∀φ ∈ L}
= {ψ ∈ Hom(B,A)| Im(ψ) ⊂ Ker(L), Im(L) ⊂ Ker(ψ)}
∼= Hom(B/ Im(L),Ker(L)),

proving (i). For (ii), it is clear from above that L is contained in L(ψ).
Now assume that PL ∩ Sec(S) = ∅ and there is ψ in (ii) of rank r . Note

that Sec(Ŝ) ⊂ V = Hom(A,B) consists of elements of rank ≤ 2 (e.g. [10],
p. 188, Type I). Let Sψ ⊂ PL(ψ) ∼= P(Hom(A/ Im(ψ),Ker(ψ))) be the set
of elements of rank ≤ 1, then Sec(Sψ) consists of elements of rank ≤ 2, which
has dimension 2(a +b−2r)−5. By the assumption, PL ⊂ PL(ψ) is disjoint
from Sec(Sψ), which implies that a − r ≥ b − r ≥ 3 and

dimL ≤ (a − r)(b − r) − (dim Sec(Sψ)) − 1

= ab − 2(a + b) + 4 − r(a + b − r − 4). �

Proposition 4.11 Let W be a vector space of dimension n ≥ 6. For each
φ ∈ ∧2

W , denote by φ� ∈ Hom(W ∗,W) the corresponding element via the
natural inclusion

∧2
W ⊂ W ⊗ W = Hom(W ∗,W). Let V = ∧2

W and let
Ŝ ⊂ V be the set of elements φ with φ� of rank ≤ 2. For a subspace L ⊂ V ,
define Im(L) ⊂ W as the linear span of {Im(φ�) ⊂ W,φ ∈ L}. Then
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(i) there is a canonical vector space isomorphism

aut(Ŝ,L,0)(1) ∼=
∧2

(W/ Im(L))∗;

(ii) for each ψ ∈ ∧2
(W/ Im(L))∗ ⊂ ∧2

W ∗, denoting by ψ� the corre-
sponding element in Hom(W,W ∗), L is contained in

L(ψ) :=
{
φ ∈

∧2
W | Im(φ�) ⊂ Ker(ψ�)

}
∼=

∧2
Ker(ψ�);

(iii) if PL ∩ Sec(S) = ∅ and aut(Ŝ,L,0)(1) contains an element of rank r

in
∧2

(W/ Im(L))∗ (i.e. the corresponding element in Hom(W,W ∗) has
rank r), then

dimL ≤ n(n − 1)

2
− 4n + 10 − r(2n − r − 9)

2
.

Proof From [21], pp. 459–461, the grading on g in Proposition 4.9 for M =
Sn can be identified with

g−1 =
∧2

W, g0 = End(W), g1 =
∧2

W ∗.

For each ψ ∈ ∧2
W ∗, denote by ψ� ∈ Hom(W,W ∗), the corresponding ele-

ment via the natural inclusion
∧2

W ∗ ⊂ W ∗ ⊗ W ∗ = Hom(W,W ∗).
For any φ ∈ ∧2

W,ψ ∈ ∧2
W ∗, the endomorphism [φ,ψ] ∈ End(W) is

given by

[φ,ψ] = φ� ◦ ψ�.

Note that we have the following equivalences:

[φ,ψ] = 0 ⇔ Im(ψ�) ⊂ Ker(φ�) ⇔ ψ ∈
∧2

Ker(φ�)

⇔ φ ∈
∧2

Ker(ψ�) ⇔ Im(φ�) ⊂ Ker(ψ�).

By Proposition 4.9, this gives

aut(Ŝ,L,0)(1) =
{
ψ ∈

∧2
W ∗| Im(φ�) ⊂ Ker(ψ�),∀φ ∈ L

}

=
{
ψ ∈

∧2
W ∗| Im(L) ⊂ Ker(ψ�)

}

∼=
∧2

(W/ Im(L))∗,

proving (i). For (ii), it is clear from above that L is contained in L(ψ).



Projective manifolds with non-zero prolongations 475

Now assume that PL∩Sec(S) = ∅ and there is ψ in (ii) of rank r . Note that
Sec(Ŝ) ⊂ V = ∧2

W consists of elements with rank ≤ 4 (e.g. [10], p. 188,
Type II). Let Sψ ⊂ PL(ψ) be the variety consisting of elements of rank ≤ 2,
then we have dim Sec(Sψ) = 4n − 4r − 11. By the hypothesis, PL ⊂ PL(ψ)

is disjoint from Sec(Sψ), which implies that n − r ≥ 6 and

dimL ≤ n(n − 1)

2
− 4n + 10 − r(2n − r − 9)

2
. �

Proposition 4.12 Let W be a vector space of dimension n ≥ 3. For each
φ ∈ Sym2 W , denote by φ� ∈ Hom(W ∗,W) the corresponding element via
the natural inclusion Sym2 W ⊂ W ⊗ W = Hom(W ∗,W). Let V = Sym2 W

and let Ŝ ⊂ V be the set of elements φ with φ� of rank ≤ 1. For a subspace
L ⊂ V , define Im(L) ⊂ W as the linear span of {Im(φ�) ⊂ W,φ ∈ L}. Then

(i) there is a canonical isomorphism of vector spaces

aut(Ŝ,L,0)(1) ∼= Sym2(W/ Im(L))∗;

(ii) for each ψ ∈ Sym2(W/ Im(L))∗ ⊂ Sym2 W ∗, denoting by ψ� the corre-
sponding element in Hom(W,W ∗), L is contained in

L(ψ) := {φ ∈ Sym2 W | Im(φ�) ⊂ Ker(ψ�)} ∼= Sym2 Ker(ψ�);

(iii) if PL ∩ Sec(S) = ∅ and aut(Ŝ,L,0)(1) contains an element of rank r in
Sym2(W/ Im(L))∗ (i.e. the corresponding element in Hom(W,W ∗) has
rank r), then

dimL ≤ n(n + 1)

2
− 2n + 1 − r(2n − r − 3)

2
.

Proof From [21], pp. 458–459, the grading on g in Proposition 4.9 for M =
Lag(2n) can be identified with

g−1 = Sym2 W, g0 = End(W), g1 = Sym2 W ∗.

For each ψ ∈ Sym2 W ∗, denote by ψ� ∈ Hom(W,W ∗), the corresponding
element via the natural inclusion Sym2 W ∗ ⊂ W ∗ ⊗ W ∗ = Hom(W,W ∗).
For any φ ∈ Sym2 W,ψ ∈ Sym2 W ∗, the endomorphism [φ,ψ] ∈ End(W)

is given by

[φ,ψ] = φ� ◦ ψ�.
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As in the proof of Proposition 4.11, [φ,ψ] = 0 is equivalent to Im(φ�) ⊂
Ker(ψ�), which gives, by Proposition 4.9,

aut(Ŝ,L,0)(1) = {ψ ∈ Sym2 W ∗| Im(φ�) ⊂ Ker(ψ�),∀φ ∈ L}
= {ψ ∈ Sym2 W ∗| Im(L) ⊂ Ker(ψ�)}
∼= Sym2(W/ Im(L))∗,

proving (i). For (ii), it is clear from above that L is contained in

L(ψ) = {φ ∈ Sym2 W |[φ,ψ] = 0} = {φ ∈ Sym2 W | Im(φ�) ⊂ Ker(ψ�)}.
Now assume that PL∩Sec(S) = ∅ and there is ψ in (ii) of rank r . Note that

Sec(Ŝ) ⊂ V = Sym2 W consists of elements with rank ≤ 2 (e.g. [10], p. 188,
Type III). Let Sψ ⊂ PL(ψ) be the variety consisting of elements of rank ≤1.
Then we have dim Sec(Sψ) = 2(n − r − 1). By the hypothesis, PL ⊂ PL(ψ)

is disjoint from Sec(Sψ), which implies that n − r ≥ 3 and

dimL ≤ n(n + 1)

2
− 2n + 1 − r(2n − r − 3)

2
. �

Proposition 4.13 Let S ⊂ PV be the minimal (Severi) embedding of the Cay-
ley plane OP

2 with dimV = 27. By [22] (pp. 59–60), Sec(S) ⊂ PV is a cu-
bic hypersurface. For any 1-dimensional subspace L ⊂ V with PL �∈ Sec(S),
aut(Ŝ,L,0)(1) = 0.

Proof It is known that aut(Ŝ,L) is a simple Lie algebra of type F4 and
the natural representation on V/L is the minimal irreducible representa-
tion of dimension 26 ([22], pp. 59–60). Let S′ ⊂ P(V/L) be the highest
weight variety of this F4-representation, which is not biregular to the VMRT
of an irreducible Hermitian symmetric space. From Theorem 3.5, we have
aut(p̂L(S))(1) = aut(Ŝ′)(1) = 0. Thus by Proposition 4.6, aut(Ŝ,L,0)(1) =
aut(p̂L(S))(1) = 0. �

At this point, we can give the postponed proof of Proposition 3.8. We start
with examining a special case of Proposition 4.12.

Proposition 4.14 Let W and Q be vector spaces of dimensions k ≥ 2 and m

respectively. Set L := Sym2 Q ⊂ V := Sym2(W ⊕ Q). Let

S := v2(P(W ⊕ Q)) ⊂ P(Sym2(W ⊕ Q))

be the second Veronese embedding of P(W ⊕ Q). Then for a general point
α ∈ Ŝ, the tangent space Tα(Ŝ) satisfies Tα(Ŝ) ∩ L = 0. In particular, PL �⊂
Sec(S).
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Proof It suffices to exhibit a point α ∈ Ŝ with Tα(Ŝ) ∩ L = 0. Fix a non-zero
w ∈ W and let

α := w2 ∈ Sym2 W ⊂ Sym2(W ⊕ Q).

Fix any w′ ∈ W,q ∈ Q. The arc

{w + t (w′ + q) ∈ W ⊕ Q|t ∈ C}
in Ŝ has its tangent vector

d

dt

∣∣∣∣
t=0

(w + t (w′ + q))2 = 2w(w′ + q) ∈ Sym2 W ⊕ (W ⊗ Q).

Since such tangent vectors span Tα(Ŝ), Tα(Ŝ) intersects L at 0. �

Proposition 4.15 In the setting of Proposition 4.14, let Z = pL(S) be
the proper image of S under pL. The natural Lie algebra homomorphism
aut(Ŝ,L) → aut(Ẑ) is an isomorphism, inducing a Lie algebra isomorphism

aut(Ẑ) ∼= (W ∗ ⊗ Q)>� (gl(W) ⊕ gl(Q)).

Proof It is clear that

aut(Ŝ,L) ∼= (W ∗ ⊗ Q)>� (gl(W) ⊕ gl(Q)).

The Lie algebra homomorphism aut(Ŝ,L) → aut(p̂L(S)) is clearly injective.
Thus it suffices to show that dimaut(Ẑ) ≤ m2 + km + k2, or equivalently,
dimaut(Z) ≤ m2 + km + k2 − 1. From Sect. 3.2, we have a natural projec-
tion ψ : Z → PW realizing Z as the projectivization of the vector bundle
O(−1)m ⊕ O(−2) on PW ∼= P

k−1. From the exact sequence

0 → T ψ → T (Z) → ψ∗T (PW) → 0,

where T ψ denotes the relative tangent bundle and

dimH 0(Z,T ψ) = dimH 0(Pk−1,End0(O(−1)m ⊕ O(−2)) = m2 + km,

where End0 denotes the traceless endomorphisms, we have

dimaut(Z) = dimH 0(Z,T (Z)) ≤ m2 + km + k2 − 1. �

Proof of Proposition 3.8 aut(Ẑ) is given by Proposition 4.15. From Propo-
sitions 4.14 and 4.15, we can apply Proposition 4.5 to S and L. Thus by
Proposition 4.12,

aut(Ẑ)(1) = aut(p̂L(S))(1) ∼= aut(Ŝ,L,0)(1) ∼= Sym2 W ∗

because Im(L) = Q ⊂ (W ⊕ Q). �
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Now we turn to study the prolongation of the biregular projection of
Z ⊂ PU with U = (W ⊗ Q) ⊕ Sym2 W in Sect. 3.2. This can be reduced
to Proposition 4.12 by the following.

Proposition 4.16 Let S1 ⊂ PV1 be a non-degenerate subvariety. Let L1 � V1
be a linear subspace. Let V2 := V1/L1 and let S2 := pL1(S1) ⊂ PV2 be the
proper image of S1. Let L2 � V2 be a linear subspace and let L3 ⊂ V1 be
the subspace containing L1 with L3/L1 = L2. Suppose that (S1,V1,L1)

(resp. (S2,V2,L2)) satisfies the two conditions in Proposition 4.5 with
S = S1,V = V1,L = L1 (resp. with S = S2, V = V2, L = L2). Then
(S1,V1,L3) satisfies the two conditions in Proposition 4.5 with S = S1,
V = V1, L = L3. In particular, when the two conditions are satisfied by both
(S1,V1,L1) and (S2,V2,L2), we have

aut(p̂L2(S2))
(1) ∼= aut(Ŝ1,L3,0)(1).

Proof For the condition (i) in Proposition 4.5, it suffices to show that the
homomorphism

aut(Ŝ1,L3) → aut(p̂L2(S2))

is surjective. But under the isomorphism aut(Ŝ2) ∼= aut(Ŝ1,L1), the subalge-
bra aut(Ŝ2,L2) is sent into

aut(Ŝ1,L1 ⊂ L3) := {σ ∈ aut(Ŝ1,L1), σ (L3) ⊂ L3} ⊂ aut(Ŝ1,L3)

from which the surjectivity is clear. Now for the condition (ii) in Proposi-
tion 4.5, if v ∈ Tα(Ŝ1) ∩ L3 for a general α ∈ Ŝ1, then its image v̄ ∈ V2 satis-
fies v̄ ∈ Tᾱ(Ŝ2) ∩ L2. Thus by condition (ii) for (S2,V2,L2), we have v̄ = 0,
i.e., v ∈ L1. Then by condition (ii) for (S1,V1,L1), we get v = 0. �

We have the following

Corollary 4.17 In the notation of Proposition 4.14, let Z := pL(S) ⊂ PU :=
P(V/L) be the VMRT of a symplectic Grassmannian as explained in Sect. 3.2.
For a subspace L2 ⊂ U , let L3 ⊂ Sym2(W ⊕ Q) be the inverse under the
projection Sym2(W ⊕ Q) → U . If PL2 ∩ Sec(Z) = ∅, then

aut(p̂L2(Z))(1) ∼= aut(Ŝ,L3,0)(1).

Proof We just apply Proposition 4.16 with S1 = S,V1 = V,L1 = L, together
with Propositions 4.6, 4.14 and 4.15. �

We can make this more explicit as follows.
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Proposition 4.18 Let us assume the setting of Corollary 4.17. For φ ∈
Sym2(W ⊕ Q), denote by φ� ∈ Hom(W ∗ ⊕ Q∗,W ⊕ Q) the correspond-
ing homomorphism. For L2 ⊂ U , we denote by L3 ⊂ Sym2(W ⊕ Q) the
subspace satisfying L3/(Sym2 Q) ∼= L2 and by Im(L2) the linear span of
{Im(φ�) ⊂ W ⊕ Q,φ ∈ L2}. Define ImW(L2) := pQ(Im(L2)) ⊂ W , where
pQ : W ⊕ Q → W is the projection to the first factor. Then

(i) there is a canonical vector space isomorphism

aut(Ŝ,L3,0)(1) ∼= Sym2(W/ ImW(L2))
∗;

(ii) for each ψ ∈ Sym2(W/ ImW(L2))
∗ ⊂ Sym2 W ∗, denoting by ψ� the

corresponding element in Hom(W,W ∗) and writing W ′ := Ker(ψ�),
L2 is contained in

L′(ψ) := {φ ∈ U | Im(φ�) ⊂ Ker(ψ�) ⊕ Q} ∼= (W ′ ⊗ Q) ⊕ Sym2 W ′;
(iii) if PL2 ∩ Sec(Z) = ∅ and aut(Ŝ,L3,0)(1) contains an element of

rank r in Sym2(W/ ImW(L2))
∗ (i.e. the corresponding element in

Hom(W,W ∗) has rank r), then

dimL2 ≤ mk + k(k + 1)

2
− 2m − 2k + 1 − r(2m + 2k − r − 3)

2
.

The following lemma is immediate from Lemma 4.3 and the information
on Sec(S) (S as in Proposition 4.14) from the table in Sect. 3.1.

Lemma 4.19 In the notation of Proposition 4.18, dim Sec(Z) = 2m+ 2k − 2
where m = dimQ,k = dimW . In particular, Sec(Z) = P(U) if and only if
k = 2.

Proof of Proposition 4.18 From Proposition 4.12 (i), we have

aut(Ŝ,L3,0)(1) ∼= Sym2((W ⊕ Q)/ Im(L3))
∗.

From L = Sym2 Q ⊂ L3 and L3/L = L2, we have Im(L3) = Q ⊕ ImW(L2),
proving (i).

Now for ψ ∈ Sym2(W/ ImW(L2))
∗, denote by ψ̃� ∈ Hom(W ⊕ Q,

W ∗ ⊕ Q∗) the element induced by ψ� ∈ Hom(W,W ∗) via the composition

W ⊕ Q
pQ−→ W

ψ�

−→ W ∗ ↪→ W ∗ ⊕ Q∗.

From Proposition 4.12 (ii), we see that L3 is contained in

L(ψ) := {φ ∈ Sym2(W ⊕ Q)| Im(φ�) ⊂ Ker(ψ̃�)}.
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Clearly, Sym2 Q ⊂ L(ψ) and the quotient L(ψ)/(Sym2 Q) is naturally iso-
morphic to L′(ψ), proving (ii).

For (iii), assume that PL2 ∩ Sec(Z) = ∅ and there is ψ in (ii) of rank r .
Then dimW ′ = k − r. Let V ′ = Sym2(W ′ ⊕ Q) and S′ ⊂ PV ′ be the second
Veronese embedding of P(W ′ ⊕ Q). Then we have dim(Sec(S′)) = 2m +
2(k − r) − 2. By the assumption, PL2 ⊂ PL′(ψ) is disjoint from

pL(Sec(S′)) ⊂ Sec(pL(S)) = Sec(Z),

which implies that k − r ≥ 3 by Lemma 4.19 and also

dimL2 ≤ m(k − r) + (k − r)(k + 1 − r)

2
− 1 − (2m + 2(k − r) − 2). �

Let us derive an important consequence of our study of the prolongation of
biregular projections of the examples in Sect. 3, Theorem 4.21 below, which
is a key ingredient in the proof of Main Theorem.

Definition 4.20 A linear subspace ∅ �= PL ⊂ PV \ Sec(S) is called maximal
if Sec(pL(S)) = P(V/L). In this case, dimL = dim PV − dim Sec(S) from
Lemma 4.3.

Theorem 4.21 Let S ⊂ PV be one of the linearly normal varieties listed in
Main Theorem (A1)–(B5) with Sec(S) �= PV . Let PL ⊂ PV \ Sec(S) be a
linear space and pL the projection along PL. If PL contains a general point

of PV or if PL is maximal, then aut(p̂L(S))(1) = 0.

Proof From Sec(S) �= PV , it suffices to check those covered by Proposi-
tions 4.10, 4.11, 4.12, 4.13 and 4.18. In fact, the examples in Sects. 3.3 and 3.4
admit no biregular projections since Sec(S) = PV by [22] (Chap. V, Corol-
lary 1.13). There is nothing to check for the case of Proposition 4.13.

In Proposition 4.10, suppose L contains a general element φ of V .
Then φ ∈ L is of maximal rank and Im(L) = B , proving aut(p̂L(S))(1) ∼=
aut(Ŝ,L,0)(1) = 0 from Proposition 4.10 (i). On the other hand, if L is max-
imal, dimL = ab − 2a − 2b + 4. Thus from Proposition 4.10 (iii), the rank of
any element of aut(Ŝ,L,0)(1) must be zero, i.e., aut(Ŝ,L,0)(1) = 0.

In Proposition 4.11 (resp. Proposition 4.12), suppose L contains a gen-
eral element φ of V . Then φ� is of maximal rank and Im(L) = W , proving
aut(p̂L(S))(1) ∼= aut(Ŝ,L,0)(1) = 0 from Proposition 4.11 (i) (resp. Proposi-
tion 4.12 (i)). On the other hand, if L is maximal, dimL = 1

2(n2 − n − 2) −
4n + 11 (resp. 1

2(n2 + n − 2) − (2n − 2)). Thus from Proposition 4.11 (iii),

(resp. Proposition 4.12 (iii)), the rank of any element of aut(Ŝ,L,0)(1) must
be zero, i.e., aut(Ŝ,L,0)(1) = 0.
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In Proposition 4.18, suppose L2 contains a general φ ∈ V2. Then φ� is of
maximal rank and ImW(L2) = W , proving aut(p̂L2(Z))(1) ∼= aut(Ŝ,L3,0)(1)

= 0 from Proposition 4.18 (i). On the other hand, dim(Sec(Z)) = 2m+2k−2
by Lemma 4.3, which implies that if L2 is maximal, dimL2 = mk + k(k+1)

2 −
1 − (2m + 2k − 2). Thus from Proposition 4.18 (iii), the rank of any element
of aut(Ŝ,L3,0)(1) must be zero, i.e., aut(p̂L2(Z))(1) = 0. �

5 Cone structure and G-structure

This section collects some general facts on cone structures and G-structures.
The main theme is to reveal the relationship between the existence of an Euler
vector field, the local flatness of the cone structure and the prolongation of a
linear Lie algebra.

Definition 5.1 A cone structure on a complex manifold M is a closed ana-
lytic subvariety C ⊂ PT (M) such that the projection π : C → M is proper,
flat and surjective with connected fibers.

Lemma 5.2 A cone structure C ⊂ PT (M) on a complex manifold M induces
a holomorphic equivalence relation on M : two points x, y ∈ M are equivalent
if the projective varieties Cx ⊂ PTx(M) and Cy ⊂ PTy(M) are projectively
equivalent. At a general point x ∈ M , there exists a neighborhood x ∈ U ⊂ M

such that the equivalence classes form a (regular) holomorphic foliation in U .

Proof We can choose an open neighborhood U of x such that T (U) is triv-
ial bundle and the fibers of the family C|U ⊂ U × P

n−1, n = dimM , are all
reduced subvarieties of P

n−1. We have the associated morphism to the Chow
variety ν : U → Chow(Pn−1) which can be assumed to be a smooth mor-
phism by shrinking U if necessary. Then the GL(n)-equivalence classes of
points in Chow(Pn−1) induces a holomorphic foliation on U by shrinking U

if necessary, from the generality of x. �

Definition 5.3 Given a cone structure C ⊂ PT (M) on a complex mani-
fold M , and a general point x ∈ M , the leaves of the foliation in Lemma 5.2
are isotrivial leaves of the cone structure in a neighborhood of x. The di-
mension of isotrivial leaves is denoted by δ(C). The cone structure is said
to be isotrivial, if all general fibers of C → M are projectively equivalent,
i.e., δ(C) = dimM . In this case, if we denote by Z the projective variety
Cx ⊂ PTxM for a general point x ∈ M , then we call C a Z-isotrivial cone
structure.

For an isotrivial cone structure, we can associate to it another geometric
structure: the G-structure.
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Definition 5.4 Given a complex manifold M , fix a vector space V with
dimV = dimM . The frame bundle F (M) has the fiber at x ∈ M ,

Fx(M) := Isom(V ,Tx(M)).

For a closed connected subgroup G ⊂ GL(V ), a G-structure on M is a
G-subbundle G ⊂ F (M). If G contains the scalar group C

× · Id ⊂ GL(V ),
we say that the G-structure is of cone type. An isotrivial cone structure
C ⊂ PT (M) induces a G-structure G of cone type on an open subset Mo

of M where each fiber Cx ⊂ PTx(M), x ∈ Mo is projectively equivalent
to Cz ⊂ PTz(M) for a base point z ∈ Mo. In fact, setting V = Tz(M) and
G = Aut0(Ĉz), the fiber Gx ⊂ Fx(M) is given by

{σ ∈ Isom(V ,Tx(M)), σ (Ĉz) = Ĉx}.
Definition 5.5 A G-structure G ⊂ F (M) on M and a G-structure G′ ⊂
F (M ′) on M ′ are equivalent if there exists a biholomorphic map ϕ : M → M ′
such that the induced map ϕ∗ : F (M) → F (M ′) sends G isomorphically
to G′. A cone structure C ⊂ PT (M) on M and a cone structure C′ ⊂ PT (M ′)
on M ′ are equivalent if there exists a biholomorphic map ϕ : M → M ′
such that the induced map ϕ∗ : PT (M) → PT (M ′) sends C isomorphically
to C′.

Definition 5.6 On the vector space V as a complex manifold, we have a
canonical trivialization F (V ) = GL(V ) × V. For any subgroup G ⊂ GL(V ),
this induces the flat G-structure on V defined by

G = G × V ⊂ GL(V ) × V = F (V ).

A G-structure G ⊂ F (M) is locally flat if its restriction to some open subset
is equivalent to the restriction of the flat G-structure to some open subset
of V . An isotrivial cone structure is locally flat if its associated G-structure is
locally flat.

Definition 5.7 Given a cone structure C ⊂ PT (M) and a point x ∈ M , a germ
of holomorphic vector field v at x is said to preserve the cone structure if
the local 1-parameter family of biholomorphisms integrating v lifts to local
biholomorphisms of PT (M) preserving C . The flows of such a vector field
must be tangent to the isotrivial leaves of C . The set of all such germs form a
Lie algebra, called the Lie algebra of infinitesimal automorphisms of the cone
structure C at x, to be denoted by aut(C, x).

Definition 5.8 Let C ⊂ PT (M) be a cone structure. For a non-negative inte-
ger �, let aut(C, x)� ⊂ aut(C, x) be the subalgebra of vector fields vanishing
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at x to order ≥ � + 1. This gives the structure of a filtered Lie algebra on
aut(C, x), i.e., [aut(C, x)�,aut(C, x)k] ⊂ aut(C, x)�+k .

The following result is Proposition 1.2.1 [14].

Proposition 5.9 For each k ≥ 0, regard the quotient space aut(C, x)k/

aut(C, x)k+1 as a subspace of Hom(Symk+1 Tx(M),Tx(M)) by taking the
leading terms of the Taylor expansion of the vector fields at x. Then

aut(C, x)k/aut(C, x)k+1 ⊆ aut(Ĉx)
(k).

If the cone structure C is isotrivial and locally flat, then the equality in the
above inclusion holds for all k.

Proposition 5.10 Given a cone structure C ⊂ PT (M) and a general point
x ∈ M , denote by Ĉx ⊂ Tx(M) the affine cone over the fiber Cx at x and let
aut(Ĉx) ⊂ End(Tx(M)) be the Lie algebra of infinitesimal automorphisms of
the affine cone. Assume that aut(Ĉx)

(k+1) = 0 for some k ≥ 0. Then

dim(aut(C, x)) ≤ δ(C)+dimaut(Ĉx)+dimaut(Ĉx)
(1) +· · ·+dimaut(Ĉx)

(k)

and if the equality holds then there exists an Euler vector field (cf. Defini-
tion 2.5) in aut(C, x)0.

Proof The codimension of aut(C, x)0 in aut(C, x) is at most δ(C). That the
dimension of aut(C, x)0 is bounded by

dimaut(Ĉx) + dimaut(Ĉx)
(1) + · · · + dimaut(Ĉx)

(k)

follows from Proposition 5.9, which also shows that the equality holds only
if each element of aut(Ĉx) ⊂ End(Tx(M)) can be realized as the linear part
of a vector field in aut(C, x)0. Thus if the equality holds, there exists an Euler
vector field in aut(C, x) (cf. Lemma 2.4). �

The following is from [5] (also see Sect. 1 of [11]).

Theorem 5.11 Given a G-structure G ⊂ F (M), we can define vector-valued
functions ck , k = 0,1,2, . . . on G with the following properties.

(1) ck is an Hk,2(g)-valued function, well-defined if ck−1 ≡ 0. Here Hk,2(g)

is the cohomology of the natural sequence

g
(k) ⊗ V ∗ → g

(k−1) ⊗
∧2

V ∗ → g
(k−2) ⊗

∧3
V ∗

and by convention, c−1 ≡ 0, g(−1) = V and g(−2) = 0.
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(2) Under the action of G on G , the function ck transforms like the G-module
g(k−1) ⊗ ∧2

V ∗ ⊂ Hom(Symk V ,V ) ⊗ ∧2
V ∗.

(3) If ck ≡ 0 for all non-negative integers k, then G is locally flat.
(4) ck is an invariant of the G-structure, i.e., it is invariant under an auto-

morphism of the G-structure.

It has the following consequence.

Proposition 5.12 Let C ⊂ PT (M) be a cone structure. Assume that for a
general point x ∈ M , there exists an Euler vector field in aut(C, x)0. Then the
cone structure is isotrivial and locally flat.

Proof In a neighborhood of a general point x, the isotrivial leaves of C form a
regular foliation from Lemma 5.2. Given any vector field v ∈ aut(C, x)0, the
flows of v must be tangent to the leaves of the foliation. But by Lemma 2.4,
each flow of an Euler vector field v has limit x. Thus x is a singularity
of the foliation, unless there is only one leaf. This shows that C is isotriv-
ial.

To prove the local flatness, by Theorem 5.11, it suffices to show that the
functions ck on the associated G-structure of cone type are identically zero.
By induction, assume that ck−1 ≡ 0 and ck is well-defined. Pick a general
point x ∈ M . The subgroup C

× · Id ⊂ G acts on the fiber Gx and under this
action, the characteristic function ck is multiplied by t−(k+1) ∈ C

× by Theo-
rem 5.11 (2). But by integrating the Euler vector field in aut(C, x)0, we get a
1-parameter family of local automorphisms of the G-structure which preserve
the fiber Gx and act by C

× · Id-action on it. Since this is an automorphism of
the G-structure, the functions ck cannot change under this action by Theo-
rem 5.11 (4), a contradiction unless ck vanishes on Gx . Since this is true for a
general x, we get ck ≡ 0. Thus by induction we have ck ≡ 0 for all k ≥ 0 and
the local flatness of G from Theorem 5.11 (3). �

Corollary 5.13 If the equality holds in Proposition 5.10, then the cone struc-
ture is locally flat.

In fact, the converse is also true. The proof of the following can be found
in Sect. 2.1 of [21].

Proposition 5.14 Assume that g(k+1) = 0 and that the G-structure G on a
complex manifold M is locally flat. Then for any point x ∈ M , aut(G, x),
the Lie algebra of germs of holomorphic vector fields at x preserving the
G-structure, is isomorphic to the graded Lie algebra V ⊕g⊕g(1) ⊕· · ·⊕g(k)

for a vector space V with dimV = dimM . It follows that when C is a locally
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flat cone structure on M with aut(Ĉx) = g and g(k+1) = 0,

aut(C, x) ∼= V ⊕ g ⊕ g
(1) ⊕ · · · ⊕ g

(k).

6 Proof of Main Theorem modulo Theorems 6.16 and 6.17

In this section, we prove Main Theorem modulo two technical results, Theo-
rems 6.16 and 6.17, the proofs of which will be postponed to Sects. 7 and 8,
respectively.

Ionescu and Russo’s classification of conic-connected manifolds (cf. Defi-
nition 2.2 (ii)) in [16] will be essential in our proof. To recall their result, it is
convenient to introduce the following definition.

Definition 6.1 A conic-connected manifold X ⊂ P
N is said to be primitive,

if X is a Fano manifold with Pic(X) generated by OX(1) and X is covered
by lines (cf. Definition 2.2 (ii)).

Theorem 6.2 ([16], Theorem 2.2) Let X ⊂ P
N be a conic-connected mani-

fold of dimension n. Unless X is primitive, it is projectively equivalent to one
of the following or their biregular projections:

(a1) The second Veronese embedding of P
n.

(a2) The Segre embedding of P
a × P

n−a for 1 ≤ a ≤ n − 1.
(a3) The VMRT of the symplectic Grassmannian Grω(k, k + n + 1) for 2 ≤

k ≤ n.
(a4) A hyperplane section of the Segre embedding P

a × P
n+1−a with

2 ≤ a,n + 1 − a.

We know the prolongations of the varieties (a1), (a2) and (a3) in Theo-
rem 6.2 from Sect. 4. The prolongation of varieties (a4) in Theorem 6.2 turns
out to be zero:

Proposition 6.3 Let a ≥ b ≥ 2 be two integers. Let X = P
a ×P

b ↪→ P
ab+a+b

be the Segre embedding and let S = X ∩ H be a nonsingular hyperplane
section, which is conic-connected. Then for the non-degenerate embedding
S ⊂ H , we have aut(Ŝ)(1) = 0.

Proof The two projections X → P
a and X → P

b induce two fibrations:

P
a π1←− S

π2−→ P
b, with fibers isomorphic to P

b−1 and P
a−1 respectively (cf.

the proof of Theorem 2.2 in [16], Case II, subcase (b)). Let F ⊂ T (S) be
the distribution spanned by the tangent spaces of fibers of π1 and π2. Then
F is a vector subbundle of rank a + b − 2. Note that the projectivization
PF ⊂ PT (S) is a cone structure, which is invariant under Aut0(S).
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Supposing that aut(Ŝ)(1) �= 0, we will derive a contradiction. For a general
point s ∈ S, Aut0(S) contains a C

× subgroup whose germ at s is an Euler
vector field by Theorem 2.6 (iv). Thus any Aut0(S)-invariant cone structure
on an open subset of S is locally flat by Proposition 5.12. This implies that
the cone structure PF is locally flat, which is equivalent to the integrability
of the distribution F . Thus the distribution F is a foliation with leaves of
codimension 1. For a general point x ∈ S, let Rx be the set of points on S

which can be connected by a chain of lines contained in the fiber of π1 or π2.
Then Rx must agree with the leaf of F through x, and is a divisor on S.
For i = 1,2, let li be a line contained in the fiber of πi such that l1 meets l2
at x. Then we have 0 = Rx · l1 = Rx · l2 because the two lines are contained
in a leaf. By Lefschetz hyperplane theorem, H2(S,C) ∼= C

2 is generated by
the classes of l1 and l2. Thus Rx is a numerically trivial effective divisor,
a contradiction. �

In the setting of Main Theorem, Theorem 6.2 has the following conse-
quence.

Proposition 6.4 Let S ⊂ PV be a nonsingular non-degenerate variety of
dimension n such that aut(Ŝ)(1) �= 0. Unless S ⊂ PV is a primitive conic-
connected manifold, it is projectively equivalent to one of the following or
their biregular projections:

(a1) The second Veronese embedding of P
n.

(a2) The Segre embedding of P
a × P

n−a for 1 ≤ a ≤ n − 1.
(a3) The VMRT of the symplectic Grassmannian Grω(k, k + n + 1) for 2 ≤

k ≤ n.

Proof By Corollary 4.8, we may assume that S ⊂ P
N is linearly normal. By

Theorem 2.6 (i), S is conic-connected. Assuming that S is not primitive and
applying Theorem 6.2, we see that S is projectively equivalent to one of (a1)–
(a4) in Theorem 6.2 or their biregular projections. But by Proposition 6.3,
varieties in (a4) have no prolongation. By Proposition 4.6, their biregular pro-
jections do not have prolongation, either. Thus we are left with (a1)–(a3). �

The following variation of Proposition 6.4 will be useful.

Proposition 6.5 Let S ⊂ PV be a nonsingular non-degenerate variety such
that aut(Ŝ)(1) �= 0 and Sec(S) = PV . Unless S ⊂ PV is a primitive conic-
connected manifold, it is projectively equivalent to one of the following:

(i) The second Veronese embedding v2(P
1) ⊂ P

2, i.e. a plane conic.
(ii) The Segre embedding of P

1 × P
k with k ≥ 1.

(iii) The VMRT of a symplectic Grassmannian Grω(2,V ) with dimV ≥ 5.
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Proof From the table in Sect. 3.1, Lemmas 4.3, and 4.19, a variety in (a1)–
(a3) of Proposition 6.4, satisfying Sec(S) = PV belongs to the above list. On
the other hand, if S ⊂ PV is a biregular projection of (a1)–(a3) in Proposi-
tion 6.4 with Sec(S) = PV , then aut(Ŝ)(1) = 0 by Theorem 4.21. �

From Proposition 6.4, the difficulty in proving Main Theorem lies in the
study of primitive Fano manifolds which have nonzero prolongation. We will
study at first the VMRT of such varieties.

Proposition 6.6 Let X be a Fano manifold of Picard number 1 such that for
a general point x ∈ X, there exists a holomorphic vector field vx on X which
is an Euler vector field at x (in the sense of Definition 2.5) and generates a
C

×-action on X. Then for any choice of a minimal rational component on X,
the associated VMRT at a general point x ∈ X is irreducible.

Proof Since vx is Euler at x, it acts on PTx(X) trivially. The C
×-action gen-

erated by vx sends minimal rational curves through x to minimal rational
curves through x fixing their tangent directions. On the other hand, the nor-
mal bundle (pull-back to the normalization) of a general minimal rational
curve C is of the form O(1)p ⊕ Oq for some non-negative integers p and q

(cf. Sect. 1 in [6]). This implies that C does not have a non-trivial defor-
mation fixing a point and the tangent direction at that point. Thus the C

×-
action must send each minimal rational curve through x to itself, inducing a
non-trivial C

×-action on each minimal rational curve through x. Denote by
N → C the normalization of the total variety of minimal rational tangents C
and N → M → X the Stein factorization of N → X, where f : M → X is
a finite morphism. As N is irreducible, to prove Proposition 6.6, it suffices
to show that f is birational. Suppose not and let D ⊂ X be an irreducible
component of the branch locus. Any C

×-action on X lifts to a C
×-action on

M because it induces an action on the space of minimal rational curves. Thus
any C

×-action on X preserves D. Let C be a general minimal rational curve
through x. We can assume that C intersects D transversally. By Lemma 4.2
of [13], there exists a component C′ of f −1(C) which is not birational to C.
After normalizing C and C′, the morphism f |C′ : C′ → C has non-empty
branch points at least at two points z1, z2 ∈ D ∩ C. Since x is general, we
have x �= z1, z2. But vx generates a C

×-action on C fixing D ∩ C and x.
Since z1, z2 ∈ D ∩ C, we have a non-trivial C

×-action on P
1 with at least

three fixed points, a contradiction. �

Proposition 6.7 Let X ⊂ P
N be a primitive conic-connected manifold.

Fix a minimal rational component consisting of lines covering X. Assume
that aut(X̂)(1) �= 0. Then for a general point x ∈ X, the VMRT Cx is
an irreducible nonsingular and non-degenerate projective variety satisfying
Sec(Cx) = PTx(X).
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Proof By Corollary 4.8, all conditions of the proposition remain unchanged if
we replace X ⊂ P

N by the linearly normal embedding X ⊂ PH 0(X, OX(1))∗.
thus we may assume that X ⊂ P

N is linearly normal. We know that Cx is ir-
reducible from Theorem 2.6 (iv) and Proposition 6.6. It is nonsingular from
Proposition 3.2. It remains to prove that Sec(Cx) = PTx(X), which implies
the non-degeneracy. By the proof of Theorem 2.2 [16] (p. 155), if all conics
joining two general points are irreducible, then X is isomorphic to the second
Veronese embedding, a contradiction to the assumption that X is covered by
lines. Thus two general points of X can be joined by a connected union of
two lines. Then by Theorem 3.14 of [10], Sec(Cx) = PTx(X). �

Remark that if the VMRT Cx � PTxX at a general point x of a Fano mani-
fold X of Picard number 1 is linear, then Cx cannot be irreducible (cf. the first
paragraph in the proof of Proposition 6.10 below). Hence we can apply the
main theorem in [13], which gives the following Cartan-Fubini type extension
theorem.

Theorem 6.8 Let X (resp. X′) be a Fano manifold of Picard number 1 and let
C (resp. C′) be the VMRT associated to some minimal rational components.
Assume that Cx � PTxX is irreducible and nonsingular for a general point
x ∈ X. Given any connected analytic open subsets U ⊂ X and U ′ ⊂ X′ with
a biholomorphic map φ : U → U ′ such that the differential φ∗ : PTx(X) →
PTφ(x)(X

′) sends Cx to C′
x′ isomorphically for all x ∈ U , we can extend φ to

a biholomorphic map � : X → X′.

An immediate consequence of Theorem 6.8 is the following which allows
us to reconstruct some Fano manifolds of Picard number 1 from its VMRT.

Corollary 6.9 Let X,X′ be two Fano manifolds of Picard number 1 such that
the VMRT at general points of both X and X′ are projectively isomorphic to
an irreducible nonsingular non-degenerate projective variety Z � PV . If the
cone structures on open subsets of X and X′ given by the VMRT are both
locally flat, then X is biregular to X′.

For the purpose of this article, one has to consider the situation of higher
Picard numbers. The following proposition is a result for the general case.

Proposition 6.10 Let X and X′ be two nonsingular uniruled projective va-
rieties. Let C (resp. C′) be the VMRT associated to some minimal rational
component K (resp. K′) of X (resp. X′). Assume that

(1) for any effective divisor D ⊂ X, a member of K has positive intersection
with D; and

(2) Cx � PTxX is irreducible and nonsingular for a general point x ∈ X.
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Given any connected analytic open subsets U ⊂ X and U ′ ⊂ X′ with a bi-
holomorphic map φ : U → U ′ such that the differential φ∗ : PTx(X) →
PTφ(x)(X

′) sends Cx to C′
x′ isomorphically for all x ∈ U , we can extend φ

to a generically finite rational map � : X ��� X′.

Proof If Cx � PTxX is an irreducible linear subspace of dimension k−1, then
by [1], there exists an open subset W ⊂ X which has a P

k-bundle structure
φ : W → T such that general members of K are lines in fibers of φ. As Cx �=
PTxX, we have dimT ≥ 1. Take D ⊂ X be the closure of the pre-image of a
divisor on T , then the intersection of D with a general member of K is zero,
a contradiction to assumption (1).

Since Cx is nonsingular and non-linear, hence its Gauss map is finite. The
claim follows from Proposition 4.3 of [13], where it was stated under the
assumption that both X and X′ have Picard number 1. But the condition on
the Picard number of X′ was not used in the proof and the condition on the
Picard number of X was used in the proof only to guarantee the assumption
(1) above. �

Recall the following example from Example 1.7 in [9].

Example 6.11 Fix an irreducible nonsingular non-degenerate projective va-
riety Z ⊂ PV , dimV = n. Regard Z ⊂ P

n−1 ⊂ P
n as a submanifold in the

hyperplane. Let Y be the blow-up of P
n along Z. Then lines on P

n intersect-
ing Z give rise to minimal rational component on Y such that the cone struc-
ture CY given by the VMRT is locally flat. In fact, on the open set Yo ⊂ Y

corresponding to P
n \ P

n−1, the VMRT induces the flat G-structure in Defi-
nition 5.6 with a suitable G.

We have the following corollary of Proposition 6.10.

Corollary 6.12 Let X be a nonsingular uniruled projective variety with
a minimal rational component satisfying the assumption (1) in Proposi-
tion 6.10. Assume that the cone structure C given by the VMRT is Z-isotrivial
and locally flat for some nonsingular non-degenerate projective variety Z ⊂
PV . Let Y and CY be as in Example 6.11. Then there exists a generically
finite rational map � : X ��� Y inducing the equivalence of the cone struc-
tures C and CY in some neighborhoods of a general point of X and its image
in Y .

Proposition 6.13 In the setting of Corollary 6.12, assume furthermore that X

has Picard number 1. Then X is an equivariant compactification of the affine
space C

n where n = dimX, i.e., there is an inclusion C
n ⊂ X such that the

translation action of C
n extends to an action of the vector group on X.
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Proof Setting g = aut(Ẑ), we have g(2) = 0 by Theorem 2.3 and for a point
y ∈ Yo (cf. Example 6.11)

aut(CY , y) ∼= V ⊕ g ⊕ g
(1)

by Proposition 5.14. The abelian subalgebra V generates an algebraic action
of the vector group C

n on Y , making Y an equivariant compactification of C
n.

By Corollary 6.12, we get a generically finite rational map � : X ��� Y

which gives an equivalence of C at a general point x ∈ X and CY at �(x),
inducing an isomorphism

�∗ : aut(C, x) ∼= aut(CY ,�(x)) ∼= V ⊕ g ⊕ g
(1).

The maximal abelian subalgebra V ⊂ aut(C, x) generates an analytic action
of the vector group C

n on X by Theorem 6.8. Since V is a maximal abelian
subalgebra, this analytic C

n-action gives a commutative algebraic subgroup
A of the automorphism group of X, acting with an open orbit on X. A priori,
A ∼= C

k × (C×)n−k for some 0 ≤ k ≤ n := dimX. By � , the action of A

descends to an algebraic action of the vector group C
n on Y , explained above.

It follows that k = n and A itself is the vector group acting algebraically on X.
This shows that X is an equivariant compactification of C

n. �

Now we continue the study of the VMRT of varieties with prolongation.

Proposition 6.14 Let S � PV be an n-dimensional non-degenerate primitive
conic-connected manifold with aut(Ŝ)(1) �= 0. Then (i) the cone structure on
a Zariski open subset of S defined by VMRT is locally flat, and (ii) S is an
equivariant compactification of the affine space C

n.

Proof By Corollary 4.8, we may assume that S ⊂ PV is linearly normal.
Then (i) follows from Theorem 2.6 and Proposition 5.12. By Proposition 6.7,
(ii) follows from Proposition 6.13. �

The following theorem enables us to use induction to study prolongation,
and is a crucial step in the proof of Main Theorem.

Theorem 6.15 Let S � PV be an irreducible non-degenerate primitive
conic-connected manifold with aut(Ŝ)(1) �= 0. Then the VMRT Cx ⊂ PTx(S)

at a general point x ∈ S is an irreducible nonsingular non-degenerate variety
satisfying aut(Ĉx)

(1) �= 0 and Sec(Cx) = PTx(S).

Proof All follow from Proposition 6.7, except aut(Ĉx)
(1) �= 0. By Corol-

lary 4.8, we may assume that S � PV is linearly normal.
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By Proposition 6.14 (ii), we have an algebraic action of C
n on S with an

open orbit. The complement of the open orbit is an irreducible hypersurface
H ⊂ S from Pic(S) ∼= Z (e.g. Proposition 1.2 (c) in [20]).

For each A ∈ aut(Ŝ)(1), we have an associated element λA ∈ H 0(S, O(1))

in the sense of Theorem 2.6. As S is covered by lines and S � PV , S is not
biregular to a projective space and we can apply Proposition 2.8 to get a point
x ∈ S∩(λA = 0) such that Aα,α ∈ x̂, induces a vector field vx on S vanishing
at x to second order.

Suppose that the divisor S ∩ (λA = 0) is different from the boundary di-
visor H = S \ C

n. Then we can assume that x is in the open C
n-orbit. In

particular, the VMRT gives a cone structure C in a neighborhood of x. The
global vector field vx on S should preserve the cone structure C . It follows that
the germ of vx at x belongs to aut(C, x)1, which implies that aut(Ĉx)

(1) �= 0
by Proposition 5.9. Since x lies in the C

n-orbit, this x is a general point of S.
So we may assume that the hyperplane section S ∩ (λA = 0) is ex-

actly the boundary divisor H for any non-zero A ∈ aut(Ŝ)(1). By Theo-
rem 2.6 (ii), λA determines A. Hence dimaut(Ŝ)(1) = 1, a contradiction to
Proposition 2.9. �

The following two theorems will be proved in the next two sections:

Theorem 6.16 Let X be a Fano manifold with Pic(X) = Z〈OX(1)〉. Assume
that X has minimal rational curves of degree 1 with respect to OX(1) whose
VMRT at a general point is isomorphic to the VMRT of a symplectic Grass-
mannian Grω(2,m + 4) with m ≥ 2. Then the cone structure given by the
VMRT is not locally flat.

Theorem 6.17 Let X be a 15-dimensional Fano manifold with Pic(X) =
Z〈OX(1)〉. Assume that X has minimal rational curves of degree 1 with re-
spect to OX(1) whose VMRT at a general point is isomorphic to a hyperplane
section of the 10-dimensional spinor variety. Then the cone structure given by
the VMRT is not locally flat.

Conjecturally, the Fano manifold in Theorem 6.16 (resp. Theorem 6.17) is
isomorphic to Grω(2,m+4) (resp. a general hyperplane section of the Cayley
plane OP

2). Theorems 6.16 and 6.17 are in contrast with the following two
propositions. Note that Grω(2,5) in Proposition 6.19 is the case m = 1 in the
setting of Theorem 6.16.

Proposition 6.18 Let S5 ⊂ P
15 be the spinor embedding of the 10-dimen-

sional spinor variety and let S ⊂ P
14 be a general hyperplane section. The

cone structure on S defined by the VMRT of lines covering S is locally flat at
general points.
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Proof S is of Picard number 1 and covered by lines. Since aut(Ŝ)(1) �= 0
by Proposition 3.10, the cone structure on S is locally flat by Proposi-
tion 6.14 (i). �

Proposition 6.19 Let Gr(2,5) ⊂ P
9 be the Plücker embedding of the Grass-

mannian and let S := Grω(2,5) ⊂ P
8 be a general hyperplane section of

Gr(2,5). The cone structure on S defined by the VMRT of lines covering S

is locally flat at general points.

Proof This is by the same argument as in the proof of Proposition 6.18, re-
placing Proposition 3.10 by Proposition 3.12. �

We are now ready to prove Main Theorem.

Proof of Main Theorem Suppose that S is not primitive, then it belongs to
(a1)–(a3) in Proposition 6.4 or their biregular projections. These varieties
correspond to (A1)–(A3) and the first entries in (B1)–(B6) of Main Theorem,
together with the biregular projections of (A1)–(A3). Here, note that the first
entries in (B1)–(B6) do not have biregular projections (cf. Proposition 6.5).

Now suppose that S is primitive. By Theorem 6.15, the VMRT at a gen-
eral point x ∈ S, Cx ⊂ PTx(S) is a nonsingular non-degenerate variety with
aut(Ĉx)

(1) �= 0 and Sec(Cx) = PTx(S). Then we can apply Proposition 6.5 to
Cx ⊂ PTx(S) to determine Cx , unless Cx is again primitive. Repeating this,
we end up with a positive integer � and a sequence of irreducible nonsingular
non-degenerate projective varieties

S0 ⊂ PV0, S1 ⊂ PV1, . . . , Si ⊂ PVi, . . . , S� ⊂ PV�,

such that

(a) S� := S and V� = V ,
(b) when xi is a general point of Si for 1 ≤ i ≤ �, Si−1 ⊂ PVi−1 is isomorphic

to Cxi
⊂ PTxi

(Si) and the cone structure given by this VMRT on Si is
locally flat;

(c) aut(Ŝi)
(1) �= 0 for each 0 ≤ i ≤ � and Sec(Si) = PVi for each 0 ≤ i ≤

� − 1;
(d) Si is primitive for each 1 ≤ i ≤ � and S0 is one of the varieties (i)–(iii) in

Proposition 6.5.

We claim that the sequence of varieties S0, . . . , S� must be biregular to one
of the following sequences of varieties.

(b1) P
1,Q

3,Q
5, . . . ,Q

2�−1,Q
2�+1.

(b2) P
1 × P

1,Q
4, . . . ,Q

2�,Q
2�+2.

(b3) � = 1 with S0 ∼= P
1 × P

k and S1 ∼= Gr(2, k + 3) for some k ≥ 3.
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(b4) � = 1,2 or 3, with S0 ∼= P
1 × P

2, S1 ∼= Gr(2,5), S2 ∼= S5 and S3 ∼= OP
2.

(b5) � = 1 or 2, with S0 ∼= (P1 × P
2) ∩ H0, S1 ∼= Gr(2,5) ∩ H1(∼= Grω(2,5))

and S2 ∼= S5 ∩ H2, where H0,H1,H2 are general hyperplanes.

Once the claim is proved, then by the property (c) of {Si} and Theo-
rem 4.21, the embedding Si ⊂ PVi for 0 ≤ i ≤ � − 1, is determined by the
biregular type of Si and is linearly normal, while S� ⊂ PV� is determined up
to biregular projections. It is easy to check that among S� in (bi), 1 ≤ i ≤ 5,
only (b3) with � = 1 and (b4) with � = 3 admit biregular projections. In fact,
Sec(S�) = PV� holds for (b1), (b2) trivially, and also for (b5), as we have
seen in the proof of Theorem 4.21. For (b4), we have Sec(OP

2) �= P
26, but

its biregular projection has zero prolongation, by Proposition 4.13. Thus only
S1 in (b3) has non-trivial biregular projections with non-zero prolongation. In
conclusion, the list in (bi), 1 ≤ i ≤ 5, gives rise to the projective varieties in
(Bi) and (C) of Main Theorem, completing the proof of Main Theorem.

To prove the claim let us recall that S0 ⊂ PV0 must be one of the following
from Proposition 6.5.

(i) The second Veronese embedding of P
1 ⊂ P

2.
(ii) The Segre embedding of P

1 × P
k with k ≥ 1.

(iii) The VMRT of a symplectic Grassmannian Grω(2,V ) with dimV ≥ 5.

In Case (i), by a successive application of Corollary 6.9 combined with
the property (b) of the sequence {Si}, we obtain that Si is isomorphic to an
odd-dimensional hyperquadric, getting (b1).

In Case (ii), S1 is biregular to Gr(2, k + 3) by Corollary 6.9. If � = 1, we
end up with the sequence (b3). If � ≥ 2, by the property (c) of S1 combined
with Theorems 3.5 and 4.21, S1 ⊂ PV1 must be the Plücker embedding of
Gr(2, k + 3) with k = 1 or 2. If k = 1, the Plücker embedding of Gr(2, k + 3)

is the natural embedding of the 4-dimensional hyperquadric Q
4 ⊂ P

5. By a
successive application of Corollary 6.9, we get that Si is an even-dimensional
hyperquadric, yielding the sequence (b2). Now assume k = 2, then by Corol-
lary 6.9, we get that S2 is biregular to S5, i.e. the 10-dimensional spinor vari-
ety. If � = 2, we stop here, ending up with the case of � = 2 in the sequence
(b4). On the other hand, if � ≥ 3, the embedding S2 ⊂ PV2 must be the spinor
embedding by Theorems 3.5 and 4.21. Then S3 is biregular to the Cayley
plane OP

2 by Corollary 6.9, giving � = 3 in (b4). It remains to show that
� ≤ 3. If � ≥ 4, then by (c) the embedding S3 ⊂ PV3 must be the projection
along a general point of the minimal embedding OP

2 ⊂ P
26, which has no

prolongation by Proposition 4.13, a contradiction.
In Case (iii), if dimV ≥ 6, then Theorem 6.16 contradicts the property (b)

of S1. Thus this case, corresponding to (B6) in Main Theorem, does not give
rise to a sequence with � ≥ 1. Now we consider the case dimV = 5. We want
to show that the sequence must be (b5). First, S0 is isomorphic to a hyper-
plane section of P

1 × P
2 under the Segre embedding, which is the VMRT of
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Grω(2,5) at a general point. Then By Corollary 6.9 and Proposition 6.19, this
implies that S1 is biregular to Grω(2,5) and we are done if � = 1. If � ≥ 2,
then from the property (c) of S1, the embedding S1 ⊂ PV1 must be the hy-
perplane section of Gr(2,5) under the Plücker embedding. By Corollary 6.9
and Proposition 6.18, this implies that S2 is biregular to a hyperplane section
of the 10-dimensional spinor variety and we are done if � = 2. So it remains
to show that � ≤ 2. Suppose � ≥ 3, then from the property (c) of S2 and The-
orem 4.21, the embedding S2 ⊂ PV2 must be the hyperplane section of the
spinor embedding S5 ⊂ P

15 and the cone structure on S3 given by S2 can-
not be locally flat by Theorem 6.17. This contradicts the property (b) of S3,
completing the proof of the claim. �

7 Proof of Theorem 6.16

This section is devoted to the proof of Theorem 6.16.
To start with, let us recall some facts about Grassmannians. Let W be a

complex vector space of dimension 2 and let Q be a complex vector space of
dimension m ≥ 2. Let Gr(2,W ∗ ⊕Q) be the Grassmannian of 2-dimensional
subspaces in W ∗ ⊕ Q. There exists a canonical embedding

W ⊗ Q = Hom(W ∗,Q) ⊂ Gr(2,W ∗ ⊕ Q)

by associating to an element of Hom(W ∗,Q) the plane in W ∗ ⊕ Q given by
its graph. The next proposition is elementary.

Proposition 7.1 Consider a C
×-action with weight 0 on W and weight 1

on Q. This induces a C
×-action on Gr(2,W ∗ ⊕ Q) whose fixed point set

consists of the following three components:

(i) the isolated point [W ∗] corresponding to the plane W ∗ ⊂ (W ∗ ⊕ Q);
(ii) the subvariety Gr(2,Q) ⊂ Gr(2,W ∗ ⊕ Q) consisting of planes of W ∗ ⊕

Q contained in Q;
(iii) the subvariety PW ∗ × PQ consisting of planes which can be written as

the direct sum of a line in W ∗ and a line in Q.

Moreover under this C
×-action, the orbit C

× · z of any point

z ∈ Gr(2,W ∗ ⊕ Q) \ ((W ⊗ Q) ∪ (PW ∗ × PQ))

has a limit point in Gr(2,Q).

Next, we need to look at the geometry of a certain Grassmannian bundle on
a Lagrangian Grassmannian. Let 
 be a symplectic vector space of dimen-
sion 4 and denote by Sp(
) (resp. sp(
)) the Lie group (resp. algebra) of
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symplectic automorphisms (resp. endomorphisms) of 
. Let Lag(
) be the
Lagrangian Grassmannian, i.e., the space of Lagrangian subspaces in 
. This
is homogeneous under Sp(
) and is biregular to the 3-dimensional hyper-
quadric Q

3. Let W be the universal quotient bundle on Lag(
), i.e., the rank
2 vector bundle satisfying Sym2 W = T (Lag(
)). Its dual bundle is the tauto-
logical bundle W ∗ ⊂ 
 × Lag(
) whose fiber over the point [W ∗] ∈ Lag(
)

corresponding to a Lagrangian subspace W ∗ ⊂ 
 is W ∗ itself. Fix a vector
space Q of dimension m ≥ 2 and denote by Q the trivial vector bundle on
Lag(
) with a fiber Q.

Proposition 7.2 Let Gr(2, W ∗ ⊕ Q) be the Grassmannian bundle of 2-planes
in the vector bundle W ∗ ⊕ Q. Then the Lie algebra g of the automorphism
group of the projective variety Gr(2, W ∗ ⊕ Q) is isomorphic to (
∗ ⊗ Q)>

� (sp(
) ⊕ gl(Q)). The vector bundle W ⊗ Q has a natural embedding into
Gr(2, W ∗ ⊕ Q) whose complement

D := Gr(2, W ∗ ⊕ Q) \ (W ⊗ Q)

is a hypersurface consisting of 2-planes in W ∗ ⊕ Q which have positive-
dimensional intersection with Q.

Proof The group 
∗ ⊗ Q = Hom(
,Q) acts on the vector space 
 ⊕ Q by
the following rule: f · (x, y) = (x, y + f (x)) for any x ∈ 
,y ∈ Q and f ∈
Hom(
,Q). This action preserves W ∗ ⊕ Q ⊂ (
 ⊕ Q) × Lag(
), inducing
an action of 
∗ ⊗ Q on Gr(2, W ∗ ⊕ Q). From this, we can see there is a
natural inclusion

(
∗ ⊗ Q)>� (sp(
) ⊕ gl(Q)) ⊂ g.

To show that this is an isomorphism, it suffices to compare their dimensions.
Let

ψ : Gr(2, W ∗ ⊕ Q) → Lag(
)

be the natural projection. We have an exact sequence

0 → T ψ → T (Gr(2, W ∗ ⊕ Q)) → ψ∗T (Lag(
)) → 0, (7.1)

where T ψ denotes the relative tangent bundle. We have ψ∗T ψ =
End0(W ∗ ⊕ Q), the bundle of traceless endomorphisms, and Riψ∗T ψ = 0
for i ≥ 1. Write

ψ∗T ψ = F ⊕ (W ∗ ⊗ Q∗) ⊕ (W ⊗ Q),

where F is given by the exact sequence

0 → O → End(W ∗) ⊕ End(Q) → F → 0. (7.2)
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Here the map O → End(W ∗) ⊕ End(Q) is given by s 
→ s IdW ∗ ⊕s IdQ. It is
well-known that

H 0(Lag(
), W) = 
∗, H 0(Lag(
), W ∗) = 0,

H 0(Lag(
),End(W ∗)) = C,

H 1(Lag(
), W) = H 1(Lag(
), W ∗) = H 1(Lag(
),End(W ∗)) = 0,

H 1(Lag(
), O) = H 2(Lag(
), O) = 0.

Thus by the long-exact sequence associated to (7.2), we have

H 0(Lag(
), F ) = gl(Q), H 1(Lag(
), F ) = 0

and consequently,

H 1(Gr(2, W ∗ ⊕ Q), T ψ) = 0,

H 0(Gr(2, W ∗ ⊕ Q), T ψ) = H 0(Lag(
),ψ∗T ψ) = (
∗ ⊗ Q) ⊕ gl(Q).

Since H 0(Lag(
),T (Lag(
)) = sp(
), the long-exact sequence associated
to (7.1) shows that

dimg = dimH 0(Gr(2, W ∗ ⊕ Q), T (Gr(2, W ∗ ⊕ Q))

= dim((
∗ ⊗ Q)>� (sp(
) ⊕ gl(Q))).

Now the vector bundle W ⊗ Q = Hom(W ∗, Q) can be regarded as a sub-
set of Gr(2, W ∗ ⊕ Q) by associating to a homomorphism to its graph. The
statement on the complement D is immediate. �

Proposition 7.3 Let G be the simply connected group with Lie algebra g of
Proposition 7.2. The open subset W ⊗ Q ⊂ Gr(2, W ∗ ⊕ Q) is homogeneous
under the action of G and has a natural isotrivial cone structure C invariant
under the G-action such that each fiber Cx ⊂ PTx(W ⊗ Q) is isomorphic
to Z ⊂ P((W ⊗ Q) ⊕ Sym2 W), the VMRT of the symplectic Grassmannian
Grω(2,m+ 4) in the notation of Sect. 3.2. This cone structure C is locally flat
and aut(C, x) ∼= g for each point x ∈ W ⊗ Q.

Proof Note that the hypersurface D in Proposition 7.2 is invariant under the
action of G, hence W ⊗ Q is also G-invariant. The base Lag(
) is homo-
geneous under the action of Sp(
). Let W ∗ ⊂ 
 be a Lagrangian subspace
with quotient W = 
/W ∗. The subgroup Hom(
,Q) ⊂ G acts on the fiber
W ⊗ Q = Hom(W ∗,Q) of W ⊗ Q over [W ∗] ∈ Lag(
) by translation via
the restriction to W ∗ ⊂ 
 of the action of Hom(
,Q) on 
 ⊕ Q described
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at the beginning of the proof of Proposition 7.2. This action is transitive on
the fiber with isotropy subgroup

{κ ∈ Hom(
,Q) | κ(W ∗) = 0} ∼= Hom(
/W ∗,Q).

This shows that W ⊗ Q is G-homogeneous.
Regard Lag(
) as a submanifold of W ⊗ Q ⊂ Gr(W ∗ ⊕ Q) via the zero

section of the vector bundle. The Lie algebra of the isotropy subgroup in
Sp(
) of [W ∗] ∈ Lag(
) is a parabolic subalgebra p[W ∗] ⊂ sp(
). At the
point [W ∗] ∈ Lag(
) ⊂ W ⊗ Q, the isotropy subgroup G[W ∗] has Lie algebra

g[W ∗] := (W ∗⊗Q)>�(p[W ∗]⊕gl(Q)) ⊂ (
∗⊗Q)>�(sp(
)⊕gl(Q)) = g.

The tangent space at the point [W ∗] ∈ Lag(
) ⊂ W ⊗ Q

T[W ∗](W ⊗ Q) = (W ⊗ Q) ⊕ T[W ∗](Lag(
)) = (W ⊗ Q) ⊕ Sym2 W

contains the affine cone Ẑ in a natural way. The isotropy representation of
g[W ∗] on T[W ∗](W ⊗ Q) = (W ⊗ Q) ⊕ Sym2 W satisfies

(1) (W ∗ ⊗ Q)-component of g[W ∗] acts trivially;
(2) p[W ∗] acts naturally as gl(W) on W ⊗ Q and on Sym2 W ;
(3) gl(Q) acts naturally on W ⊗ Q and trivially on Sym2 W .

Thus Ẑ is preserved under the isotropy representation of the isotropy sub-
group G[W ∗] and the G-action defines a natural isotrivial cone structure C
on the open set W ⊗ Q whose fiber is isomorphic to Z. As aut(Ẑ)(2) = 0 by
Theorem 2.3, we have the following inequalities from Proposition 5.10 where
x = [W ∗] :
dimg ≤ dimaut(C, x) ≤ dim(aut(Ẑ)(1) ⊕ aut(Ẑ) ⊕ (W ⊗ Q) ⊕ Sym2 W).

From Proposition 3.8,

dim(aut(Ẑ)(1) ⊕ aut(Ẑ) ⊕ (W ⊗ Q) ⊕ Sym2 W) = m2 + 4m + 10 = dimg

implying g ∼= aut(C, x). Now Corollary 5.13 gives the local flatness of the
cone structure C . �

Now to prove Theorem 6.16, we will make the following assumption and
derive a contradiction.

(Assumption) Let X be a Fano manifold with Pic(X) = Z · L for an am-
ple line bundle L. Assume that X has minimal rational curves of degree 1
with respect to L whose VMRT at a general point is isomorphic to Z ⊂
P((W ⊗ Q) ⊕ Sym2 W) and the cone structure is locally flat.
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Proposition 7.4 Under (Assumption), the group G in Proposition 7.2 acts on
X with an open orbit Xo such that the complement X \ Xo has codimension
≥ 2. There exists a G-biregular morphism χ : W ⊗ Q → Xo, sending the
Z-isotrivial cone structure of Proposition 7.3 to the VMRT-structure on Xo,
inducing a fibration ρ : Xo → Lag(
).

Proof Since the isotrivial cone structure on X is locally flat, it is locally
equivalent to the cone structure C of Proposition 7.3. By Theorem 6.8, we
have aut(X) = aut(C, x) = g for x ∈ W ⊗ Q, which implies that the group G

acts on X with an open orbit Xo. As W ⊗ Q is simply connected, we have a
G-equivariant unramified covering morphism χ : W ⊗ Q → Xo. The image
of the zero-section Lag(
) ⊂ (W ⊗ Q) is a positive-dimensional subvariety
in Xo. Thus the complement X \ Xo must be of codimension ≥ 2 because X

has Picard number 1. In particular, Xo is simply connected and the morphism
χ : W ⊗ Q → Xo is biregular. It certainly preserves the cone structure. The
fibration W ⊗ Q → Lag(
) induces a fibration ρ : Xo → Lag(
). �

The following lemma is elementary. See Proposition 4.4 of [13] for a proof.

Lemma 7.5 Let Y1 be a Fano manifold of Picard number one. Let Y2 be a
compact complex manifold. Assume there exist subsets Ei ⊂ Yi, i = 1,2, of
codimension ≥ 2 and a biholomorphic morphism ϕ : Y2 \ E2 → Y1 \ E1.
Then ϕ can be extended to a biholomorphic morphism ϕ̃ : Y2 → Y1.

The proof of the next proposition is essentially contained in the proof of
Proposition 6.3.3 of [14]. We recall the proof for the reader’s convenience.

Proposition 7.6 Let ρ : Xo → Lag(
) be as in Proposition 7.4. Given a
point [W ∗] ∈ Lag(
), the closure in X of the fiber ρ−1([W ∗]) is a projec-
tive submanifold biregular to the Grassmannian Gr(2,W ∗ ⊕ Q) such that
ρ−1([W ∗]) ⊂ Gr(2,W ∗ ⊕ Q) is isomorphic to W ⊗ Q ⊂ Gr(2,W ∗ ⊕ Q).
Consequently, the biregular morphism

χ : W ⊗ Q = Gr(2, W ∗ ⊕ Q) \ D → Xo

in Proposition 7.4 can be extended to a morphism χ̃ : Gr(2, W ∗ ⊕ Q) → X.

Proof As in Proposition 7.3, regard Lag(
) as a submanifold of

W ⊗ Q ⊂ Gr(2, W ∗ ⊕ Q).

From the description of the isotropy subgroup G[W ∗] in the proof of Propo-
sition 7.3, we see that G[W ∗] contains a subgroup isomorphic to GL(W) ×
GL(Q). Choose C

× ⊂ GL(W) × GL(Q) with weight 1 on W and weight −1
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on Q. Then it has weight 0 on W ⊗ Q and weight 2 on Sym2 W . It follows
that this C

× action on Gr(2, W ∗ ⊕ Q) fixes the point [W ∗] and the isotropy
action on

T[W ∗](Gr(2, W ∗ ⊕ Q)) = (W ⊗ Q) ⊕ Sym2 W

fixes exactly W ⊗ Q. Thus the fixed point set of this C
×-action on Gr(2,

W ∗ ⊕ Q) has the fiber Gr(2,W ∗ ⊕ Q) as a connected component. Conse-
quently, the corresponding C

×-action on X has the closure S ⊂ X of the fiber
ρ−1([W ∗]) as a connected component of its fixed point set. Since the fixed
point set of a C

×-action on the projective manifold X is nonsingular, the clo-
sure S is a projective submanifold.

To show that this submanifold S is biregular to the Grassmannian, we
need to show that the birational map δ : S ��� Gr(2,W ∗ ⊕ Q) induced by
χ−1 : Xo → Gr(2, W ∗⊕ Q) is biholomorphic. This is essentially Lemma 6.3.2
in [14]. Let us recall the argument.

For Z ⊂ P((W ⊗ Q) ⊕ Sym2 W), let Z′ = Z ∩ P(W ⊗ Q), which is
equivalent to a Segre embedding of PW × PQ. The Z-isotrivial cone struc-
ture on W ⊗ Q ⊂ Gr(2, W ∗ ⊕ Q) induces a Z′-isotrivial cone structure on
Gr(2,W ∗ ⊕ Q). This cone structure is exactly the VMRT of lines on the
Grassmannian. The Z-isotrivial cone structure on Xo also induces a Z′-
isotrivial cone structure on ρ−1([W ∗]). This cone structure is the VMRT of
S given by the minimal rational curves of X lying on S. The map δ induces
an isomorphism of these Z′-isotrivial cone structures. Thus δ sends minimal
rational curves of X lying on S to lines in the Grassmannian Gr(2,W ∗ ⊗ Q).

Let H ⊂ S be the union of hypersurfaces where δ is ramified (note that
δ is always well-defined in codimension 1). Suppose H �= ∅. Let A be the
proper image of H under δ. Then A is a subset of codimension ≥2 in
Gr(2,W ∗ ⊕ Q). Choose a family of minimal rational curves {�s | s ∈ �} on
Gr(2,W ∗ ⊕Q) such that �0 intersects A but is not contained in A; all �s with
s �= 0 are disjoint from A and are the strict images of a family of minimal
rational curves Cs, s �= 0, on S. Then the limit C0 is an irreducible curve be-
cause C0 has degree 1 with respect to the line bundle L on X. This implies
that the proper image of C0 must be �0 and C0 intersects H. But Cs, s �= 0 is
disjoint from H. Thus we have a family of irreducible curves Cs, s ∈ �, on
the projective manifold S and a hypersurface H ⊂ S such that C0 · H �= 0 but
Cs · H = 0 for s �= 0, a contradiction. We conclude that H = ∅.

Since H = ∅, we see that δ is unramified outside a subset E ⊂ S of codi-
mension ≥ 2. The image δ(S \ E) ⊂ Gr(2,W ∗ ⊕ Q) is not an affine subset,
because S \ E contains projective curves (general minimal rational curves
of S). But δ(S \ E) contains the open subset W ⊗ Q ⊂ Gr(2,W ∗ ⊕ Q) and
its complement Gr(2,W ∗ ⊕ Q) \ (W ⊗ Q) is an irreducible hypersurface.
Thus the complement Gr(2,W ∗ ⊕ Q) \ δ(S \ E) is of codimension ≥ 2. By
Lemma 7.5, δ extends to a biregular morphism S → Gr(2,W ∗ ⊕ Q). �



500 B. Fu, J.-M. Hwang

Proposition 7.7 In the setting of Proposition 7.6, let Gr(2, Q) ⊂
Gr(2, W ∗⊕ Q) be the trivial fiber subbundle whose fiber over [W ∗] ∈ Lag(
)

corresponds to Gr(2,Q) ⊂ Gr(2,W ∗ ⊕ Q) of Proposition 7.1. Then the re-
striction χ̃ |Gr(2,Q) agrees with the projection

Gr(2, Q) = Gr(2,Q) × Lag(
) → Gr(2,Q).

Proof The center of GL(Q) ⊂ G, which is isomorphic to C
×, acts on

Gr(2, W ∗ ⊕ Q) such that on each fiber it induces the C
×-action of Propo-

sition 7.1. From Proposition 7.1, Gr(2, Q) is a component of the fixed point
set of this action such that all general orbits in the divisor D have limit points
in Gr(2, Q).

The morphism χ̃ : Gr(2, W ∗ ⊕ Q) → X defined in Proposition 7.6 sends
the divisor D to X \ Xo, a subset of codimension ≥ 2 in X from Proposi-
tion 7.4. Let A ⊂ D be a general fiber of the contraction χ̃ |D : D → X \ X0.
The limit of A under the C

×-action contains a positive-dimensional subva-
riety A′ in Gr(2, Q). By the C

×-equivariance, A′ must be contracted by χ̃ ,
too. But the action of GL(Q) ⊂ G is transitive on Gr(2, Q[W ∗]) = Gr(2,Q)

for each [W ∗] ∈ Lag(
). Thus χ̃ (Gr(2, Q)) has dimension strictly less than
that of Gr(2, Q), i.e., Gr(2, Q) is contracted by χ̃ . By the definition of χ̃ in
Proposition 7.6, the line bundle χ̃∗L is ample on the Gr(2,Q)-factor of

Gr(2, Q) = Gr(2,Q) × Lag(
).

Thus the fibers of χ̃ |Gr(2,Q) must be contained in the Lag(
)-factor. Since
Lag(
) has Picard number 1, χ̃ must contract Lag(
) to one point. �

Proposition 7.8 Pick a subspace Q′ ⊂ Q of dimension 2, defining a fiber
subbundle Gr(2, W ∗ ⊕ Q′) of Gr(2, W ∗ ⊕ Q). Then the image of Gr(2,

W ∗ ⊕ Q′) under χ̃ is a 7-dimensional projective submanifold X′ ⊂ X such
that the restriction of χ̃ to Gr(2, W ∗ ⊕ Q′)

μ : Gr(2, W ∗ ⊕ Q′) → X′

sends each fiber of ψ : Gr(2, W ∗ ⊕ Q′) → Lag(
) isomorphically to a pro-
jective submanifold of X′ and contracts the submanifold

[Q′] × Lag(
) = Gr(2, Q′) ⊂ Gr(2, W ∗ ⊕ Q′)

to one point in X′.

Proof From Propositions 7.6 and 7.7, all are obvious except the smoothness
of the image X′. To see this, fix a decomposition Q = Q′ ⊕ Q′ ′ and choose a
copy of C

× ⊂ GL(Q) which acts with weight 0 on Q′ and weight 1 on Q′′.
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The induced C
×-action on Gr(2, W ∗ ⊕ Q) has Gr(2, W ∗ ⊕ Q′) as a com-

ponent of its fixed point set. Since the morphism χ̃ is equivariant under this
C

×-action on Gr(2, W ∗ ⊕ Q) and the corresponding C
×-action on X, the

image X′ is a component of the fixed point set of this C
×-action. Thus X′ is

nonsingular. �

End of the proof of Theorem 6.16 Let ι ∈ X′ be the image μ(Gr(2, Q′)) in
Proposition 7.8. The group Sp(
), with Lie algebra sp(4) = so(5) acts on
Gr(2, W ∗ ⊕ Q′) preserving Gr(2, Q′). Thus it acts on X′ with ι fixed, induc-
ing the isotropy representation of so(5) on Tι(X

′). This representation is non-
trivial as a non-trivial action of a reductive group gives a non-trivial isotropy
action on the tangent space of a fixed point. As non-trivial irreducible repre-
sentations of so(5) of dimension ≤ 7 can be either of dimension 4 (the spin
representation) or 5 (the standard representation), the fixed point set of this
so(5)-action has a component E ⊂ X′ with dimE = 3 or 2 through ι.

For any [W ∗] ∈ Lag(
), the isotropy subgroup in Sp(
) contains the sub-
group GL(W ∗), which acts in a natural way on Gr(2,W ∗ ⊕ Q′). The fixed
point set of this GL(W ∗)-action consists of two isolated points: [W ∗] and
[Q′]. As Gr(2,W ∗ ⊕ Q′) is mapped isomorphically and equivariantly to a
projective submanifold of X′, the germ of E at ι intersects this image sub-
manifold only at the point ι. As this is true for all [W ∗] ∈ Lag(
) and the
union of all such images is X′, we deduce that E = ι, a contradiction to the
dimension of E. �

8 Proof of Theorem 6.17

This section is devoted to the proof of Theorem 6.17. The argument is overall
parallel to that of Sect. 7, replacing Grassmannians by hyperquadrics. In fact,
Proposition 8.i is a direct analogue of Proposition 7.i, etc.

To start with, let us recall some facts about hyperquadrics. By an or-
thogonal vector space we mean a vector space U equipped with a non-
degenerate quadratic form β . Given an orthogonal vector space, the hyper-
quadric Q(U) ⊂ PU is the set of null-vectors, i.e., its affine cone is

Q̂(U) := {u ∈ U | β(u,u) = 0}.
Lemma 8.1 Let S be an orthogonal vector space with a quadratic form α.
Define a 2-dimensional orthogonal space (C ⊕ C, γ ) by the multiplication
γ (s, t) = st ∈ C. The direct sum (S ⊕(C⊕C), α⊕γ ) is an orthogonal space.
Consider the hyperquadric Q(S ⊕ (C ⊕ C)) of this orthogonal space. There
is a natural embedding of S into Q(S ⊕ (C ⊕ C)) as a Zariski open subset
whose complement D is an irreducible divisor defined by t = 0. The divisor
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D has a unique singular point, to be denoted by �. The C
×-action on S given

by the scalar multiplication extends to a C
×-action on Q(S ⊕ (C ⊕ C)) such

that a general orbit in D has � as a limit point.

Proof Choose coordinates z1, . . . , zn on S with respect to which the quadratic
form α is given by z2

1 + · · · + z2
n. In terms of the homogeneous coordinates

[z1, . . . , zn, s, t] on P(S ⊕ (C ⊕ C)), the hyperquadric Q(S ⊕ (C ⊕ C)) is
defined by

z2
1 + · · · + z2

n + st = 0.

The open embedding of S is given by

t = 1, s = −z2
1 − · · · − z2

n.

Its complement is the divisor D defined by t = 0 and D has a unique singular
point

� := (z1 = · · · = zn = t = 0).

The C
×-action of scalar multiplication on S is given in these coordinates as

the action of λ ∈ C
× by

(z1, . . . , zn, s, t) 
→ (λz1, . . . , λzn, λ
2s, t).

This certainly induces a C
×-action on Q(S ⊕ (C⊕C)) preserving D. For any

point (z1, . . . , zn, s,0) ∈ D with s �= 0, the orbit

{[λz1, . . . , λzn, λ
2s,0)], λ ∈ C

×} = {[λ−1z1, . . . , λ
−1zn, s,0], λ ∈ C

×}
has � as a limit point as λ−1 approaches 0. �

Next we need to look at the geometry of a certain hyperquadric bundle
over a 7-dimensional hyperquadric. Fix a 9-dimensional orthogonal vector
space U . The hyperquadric Q(U) is a 7-dimensional projective manifold ho-
mogeneous under SO(U). The semi-simple part of the isotropy group at a
point of Q(U) has Lie algebra so(7). The 8-dimensional spin representation
W of so(7) induces a homogeneous vector bundle S ∗ of rank 8 on Q(U),
called the dual spinor bundle and its dual is called the spinor bundle S . See
[18] for details.

Proposition 8.2

(i) Denoting by L the ample generator of Pic(Q(U)), we have S ∗ ∼= S ⊗L

and

H 0(Q(U), S ∗ ⊗ L−1) = H 1(Q(U), S ∗ ⊗ L−1) = H 1(Q(U), S ∗) = 0.
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(ii) For all i ≥ 0,

Hi

(
Q(U),

∧2
S ∗ ⊗ L−1

)
= 0.

(iii) The global sections of S ∗ generate the vector bundle S ∗ and H 0(Q(U),

S ∗) is the 16-dimensional spin representation of so(U) = so(9).

Proof Claim (i) and (iii) follow from Theorems 2.3 and 2.8 of [18]. We now
prove claim (ii). Denoting by Q the standard 7-dimensional representation of
so(7), we have

∧2
W ∼= Q ⊕ ∧2

Q as representations of so(7). Let P be the
isotropy group of a point on Q(U). As the center of P acts trivially on W ,
we see that, as P -representations, the highest weight of Q (resp.

∧2
Q) is λ2

(resp. λ3), where λi is the ith fundamental weight of the simple Lie algebra
of type B4. Note that the line bundle L−1 is induced by the representation of
highest weight −λ1. This gives that the bundle

∧2 S ∗ ⊗ L−1 is a direct sum
of two equivariant vector bundles with highest weights λ2 − λ1 and λ3 − λ1.
Let δ be the sum of all fundamental weights, then we see δ + λ2 − λ1 and
δ + λ3 − λ1 contain no λ1, i.e. these sums are singular weights. This implies
Hi(Q(U),

∧2 S ∗ ⊗ L−1) = 0 for all i ≥ 0 by Borel-Weil-Bott’s theorem. �

Note that the spin representation of so(7) carries an invariant non-
degenerate quadratic form (e.g. [4], Exercise 20.38). Thus there exists a fiber-
wise non-degenerate quadratic form on S ∗ with values in a line bundle M on
Q(U), i.e., Sym2 S ∗ → M inducing an isomorphism (S ⊗ M) ∼= S ∗. From
Proposition 8.2, we have

S ⊗ M ∼= S ⊗ L,

implying M = L. Consequently, we have a fiberwise non-degenerate quad-
ratic form

α : Sym2(S ∗) → L.

On the other hand the natural multiplication L ⊗ O → L, where O = OQ(U),

induces a fiberwise non-degenerate quadratic form

γ : Sym2(L ⊕ O) → L.

Thus the vector bundle S ∗⊕(L⊕ O) of rank 10 is equipped with the fiberwise
non-degenerate quadratic form

α ⊕ γ : Sym2(S ∗ ⊕ (L ⊕ O)) → L.

The associated hyperquadric bundle

ψ : Q(S ∗ ⊕ (L ⊕ O)) → Q(U)
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is a fiber bundle on Q(U) whose fiber is an 8-dimensional hyperquadric. We
will denote this projective manifold Q(S ∗ ⊕ (L ⊕ O)) by Y .

Proposition 8.3 Let ψ : Y → Q(U) be the hyperquadric bundle of the or-
thogonal vector bundle S ∗ ⊕ (L ⊕ O). Let � = H 0(Q(U), S ∗) be the 16-
dimensional spin representation of so(U). Then the Lie algebra g of the
automorphism group of the projective variety Y is isomorphic to � >�
(so(U) ⊕ C), where C corresponds to the scalar multiplication on the vec-
tor bundle S ∗. The vector bundle S ∗ has a natural embedding into Y =
Q(S ∗ ⊕ (L ⊕ O)). Its complement D is an irreducible divisor and the sin-
gular locus of D is a section � of ψ .

Proof By Proposition 8.2 (iii), we have a surjective map �⊗ O → S ∗, which
gives for any x ∈ Q(U) a surjective map ζx : � → S ∗

x . The vector group �

acts on S ∗ ⊕ L ⊕ O by the following rule: for any (v, s, t) ∈ S ∗
x ⊕ Lx ⊕ Ox

and any f ∈ �,

f · (v, s, t) = (v + tζx(f ), s − 2α(v, ζx(f )) − tα(ζx(f ), ζx(f )), t).

One checks easily that this action preserves the quadratic form on S ∗⊕L⊕ O.
This induces an action of � on Y . From this, we see that there is a natural
inclusion

�>� (so(U) ⊕ C) ⊂ g.

To show that this is an isomorphism, it suffices to compare their dimensions.
Let ψ : Y → Q(U) be the natural projection. We have an exact sequence

0 → T ψ → T (Y ) → ψ∗T (Q(U)) → 0, (8.1)

where T ψ denotes the relative tangent bundle. Recall that for an orthogonal
vector space C

m, there is a natural identification

H 0(Q(Cm),T (Q(Cm))) = so(Cm) = ∧2
C

m.

Translating it into relative setting, we get

ψ∗T ψ =
∧2

(S ∗ ⊕ (L ⊕ O)) ⊗ L−1

=
((∧2

S ∗
)

⊗ L−1
)

⊕ O ⊕ S ∗ ⊕ (S ∗ ⊗ L−1).

By Riψ∗T ψ = 0 for i ≥ 1 and Proposition 8.2, we have H 1(Y,T ψ) = 0 and

H 0(Y,T ψ) = H 0(Q(U),ψ∗T ψ) = H 0(Q(U), O ⊕ S ∗) = C ⊕ �.
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Since H 0(Q(U), T (Q(U)) = so(U), the long exact sequence associated to
(8.1) shows that

dimg = dimH 0(Y,T (Y )) = dim(�>� (so(U) ⊕ C)).

Now the rest of Proposition 8.3 is a globalization of Lemma 8.1. The hy-
perquadric bundle ψ : Y → Q(U) has a natural section � ⊂ Y over Q(U)

determined by

� := PO ⊂ Q(S ∗ ⊕ (L ⊕ O)) = Y

because the O-factor of S ∗ ⊕ (L ⊕ O) is a null-vector with respect to the
quadratic form α ⊕ γ. Given a point v ∈ S ∗, let v′ ∈ L be the unique vector
defined by

α(v, v) + γ (v′,1) = 0

where 1 denotes the section of O determined by the constant function 1 on
Q(U). Then we have a canonical embedding of S ∗ into the hyperquadric
bundle Y = Q(S ∗ ⊕ (L ⊕ O)) as a Zariski open subset by

v ∈ S 
→ (v, (v′,1)).

Its complement is an irreducible divisor D determined by the zero section
of O and � is the singular locus of D, which can be seen immediately from
Lemma 8.1. �

Proposition 8.4 Let G be the simply connected group with Lie algebra g

of Proposition 8.3. The open subset S ∗ ⊂ Y described in Proposition 8.3
is G-homogeneous and has a natural isotrivial cone structure C invariant
under the G-action such that each fiber Cx ⊂ PTx(S ∗) is isomorphic to
Z ⊂ P(W ⊕ Q) in the notation of Sect. 3.3. This cone structure C is locally
flat and aut(C, x) ∼= g for each x ∈ S ∗.

Proof It is easy to see that the open subset S ∗ is G-invariant. The base Q(U)

is homogeneous under the action of SO(U). From the proof of Proposi-
tion 8.3, the vector group � acts on the fiber S ∗

x by translation of images
of ζx , thus this action is transitive on the fibers of S ∗ → Q(U). This shows
that S ∗ is G-homogeneous.

For a point z ∈ Q(U), the Lie algebra of the isotropy subgroup in SO(U)

of z is a parabolic subalgebra pz ⊂ so(U). It is known that the reductive part
of pz is isomorphic to co(7). Regard Q(U) as a submanifold of S ∗ ⊂ Y via
the zero section of the vector bundle. Let �z := Ker(ζz) ⊂ �, which corre-
sponds to the sections of S ∗ vanishing at z. At the point z ∈ Q(U) the isotropy
subgroup Gz has Lie algebra

gz := �z>� (pz ⊕ C) ⊂ �>� (so(U) ⊕ C) = g.
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The tangent space

Tz(S ∗) = S ∗
z ⊕ Tz(Q(U)) ∼= W ⊕ Q

contains the affine cone Ẑ in a natural way. The isotropy representation of
gz = �z>� (pz ⊕ C) on Tz(S ∗) = W ⊕ Q satisfies

(1) �z-component of gz acts trivially.
(2) pz-factor acts as co(7) in a natural way on W and on Q.
(3) The C-factor has weight 1 on W and weight 0 on Q.

From Proposition 3.9, Ẑ is preserved under the isotropy representation of the
isotropy subgroup Gz. Thus the G-action defines a natural Z-isotrivial cone
structure on the open set S ∗.

As aut(Ẑ)(2) = 0 by Theorem 2.3, we have the following inequalities from
Proposition 5.10

dimg ≤ dimaut(C, x) ≤ dim(aut(Ẑ)(1) ⊕ aut(Ẑ) ⊕ W ⊕ Q).

From Propositions 3.9 and 3.10,

dim(aut(Ẑ)(1) ⊕ aut(Ẑ) ⊕ (W ⊗ Q) ⊕ Sym2 W) = 53 = dimg

implying g ∼= aut(C, z). Then Corollary 5.13 shows that the Z-isotrivial cone
structure on S ∗ ⊂ Y is locally flat. �

Now to prove Theorem 6.17, we will make the following assumption and
derive a contradiction.

(Assumption) Let X be a 15-dimensional Fano manifold with Pic(X) =
Z〈OX(1)〉. Assume that X has minimal rational curves of degree 1 with
respect to OX(1) whose VMRT at a general point is isomorphic to Z ⊂
P(W ⊕ Q) and the cone structure is locally flat.

Proposition 8.5 Under (Assumption), the group G in Proposition 8.4 acts
on X with an open orbit Xo such that the complement X \ Xo has codimen-
sion ≥ 2. There exists a G-biregular morphism χ : S ∗ → Xo, sending the
Z-isotrivial cone structure of Proposition 8.4 to the Z-isotrivial VMRT cone
structure on X. This induces a fibration ρ : Xo → Q(U).

Proof Since the Z-isotrivial cone structure on X is locally flat, it is locally
isomorphic to the cone structure C of Proposition 8.4. By Theorem 6.8, we
have aut(X) = aut(C, x) = g for x ∈ S ∗ general, which implies that the group
G acts on X with an open orbit Xo. As S ∗ is simply connected, we have
a G-equivariant unramified covering morphism χ : S ∗ → Xo. The image
of the zero-section Q(U) ⊂ S ∗ is a positive-dimensional subvariety in Xo.
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Thus the complement X \ Xo must be of codimension ≥ 2 because X has
Picard number 1. In particular, Xo is simply connected and the morphism
χ : S ∗ → Xo is biregular. It certainly preserves the cone structure. The fibra-
tion ψ : S ∗ → Q(U) induces a fibration ρ : Xo → Q(U). �

The proof of the next proposition is essentially the same as that of Propo-
sition 8.3.4 of [14]. We recall the proof for the reader’s convenience.

Proposition 8.6 Let ρ : Xo → Q(U) be as in Proposition 8.5. Given a point
z ∈ Q(U), the closure in X of the fiber ρ−1(z) is a projective submanifold
biregular to the hyperquadric ψ−1(z) such that ρ−1(z) corresponds to S ∗

z ⊂
ψ−1(z). Consequently, the biregular morphism

χ : S ∗ = Y \ D → Xo

in Proposition 8.5 can be extended to a morphism χ̃ : Y → X.

Proof As in the proof of Proposition 8.4, regard Q(U) as a submanifold
of S ∗ ⊂ Y . From the description of the isotropy subgroup Gz in the proof
of Proposition 8.4, we see that gz contains a subalgebra isomorphic to
co(Q) ⊂ pz, whose center has weight 1 on both W and Q. Also, there is a
C-factor in gz with weight 1 on W and 0 on Q. This implies that there exists
a subgroup C

× ⊂ G which acts with weight 1 on Q and weight 0 on W . It
follows that this C

× action on Y fixes the point z and the isotropy action on

Tx(Y ) = W ⊕ Q

fixes exactly W . Thus the fixed point set of this C
×-action on Y has the fiber

Yz := ψ−1(z) as a connected component. Consequently, the corresponding
C

×-action on X has the closure Sz ⊂ X of the fiber ρ−1(z) as a connected
component of its fixed point set. Since the fixed point set of a C

×-action
on the projective manifold X is nonsingular, the closure Sz is a projective
submanifold.

To show that this submanifold Sz is biregular to the hyperquadric ψ−1(z),
we need to show that the birational map δ : Sz ��� ψ−1(z) induced by
χ−1 : Xo → Y is biholomorphic.

Recall that Z′ = Z ∩ PW is a 6-dimensional hyperquadric Q(W) deter-
mined by the orthogonal structure on the 8-dimensional spin representa-
tion W . The Z-isotrivial cone structure on S ∗ ⊂ Y induces a Z′-isotrivial
cone structure on the fiber S ∗

z . This cone structure is exactly the VMRT of
lines on the hyperquadric. The Z-isotrivial cone structure on Xo also induces
a Z′-isotrivial cone structure on ρ−1(z). This cone structure is the VMRT of
Sz given by the minimal rational curves of X lying on Sz. The map δ induces
an isomorphism of these Z′-isotrivial cone structures. Thus δ sends minimal
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rational curves of X lying on Sz to lines in the hyperquadric ψ−1(z). Then
the same argument as in the proof of Proposition 7.6, shows that δ extends to
a biregular morphism Sz → ψ−1(z). �

Proposition 8.7 In the setting of Proposition 8.6, let � ⊂ Y be the section of
ψ given by the singular locus of the divisor D. Then χ̃ (�) is one point.

Proof We can choose a subgroup C
× ⊂ G which corresponds to the scalar

multiplication of the vector bundle S ∗, corresponding to the C
×-action of

Lemma 8.1 on each fiber of ψ . From Lemma 8.1, � is a component of the
fixed point set of this action such that all general orbits in the divisor D have
limit points in �.

The morphism χ̃ : Y → X defined in Proposition 8.6 sends the divisor D

to X \Xo, a subset of codimension ≥ 2 in X from Proposition 8.5. Let A ⊂ D

be a general fiber of the contraction χ̃ |D : D → X \ X0. The limit of A under
the C

×-action contains a positive-dimensional subvariety A′ in �. By the C
×-

equivariance, A′ must be contracted by χ̃ , too. But � is an orbit of the action
of a subgroup of G with Lie algebra so(U) ⊂ g. Thus � is contracted by χ̃ .
Since � ∼= Q(U) is of Picard number 1, χ̃ must contract � to one point. �

End of the proof of Theorem 6.17 Let ι ∈ X be the image χ̃ (�) in Propo-
sition 8.7. The group Spin(9) ⊂ G acts on Y preserving �. Thus it acts on
X with ι fixed, inducing the isotropy representation of so(9) on Tι(X). This
representation is non-trivial, because a non-trivial action of a reductive group
gives a non-trivial isotropy action on the tangent space of a fixed point. Since
an irreducible representation of so(9) with dimension ≤ 15 must be the 9-
dimensional standard representation, Tι(X) decomposes as a so(9)-module
into the sum of the orthogonal space U and a complementary subspace of
dimension 6 where so(9) acts trivially. This implies that the fixed point set of
the Spin(9)-action on X has a component E of dimension 6 through ι.

For any z ∈ Q(U), the stabilizer of Spin(9) contains the subgroup Spin(7),
which acts in a natural way on the hyperquadric Yz = ψ−1(z). This action
when restricted to S ∗

z is the spin representation, which has no fixed point in
S ∗

z except the zero point z. This action on Dz := D ∩Yz has only one isolated
fixed point, which is its singular point � ∩ Yz. As Yz is mapped isomorphi-
cally and equivariantly to its image in X, the germ of E at ι intersects this
image only at the point ι. As this holds for all z and the union of such images
covers X, we deduce that E = ι, a contradiction to dimE = 6. �

9 Application to target rigidity

In this section, we will give an application of Main Theorem and Theo-
rem 4.21 in the study of the following notion.
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Definition 9.1 A projective variety X is said to have the target rigidity prop-
erty if for any surjective morphism f : Y → X, and any deformation

{ft : Y → X, |t | < 1, f0 = f },
there exist automorphisms σt : X → X such that ft = σt ◦ f .

All projective varieties which are not uniruled have the target rigidity prop-
erty (modulo étale factorizations) by [15]. All known examples of Fano man-
ifolds of Picard number 1, except projective space, have the target rigidity
property (cf. [8]). Some examples of nonsingular uniruled projective varieties
of higher Picard number have been studied (e.g. [7]).

For nonsingular uniruled projective varieties, the target rigidity property is
related to the following.

Definition 9.2 Let X be a nonsingular uniruled projective variety and let K
be a minimal rational component. Let C ⊂ PT (X) be the cone structure as-
sociated to the VMRT of K. X is said to have the Liouville property with
respect to K if for a general x ∈ X, every local vector field in aut(C, x) can
be extended to a global holomorphic vector field on a Zariski open subset
of X.

Example 9.3 In Example 6.11, suppose that aut(Ẑ)(1) = 0. Then for a general
point y ∈ Y , we have aut(CY , y) ∼= V ⊕ aut(Ẑ) by Proposition 5.14. It is
obvious that the subgroup of the affine group with Lie algebra V ⊕ aut(Ẑ)

acts on Y . Thus aut(CY , y) can be extended to a global holomorphic vector
fields on Y and Y has the Liouville property.

Proposition 9.4 Let X,X′ be two nonsingular uniruled projective varieties
with minimal components K, K′, respectively. Assume that X′ has the Liou-
ville property with respect to K′ and there exists a generically finite rational
map � : X ��� X′ sending the cone structure given by the VMRT of K to that
of K′ at general points. Then X has the Liouville property with respect to K.

Proof � induces an isomorphism aut(C, x) ∼= aut(C′,�(x)) when C, C′ de-
note the cone structures and x ∈ X is a general point. By the Liouville prop-
erty for X′, elements of aut(C′,�(x)) can be extended to a global holomor-
phic vector field on a Zariski open subset of X′. By pulling it back to X via �,
we get a global holomorphic vector field on a Zariski open subset of X. �

It turns out that the target rigidity follows from the Liouville property:

Proposition 9.5 Let X be a nonsingular uniruled projective variety which
has the Liouville property with respect to a minimal component K. Then X

has the target rigidity property.



510 B. Fu, J.-M. Hwang

Proof By the Stein factorization, it is easy to see that it suffices to check
the condition in Definition 9.1 for generically finite surjective morphisms
{ft : Y → X, |t | < 1} (cf. [15], Sect. 2.2 for details). Let τ ∈ H 0(Y, f ∗T (X))

be the Kodaira-Spencer class of the deformation ft at 0. As ft is generically
finite, we can regard τ as a multi-valued holomorphic vector field on X. It
suffices to show that τ is univalent on X, namely, the germ of τ at a general
point of X can be extended by analytic continuation to a global vector field
on a Zariski open subset of X. In fact, this implies that τ ∈ f ∗H 0(X,T (X))

and the integration of τ generates the required automorphisms of X.
Let C be the cone structure given by the VMRT of X, for which the Li-

ouville property holds. Take an analytic open subset near a general point
U ⊂ Y such that ft |U : U → ft (U) is biholomorphic for |t | < ε, then τ |U
can be regarded as a vector field on f (U). By Proposition 3 in [12], there
are countably many subvarieties Di ⊂ PT (Y ), i = 1,2, . . . , (called varieties
of distinguished tangents in [12]) such that for any generically finite mor-
phism h : Y → X and the dominant rational map dh : PT (Y ) ��� PT (X)

defined by the differential of h, the proper inverse image dh−1(C|h(U)) co-
incides with some Di . As the family df −1

t (C), |t | < ε is uncountable, we
have (df −1

t (C))|U = (df −1
0 (C))|U for all t small. This implies that τ |f (U)

preserves C , i.e. its germ at x ∈ f0(U) is an element of aut(C, x). By the Li-
ouville property, this local vector field comes from a global vector field on a
Zariski open subset of X. �

We will apply this to the following setting.

Theorem 9.6 Let S ⊂ PV be a linearly normal nonsingular non-degenerate
projective variety such that Sec(S) �= PV . On the blow-up BlS(PV ), the
proper transforms of lines on PV intersecting S determine a minimal rational
component K. Then BlS(PV ) has the Liouville property with respect to K. In
particular, it has the target rigidity property.

To prove Theorem 9.6, we note the following two properties of K. The
proof of the first one is immediate.

Proposition 9.7 In the setting of Theorem 9.6, if x ∈ BlS(PV ) is a general
point corresponding to a point (using the same symbol by abuse of notation)
x ∈ PV \Sec(S), the VMRT Cx ⊂ PTx(X) at x is isomorphic to the subvariety
in PTx(PV ) consisting of tangents to lines joining x to S. Denoting by px :
S → P(V/x̂) the biregular projection (cf. Notation 4.1 and Lemma 4.2), the
VMRT at x is isomorphic to px(S) ⊂ P(V/x̂).

Proposition 9.8 In the setting of Theorem 9.6, for any effective divisor D on
BlS(PV ), a member of K has positive intersection with D.
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Proof If D is the exceptional divisor of the blow-up, this is obvious. We
may assume that the image D̄ ⊂ PV of D is a hypersurface. It suffices to
show that a general line intersecting S must contain a point of D̄ outside S.
Suppose otherwise. Pick a general point x ∈ S. Since a general line through
x intersects D̄ only at x, px(D̄) is a divisor in P(V/x̂), i.e., D̄ is a cone with
vertex at x. But this should be true for all general x ∈ S, a contradiction to the
non-degeneracy of S. �

To prove Theorem 9.6, let us recall the following consequence of Main
Theorem and Theorem 4.21.

Proposition 9.9 Let S ⊂ PV be a nonsingular non-degenerate projective va-
riety with Sec(S) �= PV . Then aut(p̂x(S))(1) = 0 for a general point x ∈ PV .

Proof Suppose that aut(p̂x(S))(1) �= 0. From Main Theorem, px(S) ⊂
P(V/x̂) must be a biregular projection of the linearly normal embedding
S ⊂ PW,W = H 0(S, O(1))∗, of the varieties in (A1), (A2), (A3) or (B3) in
Main Theorem. Since x is general, it is a biregular projection from a subspace
L ⊂ W passing through a general point. This contradicts Theorem 4.21. �

We are ready to prove Theorem 9.6.

Proof of Theorem 9.6 Let C be the cone structure defined by the VMRT on
general points of X := BlS(PV ). We can regard it as a cone structure on the
open subset M := PV \ Sec(S) as described in Proposition 9.7.

By Proposition 9.9, we have aut(p̂x(S))(1) = 0 for a general point x ∈ PV .
From Proposition 5.10, this implies that for a general point x ∈ M ,

dim(aut(C, x)) ≤ δ(C) + dimaut(Ĉx).

By Lemma 4.7, for the cone structure C , the isotrivial leaf through a point
x is exactly the orbit of x under the projective automorphism group Aut(S),
which implies that

δ(C) = dim Aut(S) · x = dim Aut(S) − dim Aut(S, x),

where Aut(S, x) ⊂ Aut(S) is the isotropy subgroup at x. Since dimaut(Ĉx) =
dim Aut(S, x)+ 1 by Lemma 4.7, we have dim(aut(C, x)) ≤ dim Aut(S)+ 1.

But we have a natural inclusion aut(S) ⊂ aut(C, x) because the action of
Aut(S) preserves the cone structure C on M . Thus

dim Aut(S) ≤ dim(aut(C, x)) ≤ dim Aut(S) + 1.

If dim Aut(S) = dim(aut(C, x)), then aut(S) ∼= aut(C, x) and elements of
aut(C, x) extend to global vector fields on X by the action of Aut(S) on X.
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Thus we may assume that dim(aut(C, x)) = dim Aut(S) + 1. The assump-
tion means that the equality holds in

dim(aut(C, x)) ≤ δ(C) + dimaut(Ĉx).

Then by Corollary 5.13, the cone structure is Z-isotrivial and locally flat,
for some Z ⊂ PV . By Proposition 9.8, we can apply Corollary 6.12 to get
a rational map � : X ��� Y inducing �∗ : aut(C, x) ∼= aut(CY ,�(x)) for a
general point x ∈ X. Since

aut(Ẑ)(1) = aut(p̂x(S))(1) = 0,

Y has the Liouville property from Example 9.3. Thus we are done by Propo-
sition 9.4. �
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